1
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
(Stroe) Dudu A, Georgescu SE. Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals (Basel) 2024; 14:2425. [PMID: 39199958 PMCID: PMC11350799 DOI: 10.3390/ani14162425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Sturgeons are facing critical endangerment due to overfishing, habitat destruction, pollution and climate change. Their roe, highly prized as caviar, has driven the overexploitation, severely depleting wild populations. In recent years sturgeon aquaculture has experienced significant growth, primarily aimed at providing high-quality caviar and secondarily meat. This sector generates significant quantities of by-products, which are mainly treated as waste, being mostly discarded, impacting the environment, even though they are a source of bioactive molecules and potential applications in various sectors. This article presents a review of the proximate composition and nutritional value of sturgeon caviar and meat, also exploring the potential of the by-products, with an emphasis on the processing of these components, the chemical composition and the functional and bioactive properties. Although sturgeon caviar, meat, and by-products are highly valuable both nutritionally and economically, adopting sustainable practices and innovative approaches is crucial to ensuring the industry's future growth and maintaining ecological balance. Despite some limitations, like the deficient standardization of the methods for extracting and processing, sturgeon by-products have a tremendous potential to increase the overall value of sturgeon aquaculture and to promote a zero-waste approach, contributing to achieving the Sustainable Development Goals adopted by all United Nations Member States in 2015.
Collapse
Affiliation(s)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| |
Collapse
|
3
|
Wang Y, Cui Q, Wang X, Wu C, Xu X, Dong X, Pan J. The gelling properties of fish gelatin as improved by ultrasound-assisted phosphorylation. Food Chem 2024; 449:139214. [PMID: 38581790 DOI: 10.1016/j.foodchem.2024.139214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
This study investigated the effects of ultrasound-assisted phosphorylation on gelling properties of fish gelatin (FG). Ultrasound-assisted phosphorylation (UP) for 60, 90, and 120 min resulted in >6.54% increase of phosphorylation degree and decreased zeta potential of FG. Atomic force microscopy revealed that UP-FGs showed larger aggregates than P-FGs (normal phosphorylation FGs). Low frequent-NMR and microstructure analysis revealed that phosphorylation enhanced water-binding capability of FG and improved the gel networks. However, UP60 had the highest gel strength (340 g), gelling (17.96 °C) and melting (26.54 °C) temperature while UP90 and UP120 showed slightly lower of them. FTIR analysis indicated thatβ-sheet and triple helix content increased but random coil content decreased in phosphorylated FGs. Mass spectrometry demonstrated phosphate groups mainly bound to serine, threonine and tyrosine residues of FG and UP-FG exhibited more phosphorylation sites. The study showed that mild phosphorylation (UP60) could be applied to improve FG gel properties.
Collapse
Affiliation(s)
- Yong Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qinan Cui
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuqin Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Caiyun Wu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Cansu Ü. Utilization of Infrared Drying as Alternative to Spray- and Freeze-Drying for Low Energy Consumption in the Production of Powdered Gelatin. Gels 2024; 10:522. [PMID: 39195051 DOI: 10.3390/gels10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
This study evaluated possible utilization of infrared drying (ID) as an alternative to spray- (SD) and freeze-drying (FD) for fish skin-derived gelatins. Physical, functional, thermal, and spectroscopic analyses were conducted for characterization of the resulting gelatin powders. Energy consumption for the applied drying methods were 3.41, 8.46 and 25.33 kWh/kg for ID, SD and FD respectively, indicating that ID had the lowest energy consumption among the studied methods. Gel strength, on the other hand, was lower (398.4 g) in infrared-dried gelatin (ID-FG) compared to that (454.9 g) of freeze-dried gelatin (FD-FG) and that (472.7 g) of spray-dried gelatin (SD-FG). TGA curves indicated that ID-FG showed more resilience to thermal degradation. SDS-PAGE and UV-Vis spectra indicated that slight degradation was observed in the β-configuration of ID-FG. ID-FG and SD-FG gelatins had the highest water holding capacity (WHC), protein solubility and transparency values compared to that of FD-FG. Morphological structures of the samples were quite different as shown by SEM visuals. Ultimately, the findings showed that infrared drying may be a promising alternative for gelatin processing, maintaining product quality and supporting sustainable practices in food and other industries.
Collapse
Affiliation(s)
- Ümran Cansu
- Organized Industrial Zone Vocational School, Harran University, 63200 Şanlıurfa, Turkey
| |
Collapse
|
5
|
Derkach SR, Voron'ko NG, Kuchina YA, Kolotova DS, Grokhovsky VA, Nikiforova AA, Sedov IA, Faizullin DA, Zuev YF. Rheological Properties of Fish and Mammalian Gelatin Hydrogels as Bases for Potential Practical Formulations. Gels 2024; 10:486. [PMID: 39195015 DOI: 10.3390/gels10080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogels have the ability to retain large amounts of water within their three-dimensional polymer matrices. These attractive materials are used in medicine and the food industry; they can serve as the basis for structured food products, additives, and various ingredients. Gelatin is one of widely used biopolymers to create hydrogels that exhibit biocompatibility and tunable rheological properties. In this study, we offer a comparative analysis of rheological properties of gelatin-based hydrogels (C = 6.67%), including mammalian gelatins from bovine and porcine skins and fish gelatins from commercial samples and samples extracted from Atlantic cod skin. Mammalian gelatins provide high strength and elasticity to hydrogels. Their melting point lies in the range from 22 to 34 °C. Fish gelatin from cod skin also provides a high strength to hydrogels. Commercial fish gelatin forms weak gels exhibiting low viscoelastic properties and strength, as well as low thermal stability with a melting point of 7 °C. Gelatins were characterized basing on the analysis of amino acid composition, molecular weight distribution, and biopolymer secondary structure in gels. Our research provides a unique rheological comparison of mammalian and fish gelatin hydrogels as a tool for the re-evaluation of fish skin gelatin produced through circular processes.
Collapse
Affiliation(s)
- Svetlana R Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Nikolay G Voron'ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Yulia A Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Daria S Kolotova
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Vladimir A Grokhovsky
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Alena A Nikiforova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
- Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Igor A Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
- Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Dzhigangir A Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
| |
Collapse
|
6
|
Guo H, Wan C, Zhu J, Jiang X, Li S. Association of systemic immune-inflammation index with insulin resistance and prediabetes: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1377792. [PMID: 38904046 PMCID: PMC11188308 DOI: 10.3389/fendo.2024.1377792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background and Objective Previous research suggested a relationship between the Systemic Immune-Inflammation Index (SII) and multiple adverse health conditions. However, the role of SII in prediabetes and insulin resistance (IR) remains poorly understood. Therefore, this study aims to explore the potential relationship between SII and prediabetes and IR, providing data support for effective diabetes prevention by reducing systemic inflammation. Methods Linear regression models were used to assess the correlation between continuous SII and risk markers for type 2 diabetes (T2D). Subsequently, multivariate logistic regression models and subgroup analyses were employed to evaluate the association between SII tertiles and prediabetes and IR, controlling for various confounding factors. Finally, restricted cubic spline graphs were used to analyze the nonlinear relationship between SII and IR and prediabetes. Results After controlling for multiple potential confounders, SII was positively correlated with fasting blood glucose (FBG) (β: 0.100; 95% CI: 0.040 to 0.160), fasting serum insulin (FSI) (β: 1.042; 95% CI: 0.200 to 1.885), and homeostasis model assessment of insulin resistance (HOMA-IR) (β: 0.273; 95% CI: 0.022 to 0.523). Compared to participants with lower SII, those in the highest tertile had increased odds of prediabetes (OR: 1.17; 95% CI: 1.02-1.34; p for trend < 0.05) and IR (OR: 1.35; 95% CI: 1.18 to 1.51; p for trend<0.001). Conclusions Our study results demonstrate an elevated association between SII levels and both IR and prediabetes, indicating SII as a straightforward and cost-effective method identifying individuals with IR and prediabetes.
Collapse
Affiliation(s)
- Han Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxing Jiang
- Frontier Medical Training Brigade, Third Military Medical University (Army Medical University), Xinjiang, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Li Y, Ma Z, Yan Q, Cao D, Yuan R, Wang J, Lu S. Effect of low-frequency ultrasound-assisted acid extraction on gel properties and structural characterization of sheep's hoof gelatin. Int J Biol Macromol 2024; 271:132701. [PMID: 38810856 DOI: 10.1016/j.ijbiomac.2024.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/14/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
In this study, we investigated the effects of various low-frequency ultrasound-assisted extraction processes, including ultrasound-assisted acid-soaked water bath extraction (UAW), ultrasound-assisted water bath extraction after acid soaking (AUW), acid-soaked water bath extraction followed by ultrasonics (AWU), and acid-soaked water bath extraction without ultrasound (CON), on the structural properties, thermal stability, gel properties, and microstructure of sheep's hoof gelatin. The results revealed that the primary components of sheep's hoof gelatin consisted of α1-chain, α2-chain (100-135 kDa), and β-chain. In addition, it was observed that among the three sonication groups, sheep's hoof gelatin extracted in the AUW group exhibited the highest yield (27.16 ± 0.41 %), the best gel strength (378.55 ± 7.34 g), and higher viscosity at the same shear rate. The gelling temperature (25.38 ± 0.45 °C) and melting temperature (32.28 ± 0.52 °C) of sheep's hoof gelatin in the AUW group were significantly higher than those in the other groups (p > 0.05). Moreover, our experiments revealed that the sequence of low-frequency ultrasonic pretreatment processes was a crucial factor influencing the gel properties and structural characteristics of sheep's hoof gelatin. Specifically, the acid treatment followed by the ultrasound-assisted approach in the AUW group yielded high-quality and high-yield sheep's hoof gelatin.
Collapse
Affiliation(s)
- Yuhan Li
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Zehao Ma
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Qi Yan
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Doudou Cao
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Ruyan Yuan
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Jingyun Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China; Xinjiang Sailimu Modern Agriculture Co, Shuanghe, Xinjiang Autonomus Region, China.
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| |
Collapse
|
8
|
Jridi M, Abdelhedi O, Salem A, Zouari N, Nasri M. Food applications of bioactive biomaterials based on gelatin and chitosan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:399-438. [PMID: 38906591 DOI: 10.1016/bs.afnr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Food packaging must guarantee the products' quality during the different operations including packing and maintenance throughout transportation and storage until to consumption. Thus, it should satisfy, both, food freshness and quality preservation and consumers health safety. Natural bio-sourced polymers have been explored as safe edible materials for several packaging applications, being interestingly carrier of bioactive substances, once added to improve films' properties. Gelatin and chitosan are among the most studied biomaterials for the preparation of edible packaging films due to their excellent characteristics including biodegradability, compatibility and film-forming property. These polymers could be used alone or in combination with other polymers to produce composite films with the desired physicochemical and mechanical properties. When incorporated with bioactive substances (natural extracts, polyphenolic compounds, essential oils), chitosan/gelatin-based films acquired various biological properties, including antioxidant and antimicrobial activities. The emerging bioactive composite films with excellent physical attributes represent excellent packaging alternative to preserve different types of foodstuffs (fruits, meat, fish, dairy products, …) and have shown great achievements. This chapter provides the main techniques used to prepare gelatin- and chitosan- based films, showing some examples of bioactive compounds incorporated into the films' matrix. Also, it illustrates the outstanding advantages given by these biomaterials for food preservation, when used as coating and wrapping agents.
Collapse
Affiliation(s)
- Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Naharros‐Molinero A, Caballo‐González MÁ, de la Mata FJ, García‐Gallego S. Shell Formulation in Soft Gelatin Capsules: Design and Characterization. Adv Healthc Mater 2024; 13:e2302250. [PMID: 37775861 PMCID: PMC11468233 DOI: 10.1002/adhm.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Soft gelatin capsules (SGCs) are the most widely used pharmaceutical form after tablets. The active components, active pharmaceutical ingredients (APIs), or nutrients are dissolved, dispersed, or suspended in a liquid or semisolid fill, which is covered with a gelatin shell. Several factors can modify the properties of the gelatin shell and subsequently affect their operative handling during manufacturing process and the stability of the soft gelatin capsules. Three elements appear to be crucial: the shell formulation (type and content of the different components such as gelatins-source, extraction method-plasticizers, or additives); the manufacture and storage conditions (temperature, humidity, light) as well as the interactions between fill-shell formulas. Mechanical and thermal analysis arise as straightforward but highly useful tools to monitor the properties of the gelatin shell. This review provides an updated overview on the shell formulation and design. Additionally, it presents the uses of mechanical and thermal techniques to characterize and evaluate the impact of different parameters on the gelatin behavior over the production and stability of these pharmaceutical forms. This will help to detect changes that are yet not visible by visual inspection ensuring a suitable finished product over its shelf-life.
Collapse
Affiliation(s)
- Almudena Naharros‐Molinero
- BerliMed S.A.Alcalá de Henares28806Spain
- University of AlcalaFaculty of SciencesDepartment of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río”Alcalá de Henares28801Spain
| | | | - F. Javier de la Mata
- University of AlcalaFaculty of SciencesDepartment of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río”Alcalá de Henares28801Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS)Madrid28034Spain
- Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Sandra García‐Gallego
- University of AlcalaFaculty of SciencesDepartment of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río”Alcalá de Henares28801Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS)Madrid28034Spain
- Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| |
Collapse
|
10
|
Han J, Gu Y, Yang C, Meng L, Ding R, Wang Y, Shi K, Yao H. Single-atom nanozymes: classification, regulation strategy, and safety concerns. J Mater Chem B 2023; 11:9840-9866. [PMID: 37822275 DOI: 10.1039/d3tb01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.
Collapse
Affiliation(s)
- Jiping Han
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yaohua Gu
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lingchen Meng
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Runmei Ding
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yifan Wang
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Huiqin Yao
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
11
|
de Farias BS, Rizzi FZ, Ribeiro ES, Diaz PS, Sant'Anna Cadaval Junior TR, Dotto GL, Khan MR, Manoharadas S, de Almeida Pinto LA, Dos Reis GS. Influence of gelatin type on physicochemical properties of electrospun nanofibers. Sci Rep 2023; 13:15195. [PMID: 37710008 PMCID: PMC10502060 DOI: 10.1038/s41598-023-42472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
This study explores the fabrication of nanofibers using different types of gelatins, including bovine, porcine, and fish gelatins. The gelatins exhibited distinct molecular weights and apparent viscosity values, leading to different entanglement behavior and nanofiber production. The electrospinning technique produced nanofibers with diameters from 47 to 274 nm. The electrospinning process induced conformational changes, reducing the overall crystallinity of the gelatin samples. However, porcine gelatin nanofibers exhibited enhanced molecular ordering. These findings highlight the potential of different gelatin types to produce nanofibers with distinct physicochemical properties. Overall, this study sheds light on the relationship between gelatin properties, electrospinning process conditions, and the resulting nanofiber characteristics, providing insights for tailored applications in various fields.
Collapse
Affiliation(s)
- Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 Itália Avenue, Rio Grande, RS, 96203-900, Brazil
| | - Francisca Zuchoski Rizzi
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 Itália Avenue, Rio Grande, RS, 96203-900, Brazil
| | - Eduardo Silveira Ribeiro
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas (UFPEL), Eliseu Maciel, Capão do Leão, 96010-610, Brazil
| | - Patrícia Silva Diaz
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas (UFPEL), Eliseu Maciel, Capão do Leão, 96010-610, Brazil
| | | | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Luiz Antonio de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 Itália Avenue, Rio Grande, RS, 96203-900, Brazil
| | - Glaydson Simões Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| |
Collapse
|
12
|
Liu M, Gao Y, Shen R, Yang X, Zhang L, Ma G, Guo Z, Chen C, Shi X, Ma X. Preparation of Bovine Hides Gelatin by Ultra-High Pressure Technique and the Effect of Its Replacement Fat on the Quality and In Vitro Digestion of Beef Patties. Foods 2023; 12:3092. [PMID: 37628091 PMCID: PMC10453782 DOI: 10.3390/foods12163092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Beef skin gelatin can be used as a good substitute for animal fat in meat patties. In this paper, the effect of different parameters on low-fat beef patties with cowhide gelatin substituted for beef fat (0, 25%, 50%, 75%, 100%) prepared by ultra-high pressure assisted technology was investigated by texture, cooking loss, and sensory scores. The beef patties were also stored at 0-4 °C for 0, 7, 14, 21, and 28 d. The differences and changing rules of fatty acid and amino acid compositions and contents of beef patties with different fat contents were investigated by simulating gastrointestinal digestion in vitro. The optimal process formulation of low-fat beef patties with cowhide gelatin was determined by experimental optimization as follows: ultra-high pressure 360 MPa, ultra-high of pressure time of 21 min, NaCl addition of 1.5%, compound phosphate addition of 0.3%. The addition of cowhide gelatin significantly increased monounsaturated fatty acids, polyunsaturated fatty acids, amino acid content, and protein digestibility of beef patties (p < 0.05). Moreover, with the extension of storage time, the content of saturated fatty acids was significantly higher (p < 0.05), the content of monounsaturated and polyunsaturated fatty acids was significantly lower (p < 0.05), the content of amino acids was significantly lower (p < 0.05), and protein digestibility was significantly lower (p < 0.05) under all substitution ratios. Overall, beef patties with 75% and 100% substitution ratios had better digestibility characteristics. The results of this study provide a theoretical basis for gelatin's potential as a fat substitute for beef patties and for improving the quality of low-fat meat products.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (Y.G.); (R.S.); (X.Y.); (G.M.); (Z.G.); (C.C.); (X.S.); (X.M.)
| | | | | | | | | | | |
Collapse
|
13
|
Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
de Souza MF, da Silva HN, Rodrigues JFB, Macêdo MDM, de Sousa WJB, Barbosa RC, Fook MVL. Chitosan/Gelatin Scaffolds Loaded with Jatropha mollissima Extract as Potential Skin Tissue Engineering Materials. Polymers (Basel) 2023; 15:polym15030603. [PMID: 36771903 PMCID: PMC9921636 DOI: 10.3390/polym15030603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
This work aimed to develop chitosan/gelatin scaffolds loaded with ethanolic extract of Jatropha mollissima (EEJM) to evaluate the influence of its content on the properties of these structures. The scaffolds were prepared by freeze-drying, with different EEJM contents (0-10% (w/w)) and crosslinked with genipin (0.5% (w/w)). The EEJM were characterized through High Performance Liquid Chromatography coupled to a Diode Array Detector (HPLC-DAD), and the determination of three secondary metabolites contents was accomplished. The physical, chemical and biological properties of the scaffolds were investigated. From the HPLC-DAD, six main substances were evidenced, and from the quantification of the total concentration, the condensed tannins were the highest (431.68 ± 33.43 mg·g-1). Spectroscopy showed good mixing between the scaffolds' components. Adding and increasing the EEJM content did not significantly influence the properties of swelling and porosity, but did affect the biodegradation and average pore size. The enzymatic biodegradation test showed a maximum weight loss of 42.89 within 28 days and reinforced the efficiency of genipin in crosslinking chitosan-based materials. The addition of the extract promoted the average pore sizes at a range of 138.44-227.67 µm, which is compatible with those reported for skin regeneration. All of the scaffolds proved to be biocompatible for L929 cells, supporting their potential application as skin tissue engineering materials.
Collapse
Affiliation(s)
- Matheus Ferreira de Souza
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Henrique Nunes da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - José Filipe Bacalhau Rodrigues
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria Dennise Medeiros Macêdo
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | | | - Rossemberg Cardoso Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus Vinícius Lia Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
- Correspondence: ; Tel.: +55-(83)-2101-1841
| |
Collapse
|
16
|
Analysis of gelatin secondary structure in gelatin/keratin-based biomaterials. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Determination of porcine derived components in gelatin and gelatin-containing foods by high performance liquid chromatography-tandem mass spectrometry. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Cansu Ü. Comparative evaluation of different separation and concentration procedures on some quality and functional properties of fish gelatin. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Gelatin films from wastes: a review of production, characterization, and application trends in food preservation and agriculture. Food Res Int 2022; 162:112114. [DOI: 10.1016/j.foodres.2022.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
20
|
Shi J, Zhang R, Liu X, Zhang Y, Du Y, Dong H, Ma Y, Li X, Cheung PC, Chen F. Advances in multifunctional biomass-derived nanocomposite films for active and sustainable food packaging. Carbohydr Polym 2022; 301:120323. [DOI: 10.1016/j.carbpol.2022.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
21
|
Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants (Basel) 2022; 11:2095. [PMID: 36358468 PMCID: PMC9686688 DOI: 10.3390/antiox11112095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Currently, the exploration of natural colorants from vegetal waste has gained particular attention. Furthermore, incorporation of these natural sources into biopolymers is an encouraging environmentally friendly approach to establishing active films with biological activities for food packaging. The present study developed bioactive antioxidant films based on gelatin-sodium alginate (NaAlg) incorporated with aqueous beetroot peel extract (BPE). Firstly, the effects of combining gelatin-NaAlg and BPE at 0.25, 0.5, and 1% on the mechanical, physical, antioxidant, and antibacterial properties of the films were analyzed. With increasing BPE, mechanico-physical properties and antioxidant and anti-foodborne pathogen capacities were enhanced. Likewise, when added to gelatin-NaAlg films, BPE remarkably increased the instrumental color properties. Moreover, during 14 days of storage at 4 °C, the impact of gelatin-NaAlg coating impregnated with BPE on microbial and chemical oxidation and on the sensory characteristics of beef meat samples was periodically assessed. Interestingly, by the end of the storage, BPE at 1% limited the microbial deterioration, enhanced the instrumental color, delayed chemical oxidation, and improved sensory traits. By practicing chemometrics tools (principal component analysis and heat maps), all data provided valuable information for categorizing all samples regarding microbiological and oxidative properties, sensory features, and instrumental color. Our findings revealed the ability of gelatin-NaAlg with BPE as an antioxidant to be employed as food packaging for meat preservation.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, Sfax 3018, Tunisia
- Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research, Center for Food Systems, 26 Talalikhin St., 109316 Moscow, Russia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| |
Collapse
|
22
|
Park SY, Kim HY. Effect of wet- and dry-salting with various salt concentrations on pork skin for extraction of gelatin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Buscaglia M, Guérard F, Roquefort P, Aubry T, Fauchon M, Toueix Y, Stiger-Pouvreau V, Hellio C, Le Blay G. Mechanically Enhanced Salmo salar Gelatin by Enzymatic Cross-linking: Premise of a Bioinspired Material for Food Packaging, Cosmetics, and Biomedical Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:801-819. [PMID: 35915285 DOI: 10.1007/s10126-022-10150-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Marine animal by-products of the food industry are a great source of valuable biomolecules. Skins and bones are rich in collagen, a protein with various applications in food, cosmetic, healthcare, and medical industries in its native form or partially hydrolyzed (gelatin). Salmon gelatin is a candidate of interest due to its high biomass production available through salmon consumption, its biodegradability, and its high biocompatibility. However, its low mechanical and thermal properties can be an obstacle for various applications requiring cohesive material. Thus, gelatin modification by cross-linking is necessary. Enzymatic cross-linking by microbial transglutaminase (MTG) is preferred to chemical cross-linking to avoid the formation of potentially cytotoxic residues. In this work, the potential of salmon skin gelatin was investigated, in a comparative study with porcine gelatin, and an enzymatic versus chemical cross-linking analysis. For this purpose, the two cross-linking methods were applied to produce three-dimensional, porous, and mechanically reinforced hydrogels and sponges with different MTG ratios (2%, 5%, and 10% w/w gelatin). Their biochemical, rheological, and structural properties were characterized, as well as the stability of the material, including the degree of syneresis and the water-binding capacity. The results showed that gelatin enzymatically cross-linked produced material with high cross-linking densities over 70% of free amines. The MTG addition seemed to play a crucial role, as shown by the increase in mechanical and thermal resistances with the production of a cohesive material stable above 40 °C for at least 7 days and comparable to porcine and chemically cross-linked gelatins. Two prototypes were obtained with similar thermal resistances but different microstructures and viscoelastic properties, due to different formation dynamics of the covalent network. Considering these results, the enzymatically cross-linked salmon gelatin is a relevant candidate as a biopolymer for the production of matrix for a wide range of biotechnological applications such as food packaging, cosmetic patch, wound healing dressing, or tissue substitute.
Collapse
Affiliation(s)
- Manon Buscaglia
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Fabienne Guérard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Philippe Roquefort
- UMR CNRS 6027, IRDL, Université de Bretagne Occidentale, 29200, Brest, France
| | - Thierry Aubry
- UMR CNRS 6027, IRDL, Université de Bretagne Occidentale, 29200, Brest, France
| | - Marilyne Fauchon
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Yannick Toueix
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
24
|
Hu H, Zhai X, Li W, Ji S, Dong W, Chen W, Wei W, Lu Z. A photo-triggering double cross-linked adhesive, antibacterial, and biocompatible hydrogel for wound healing. iScience 2022; 25:104619. [PMID: 35789848 PMCID: PMC9250026 DOI: 10.1016/j.isci.2022.104619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Full-thickness wounds, lacking the epidermis and entire dermis and extending into subcutaneous fat, represent a common treatment challenge. Due to the loss of adnexal structures as a source of keratinocytes, full-thickness wounds healing can only be achieved by re-epithelialization from the wound edge and contraction. Here, we developed a hydrogel composed of chitosan methacrylate (CSMA) and o-nitrosobenzaldehyde-modified gelatin (GelNB) for promoting full-thickness wound healing. The CSMA/GelNB (CM/GN) hydrogels exhibited superior mechanical and adhesive properties than that of pure CSMA hydrogel. In vivo experiments confirmed that CM/GN could promote wound healing by generating more hair follicles and mutual blood vessels, high fibroblasts density, and thicker granulation tissue thickness. In addition, reduced secretions of tumor necrosis factor-α (TNF-α) and enhanced secretions of vascular endothelial growth factor (VEGF) could be observed in regenerated tissues after CM/GN treatment. These results suggested that CM/GN hydrogels could be promising candidates to promote wound healing. The CM/GN hydrogels exhibited tissue adhesive properties CM/GN hydrogel facilitated the proliferation of bone marrow stem cells CM/GN hydrogel efficiently promote full-thickness wound healing More hair follicles and mutual blood vessels were generated during wound healing
Collapse
|
25
|
Luciano CG, Tessaro L, Bonilla J, Balieiro JCDC, Trindade MA, Sobral PJDA. Application of bi-layers active gelatin films for sliced dried-cured Coppa conservation. Meat Sci 2022; 189:108821. [PMID: 35421736 DOI: 10.1016/j.meatsci.2022.108821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
Processed meat products have been increasingly consumed, a highlight being dried-cured coppa, commonly purchased sliced, making it more susceptible to bacterial deterioration and lipid oxidation. The aim of this work was to produce and apply bi-layers films based on gelatin (in both layers) with addition of nisin and/or Pitanga leaf hydroethanolic extract (PLHE) only in the food contact thinner layer, in order to evaluate their effect on the refrigerated storage of sliced dried-cured coppa. Dried-cured coppa slices covered with active films were vacuum-packaged and stored under refrigeration for 120 days. Every 30 days, samples were tested for moisture content, water activity, pH, color parameters, lipid oxidation by TBARS and peroxide index methods, and microbiological analysis. The different film formulations presented no influence on the water activity, pH and color parameters of sliced dried-cured coppa. However, they significantly affected moisture content, bacterial count and lipid oxidation. The addition of both active compounds - nisin and PLHE - in the food contact thinner layer was observed to have the most favorable effect.
Collapse
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Jeannine Bonilla
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Júlio César de Carvalho Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marco Antonio Trindade
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C; 05508-080 São Paulo (SP), Brazil.
| |
Collapse
|
26
|
Kristoffersen KA, Afseth NK, Böcker U, Dankel KR, Rønningen MA, Lislelid A, Ofstad R, Lindberg D, Wubshet SG. Post-enzymatic hydrolysis heat treatment as an essential unit operation for collagen solubilization from poultry by-products. Food Chem 2022; 382:132201. [DOI: 10.1016/j.foodchem.2022.132201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023]
|
27
|
Ahmed M, Anand A, Verma AK, Patel R. In-vitro self-assembly and antioxidant properties of collagen type I from Lutjanus erythropterus, and Pampus argenteus skin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Gao Y, Qiu Y, Nan H, Wang L, Yang D, Zhang L, Yu Q. Ultra-high pressure-assisted preparation of cowhide gelatin as a promising fat substitute: Improve the nutrition ratio and antioxidant capacity of beef patties. Food Res Int 2022; 157:111260. [DOI: 10.1016/j.foodres.2022.111260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
|
29
|
Biotechnological preparation of chicken skin gelatine using factorial design of experiments. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Ji F, Zhou W, Zhang Z, Zhang B. Effects of Relative Molecular Weight Distribution and Isoelectric Point on the Swelling Behavior of Gelatin Films. Front Chem 2022; 10:857976. [PMID: 35692688 PMCID: PMC9178206 DOI: 10.3389/fchem.2022.857976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
The swelling behavior of gelatin films with different extraction processes are investigated. The results showed that the swelling ratio of the gelatin film extracted by alkaline hydrolysis of collagen (type-B) in a range of pH environments was higher than the one extracted by enzymatic hydrolysis collagen (type-E). In the drug releasing simulation, type-B gelatin capsules also showed a faster collapse rate than type-E gelatin capsules. Based on analyzing relative molecular weight distribution of type-B and type-E gelatins, the more widely distributed relative molecular weight is the key attribution for enabling easier diffusion of water molecules inside the porous channels of peptide chains. Furthermore, with the pH of solution environment far from the isoelectric point (pI) of gelatin films, the swelling ratios were found to increase remarkably, which is due to electrostatic repulsion expanding the pore size of peptide chains. Finally, the addition of SO42− in gelatin film was performed to confirm the dominant effect of component compared to pI on swelling behavior of gelatin films.
Collapse
Affiliation(s)
- Fangqi Ji
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Wei Zhou
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- *Correspondence: Wei Zhou, ; Bing Zhang,
| | - Ze Zhang
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Bing Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, China
- *Correspondence: Wei Zhou, ; Bing Zhang,
| |
Collapse
|
31
|
Gao Y, Wang L, Qiu Y, Fan X, Zhang L, Yu Q. Valorization of Cattle Slaughtering Industry By-Products: Modification of the Functional Properties and Structural Characteristics of Cowhide Gelatin Induced by High Hydrostatic Pressure. Gels 2022; 8:gels8040243. [PMID: 35448144 PMCID: PMC9029605 DOI: 10.3390/gels8040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigates the effects of different pressures (200, 250, 300, 350, and 400 MPa) and durations (5, 10, 15, 20, and 25 min) on the functional properties, secondary structure, and intermolecular forces of cowhide gelatin. Our results show that high hydrostatic pressure significantly affected the two, three, and four-level structures of gelatin and caused the contents of the α-helix and β-turn to decrease by 68.86% and 78.58%, respectively (p < 0.05). In particular, the gelatin at 300 MPa for 15 min had the highest gel strength, emulsification, solubility, and foaming of all the treatment conditions under study. The analysis of the surface hydrophobicity, sulfhydryl content, zeta potential, and Raman spectroscopy shows that at a pressure of 300 MPa (15 min), the hydrogen bonds and hydrophobic interactions between collagen molecules are strongly destroyed, leading to changes in the tertiary and quaternary conformation of the protein and unfolding, with the electrostatic repulsion between protein particles making the decentralized state stable. In conclusion, moderate pressure and time can significantly improve the functional and structural properties of collagen, which provides theoretical support and guidance for realizing the high-value utilization of cowhide.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Correspondence: ; Tel.: +86-937-7631-201
| | | |
Collapse
|
32
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications. Molecules 2022; 27:molecules27072264. [PMID: 35408663 PMCID: PMC9000547 DOI: 10.3390/molecules27072264] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1–T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 °C for the starch-only film (T1) to 206 °C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 ± 0.5% for T1 to 285.1 ± 10.0% for T5) while decreasing the tensile strength (from 14.6 ± 0.5 MPa for T1 to 1.5 ± 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films’ cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry.
Collapse
|
34
|
Alves AL, Fraguas FJ, Carvalho AC, Valcárcel J, Pérez-Martín RI, Reis RL, Vázquez JA, Silva TH. Characterization of codfish gelatin: A comparative study of fresh and salted skins and different extraction methods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
|
36
|
Carvajal-Mena N, Tabilo-Munizaga G, Pérez-Won M, Lemus-Mondaca R. Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Investigation of Microbial Hydrolysis of Hen Combs with Bacterial Concentrates. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
When slaughtering and processing poultry, large quantities of meat by-products are generated; therefore, the development of the newest methods for processing secondary raw materials is an urgent problem. Animal proteins have relevant technological applications and are also considered as a potential source of bioactive peptides. Current technologies suggested that protein substances can be isolated from meat co-products through microbial hydrolysis. The purpose of the study was to optimize the technological parameters of microbial hydrolysis of hen combs and to analyze the modification of the microstructure and properties of hydrolyzed by-products under the action of bacterial enzymes. Hen’s combs were hydrolyzed by bifidobacteria and concentrated Propionix liquid. A multifactorial experiment was used to determine the optimal conditions for the hydrolysis process. As a result of the study, multiple regression equations and response surfaces were obtained, which describe the process of hydrolysis of hen combs to identify the optimal hydrolysis parameters. Temperature, amount of bacterial concentrate and hydrolysis period are factors that have a significant impact on the degree of hydrolysis. The results of microscopic and dispersed analysis confirm the good hydrolyzability of combs due to changes in structural components and an increase in the amount of smaller protein particles.
Collapse
|
38
|
Soliman AM, Teoh SL, Das S. Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications and Carrier of Drug Delivery. Curr Pharm Des 2022; 28:1019-1030. [PMID: 35088658 DOI: 10.2174/1381612828666220128103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin were reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications are being reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, antihypertensive and anticancer treatments.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
39
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
40
|
Sha X, Zhang L, Chen W, Wang G, Li J, Hu Z, Tu Z. Characteristic tryptic peptides and gelling properties of porcine skin gelatin affected by thermal action. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao‐Mei Sha
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Li‐Jun Zhang
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wen‐Mei Chen
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Guang‐Yao Wang
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Jin‐Lin Li
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Zi‐Zi Hu
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
| | - Zong‐Cai Tu
- National R&D Center for Freshwater Fish Processing Engineering Research Center of Freshwater Fish High‐value Utilization of Jiangxi Province College of Life Science Jiangxi Normal University Nanchang Jiangxi 330022 China
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang Jiangxi 330047 China
| |
Collapse
|
41
|
Luo Q, Hossen MA, Zeng Y, Dai J, Li S, Qin W, Liu Y. Gelatin-based composite films and their application in food packaging: A review. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110762] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Usman M, Sahar A, Inam‐Ur‐Raheem M, Rahman UU, Sameen A, Aadil RM. Gelatin extraction from fish waste and potential applications in food sector. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muhammad Usman
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
- Department of Food Engineering University of Agriculture Faisalabad 38000 Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Ubaid ur Rahman
- School of Food and Agricultural Sciences University of Management and Technology Lahore Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
43
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
44
|
Abstract
Growing demands for green and sustainable processing that eliminates the utilization of toxic chemicals and increases efficiency has encouraged the application of novel extraction technologies for the food industry. This review discusses the principles and potential application of several green technology for gelatin extraction. Several novel technologies and their processing efficiency are discussed in this review. Furthermore, factors that affect the quality of the gelatin produced from different sources are also highlighted. The potential application of ultrasound-assisted extraction (UAE), subcritical water extraction, high-pressure processing, and microwave-assisted extraction (MAE) to improve gelatin extraction are addressed. These technologies have the potential to become an efficient extraction method compared to the conventional extraction technologies. Several combinations of green and conventional technologies have been reported to yield promising results. These combinations, especially using conventional pre-treatment and green technologies for extraction, have been found to be more effective in producing gelatin. Since gelatin could be produced from various sources, it exhibits different characteristics; thus, different approaches and extraction method should be identified for specific types of gelatin. Although these technologies have limitations, such as overhydration and sophisticated systems explicitly designed for large-scale production, they are nonetheless more efficient in the long run to safeguard the environment as they reduce solvent usage and carbon footprint along the way.
Collapse
|
45
|
Matulessy DN, Erwanto Y, Nurliyani N, Suryanto E, Abidin MZ, Hakim TR. Characterization and functional properties of gelatin from goat bone through alcalase and neutrase enzymatic extraction. Vet World 2021; 14:2397-2409. [PMID: 34840460 PMCID: PMC8613798 DOI: 10.14202/vetworld.2021.2397-2409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Gelatin is a dissolved protein that results from partial extraction of collagen, commonly from pig and bovine skin. There was no study on gelatin production from Kacang goat bones through enzymatic extraction. This study aimed to evaluate the chemical, physical, and functional properties of gelatin from bones of Kacang goat using alcalase and neutrase enzymes. Materials and Methods: Male Kacang goat bones aged 6-12 months and two commercial enzymes (alcalase and neutrase) were used for this study. Descriptive analysis and completely randomized design (one-way analysis of variance) were used to analyze the chemical, physical, and functional properties of gelatin. Kacang goat bone was extracted with four concentrations of alcalase and neutrase enzymes, namely, 0 U/g (AG-0 and NG-0), 0.02 U/g (AG-1 and NG-1), 0.04 U/g (AG-2 and NG-2), and 0.06 U/g (AG-3 and NG-3) with five replications. Results: The highest yield of gelatin extraction with alcalase obtained on AG-3 was 9.78%, and that with neutrase on NG-3 was 6.35%. The moisture content of alcalase gelatin was 9.39-9.94%, and that of neutrase gelatin was 9.15-9.24%. The ash and fat content of gelatin with alcalase was lower than that without enzyme treatment with higher protein content. The lowest fat content was noted in AG-1 (0.50%), with protein that was not different for all enzyme concentrations (69.65-70.21%). Gelatin with neutrase had lower ash content than that without neutrase (1.61-1.90%), with the highest protein content in NG-3 (70.89%). The pH of gelatin with alcalase and neutrase was 6.19-6.92 lower than that without enzymes. Melting points, gel strength, and water holding capacity (WHC) of gelatin with the highest alcalase levels on AG-1 and AG-2 ranged from 28.33 to 28.47°C, 67.41 to 68.14 g bloom, and 324.00 to 334.67%, respectively, with viscosity that did not differ, while the highest foam expansion (FE) and foam stability (FS) were noted in AG-1, which were 71.67% and 52.67%, respectively. The highest oil holding capacity (OHC) was found in AG-2 (283%). FS and OHC of gelatins with the highest neutrase levels in NG-2 were 30.00% and 265.33%, respectively, while gel strength, viscosity, FE, and WHC of gelatins with the highest neutrase levels did not differ with those without enzymes at all enzyme concentrations. B chain was degraded in all gelatins, and high-intensity a-chains in gelatin with alcalase and peptide fraction were formed in gelatin with neutrase. Extraction with enzymes showed loss of the triple helix as demonstrated by Fourier transform infrared spectroscopy. Conclusion: Based on the obtained results, the Kacang goat bone was the potential raw source for gelatin production. Enzymatic extraction can increase the quality of gelatin, especially the alcalase (0.02-0.04 U/g bone) method. This can be used to achieve the preferable quality of gelatin with a higher yield.
Collapse
Affiliation(s)
- Dellen Naomi Matulessy
- Department of Animal Products Technology, Faculty of Animal Sciences, Universitas Gadjah Mada, Jl. Fauna No. 3, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Yuny Erwanto
- Department of Animal Products Technology, Faculty of Animal Sciences, Universitas Gadjah Mada, Jl. Fauna No. 3, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Nurliyani Nurliyani
- Department of Animal Products Technology, Faculty of Animal Sciences, Universitas Gadjah Mada, Jl. Fauna No. 3, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Edi Suryanto
- Department of Animal Products Technology, Faculty of Animal Sciences, Universitas Gadjah Mada, Jl. Fauna No. 3, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Mohammad Zainal Abidin
- Department of Animal Products Technology, Faculty of Animal Sciences, Universitas Gadjah Mada, Jl. Fauna No. 3, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Thoyib Rohman Hakim
- Department of Animal Products Technology, Faculty of Animal Sciences, Universitas Gadjah Mada, Jl. Fauna No. 3, Bulaksumur, Yogyakarta 55281, Indonesia
| |
Collapse
|
46
|
Das S, Nadar SS, Rathod VK. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol 2021; 191:899-917. [PMID: 34534588 DOI: 10.1016/j.ijbiomac.2021.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Conventional methods of extracting bioactive molecules are gradually losing pace due to their numerous disadvantages, such as product degradation, lower efficiency, and toxicity. Thus, in light of the rising demand for these bioactive, enzymes have garnered much attention for their efficiency in extraction. However, enzyme-assisted extraction is also plagued with a high capital cost that cannot justify the extraction yields obtained. In order to mitigate these problems, enzyme-assisted extraction can be consorted with non-conventional methods. This review includes current progress concerning the combined approaches while converging the recent advancements in the field that outperformed conventional extraction processes. It also highlights the design of biocatalyst and key parameters involved in the effective extraction of bioactive molecules. An integrated approach for efficiently extracting polyphenols, essential oils, pigments, and vitamins has been comprehensively reviewed. Furthermore, the different immobilization strategies have been discussed for large-scale implementation of enzymes for extraction. The integration of advanced non-conventional methods with enzyme-assisted extraction will open new avenues to enhance the overall extraction efficiency.
Collapse
Affiliation(s)
- Srija Das
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India.
| |
Collapse
|
47
|
|
48
|
Lindberg D, Kristoffersen KA, Wubshet SG, Hunnes LMG, Dalsnes M, Dankel KR, Høst V, Afseth NK. Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products. Molecules 2021; 26:molecules26175280. [PMID: 34500712 PMCID: PMC8434180 DOI: 10.3390/molecules26175280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases’ selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products.
Collapse
|
49
|
Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci 2021; 181:108608. [PMID: 34171788 DOI: 10.1016/j.meatsci.2021.108608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Large amounts of meat by- and co-products are generated during slaughtering and meat processing, and require rational management of these products for an ecological disposal. Efficient solutions are very important for sustainability and innovative developments create high added-value from meat by-products with the least environmental impact, handling and disposal costs, in its transition to bioeconomy. Some proteins have relevant technological uses for gelation, foaming and emulsification while protein hydrolyzates may contribute to a better digestibility and palatability. Protein hydrolysis generate added-value products such as bioactive peptides with relevant physiological effects of interest for applications in the food, pet food, pharmaceutical and cosmetics industry. Inedible fats are increasingly used as raw material for the generation of biodiesel. Other applications are focused on the development of new biodegradable plastics that can constitute an alternative to petroleum-based plastics. This manuscript presents the latest developments for adding value to meat by- and co-products and discusses opportunities for making meat production and processing more sustainable.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Milagro Reig
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
50
|
He L, Gao Y, Han L, Yu Q, Zang R. Enhanced gelling performance of oxhide gelatin prepared from cowhide scrap by high pressure-assisted extraction. J Food Sci 2021; 86:2525-2538. [PMID: 34056721 DOI: 10.1111/1750-3841.15769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 02/04/2023]
Abstract
In this study, the feasibility of preparing oxhide gelatin from cowhide scrap by high pressure assisted-liquid extraction was verified. Different processing conditions, including high pressure time (15 to 25 min), pressure (250 to 350 MPa), and liquid-to-solid ratio (1:3 to 1:5), were optimized through response surface methodology. Under the optimum manufacturing conditions, when the high-pressure processing (HPP) time was 22 min, the pressure was 289 MPa, and the liquid-to-solid ratio was 1:4, the highest extraction yield (36%) and gel strength (224 g) were achieved. Based on DSC, XRD, FTIR, SEM, gelling and melting temperatures, HPP led to the structural modification of the gelatinized collagen, which enhanced the rearrangement of the gel structure during the gelation process and made it have better gelling properties. In addition, compared with the commercial sample, they do not differ significantly in the relaxation time and peak area of prepared oxhide gelatin. These findings provide new insights into the practicability of HPP during the preparation of oxhide gelatin, which can noticeably reduce the processing time and be applied to industrial production. PRACTICAL APPLICATION: Compared with traditional processing, a high pressure-assisted extraction process can noticeably reduce the processing time while producing cowhide gelation with similar physicochemical and functional properties. Meanwhile, high pressure processing (HPP) led to the structural destruction of the cowhide and gelatinized collagen, which enhanced the rearrangement of the gelatin structure during the gelation process and made it have better gelling properties. Importantly, high pressure-assisted extraction can facilitate the use of a low-cost raw material and improve the preparation efficiency of oxhide gelatin, which shows great potential in large-scale and efficient industrial production and the quality control of oxhide gelatin.
Collapse
Affiliation(s)
- Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongfang Gao
- Laboratory of Agricultural & Food Biomechanics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Rongyu Zang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|