1
|
Uribarrena M, Cabezudo S, Núñez RN, Copello GJ, de la Caba K, Guerrero P. Development of smart films based on soy protein and cow horn dissolved in a deep eutectic solvent: Physicochemical and environmental assessment. Int J Biol Macromol 2024; 291:139045. [PMID: 39710039 DOI: 10.1016/j.ijbiomac.2024.139045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
With the urge to reduce the use of petroleum-based materials, the aim of this work is to valorize biowaste to develop smart films through a sustainable fabrication way. In this regard, choline chloride/urea (1:2) deep eutectic solvent (DES) at different concentrations (25, 40, 50 and 75 wt%) was used to dissolve cow horn, used as reinforcement agent in soy protein films. The film fabrication was carried out by compression molding, a fast and cost-effective. As proved by SEM/EDX, cow horn was well-dispersed in the films, suggesting a homogeneous distribution of the sulfur from the cysteine present in keratin, the main component of cow horn. FTIR spectroscopy suggested interactions between the components of the formulation, which reduce the water uptake from 180 % to 140 %. Additionally, the films could be heat-sealed. With the aim of developing smart films, blueberry extract was incorporated into the formulation. This extract provided the films with pH sensitivity, which was followed by the film color change in presence of ammonia vapor. In particular, it is worth noting the ability of those films prepared with 40 wt% Horn/DES and 15 wt% blueberry extract to detect food spoilage. Finally, the environmental assessment of the films showed a minimal environmental impact of the procedure, with DES preparation and soybean production as the main relative contributors of the environmental load.
Collapse
Affiliation(s)
- Maialen Uribarrena
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain
| | - Sara Cabezudo
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain
| | - Rodrigo N Núñez
- Centro de Medicina Traslacional (CEMET)-Hospital "El Cruce", CONICET, Florencio Varela, Argentina
| | - Guillermo J Copello
- CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, Argentina
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
2
|
Andonegi M, Tubio CR, Pereira N, Costa CM, Lanceros-Mendez S, de la Caba K, Guerrero P. Self-sensing magnetic actuator based on sustainable collagen hybrid nanocomposites. Int J Biol Macromol 2024; 277:134364. [PMID: 39094892 DOI: 10.1016/j.ijbiomac.2024.134364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Taking into account that natural polymers are renewable and biodegradable, hybrid materials based on natural polymers are required for advanced technological applications with reduced environmental footprint. In this work, sustainable composites have been developed based on collagen as a polymeric matrix and different magnetic fillers, in order to tailor magnetic response. The composites were prepared by solution casting with 30 wt% of magnetite nanoparticles (Fe3O4 NPs), magnetite nanorods (Fe3O4 NRs) or cobalt ferrite nanoparticles (CoFe2O4 NPs). It is shown that the magnetic filler type has no bearing on the morphology, physical-chemical, or thermal characteristics of the composites, whereas the mechanical properties are determined by the magnetic filler, leading to a reduction in tensile strength, with values of 4.95 MPa for Fe3O4 NPs, 9.20 MPa for Fe3O4 NRs and 5.21 MPa for CoFe2O4 NPs containing samples. However, the highest magnetization saturation is obtained for Fe3O4 NPs (44 emu.g-1) and the higher coercive field for CoFe2O4 NPs (2062 Oe). In order to prove functionality of the developed composites, a self-sensing magnetic actuator device has been developed with the composite film with CoFe2O4 NPs, showing high stability over cycling.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal.
| | - Carmen R Tubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Pereira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Anastasiadis K, Nassar M. The effect of different conditioning agents on dentin roughness and collagen structure. J Dent 2024; 148:105222. [PMID: 38950766 DOI: 10.1016/j.jdent.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVES To assess the impact of various organic and inorganic acids on the roughness, demineralization, and collagen secondary structures of human dentin and to compare these effects with those of traditional agents, specifically phosphoric acid (PA) and ethylenediaminetetraacetic acid (EDTA). METHODS Coronal dentin discs (n = 10) were examined by optical profilometry (roughness) and ATR-FTIR before and after conditioning with 32 % PA, 3 % nitric acid (NA), 20 % citric acid (CA), 20 % phytic acid (IP6) or 17 % EDTA. Spectra data were processed to quantify dentin demineralization (DM%) and percentage area of amide I curve-fitted components of β-turns, 310-helix, α-helix, random coils, β-sheets, and collagen maturation index. Statistical analysis was performed by one-way ANOVA or Kruskal-Wallis for DM% and roughness parameters, and paired t-test/Wilcoxon test for amide I components at significance level set at α = 0.05. RESULTS All treatments resulted in increased roughness parameters, with the most significant changes occurring primarily with PA, while EDTA exhibited the least changes. DM% was NA>PA>IP6>CA>EDTA in a descending order. Regarding amide I components, NA demonstrated a significant reduction in β-turns, 310-helices, and α-helices and it increased β-sheets and random coils. PA resulted in reduction in β-turns and α-helices while it increased β-sheets. CA and EDTA did not cause significant changes. The collagen maturation index significantly increased only after IP6 treatment. CONCLUSIONS The effect on dentin roughness parameters, demineralization, and collagen secondary structures varied based on the type of dentin surface treatment. CLINICAL SIGNIFICANCE Understanding the impact of acids on the intrinsic properties of dentin is clinically essential for gaining insights into how these effects influence adhesion to dentin, the long-term stability of resin-based restorations, and the success of remineralization therapies.
Collapse
Affiliation(s)
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Kim J, Lee H, Lee G, Ryu D, Kim G. Fabrication of fully aligned self-assembled cell-laden collagen filaments for tissue engineering via a hybrid bioprinting process. Bioact Mater 2024; 36:14-29. [PMID: 38425743 PMCID: PMC10900255 DOI: 10.1016/j.bioactmat.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Cell-laden structures play a pivotal role in various tissue engineering applications, particularly in tissue restoration. Interactions between cells within bioprinted structures are crucial for successful tissue development and regulation of stem cell fate through intricate cell-to-cell signaling pathways. In this study, we developed a new technique that combines polyethylene glycol (PEG)-infused submerged bioprinting with a stretching procedure. This approach facilitated the generation of fully aligned collagen structures consisting of myoblasts and a low concentration (2 wt%) of collagen to efficiently encourage muscle tissue regeneration. By adjusting several processing parameters, we obtained biologically safe and mechanically stable cell-laden collagen filaments with uniaxial alignment. Notably, the cell filaments exhibited markedly elevated cellular activities compared to those exhibited by conventional bioprinted filaments, even at similar cell densities. Moreover, when we implanted structures containing adipose stem cells into mice, we observed a significantly increased level of myogenesis compared to that in normally bioprinted struts. Thus, this promising approach has the potential to revolutionize tissue engineering by fostering enhanced cellular interactions and promoting improved outcomes in regenerative medicine.
Collapse
Affiliation(s)
- JuYeon Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| | - Hyeongjin Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Biancardi VR, da Silva Ferreira MV, Bigansolli AR, de Freitas KM, Zonta E, Barbosa MIMJ, Kurozawa LE, Barbosa Junior JL. A physicochemical evaluation of ossein-hydroxyapatite within the bovine bone matrix revealed demineralization and making type I collagen available as a result of processing and solubilization by acids. J Food Sci 2024; 89:1540-1553. [PMID: 38343300 DOI: 10.1111/1750-3841.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
Bovine bone is an animal-origin matrix rich in type I collagen (COL I) and it necessitates prior demineralization and makes COL I available. This study investigated the ossein-hydroxyapatite physicochemical properties evaluation as a result of processing and solubilization by acids and revealed the bone matrix demineralization and making COL I available. The tibia residue from bovine sources was processed, ground, and transformed into bone matrix powder. The bone matrix was solubilized in acetic acid followed by lactic acid. The bone matrix was evaluated as a result of processing and solubilization by acids: ossein and hydroxyapatite percentages by nitrogen and ash content, mineral content, particle size distribution, Fourier-transformation infrared spectroscopy, x-ray diffraction, and scanning electron microscope. For the obtained residual extracts, pH and mineral content were evaluated. The solubilization by acids affected the ossein-hydroxyapatite physicochemical properties, and the bone matrix solubilized by acetic and lactic acid showed the preservation of the ossein alongside the loss of hydroxyapatite. The processing and the solubilization by acids were revealed to be a alternative to bone matrix demineralization and enabling the accessibility of bone COL I. PRACTICAL APPLICATION: Bovine bone is an abundant type I collagen source, but processing maneuvers and demineralization effect present limitations due to the rigidity of the structural components. Exploring methodologies to process and demineralize will allow type I collagen to be obtained from the bone source, and direct and amplify the potentialities in the chemical and food industries. The research focused on bone sources and collagen availability holds paramount significance, and promotes repurposing agribusiness residues and development of protein-base products.
Collapse
Affiliation(s)
- Vanessa Ricas Biancardi
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Marcus Vinícius da Silva Ferreira
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Antônio Renato Bigansolli
- Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | | | - Everaldo Zonta
- Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Maria Ivone Martins Jacintho Barbosa
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Louise Emy Kurozawa
- Faculdade de Engenharia de Alimentos, Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - José Lucena Barbosa Junior
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| |
Collapse
|
6
|
Zhang Y, Wang Y, Zhang Z, Wang Z, Shao C, Hannig M, Zhou Z, Fu B. Intrafibrillar mineralization of type I collagen with calcium carbonate and strontium carbonate induced by polyelectrolyte-cation complexes. NANOSCALE ADVANCES 2024; 6:467-480. [PMID: 38235102 PMCID: PMC10791124 DOI: 10.1039/d3na00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
Calcium carbonate (CaCO3), possessing excellent biocompatibility, bioactivity, osteoconductivity and superior biodegradability, may serve as an alternative to hydroxyapatite (HAp), the natural inorganic component of bone and dentin. Intrafibrillar mineralization of collagen with CaCO3 was achieved through the polymer-induced liquid precursor (PILP) process for at least 2 days. This study aims to propose a novel pathway for rapid intrafibrillar mineralization with CaCO3 by sequential application of the carbonate-bicarbonate buffer and polyaspartic acid (pAsp)-Ca suspension. Fourier transform infrared (FTIR) spectroscopy, zeta potential measurements, atomic force microscopy/Kelvin probe force microscopy (AFM/KPFM), and three-dimensional stochastic optical reconstruction microscopy (3D STORM) demonstrated that the carbonate-bicarbonate buffer significantly decreased the surface potential of collagen and CO32-/HCO3- ions could attach to collagen fibrils via hydrogen bonds. The electropositive pAsp-Ca complexes and free Ca2+ ions are attracted to and interact with CO32-/HCO3- ions through electrostatic attractions to form amorphous calcium carbonate that crystallizes gradually. Moreover, like CaCO3, strontium carbonate (SrCO3) can deposit inside the collagen fibrils through this pathway. The CaCO3-mineralized collagen gels exhibited better biocompatibility and cell proliferation ability than SrCO3. This study provides a feasible strategy for rapid collagen mineralization with CaCO3 and SrCO3, as well as elucidating the tissue engineering of CaCO3-based biomineralized materials.
Collapse
Affiliation(s)
- Yizhou Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Yiru Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University 66421 Homburg Germany
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou 310000
| |
Collapse
|
7
|
Dobaj Štiglic A, Lackner F, Nagaraj C, Beaumont M, Bračič M, Duarte I, Kononenko V, Drobne D, Madhan B, Finšgar M, Kargl R, Stana Kleinschek K, Mohan T. 3D-Printed Collagen-Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2023; 6:5596-5608. [PMID: 38050684 PMCID: PMC10731651 DOI: 10.1021/acsabm.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.
Collapse
Affiliation(s)
- Andreja Dobaj Štiglic
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Chandran Nagaraj
- Ludwig
Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Marco Beaumont
- Department
of Chemistry, Institute of Chemistry o Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), A-3430 Tulln, Austria
| | - Matej Bračič
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Isabel Duarte
- Department
of Mechanical Engineering, Centre for Mechanical Technology and Automation
(TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veno Kononenko
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Balaraman Madhan
- CSIR-Central
Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Matjaž Finšgar
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Institute
of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia
| | - Tamilselvan Mohan
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
8
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Choi M, Wang MH. Bimetallic (Ag and MgO) nanoparticles, Aloe vera extracts loaded xanthan gum nanocomposite for enhanced antibacterial and in-vitro wound healing activity. Int J Biol Macromol 2023; 242:124813. [PMID: 37172699 DOI: 10.1016/j.ijbiomac.2023.124813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
We prepared nanocomposite (XG-AVE-Ag/MgO NCs) using the bimetallic Ag/MgO NPs, Aloe vera extract (AVE), and biopolymer (Xanthan gum (XG)) to archive a synergetic antibacterial and wound healing activity. The changes in XRD peaks at 20° of XG-AVE-Ag/MgO NCs indicated the XG encapsulation. The XG-AVE-Ag/MgO NCs showed the zeta potential and zeta size of 151.3 ± 3.14 d·nm and -15.2 ± 1.08 mV with a PDI of 0.265 while TEM showed an average size of 61.19 ± 3.89. The EDS confirmed the co-existence of Ag, Mg, carbon, oxygen, and nitrogen in NCs. XG-AVE-Ag/MgO NCs displayed higher antibacterial activity in terms of zone of inhibition, at 15.00 ± 0.12 mm for B. cereus and 14.50 ± 0.85 mm for E. coli. Moreover, NCs exhibited MICs of 2.5 μg/mL for E. coli, and 0.62 μg/mL for B. cereus. The in vitro cytotoxicity and hemolysis assays indicated the non-toxic properties of XG-AVE-Ag/MgO NCs. The higher wound closure activity was observed with the treatment of XG-AVE-Ag/MgO NCs (91.19 ± 1.87 %) compared to the control, untreated group (68.68 ± 3.54 %) at 48 h of incubation. These findings revealed that XG-AVE-Ag/MgO NCs was promising non-toxic, antibacterial, and wound-healing agent that deserved further in-vivo studies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Miri Choi
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
9
|
Fan L, Ren Y, Emmert S, Vučković I, Stojanovic S, Najman S, Schnettler R, Barbeck M, Schenke-Layland K, Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043744. [PMID: 36835168 PMCID: PMC9963569 DOI: 10.3390/ijms24043744] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Ivica Vučković
- Department of Maxillofacial Surgery, Clinic for Dental Medicine, 18000 Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
- BerlinAnalytix GmbH, Ullsteinstraße 108, 12109 Berlin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| |
Collapse
|
10
|
Yang H, Cheng Z, Wu P, Wei Y, Jiang J, Xu Q. Deep eutectic solvents regulation synthesis of multi-metal oxalate for electrocatalytic oxygen evolution reaction and supercapacitor applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Yan M, An X, Duan S, Jiang Z, Liu X, Zhao X, Li Y. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. Int J Biol Macromol 2022; 213:639-650. [PMID: 35671907 DOI: 10.1016/j.ijbiomac.2022.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Chemical cross-linking is an important step to grant satisfying properties to collagen-based materials. However, there are few comparative studies on crossing-linking of collagen-based fibrillar gels which are preferred biomaterials for similar properties to native tissues with different cross-linking agents. In this study, a fibrillar gel was fabricated with tilapia collagen and hyaluronic acid, and cross-linking conditions with EDC/NHS and genipin were discussed. Genipin gave gels much higher equilibrium cross-linking degree than EDC/NHS. ATR-FTIR and XPS showed EDC/NHS offered short-range cross-linking formed by amino and carboxyl groups in fibrils, while genipin induced long-range cross-linking by nucleophilic reaction through attack of amino groups in fibrils on carbon atoms at C-3 as well as ester groups in genipin, besides improved hydrogen bonds. XRD and SEM revealed the structural integrity of gels was strengthened after cross-linking, whereas fibril bundles disaggregated into thin fibrils. Consequently, swelling capacity and anti-degraded property were enhanced significantly, while thermal stability weakened. The fibrillar gels had good biocompatibility, but interestingly the appearance and migration of L929 fibroblasts were influenced by cross-linking degree. These results demonstrated that aquatic collagen-based fibrillar gel cross-linked by genipin had greater potential in biomaterials than EDC/NHS, whereas the cross-linking degree should be controlled.
Collapse
Affiliation(s)
- Mingyan Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangsheng An
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shujun Duan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhicong Jiang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaochen Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
12
|
Muralidharan V, Janardhanam S, Palanivel S, Madhan B. Sustainable fabrication of bio-derived hybrid films using biomolecules extracted from animal skin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Wang B, Tan F, Yu F, Li H, Zhang M. Efficient biorefinery of whole cassava for citrate production using Aspergillus niger mutated by atmospheric and room temperature plasma and enhanced co-saccharification strategy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4613-4620. [PMID: 33474750 DOI: 10.1002/jsfa.11104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The non-grain crop cassava has attracted intense attention in the biorefinery process. However, efficient biorefinery of whole cassava is faced with some challenges due to the existence of strain inhibition and refractory cellulose during the citrate production process. RESULTS Here, a novel breeding method - atmospheric and room temperature plasma (ARTP) - was applied for strain improvement of citrate-producing strain Aspergillus niger from whole cassava. The citrate yield of the mutant obtained using ARTP mutagenesis increased by 36.5% in comparison with the original strain. Moreover, citric acid fermentation was further improved on the basis of an enhanced co-saccharification strategy by supplementing glucoamylase and cellulase. The fermentation efficiency increased by 35.8% with a 17.0 g L-1 reduction in residual sugar on a pilot scale. CONCLUSIONS All these results confirmed that a combination of the novel breeding method and enhanced co-saccharification strategy could be used to efficiently refine whole cassava. The results also provide inspiration for the production of value-added products and waste disposal in agro-based industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Fengling Tan
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Feifei Yu
- Shandong Drug and Food Vocational College, Weihai, China
| | - Hua Li
- School of Life Sciences, Institute of Microbial Engineering, Henan University, Kaifeng, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
14
|
Zhu S, Yu X, You J, Yin T, Lin Y, Chen W, Dao L, Du H, Liu R, Xiong S, Hu Y. Study of the thermodynamics and conformational changes of collagen molecules upon self-assembly. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. Int J Mol Sci 2021; 22:ijms22073648. [PMID: 33807473 PMCID: PMC8037783 DOI: 10.3390/ijms22073648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
The vision impairments suffered by millions of people worldwide and the shortage of corneal donors show the need of substitutes that mimic native tissue to promote cell growth and subsequent tissue regeneration. The current study focused on the in vitro assessment of protein-based biomaterials that could be a potential source for corneal scaffolds. Collagen, soy protein isolate (SPI), and gelatin films cross-linked with lactose or citric acid were prepared and physicochemical, transmittance, and degradation measurements were carried out. In vitro cytotoxicity, cell adhesion, and migration studies were performed with human corneal epithelial (HCE) cells and 3T3 fibroblasts for the films’ cytocompatibility assessment. Transmittance values met the cornea’s needs, and the degradation profile revealed a progressive biomaterials’ decomposition in enzymatic and hydrolytic assays. Cell viability at 72 h was above 70% when exposed to SPI and gelatin films. Live/dead assays and scanning electron microscopy (SEM) analysis demonstrated the adhesion of both cell types to the films, with a similar arrangement to that observed in controls. Besides, both cell lines were able to proliferate and migrate over the films. Without ruling out any material, the appropriate optical and biological properties shown by lactose-crosslinked gelatin film highlight its potential for corneal bioengineering.
Collapse
|
16
|
Physicochemical and Biological Performance of Aloe Vera-Incorporated Native Collagen Films. Pharmaceutics 2020; 12:pharmaceutics12121173. [PMID: 33276436 PMCID: PMC7760042 DOI: 10.3390/pharmaceutics12121173] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Collagen was obtained from porcine skin by mechanical pretreatments with the aim of preserving the triple helix structure of native collagen, which was indirectly corroborated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) results. Moreover, aloe vera (AV), with inherent biological properties, was incorporated into collagen film formulations, and films were prepared by compression and characterized to assess their suitability for biomedical applications. SEM images showed that the fibrillar structure of collagen changed to a rougher structure with the addition of AV, in accordance with the decrease in the lateral packaging of collagen chains observed by XRD analysis. These results suggested interactions between collagen and AV, as observed by FTIR. Considering that AV content higher than 20 wt % did not promote further interactions, this formulation was employed for biological assays and the suitability of AV/collagen films developed for biomedical applications was confirmed.
Collapse
|
17
|
Grønlien KG, Pedersen ME, Tønnesen HH. A natural deep eutectic solvent (NADES) as potential excipient in collagen-based products. Int J Biol Macromol 2020; 156:394-402. [PMID: 32289414 DOI: 10.1016/j.ijbiomac.2020.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Natural deep eutectic solvents (NADES) have previously shown antibacterial properties alone or in combination with photosensitizers and light. In this study, we investigated the behavior of the structural protein collagen in a NADES solution. A combination of collagen and NADES adds the unique wound healing properties of collagen to the potential antibacterial effect of the NADES. The behavior of collagen in a NADES composed of citric acid and xylitol and aqueous dilutions thereof was assessed by spectroscopic, calorimetric and viscosity methods. Collagen exhibited variable unfolding properties dependent on the type of material (telo- or atelocollagen) and degree of aqueous dilution of the NADES. The results indicated that both collagen types were susceptible to unfolding in undiluted NADES. Collagen dissolved in highly diluted NADES showed similar results to collagen dissolved in acetic acid (i.e., NADES network possibly maintained). Based on the ability to dissolve collagen while maintaining its structural properties, NADES is regarded as a potential excipient in collagen-based products. This is the first study describing the solubility and structural changes of an extracellular matrix protein in NADES.
Collapse
Affiliation(s)
- Krister Gjestvang Grønlien
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway.
| | | | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
18
|
A Green Approach towards Native Collagen Scaffolds: Environmental and Physicochemical Assessment. Polymers (Basel) 2020; 12:polym12071597. [PMID: 32708371 PMCID: PMC7408220 DOI: 10.3390/polym12071597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Native collagen scaffolds were prepared in this work, in which both materials and environmental approaches were considered with the aim of providing a global strategy towards more sustainable biomaterials. From the environmental perspective, it is worth mentioning that acid and enzymatic treatments have been avoided to extract collagen, allowing the reduction in the use of resources, in terms of chemicals, energy, and time, and leading to a low environmental load of this step in all the impact categories under analysis. With the incorporation of chitosan into the scaffold-forming formulations, physical interactions occurred between collagen and chitosan, but the native collagen structure was preserved, as observed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. The incorporation of chitosan also led to more homogenous porous microstructures, with higher elastic moduli and compression resistance for both dry and hydrated scaffolds. Furthermore, hydrated scaffolds preserved their size and shape after some compression cycles.
Collapse
|
19
|
Gao X, Zhang Y, Li F, Tian B, Wang X, Wang Z, Carozza JC, Zhou Z, Han H, Xu C. Surface Modulation and Chromium Complexation: All-in-One Solution for the Cr(VI) Sequestration with Bifunctional Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8373-8379. [PMID: 32421314 DOI: 10.1021/acs.est.0c00710] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sulfidation of zero valent iron (ZVI) to an Fe@FeSx (S-ZVI) composite has been intensively explored in the ZVI field. Yet, further benefits from the FeSx coating layer are seldom realized, especially those effectively using its intrinsic physical and chemical properties for elaborate design. Here, we demonstrate that in a traditional Cr(VI) sequestration reaction, the FeSx layer displays a great utility in immobilizing molecules containing hydroxyl groups (-OH) and hence, attracting Cr(VI) complexes chelated with carboxyl organics (RCOOH). Such intermolecular attraction readily promotes the diffusion of the Cr(VI) complexes to the S-ZVI surface, affording a higher reaction rate for the Cr(VI) sequestration process. In addition, the above mechanism was used to guide a rational selection of molecules incorporating both hydroxyl and carboxyl functional groups with a proper ratio and thereby, a significantly improved reaction efficiency was achieved. Furthermore, the FeSx phase was revealed to be consumed in the reaction, acting as a supplementary reductant. This work is the first to unveil the relationship between molecules with specific functionalization and the FeSx phase, providing a general rule in choosing appropriate reaction media for Cr(VI) sequestration and related reactions.
Collapse
Affiliation(s)
- Xuyan Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Boyang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haixiang Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|