1
|
Romero-Vargas A, Fdez-Güelfo LA, Blandino A, Díaz MJ, Díaz AB. Rugulopteryx okamurae: Effect of hydrothermal acid pretreatment on the saccharification process. BIORESOURCE TECHNOLOGY 2023; 388:129721. [PMID: 37730140 DOI: 10.1016/j.biortech.2023.129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
The biological invasion caused by the invasive macroalga Rugulopteryx okamurae is causing increasing concern in southern Europe. To reduce its impact, this brown alga can be treated from a biorefinery approach. In this study, the macroalga is used as raw material to obtain fermentable sugars, which can be converted into high value-added products. The alga was exposed to hydrothermal and hydrothermal acid pretreatment and the pretreated biomass was used for enzymatic hydrolysis, achieving a hydrolysate with a reducing sugar concentration of almost 25 g/L (49.2% more than with non-pretreated alga). In addition, the combined severity factor was calculated to identify the best pretreatment conditions, finding the optimum in those pretreatments performed with 0.2 N HCl concentration and 15 min reaction time. Based on the results, it would be interesting to carry out new studies using the saccharified medium obtained under optimal conditions to obtain value-added compounds by fermentation.
Collapse
Affiliation(s)
- Agustín Romero-Vargas
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Luis Alberto Fdez-Güelfo
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Manuel J Díaz
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Ana Belén Díaz
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
2
|
Hans N, Gupta S, Pattnaik F, Patel AK, Naik S, Malik A. Valorization of Kappaphycus alvarezii through extraction of high-value compounds employing green approaches and assessment of the therapeutic potential of κ-carrageenan. Int J Biol Macromol 2023; 250:126230. [PMID: 37558033 DOI: 10.1016/j.ijbiomac.2023.126230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
This study utilizes different emerging green extraction technologies to recover maximum value-added products from Kappaphycus alvarezii and evaluate their bio-functional properties. Using the supercritical fluid extraction (SFE) method, the total lipid yield of 0.21 ± 0.2 % was obtained from the biomass. Linoleic acid, eicosapentaenoic acid, arachidonic acid, γ-linolenic acid, and docosahexaenoic acid were present in higher concentrations (9.12 %) in the lipid extracted with SFE as compared to hexane (5.5 %). Using an ultrasonication assisted approach, ~56 % of κ-carrageenan was recovered from SFE residual biomass, which contains 28.5 ± 1.9 % sulfate content. It exhibited a monosaccharide content of 3,6-anhydrogalactose (~24 %) and galactose (~53 %), as well as rheological properties within FAO limitations that can be explored for food-grade applications. ~58 % of the total protein (12.5 %) from SFE residual biomass was recovered using subcritical water hydrolysis method. The effectiveness of κ-carrageenan in suppressing the 3CLpro of SARS-CoV-2 using in vitro and in silico approaches was investigated. κ-Carrageenan effectively inhibited the main protease by up to 93 % at 1.6 mg mL-1. In silico results revealed that κ-carrageenan successfully binds to the active site of the main protease while retaining the structural integrity and stability of protein-ligand complexes.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India
| | - Shreya Gupta
- Kausma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| | - Falguni Pattnaik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India
| | - Ashok Kumar Patel
- Kausma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, New Delhi 110016, India.
| |
Collapse
|
3
|
Ami J, Mensah M, Asiedu NY, Thygesen A. Optimization of Reducing Sugar Concentration from Ulva fasciata Using Cellulase via Response Surface Methodology Techniques. Ind Biotechnol (New Rochelle N Y) 2023. [DOI: 10.1089/ind.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Johannes Ami
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Moses Mensah
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nana Yaw Asiedu
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anders Thygesen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Lips D. Fuelling the future of sustainable sugar fermentation across generations. ENGINEERING BIOLOGY 2022; 6:3-16. [PMID: 36968555 PMCID: PMC9995162 DOI: 10.1049/enb2.12017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
Biomanufacturing in the form of industrial sugar fermentation is moving beyond pharmaceuticals and biofuels into chemicals, materials, and food ingredients. As the production scale of these increasingly consumer-facing applications expands over the next decades, considerations regarding the environmental impact of the renewable biomass feedstocks used to extract fermentable sugars will become more important. Sugars derived from first-generation biomass in the form of, for example, corn and sugarcane are easily accessible and support high-yield fermentation processes, but are associated with the environmental impacts of industrial agriculture, land use, and competition with other applications in food and feed. Fermentable sugars can also be extracted from second- and third-generation feedstocks in the form of lignocellulose and macroalgae, respectively, potentially overcoming some of these concerns. Doing so, however, comes with various challenges, including the need for more extensive pretreatment processes and the fermentation of mixed and unconventional sugars. In this review, we provide a broad overview of these three generations of biomass feedstocks, outlining their challenges and prospects for fuelling the industrial fermentation industry throughout the 21st century.
Collapse
|
5
|
Zheng Y, Li Y, Yang Y, Zhang Y, Wang D, Wang P, Wong ACY, Hsieh YSY, Wang D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1438-1453. [PMID: 35089725 DOI: 10.1021/acs.jafc.1c07267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine macroalgae are considered renewable natural resources due to their high carbohydrate content, which gives better utilization value in biorefineries and higher value conversion than first- and second-generation biomass. However, due to the diverse composition, complex structure, and rare metabolic pathways of macroalgae polysaccharides, their bioavailability needs to be improved. In recent years, enzymes and pathways related to the degradation and metabolism of macroalgae polysaccharides have been continuously developed, and new microbial fermentation platforms have emerged. Aiming at the bioutilization and transformation of macroalgae resources, this review describes the latest research results from the direction of green degradation, biorefining, and metabolic pathway design, including summarizing the the latest biorefining technology and the fermentation platform design of agarose, alginate, and other polysaccharides. This information will provide new research directions and solutions for the biotransformation and utilization of marine macroalgae.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ann C Y Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Production of Ulvan Oligosaccharides with Antioxidant and Angiotensin-Converting Enzyme-Inhibitory Activities by Microbial Enzymatic Hydrolysis. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed oligosaccharides have attracted attention in food, agricultural, and medical applications recently. Compared to red and brown seaweeds, fewer studies have focused on the biological activity of green seaweed’s oligosaccharides. This study aimed to produce bioactive ulvan oligosaccharides via enzymatic hydrolysis from green seaweed Ulva lactuca. Ulvan, a water-soluble polysaccharide, was obtained by hot water extraction. Two isolated marine bacteria, Pseudomonas vesicularis MA103 and Aeromonas salmonicida MAEF108, were used to produce multiple hydrolases, such as ulvanolytic enzymes, amylase, cellulase, and xylanase, to degrade the ulvan extract. An ultrafiltration system was used to separate the enzymatic hydrolysate to acquire the ulvan oligosaccharides (UOS). The characteristics of the ulvan extract and the UOS were determined by yield, reducing sugar, uronic acid, sulfate group, and total phenols. The FT-IR spectrum indicated that the ulvan extract and the UOS presented the bands associated with O-H, C=O, C-O, and S=O stretching. Angiotensin I converting enzyme (ACE) inhibition and antioxidant activities in vitro were evaluated in the ulvan extract and the UOS. These results provide a practical approach to producing bioactive UOS by microbial enzymatic hydrolysis that can benefit the development of seaweed-based products at the industrial scale.
Collapse
|
7
|
Production of polyhydroxyalkanoates and carotenoids through cultivation of different bacterial strains using brown algae hydrolysate as a carbon source. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Fu H, Hu J, Guo X, Feng J, Zhang Y, Wang J. High-Selectivity Butyric Acid Production from Saccharina japonica Hydrolysate by Clostridium tyrobutyricum. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
|
10
|
Sudirman S, Chang HW, Chen CK, Kong ZL. A dietary polysaccharide from Eucheuma cottonii downregulates proinflammatory cytokines and ameliorates osteoarthritis-associated cartilage degradation in obese rats. Food Funct 2019; 10:5697-5706. [PMID: 31435629 DOI: 10.1039/c9fo01342c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is a common form of arthritis, which is characterized by the degeneration of articular cartilage, leading to joint dysfunction. Oral drug therapy seems to ameliorate some signs and symptoms of OA, but may be accompanied by side effects and does not appear to be effective long-term. Seaweed has received much attention for pharmacological application due to its various biomedical properties, including the anti-inflammation, antitumor, and antioxidant effects. This study investigated the ameliorative effects of a dietary polysaccharide from Eucheuma cottonii extract (ECE) on an anterior cruciate ligament transection with partial medial meniscectomy surgery (ACLT+MMx) to induce OA in high-fat diet (HFD)-induced obese rats. Male Sprague-Dawley rats were fed an HFD for 12 weeks before ACLT+MMx surgery, after which they were administered a daily oral gavage of saline (Sham, OB Sham, and OBOA) and either low-dose ECE (100 mg per kg body weight), high-dose ECE (400 mg per kg body weight), or glucosamine sulfate as a positive control (OBOAGS; 200 mg per kg body weight) for 5 weeks. Treatment with ECE decreased the body weight, triglyceride and total cholesterol (TC) levels, and the TC/high-density lipoprotein (HDL)-C ratio in the obese rats. Additionally, ECE downregulated the expression of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and leptin, and suppressed nuclear factor-kappa B and extracellular-signal-regulated kinase-1/2 expression, resulting in a decrease in the levels of matrix metalloproteinase (MMP)-1 and MMP-13 and prostaglandin-E2 and attenuated cartilage degradation. These results demonstrate that the dietary polysaccharide from ECE can suppress OA development in obese rats, suggesting its potential efficacy as a promising candidate for OA treatment.
Collapse
Affiliation(s)
- Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| | - Heng-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| | - Chun-Kai Chen
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
11
|
Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R. A critical review on production of bioethanol from macroalgal biomass. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101606] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Kim SH, Mudhoo A, Pugazhendhi A, Saratale RG, Surroop D, Jeetah P, Park JH, Saratale GD, Kumar G. A perspective on galactose-based fermentative hydrogen production from macroalgal biomass: Trends and opportunities. BIORESOURCE TECHNOLOGY 2019; 280:447-458. [PMID: 30777703 DOI: 10.1016/j.biortech.2019.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
This review analyses the relevant studies which focused on hydrogen synthesis by dark fermentation of galactose from macroalgal biomass by discussing the inoculum-related pretreatments, batch fermentation and inhibition, continuous fermentation systems, bioreactor designs for continuous operation and ionic liquid-assisted catalysis. The potential for process development is also revisited and the challenges towards suppressing glucose dominance over a galactose-based hydrogen production system are presented. The key challenges in the pretreatment process aiming to achieve a maximum recovery of upgradable (fermentable) sugars from the hydrolysates and promoting the concomitant detoxification of the hydrolysates have also been highlighted. The research avenues for bioprocess intensification connected to enhance selective sugar recovery and effective detoxification constitute the critical steps to develop future red macroalgae-derived galactose-based robust biohydrogen production system.
Collapse
Affiliation(s)
- Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Dinesh Surroop
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
13
|
Abstract
The rapid depletion and environmental concerns associated with the use of fossil fuels has led to extensive development of biofuels such as bioethanol from seaweeds. The long-term prospect of seaweed bioethanol production however, depends on the selection of processes in the hydrolysis and fermentation stages due to their limiting effect on ethanol yield. This review explored the factors influencing the hydrolysis and fermentation stages of seaweed bioethanol production with emphasis on process efficiency and sustainable application. Seaweed carbohydrate contents which are most critical for ethanol production substrate selection were 52 ± 6%, 55 ± 12% and 57 ± 13% for green, brown and red seaweeds, respectively. Inhibitor formation and polysaccharide selectivity were found to be the major bottlenecks influencing the efficiency of dilute acid and enzymatic hydrolysis, respectively. Current enzyme preparations used, were developed for starch-based and lignocellulosic biomass but not seaweeds, which differs in polysaccharide composition and structure. Also, the identification of fermenting organisms capable of converting the heterogeneous monomeric sugars in seaweeds is the major factor limiting ethanol yield during the fermentation stage and not the SHF or SSF pathway selection. This has resulted in variations in bioethanol yields, ranging from 0.04 g/g DM to 0.43 g/g DM.
Collapse
|
14
|
Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0090-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Kim SW, Kim YW, Hong CH, Lyo IW, Lim HD, Kim GJ, Shin HJ. Recombinant agarase increases the production of reducing sugars from HCl-treated Gracilaria verrucosa, a red algae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Teh YY, Lee KT, Chen WH, Lin SC, Sheen HK, Tan IS. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. BIORESOURCE TECHNOLOGY 2017; 246:20-27. [PMID: 28781203 DOI: 10.1016/j.biortech.2017.07.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
This study aims to produce biochar and sugars from a macroalga Eucheuma denticulatum using dilute sulfuric acid hydrolysis along with microwave-assisted heating. The reactions were operated at sulfuric acid concentrations of 0.1 and 0.2M, reaction temperatures of 150-170°C and a heating time of 10min. Compared to the raw macroalga, biochar qualities were improved with increased carbon content and lower ash and moisture contents. The calorific value of the biochar could be intensified up to 45%, and 39% of energy yield was recovered. Apart from producing biochar, the highest total reducing sugars were 51.47g/L (74.84% yield) along with a low by-product 5-HMF of 0.20g/L, when the biomass was treated under the optimum conditions at 160°C with 0.1M H2SO4. Thus, this study demonstrated that macroalgae could be potentially used as biomass feedstock under microwave-assisted acid hydrolysis for the production of biofuel and value-added products.
Collapse
Affiliation(s)
- Yong Yi Teh
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shih-Cheng Lin
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Herng-Kuang Sheen
- Sugar Business Division, Taiwan Sugar Corporation, Tainan 701, Taiwan
| | - Inn Shi Tan
- Department of Petroleum Engineering, Curtin University, Miri, Sarawak, Malaysia
| |
Collapse
|
17
|
Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 2017; 101:1029-1040. [DOI: 10.1016/j.ijbiomac.2017.03.184] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022]
|
18
|
Trincone A. Enzymatic Processes in Marine Biotechnology. Mar Drugs 2017; 15:E93. [PMID: 28346336 PMCID: PMC5408239 DOI: 10.3390/md15040093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
19
|
Duan F, Yu Y, Liu Z, Tian L, Mou H. An effective method for the preparation of carrageenan oligosaccharides directly from Eucheuma cottonii using cellulase and recombinant κ-carrageenase. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa. Bioprocess Biosyst Eng 2016; 39:1173-80. [PMID: 27003825 DOI: 10.1007/s00449-016-1593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.
Collapse
|
21
|
Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, Kim KH. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. BIORESOURCE TECHNOLOGY 2016; 199:311-318. [PMID: 26276401 DOI: 10.1016/j.biortech.2015.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 05/28/2023]
Abstract
Red macroalgae are currently considered as renewable resources owing to their high carbohydrate and low lignin and hemicellulose contents. However, utilization of red macroalgae has been limited owing to the lack of established methods for pretreatment and an effective saccharification system. Furthermore, marine red macroalgae consist of the non-favorable mixed sugars for industrial microorganisms. In this review, we suggest strategies for converting red macroalgae to bio-based products, focusing on the pretreatment and saccharification of red macroalgae to produce fermentable sugars and the microbial fermentation of these sugars by industrial microorganisms. In particular, some recent breakthroughs for the efficient utilization of red macroalgae include the discovery of key enzymes for the complete monomerization of red macroalgal carbohydrate and the catabolic pathway of 3,6-anhydro-l-galactose, the most abundant sugar in red macroalgae. This review provides a comprehensive perspective for the efficient utilization of red macroalgae as sustainable resources to produce bio-based products.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Hee Taek Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Kyung Mun Cho
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
22
|
Lee SB, Kim SK, Hong YK, Jeong GT. Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Tan IS, Lee KT. Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study. BIORESOURCE TECHNOLOGY 2016; 199:336-346. [PMID: 26283313 DOI: 10.1016/j.biortech.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
The aim of this work was to evaluate the efficacy of red macroalgae Eucheuma cottonii (EC) as feedstock for third-generation bioethanol production. Dowex (TM) Dr-G8 was explored as a potential solid catalyst to hydrolyzed carbohydrates from EC or macroalgae extract (ME) and pretreatment of macroalgae cellulosic residue (MCR), to fermentable sugars prior to fermentation process. The highest total sugars were produced at 98.7 g/L when 16% of the ME was treated under the optimum conditions of solid acid hydrolysis (8% (w/v) Dowex (TM) Dr-G8, 120°C, 1h) and 2% pretreated MCR (P-MCR) treated by enzymatic hydrolysis (pH 4.8, 50°C, 30 h). A two-stream process resulted in 11.6g/L of bioethanol from the fermentation of ME hydrolysates and 11.7 g/L from prehydrolysis and simultaneous saccharification and fermentation of P-MCR. The fixed price of bioethanol obtained from the EC is competitive with that obtained from other feedstocks.
Collapse
Affiliation(s)
- Inn Shi Tan
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
24
|
Masarin F, Cedeno FRP, Chavez EGS, de Oliveira LE, Gelli VC, Monti R. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:122. [PMID: 27293482 PMCID: PMC4902961 DOI: 10.1186/s13068-016-0535-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/31/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. RESULTS The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1), respectively. The present results highlight the efficiency of generating a key bioproduct from carrageenan residue. CONCLUSIONS This study demonstrates the potential for glucose production using carrageenan residue. Thus, the biorefinery of K. alvarezii can be exploited not only to produce carrageenan, but also to generate glucose for future use in biofuel production.
Collapse
Affiliation(s)
- Fernando Masarin
- />Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas-FCF, UNESP-Univ Estadual Paulista, 14800-903 Araraquara, SP Brazil
| | - Fernando Roberto Paz Cedeno
- />Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas-FCF, UNESP-Univ Estadual Paulista, 14800-903 Araraquara, SP Brazil
| | - Eddyn Gabriel Solorzano Chavez
- />Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Farmacêuticas-FCF, UNESP-Univ Estadual Paulista, 14800-903 Araraquara, SP Brazil
| | - Levi Ezequiel de Oliveira
- />Departamento de Engenharia Química, Escola de Engenharia de Lorena, USP-Universidade de São Paulo, CP 116, 12602-810 Lorena, SP Brazil
| | - Valéria Cress Gelli
- />Instituto de Pesca-Núcleo de Pesquisa e Desenvolvimento do Litoral Norte-Agência Paulista de Pesquisa Agropecuária-Secretaria de Agricultura e Abastecimento do Estado de São Paulo, São Paulo, Brazil
| | - Rubens Monti
- />Departamento de Alimentos e Nutrição, Faculdade de Ciências Farmacêuticas-FCF, UNESP-Univ Estadual Paulista, 14800-903 Araraquara, SP Brazil
| |
Collapse
|
25
|
Kim SW, Hong CH, Jeon SW, Shin HJ. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. BIORESOURCE TECHNOLOGY 2015; 196:634-641. [PMID: 26299978 DOI: 10.1016/j.biortech.2015.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 06/04/2023]
Abstract
Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes.
Collapse
Affiliation(s)
- Se Won Kim
- Department of Chemical, Biochemical, Chosun University, Gwnagju, Republic of Korea
| | - Chae-Hwan Hong
- Research and Development Division, Hyundai Motor Group, Uiwang, Republic of Korea
| | - Sung-Wan Jeon
- Research and Development Division, Hyundai Motor Group, Uiwang, Republic of Korea
| | - Hyun-Jae Shin
- Department of Chemical, Biochemical, Chosun University, Gwnagju, Republic of Korea.
| |
Collapse
|