1
|
Kan G, Li L, Gong H, Chen L, Wang X, Zhong J. Effects of five tissue sources of silver carp by-products on the structure, physicochemical and emulsifying properties of gelatin. Curr Res Food Sci 2024; 9:100894. [PMID: 39555021 PMCID: PMC11567924 DOI: 10.1016/j.crfs.2024.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
The effects of tissue sources on gelatin's physicochemical and functional properties remain unclear. This work aimed to analyze the effects of five tissue sources on the properties of fish gelatins. Five gelatins were extracted from different silver carp by-products (skin, scale, fin, head, and bone) and the effects of tissue sources on the gelatin's properties were studied. The gelatin's β-sheet percentages and total sodium dodecyl sulfate-polyacrylamide gel electrophoresis band intensities (β, α1, and α2 chains) showed similar dependence to the tissue sources: skin ≈ scale > fin ≈ head > bone. Bone-related gelatins (from head and bone) showed lower water-holding capacity and fat-binding capacity values than the other gelatins. Tissue sources significantly affected the gelatin's gel strength values: skin ≈ fin > scale > bone ≈ head. Scale and bone gelatin solutions had significantly lower rheological apparent viscosities than other by-product gelatin solutions. The interfacial tension and rheological apparent viscosity values of the fish oil-loaded gelatin-stabilized emulsions depended on the gelatin tissue sources and gelatin concentrations. In particular, skin, scale, and fin gelatins induced no obvious emulsion creaming at the gelatin concentration of 10 g/L during the emulsion storage. Bone-related gelatins induced higher emulsion creaming index values for the emulsions with 10 g/L of gelatins during the emulsion storage. This work confirmed tissue sources could significantly affect the properties of gelatins. Five tissue sources had different effects on the structural, physicochemical, and emulsifying properties of silver carp by-product gelatins. Especially, the gelatins from different silver carp by-products showed different water-holding and fat-binding capacities, gel strengths, interfacial tension, rheological apparent viscosities, and emulsion stabilization abilities. These properties are important considerations for the application of silver carp by-product gelatins in food and other industries.
Collapse
Affiliation(s)
- Guangyi Kan
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Li
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Huan Gong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lijia Chen
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, 201306, China
| |
Collapse
|
2
|
Gong H, Kan G, Li L, Chen L, Zi Y, Shi C, Wang X, Zhong J. Effects of the extraction temperatures on the protein contents, gelatin purities, physicochemical properties, and functional properties of tilapia scale gelatins. Int J Biol Macromol 2024; 278:135040. [PMID: 39182894 DOI: 10.1016/j.ijbiomac.2024.135040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Herein, the effects of the extraction temperatures (45, 55, 65, 75, and 85 °C) on the protein contents, gelatin purities, physicochemical properties, and functional properties of tilapia scale gelatins were studied. Among these temperatures, 65 °C was the best extraction temperature to obtain good production yield (16.0 % ± 0.3 %), good protein contents (excellent total amino acid composition of 94.20 ± 0.76 g/100 g of gelatin, the highest hydrophobic amino acids percentage of 32.68 ± 0.24 g/100 g of gelatin), appropriate ATR-FTIR spectra peaks (Amides A, B, I, II, and III), high β-sheet percentage (38.2 % ± 1.3 %), the highest purity of the gelatin structures (280, 140, and 125 kDa), the lowest nanoparticle sizes in atomic force microscopy results, the highest water-holding capacity (25.3 % ± 0.9 %), the highest fat-binding capacity (16.9 % ± 0.1 %), high foaming properties (foaming capacity of 151.7 % ± 7.6 % and foaming stability of 145.8 % ± 6.3 %), the lowest interfacial tension (2.1 ± 0.2 mN/m), the lowest emulsifying activity index (16.5 % ± 0.9 %), the highest emulsifying stability index (88.9 % ± 5.1 %), highest emulsion viscosity (1462 ± 17 mPa·s at the rotary speed of 6 rpm), the lowest initial droplet sizes, and lowest emulsion creaming index (6.9 % ± 0.7 %). This work provided a useful guide to choosing extraction temperature for gelatin extraction and a useful theory on the relationship between compositions and properties of a protein sample.
Collapse
Affiliation(s)
- Huan Gong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guangyi Kan
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijia Chen
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Cuiping Shi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
3
|
Li L, Kan G, Peng J, Gong H, Zi Y, Shi C, Wang X, Zhong J. Tilapia head gelatins to stabilize fish oil emulsions and the effect of extraction methods. Int J Biol Macromol 2024; 269:132137. [PMID: 38734350 DOI: 10.1016/j.ijbiomac.2024.132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The preparation and use of gelatins from fish by-products have attracted much attention in the field of food science. Herein, four types of tilapia head gelatins were extracted and characterized: hot water-pretreated gelatin (HWG), acetic acid-pretreated gelatin (AAG), sodium hydroxide-pretreated gelatin (SHG), and pepsin enzyme-pretreated gelatin (PEG). The gel strength values followed the order: PEG (74 ± 1 Bloom) > AAG (66 ± 1) > HWG (59 ± 1) > SHG (34 ± 1). The foaming properties, fish oil emulsion viscosity, emulsion activity, and emulsion stabilization ability followed this order: PEG > HWG ≥ AAG > SHG. The effect mechanisms of extraction methods and gelatin concentrations on the emulsion stability involved the interfacial tension, emulsion viscosity, and fat-binding capacity. This work provided important knowledge for analyzing the relations between the structure and function of gelatin. It also provided a high-value application method of fish wastes.
Collapse
Affiliation(s)
- Li Li
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huan Gong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ye Zi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Cuiping Shi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Wang Z, Zhao Y, Yang M, Wang Y, Wang Y, Shi C, Dai T, Wang Y, Tao L, Tian Y. Glycated Walnut Meal Peptide-Calcium Chelates: Preparation, Characterization, and Stability. Foods 2024; 13:1109. [PMID: 38611413 PMCID: PMC11011802 DOI: 10.3390/foods13071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide-calcium chelates (WMPHs-COS-Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs-COS-Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs-COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs-COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH-COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the "bridging role" of WMPHs-COS changed to a loose structure. UV-vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs-COS-Ca have a greater degree of bioavailability.
Collapse
Affiliation(s)
- Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Ye Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Yuanli Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Yue Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Yifan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.W.); (Y.Z.); (M.Y.); (Y.W.); (Y.W.); (C.S.); (T.D.); (Y.W.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Puer University, Puer 665000, China
| |
Collapse
|
5
|
Pan Z, Ge B, Wei M, Elango J, Wu W. Isolation and Biochemical Properties of Type II Collagen from Blue Shark ( Prionace glauca) Cartilage. Mar Drugs 2023; 21:md21050260. [PMID: 37233454 DOI: 10.3390/md21050260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous studies have shown that type II collagen (CII) has a potential role in the treatment of rheumatoid arthritis. However, most of the current studies have used terrestrial animal cartilage as a source of CII extraction, with fewer studies involving marine organisms. Based on this background, collagen (BSCII) was isolated from blue shark (Prionace glauca) cartilage by pepsin hydrolysis and its biochemical properties including protein pattern, total sugar content, microstructure, amino acid composition, spectral characteristics and thermal stability were further investigated in the present study. The SDS-PAGE results confirmed the typical characteristic of CII, comprising three identical α1 chains and its dimeric β chain. BSCII had the fibrous microstructure typical of collagen and an amino acid composition represented by high glycine content. BSCII had the typical UV and FTIR spectral characteristics of collagen. Further analysis revealed that BSCII had a high purity, while its secondary structure comprised 26.98% of β-sheet, 35.60% of β-turn, 37.41% of the random coil and no α-helix. CD spectra showed the triple helical structure of BSCII. The total sugar content, denaturation temperature and melting temperature of BSCII were (4.20 ± 0.03)%, 42 °C and 49 °C, respectively. SEM and AFM images confirmed a fibrillar and porous structure of collagen and denser fibrous bundles formed at higher concentrations. Overall, CII was successfully extracted from blue shark cartilage in the present study, and its molecular structure was intact. Therefore, blue shark cartilage could serve as a potential source for CII extraction with applications in biomedicine.
Collapse
Affiliation(s)
- Zhilin Pan
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Baolin Ge
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjun Wei
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jeevithan Elango
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Wenhui Wu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
- Putuo Branch of International Combined Research Center for Marine Biological Sciences, Zhoushan 316104, China
| |
Collapse
|
6
|
Prontera CT, Gallo N, Giannuzzi R, Pugliese M, Primiceri V, Mariano F, Maggiore A, Gigli G, Sannino A, Salvatore L, Maiorano V. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Gels 2023; 9:gels9040310. [PMID: 37102922 PMCID: PMC10137362 DOI: 10.3390/gels9040310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.
Collapse
Affiliation(s)
- Carmela Tania Prontera
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Giannuzzi
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Marco Pugliese
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vitantonio Primiceri
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Fabrizio Mariano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Maggiore
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
8
|
Chen J, Nie Y, Xu J, Huang S, Sheng J, Wang X, Zhong J. Sensory and metabolite migration from tilapia skin to soup during the boiling process: fast and then slow. NPJ Sci Food 2022; 6:52. [DOI: 10.1038/s41538-022-00168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThis study mainly studied sensory and metabolite migration from the skin to the soup in the boiling process of tilapia skin using content analysis, electronic nose technique, electronic tongue technique, and metabolomics technique based on ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-time-of-flight-mass spectrometry. The content changes, flavor changes, taste changes, metabolite numbers and differential metabolite numbers for both tilapia skin and soup mainly occurred in the initial 30 min. Moreover, the initial 10 min was the key period for the metabolite changes in the boiling process. Further, the differential metabolites in these three periods (0–10, 10–30, and 30–60 min) were identified to show the metabolites migration process. Six (adenine, gingerol, terephthalic acid, vanillin, pentanenitrile, and 2-pyrrolidinonede) and seven (butyramide, lysope(0:0/20:4(5z,8z,11z,14z)), lysope(22:6(4z,7z,10z,13z,16z,19z)/0:0), linoleic acid, N-acetylneuraminic acid, L-threose, and benzoin) chemicals were screened out in the differential metabolites of tilapia skin and soup, respectively, with Variable Importance in the Projection of >1 and p value of <0.05. This work would be beneficial to understand the sensory and metabolite migration in the preparation process of fish soup and provided a metabolomic analysis route to analyze metabolites migration in food.
Collapse
|
9
|
Hu Y, Zhang Y, Xu J, Zi Y, Peng J, Zheng Y, Wang X, Zhong J. Fish gelatin-polysaccharide Maillard products for fish oil-loaded emulsion stabilization: Effects of polysaccharide type, reaction time, and reaction pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Effect of extraction methods on the properties of tilapia scale gelatins. Int J Biol Macromol 2022; 221:1150-1160. [PMID: 36113590 DOI: 10.1016/j.ijbiomac.2022.09.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022]
Abstract
Three types of tilapia scale gelatins (hot water-pretreated gelatin, HWG; acetic acid-pretreated gelatin, AAG; and pepsin enzyme-pretreated gelatin, PEG) were extracted and their gel strength, foaming properties, and emulsifying properties were analyzed. They had different gel strength values: AAG (370 ± 10 g Bloom) > HWG (320 ± 10 g Bloom) > PEG (280 ± 10 g Bloom). The creaming index values of tilapia scale gelatin-stabilized fish oil-loaded emulsions were dependent on gelatin type (HWG ≈ AAG > PEG) at low gelatin concentration (2 mg/mL), whereas they were similar and low (8-10 %) at high gelatin concentration (10 mg/mL). Extraction methods had no consistently significant effects on the gelatin foaming properties. In summary, tilapia scale gelatins had better gel strength and foaming properties and similar or even better emulsifying properties than mammalian gelatins. Therefore, tilapia scales could be a potential source of gelatins to replace mammalian gelatins.
Collapse
|
11
|
Núñez Carrero KC, Velasco-Merino C, Asensio M, Guerrero J, Merino JC. Rheological Method for Determining the Molecular Weight of Collagen Gels by Using a Machine Learning Technique. Polymers (Basel) 2022; 14:3683. [PMID: 36080758 PMCID: PMC9460402 DOI: 10.3390/polym14173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
This article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the effect of the concentrations on the rheological tests was investigated. In addition, because these materials are highly sensitive to denaturation and degradation under mechanical stress and temperatures close to 40 °C, when frequency sweeps were applied, a mathematical adjustment of the data by machine learning techniques (artificial intelligence tools) was designed and implemented. Using the proposed method, collagen fibers of Mw close to 600 kDa were identified. To validate the proposed method, lower Mw species were obtained and characterized by both the proposed rheological method and traditional measurement techniques, such as chromatography and electrophoresis. The results of the tests confirmed the validity of the proposed method. It is a simple technique for obtaining more microstructural information on these biomolecules and, in turn, facilitating the design of new structural biomaterials with greater added value.
Collapse
Affiliation(s)
- Karina C. Núñez Carrero
- Department of Condensed Matter Physics, University of Valladolid, 47011 Valladolid, Spain
- Foundation for Research and Development in Transport and Energy (CIDAUT), 47051 Valladolid, Spain
| | - Cristian Velasco-Merino
- Foundation for Research and Development in Transport and Energy (CIDAUT), 47051 Valladolid, Spain
| | - María Asensio
- Foundation for Research and Development in Transport and Energy (CIDAUT), 47051 Valladolid, Spain
| | - Julia Guerrero
- Foundation for Research and Development in Transport and Energy (CIDAUT), 47051 Valladolid, Spain
| | - Juan Carlos Merino
- Department of Condensed Matter Physics, University of Valladolid, 47011 Valladolid, Spain
- Foundation for Research and Development in Transport and Energy (CIDAUT), 47051 Valladolid, Spain
| |
Collapse
|
12
|
Ge B, Hou C, Bao B, Pan Z, de Val JEMS, Elango J, Wu W. Comparison of Physicochemical and Structural Properties of Acid-Soluble and Pepsin-Soluble Collagens from Blacktip Reef Shark Skin. Mar Drugs 2022; 20:md20060376. [PMID: 35736179 PMCID: PMC9228053 DOI: 10.3390/md20060376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Fish collagen has been widely used in tissue engineering (TE) applications as an implant, which is generally transplanted into target tissue with stem cells for better regeneration ability. In this case, the success rate of this research depends on the fundamental components of fish collagen such as amino acid composition, structural and rheological properties. Therefore, researchers have been trying to find an innovative raw material from marine origins for tissue engineering applications. Based on this concept, collagens such as acid-soluble (ASC) and pepsin-soluble (PSC) were extracted from a new type of cartilaginous fish, the blacktip reef shark, for the first time, and were further investigated for physicochemical, protein pattern, microstructural and peptide mapping. The study results confirmed that the extracted collagens resemble the protein pattern of type-I collagen comprising the α1, α2, β and γ chains. The hydrophobic amino acids were dominant in both collagens with glycine and hydroxyproline as major amino acids. From the FTIR spectra, α helix (27.72 and 26.32%), β-sheet (22.24 and 23.35%), β-turn (21.34 and 22.08%), triple helix (14.11 and 14.13%) and random coil (14.59 and 14.12%) structures of ASC and PSC were confirmed, respectively. Collagens retained their triple helical and secondary structure well. Both collagens had maximum solubility at 3% NaCl and pH 4, and had absorbance maxima at 234 nm, respectively. The peptide mapping was almost similar for ASC and PSC at pH 2, generating peptides ranging from 15 to 200 kDa, with 23 kDa as a major peptide fragment. The microstructural analysis confirmed the homogenous fibrillar nature of collagens with more interconnected networks. Overall, the preset study concluded that collagen can be extracted more efficiently without disturbing the secondary structure by pepsin treatment. Therefore, the blacktip reef shark skin could serve as a potential source for collagen extraction for the pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Baolin Ge
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - Chunyu Hou
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - Bin Bao
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - Zhilin Pan
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Jeevithan Elango
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
- Correspondence: or (J.E.); (W.W.)
| | - Wenhui Wu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.G.); (C.H.); (B.B.); (Z.P.)
- Correspondence: or (J.E.); (W.W.)
| |
Collapse
|
13
|
Xu J, Yang L, Nie Y, Yang M, Wu W, Wang Z, Wang X, Zhong J. Effect of transglutaminase crosslinking on the structural, physicochemical, functional, and emulsion stabilization properties of three types of gelatins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Effect of carbon numbers and structures of monosaccharides on the glycosylation and emulsion stabilization ability of gelatin. Food Chem 2022; 389:133128. [PMID: 35512506 DOI: 10.1016/j.foodchem.2022.133128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Herein, the effect of saccharide glycosylation by nine monosaccharides on bovine bone gelatin for the stabilization of fish oil-loaded emulsions was explored. The gelatin modification was analyzed and then the emulsifying properties of monosaccharide-modified gelatins were analyzed at pH 9.0 and 3.0. The results demonstrated that glycosylated gelatin structure, droplet stability, creaming stability, and liquid-gel transition time were dependent on monosaccharide carbon numbers, monosaccharide structures, and solution pH. Glycosylation modification of gelatins did not obviously change the emulsion droplet stability at pH 9.0, whereas it increased the emulsion droplet stability at pH 3.0. Glycosylation modification of gelatins did not obviously change the emulsion creaming index values (5.1%-8.4% at pH 9.0 and 25.8%-33.1% at pH 3.0). Three-carbon and four-carbon monosaccharides glycosylation significantly increased emulsion liquid-gel transition times. This work provided useful information to understand the effects of carbon numbers and structures of monosaccharides on the protein modification.
Collapse
|
15
|
Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers (Basel) 2022; 14:polym14091865. [PMID: 35567034 PMCID: PMC9103308 DOI: 10.3390/polym14091865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
Collapse
|
16
|
Yang L, Yang M, Xu J, Nie Y, Wu W, Zhang T, Wang X, Zhong J. Structural and emulsion stabilization comparison of four gelatins from two freshwater and two marine fish skins. Food Chem 2022; 371:131129. [PMID: 34560337 DOI: 10.1016/j.foodchem.2021.131129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/04/2022]
Abstract
This study analyzed the structural and emulsion stabilization properties of two freshwater and two marine fish skin gelatins: Chinese longsnout catfish skin gelatin (CLCSG), silver carp skin gelatin (SCSG), salmon skin gelatin (SSG), and Alaska pollack skin gelatin (APSG). Their gel strengths (Bloom values) were: 361 ± 1 (SCSG) > 253 ± 4 (CLCSG) > 69 ± 1 (SSG) > 36 ± 2 (APSG). Higher molecular weights and α/β subunit contents of gelatins might induce higher gel strengths. Both creaming and droplet stability were completely the same to the contents of imino acids, β-sheet percentages, and β-turn percentages, whereas they were completely the opposite to random coil percentages. The emulsion stabilization mechanisms involved an "fish skin source - protein chemical composition - protein secondary structure - protein functional properties - emulsion stability" route. This study provided useful knowledges for gelatin science and for the comprehensive utilization of aquatic by-products in gelatin industry.
Collapse
Affiliation(s)
- Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyang Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Wu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
17
|
Sarder R, Piner E, Rios DC, Chacon L, Artner MA, Barrios N, Argyropoulos D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr Polym 2022; 278:118973. [PMID: 34973787 DOI: 10.1016/j.carbpol.2021.118973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The outstanding versatility of starch offers a source of inspiration for the development of high-performance-value-added biomaterials for the biomedical field, including drug delivery, tissue engineering and diagnostic imaging. This is because starch-based materials can be tailored to specific applications via facile grafting or other chemistries, introducing specific substituents, with starch being effectively the "template" used in all the chemical transformations discussed in this review. A considerable effort has been carried out to obtain specific tailored starch-based grafted polymers, taking advantage of its biocompatibility and biodegradability with appealing sustainability considerations. The aim of this review is to critically explore the latest research that use grafting chemistries on starch for the synthesis of products for biomedical applications. An effort is made in reviewing the literature that proposes synthetic "greener" approaches, the use of enzymes and their immobilized analogues and alternative solvent systems, including water emulsions, ionic liquids and supercritical CO2.
Collapse
Affiliation(s)
- Roman Sarder
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Emily Piner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - David Cruz Rios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Lisandra Chacon
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Mirela Angelita Artner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | | |
Collapse
|
18
|
Hu X, Xia Z, Cai K. Recent advances of 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B 2022; 10:1486-1507. [DOI: 10.1039/d1tb02537f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have been increasingly recognized as resources for disease treatments and regenerative medicine. Meanwhile, the unique chemical and physical properties of hydrogels provide innate advantages to achieve...
Collapse
|
19
|
Xu J, Zhang T, Zhang Y, Yang L, Nie Y, Tao N, Wang X, Zhong J. Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. Int J Biol Macromol 2021; 186:145-154. [PMID: 34246667 DOI: 10.1016/j.ijbiomac.2021.07.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023]
Abstract
Herein, three types of silver carp scale gelatins were extracted, and their molecular weight distribution, structural properties, functional properties and emulsifying properties were investigated and discussed. Acetic acid-extracted gelatin (AAG), hot water-extracted gelatin (HWG), and pepsin enzyme-extracted gelatin (PEG) showed similar and four clear bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern, whereas they showed different β chain amounts and β-sheet percentages. The water-holding capacity values (g/g of gelatin) were: AAG (16.8 ± 1.1) > HWG (14.0 ± 0.7) ≈ PEG (13.5 ± 1.6). The fat-binding capacity values (g/g of gelatin) were: AAG (11.8 ± 0.3) > HWG (9.5 ± 1.3) > PEG (5.3 ± 0.4). Emulsion droplet sizes and creaming index values decreased with the increase of gelatin concentrations for all the fish oil-loaded emulsions stabilized by three types of gelatins. Compared with PEG, AAG and HWG show similar and higher emulsion stability at high gelatin concentration (10 mg/mL). The stabilization mechanism of fish oil-loaded silver carp scale gelatin-stabilized emulsions involved an "extraction method-protein molecular weight distribution-protein molecular structure-molecular interaction-emulsibility-droplet structure-emulsion stability" route. This work would be beneficial for the research on the relationship of structure and function of gelatin and to the comprehensive utilization of aquatic products.
Collapse
Affiliation(s)
- Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
20
|
Ren Y, Wu H, Chi Y, Deng R, He Q. Structural characterization, erythrocyte protection, and antifatigue effect of antioxidant collagen peptides from tilapia ( Oreochromis nilotica L.) skin. Food Funct 2021; 11:10149-10160. [PMID: 33155595 DOI: 10.1039/d0fo01803a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tilapia (Oreochromis nilotica L.) skin collagen is a meritorious commercial resource to be exploited. The purpose of this study was to obtain, evaluate, and characterize tilapia skin collagen-derived antioxidant hydrolysates (TSCP). AAPH-induced erythrocyte hemolysis assay and antifatigue test in mice were implemented. It was indicated that TSCP treatment at 1 mg mL-1 could effectively attenuate AAPH-induced erythrocyte hemolysis rate from 56.35 ± 2.46% to 18.78 ± 2.48% (p < 0.01). A 2.5 mg/(10 g d) dose of TSCP intragastric administration could observably prolong the exhaustive swimming time of the loaded mice and its mechanism was multiple, including the decrease in the levels of serum lactic acid, serum urea nitrogen, and creatine kinase activity, thus improving the contents of liver and muscle glycogen and endogenous SOD activity. Five oligopeptides from the antioxidant fraction were identified as Gly-Hyp, Glu-Asp, Asp-Hyp-Gly, Glu-Pro-Pro-Phe, and Lys-Pro-Phe-Gly-Ser-Gly-Ala-Thr and then synthesized. Among them, the octapeptide exhibited the strongest antioxidant capacity. Therefore, tilapia skin-derived collagen is a meritorious edible resource for producing commercial functional foods, thus helping to scavenge radicals, protecting erythrocytes, and further resisting fatigue.
Collapse
Affiliation(s)
- Yao Ren
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Zhang T, Xu J, Chen J, Wang Z, Wang X, Zhong J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Contribution of Quasifibrillar Properties of Collagen Hydrolysates Towards Lowering of Interface Tension in Emulsion-Based Food Leading to Shelf-Life Enhancement. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02640-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Ma L, Luo Y, Ma YH, Lu X. Interaction between Antimicrobial Peptide CM15 and a Model Cell Membrane Affected by CM15 Terminal Amidation and the Membrane Phase State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1613-1621. [PMID: 33464910 DOI: 10.1021/acs.langmuir.0c03498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides (AMPs) have been proposed as an effective class of antimicrobial agents against microorganisms. In this work, the interaction between an antimicrobial peptide, CM15, and a negatively charged phospholipid bilayer, DPPG, was studied via sum frequency generation (SFG) vibrational spectroscopy. Two structurally correlated characteristic variables were introduced to reveal the interaction mechanism/efficiency, i.e. C-terminal amidation and temperature variation (∼20 °C, room temperature, and ∼35 °C, close to human body temperature). Experimental results indicated that owing to the increased positive charge, C-terminal amidation resulted in rapid adsorption onto the bilayer surface and efficient disruption of the outer layer, exhibiting less ordered insertion orientation. The elevated temperature (from ∼20 °C to ∼35 °C) promoted the penetration of both the outer and inner leaflets by the peptides and finally led to the disruption of the whole bilayer owing to the enhanced fluidity of the bilayer. From the perspective of the interaction mechanism, this experimental study provides two practical cues to understand the disruption process of the negatively charged model biomembranes, which can lay the structural foundation for designing and developing high-efficiency antimicrobial peptides.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| |
Collapse
|
25
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Wu T, Guo H, Lu Z, Zhang T, Zhao R, Tao N, Wang X, Zhong J. Reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles. Food Res Int 2020; 138:109791. [PMID: 33288177 DOI: 10.1016/j.foodres.2020.109791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
Dry salting has important effects on food lipids. In this work, the reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles were studied by ultra-high-performance liquid chromatography-Q-Extractive Orbitrap mass spectrometry and LipidSearch software. Compared with the standard reference identification method, the LipidSearch software identification method was suggested to be a reliable identification method for long-chain free fatty acid identification. During the dry salting process, tilapia muscles with low muscle-to-salt mass ratios of 3-8 might have stable and similar free fatty acid profile changes, and the free fatty acid amounts decreased and then increased with time. This work could provide useful information to evaluate the development and application of LipidSearch software as well as a way to analyze the effect of dry salting on the free fatty acids change of aquatic products.
Collapse
Affiliation(s)
- Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing 400021, China
| | - Zhiwen Lu
- Shanghai Gaojing Detection Technology Co., Ltd., Shanghai 200438, China
| | - Ting Zhang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruofei Zhao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
27
|
Zhang T, Xu J, Zhang Y, Wang X, Lorenzo JM, Zhong J. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Zhang T, Sun R, Ding M, Tao L, Liu L, Tao N, Wang X, Zhong J. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem 2020; 328:127114. [DOI: 10.1016/j.foodchem.2020.127114] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
|
29
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Cao P, Hao W, Zhang L, Zhang Q, Liu X, Li M. Safety and Efficacy Studies of Vertebroplasty with Dual Injections for the Treatment of Osteoporotic Vertebral Compression Fractures: Preliminary Report. Acad Radiol 2020; 27:e224-e231. [PMID: 31629626 DOI: 10.1016/j.acra.2019.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate the clinical safety and efficacies of percutaneous vertebroplasty (PVP), percutaneous vertebroplasty with dual injections (PVPDI), and percutaneous kyphoplasty (PKP) for the treatment of osteoporotic vertebral compression fractures (OVCFs), a retrospective study of 90 patients with OVCFs who had been treated by PVP (n = 30), PVPDI (n = 30), and PKP (n = 30) was conducted in this work. METHODS The clinical efficacies of these three treatments were evaluated by comparing their PMMA cement leakages, cement patterns, height restoration percentages, wedge angles, visual analogue scales, and Oswestry disability index (ODI) at the pre- and postoperative time points. RESULTS Ten percent, 6.7%, and 0% of patients had PMMA leakage in PVP, PVPDI, and PKP groups, respectively. Three (solid, trabecular, and mixed patterns), two (trabecular and mixed patterns), and two (solid and mixed patterns) types of cement patterns were observed in PVP, PVPDI, and PKP groups, respectively. PVP and PVPDI treatments had similar and less height restoration ability than PKP treatment. All the PVP, PVPDI, and PKP treatments had significant and similar ability in pain relief and functional recovery ability for the treatment of OVCFs. Microfractures after the surgery occurred after PVP and PKP treatments. CONCLUSION These results indicate minimally invasive techniques were effective methods for the treatment of OVCFs. Moreover, these initial outcomes suggest PVPDI treatment has great value and is worth promoting vigorously in orthopedics clinics.
Collapse
Affiliation(s)
- Pijian Cao
- Department of Orthopedic Surgery, The Peony People's Hospital of Heze City (The Central Hospital of Heze City), Heze City, Shandong Province, People's Republic of China
| | - Weimin Hao
- Department of Spinal Surgery, Heze Municipal Hospital, Heze City, Shandong Province, People's Republic of China
| | - Lu Zhang
- Department of Orthopedic Surgery, The Peony People's Hospital of Heze City (The Central Hospital of Heze City), Heze City, Shandong Province, People's Republic of China
| | - Qinglin Zhang
- Department of Orthopedic Surgery, The Peony People's Hospital of Heze City (The Central Hospital of Heze City), Heze City, Shandong Province, People's Republic of China
| | - Xunwei Liu
- Department of Nuclear Medicine, 960 Hospital of PLA (The General Hospital of Jinan Command), No. 25, Shifan Road, Jinan City, Shandong Province 250031, People's Republic of China
| | - Min Li
- Department of Nuclear Medicine, 960 Hospital of PLA (The General Hospital of Jinan Command), No. 25, Shifan Road, Jinan City, Shandong Province 250031, People's Republic of China.
| |
Collapse
|
31
|
Ding M, Liu L, Zhang T, Tao N, Wang X, Zhong J. Effect of interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded multilayer emulsions consisting of gelatin particle and polysaccharides. Food Chem 2020; 336:127686. [PMID: 32763735 DOI: 10.1016/j.foodchem.2020.127686] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to investigate the effects of the interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded primary, secondary, tertiary, and quaternary multilayer emulsions stabilized by gelatin particle and polysaccharides (anionic alginate and cationic chitosan), prepared using a layer-by-layer electrostatic deposition technique. The results demonstrate that the emulsion creaming stability during the storage process and the emulsion droplet stability against the gastric phase are dependent on the interfacial layer number. But, the interfacial layer number in the multilayer emulsions has no obvious effects on the droplet stability against droplet coalescence during the storage process and against the small intestinal phases of gastrointestinal tract models. Moreover, it also has no obvious effect on the sustained free fatty acid release of multilayer emulsions. This study can advance the fundamental understanding of multilayer emulsions and promote their potential applications.
Collapse
Affiliation(s)
- Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijie Liu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
32
|
Le TMT, Nguyen VM, Tran TT, Takahashi K, Osako K. Comparison of acid-soluble collagen characteristic from three important freshwater fish skins in Mekong Delta Region, Vietnam. J Food Biochem 2020; 44:e13397. [PMID: 32713023 DOI: 10.1111/jfbc.13397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/27/2022]
Abstract
The utilization of three important freshwater fish skins including tra catfish (Pangasianodon hypophthalmus), clown knifefish (Chitala ornata), and tilapia (Oreochromis niloticus) in Mekong Delta Region, Vietnam for acid-soluble collagen (ASC) extraction was investigated. From the SDS-PAGE profile, ASCs can be identified as type I collagen (consisting of two different α- chains and β component in protein pattern).The solubility among individual collagens was highest at pH 1-2, depending on fish species. FTIR spectra showed a close relationship between the lowest wavelength number in amide I and amide III regions and the stabilization of the triple-helical structure in ASC from clown knifefish. ASC from clown knifefish skin had highest ASC yield and contained highest amino acid content as well as the highest denaturation temperature (33.09°C) in comparison with ASCs from tra catfish and tilapia skin. PRACTICAL APPLICATIONS: Acid-soluble collagen (ASC) from three important fish skins in the Mekong Delta Region, Vietnam was characterized. ASC from clown knifefish skin showed the highest of extraction yield and denaturation temperature. The thermal stability of ASC from clown knifefish skin not only related to the content of imino acid but is also had the correlation with the transition of α-helix in amide I and III.
Collapse
Affiliation(s)
- Thi Minh Thuy Le
- Department of Fisheries Products Processing, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Van Muoi Nguyen
- Department of Food Science and Technology, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Thanh Truc Tran
- Department of Food Science and Technology, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Kigen Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
33
|
Xu J, Duan Z, Qi X, Ou Y, Guo X, Zi L, Wei Y, Liu H, Ma L, Li H, You C, Tian M. Injectable Gelatin Hydrogel Suppresses Inflammation and Enhances Functional Recovery in a Mouse Model of Intracerebral Hemorrhage. Front Bioeng Biotechnol 2020; 8:785. [PMID: 32760708 PMCID: PMC7371925 DOI: 10.3389/fbioe.2020.00785] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. However, there is no effective therapy method to improve its clinical outcomes to date. Here we report an injectable gelatin hydrogel that is capable of suppressing inflammation and enhancing functional recovery in a mouse model of ICH. Thiolated gelatin was synthesized by EDC chemistry and then the hydrogel was formed through Michael addition reaction between the thiolated gelatin and polyethylene glycol diacrylate. The hydrogel was characterized by scanning electron microscopy, porosity, rheology, and cytotoxicity before evaluating in a mouse model of ICH. The in vivo study showed that the hydrogel injection into the ICH lesion reduced the neuron loss, attenuated the neurological deficit post-operation, and decreased the activation of the microglia/macrophages and astrocytes. More importantly, the pro-inflammatory M1 microglia/macrophages polarization was suppressed while the anti-inflammatory M2 phenotype was promoted after the hydrogel injection. Besides, the hydrogel injection reduced the release of inflammatory cytokines (IL-1β and TNF-α). Moreover, integrin β1 was confirmed up-regulated around the lesion that is positively correlated with the M2 microglia/macrophages. The related mechanism was proposed and discussed. Taken together, the injectable gelatin hydrogel suppressed the inflammation which might contribute to enhance the functional recovery of the ICH mouse, making it a promising application in the clinic.
Collapse
Affiliation(s)
- Jiake Xu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongxin Duan
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Qi
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ou
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Guo
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Zi
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wei
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109207] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Fish oil-loaded emulsions stabilized by synergetic or competitive adsorption of gelatin and surfactants on oil/water interfaces. Food Chem 2020; 308:125597. [DOI: 10.1016/j.foodchem.2019.125597] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022]
|
36
|
Wu T, Ding M, Shi C, Qiao Y, Wang P, Qiao R, Wang X, Zhong J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Yan M, Jiang X, Wang G, Wang A, Wang X, Wang X, Zhao X, Xu H, An X, Li Y. Preparation of self-assembled collagen fibrillar gel from tilapia skin and its formation in presence of acidic polysaccharides. Carbohydr Polym 2020; 233:115831. [PMID: 32059884 DOI: 10.1016/j.carbpol.2020.115831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
Fibrillar gel of pepsin-solubilized collagen from tilapia skin was prepared by self-assembly in neutral phosphate buffer at 28 °C. Then effects of acidic polysaccharides, such as sodium alginate (SA), chondroitin sulfate (CS), and hyaluronic acid (HA), on the formation and properties of self-assembled fibrillar gel were investigated. SA and CS prolonged gelling time, whereas HA had no obvious effect. SA made fibril network denser, while CS and HA induced the presence of larger ordered structures. All the acidic polysaccharides broadened the D-periodicity of fibrils. SA and HA increased the maximum mechanical strength of gel to 39.64 and 34.49 kN/m2, respectively, significantly higher than that of pure collagen gel (14.53 kN/m2), while that only 17.20 kN/m2 after CS introduced. HA had no evident effect on enzymatic resistance, while SA and CS decreased. Therefore, tilapia skin collagen with HA has a higher potential as a biomaterial than that with CS or SA.
Collapse
Affiliation(s)
- Mingyan Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujie Jiang
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co. Ltd., Qingdao 266071, PR China
| | - Gaochao Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ailing Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinxin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinyu Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaochen Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hao Xu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangsheng An
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
38
|
Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108654] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chem 2019; 309:125642. [PMID: 31685367 DOI: 10.1016/j.foodchem.2019.125642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/07/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023]
Abstract
As the differences of traditional and Pickering emulsions might have resulted from stabilizer structures, this study analyzes the effects of gelatin molecular structures (uncrosslinked molecules vs. crosslinked molecules) on the preparation, long-term storage, and dilution of fish oil-loaded traditional and Pickering emulsions. Both traditional and Pickering emulsions have three types of droplets with different sizes, and all the droplet sizes were exponentially decreased with the increase of stabilizer concentration. Pickering emulsions have slightly lower droplet sizes compared with traditional emulsions. Traditional emulsions have three different emulsion forms (liquid, redispersible emulsion gel, and unredispersible emulsion gel), whereas Pickering emulsions only have the liquid form. Emulsion creaming stability was dependent on stabilizer molecular structures and stabilizer concentrations. The two emulsions have similar and good dilution stability. This work demonstrates that gelatin molecular structures affect droplet size, emulsion forms, and creaming stability, but not droplet size types and emulsion dilution stability.
Collapse
Affiliation(s)
- Mengzhen Ding
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Zhang
- Iowa State University, Ames Laboratory, Ames, IA 50011, USA
| | - Ningping Tao
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
40
|
Akita M, Kono T, Lloyd K, Mitsui T, Morioka K, Adachi K. Biochemical study of type I collagen purified from skin of warm sea teleost Mahi mahi (Coryphaena hippurus), with a focus on thermal and physical stability. J Food Biochem 2019; 43:e13013. [PMID: 31407365 DOI: 10.1111/jfbc.13013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/27/2023]
Abstract
Acid- and pepsin-soluble collagen were purified from the skin of mahi mahi (mmASC and mmPSC). The Pro+Hyp content of the latter (185/1,000 residues) was highest among all marine teleost fishes. Fourier transform infrared spectroscopy and Circular Dichroism (CD) analysis showed the typical structure of type I collagen. The ratio of positive over negative peak intensity calculated from the CD spectrum was approximately 1.19 in mmPSC, which is remarkably high, and indicates the stability of the triple helix. The denaturation temperatures (Td ) of mmASC and mmPSC were the highest (29.5 and 28.8°C, respectively) among the marine teleost fishes previously studied. atomic force microscope and scanning electron microscope images showed that even after pretreatment, the fibrils presented their structure and fiber orientation. These results indicate the robustness of both collagens, which can be attributed to the high value of Pro+Hyp stabilizing the helix structure of the collagen molecule. Practical applications While Mahi mahi is highly valuable for its meat, other parts such as skin is not fully utilized in seafood industry. On the contrary, it has been empirically shown that the skin of Mahi mahi has high thermal stability, thus, the skin has been used for leather products in some areas located in the tropical and subtropical zones. In this study, we focused on collagen a major component in skin and investigated the structure and the biochemical characteristics of it. Some results showed that collagen from skin has high physical stability. The collagen from skin of Mahi mahi will be a new fishery resource which could be used as a material for collagen products.
Collapse
Affiliation(s)
- Monami Akita
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan.,The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Japan.,Kochi Prefectural Industrial Technology Center, Kochi, Japan
| | - Toshio Kono
- Kochi Prefectural Industrial Technology Center, Kochi, Japan
| | - Kento Lloyd
- Department of Mathematics and Physics, Aoyama-Gakuin University, Sagamihara, Japan
| | - Toshiyuki Mitsui
- Department of Mathematics and Physics, Aoyama-Gakuin University, Sagamihara, Japan
| | - Katsuji Morioka
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kohsuke Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|