1
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
2
|
Souza AS, Borges CD, Radünz M, Gandra TKV, da Costa DA, Borba CS, Mendonça CRB, Gandra EA. Encapsulation of thyme essential oil (Thymus vulgaris) in chia mucilage (Salvia hispanica L.) and its application in fresh pork sausage. Int J Biol Macromol 2024; 285:138284. [PMID: 39631601 DOI: 10.1016/j.ijbiomac.2024.138284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
This study evaluated the application of thyme essential oil (TEO) encapsulated in chia mucilage in meat sausages as a partial or total substitute for sodium nitrate and nitrite. We assessed three capsules produced with different concentrations of TEO (3.5 %, 7.5 %, and 10 %) in terms of encapsulation efficiency, antioxidant activity, thermal properties, morphology, and antimicrobial activity. Compared to the other concentrations, the 10 % TEO capsules demonstrated higher encapsulation efficiency (98.25 %), antioxidant activity (25.53 %), minimum inhibitory concentrations (0.028 for Escherichia coli and 0.34 for Staphylococcus aureus), thermal stability, and efficacy in inhibiting S. aureus. The oil concentration did not influence capsule yield. We evaluated the physicochemical and microbiological characteristics of different fresh pork sausage formulations: preservatives only (FC), half the concentration of preservatives with the addition of TEO (F1), TEO only (F2), and no preservatives or TEO (F3). The F2 formulation exhibited reduced acidity, peroxide index, and p-anisidine content compared to formulations F1 and F3. Formulations F1 and F2 showed an increased a* parameter (redness) during storage. The F2 formulation exerted microbiological control over coagulase-positive Staphylococcus, E. coli, mesophilic aerobic bacteria, and Salmonella. We concluded that chia mucilage-encapsulated thyme essential oil represents a promising substitute for nitrates and nitrites in meat products.
Collapse
Affiliation(s)
- Andressa Salies Souza
- Graduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil.
| | - Caroline Dellinghausen Borges
- Graduate Program in Food and Science and Technology, Department of Agroindustrial Science and Technology, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Marjana Radünz
- Graduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil
| | | | - Diego Araujo da Costa
- Graduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil
| | - Crisciane Souza Borba
- Graduate Program in Food and Science and Technology, Department of Agroindustrial Science and Technology, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Carla Rosane Barbosa Mendonça
- Graduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil
| | - Eliezer Avila Gandra
- Graduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas, Pelotas, RS 96010-610, Brazil; Graduate Program in Food and Science and Technology, Department of Agroindustrial Science and Technology, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
3
|
Huang J, Zhang M, Mujumdar AS, Semenov G, Luo Z. Technological advances in protein extraction, structure improvement and assembly, digestibility and bioavailability of plant-based foods. Crit Rev Food Sci Nutr 2024; 64:11556-11574. [PMID: 37498207 DOI: 10.1080/10408398.2023.2240892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Gennady Semenov
- Laboratory of Freeze-Drying, Russian Biotechnological University, Moscow, Russia
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd, Ninghai, Zhejiang, China
| |
Collapse
|
4
|
Zhang ZH, Li X, Ma A, Gao X, Zhu S, Li B. Characteristics of pomegranate (Punica granatum L.) peel polyphenols encapsulated with whey protein isolate and β-cyclodextrin by spray-drying. Int J Biol Macromol 2024; 278:135279. [PMID: 39256130 DOI: 10.1016/j.ijbiomac.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Pomegranate peel polyphenols (PPPs) are recognized as promising food additives due to their diverse bioactivities; however, their application is limited by poor stability. To address this critical issue, three types of PPPs microcapsules were prepared using β-cyclodextrin (CD), whey protein isolate (WPI), and a composite material of CD-WPI through ultrasound treatment (US). Results revealed that ultrasound treatment can enhance the PPPs-wall material interaction, as evidenced by MD simulations. The encapsulation efficiency of CD-WPI-PPPs was 93.73 %, which was significantly higher than that of CD-PPPs and WPI-PPPs (p < 0.05). The degradation rate constant of CD-WPI-PPPs was reduced by 95.83 %, and its t1/2 was extended by 23-fold compared to that of unencapsulated PPPs. Furthermore, CD-WPI-PPPs exhibited greater DPPH scavenging activity and inhibited polyphenol release during oral and gastric digestion while promoting release during intestinal digestion. These outcomes were attributed to enhanced integrity and interactions between PPPs and composite materials in the microcapsules formed through ultrasound treatment, as supported by SEM images and FT-IR spectra. Consequently, the application of US in the preparation of PPPs microcapsules presents a promising strategy for developing natural nutrient additives for food applications, thereby enhancing the functional properties of food products.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China; School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Aijuan Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siming Zhu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Dey B, Prabhakar MR, Jayaraman S, Gujjala LKS, Venugopal AP, Balasubramanian P. Biopolymer-based solutions for enhanced safety and quality assurance: A review. Food Res Int 2024; 191:114723. [PMID: 39059918 DOI: 10.1016/j.foodres.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Muhil Raj Prabhakar
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India.
| |
Collapse
|
6
|
Gherasim CE, Focşan M, Ciont C, Bunea A, Rugină D, Pintea A. Stability and Bioaccessibility of Carotenoids from Sea Buckthorn Pomace Encapsulated in Alginate Hydrogel Beads. Nutrients 2024; 16:2726. [PMID: 39203862 PMCID: PMC11357371 DOI: 10.3390/nu16162726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Carotenoids, the natural pigments that confer the bright orange color of sea buckthorn berries, are also associated with several health benefits, such as antioxidant activity and skin and eye protection. Due to their lipophilic nature and localization, carotenoids are largely retained in the sea buckthorn pomace (SBP) resulting from juice production. Carotenoids from SBP (70.03 mg/100 g DW), extracted and characterized by HPLC-PDA, contained zeaxanthin (free and esterified) and beta-carotene as major compounds. The SBP carotenoids-enriched sunflower oil was further encapsulated in Ca-alginate hydrogel beads (98.4% encapsulation efficiency) using ionotropic gelation. The hydrogel beads were characterized by confocal laser scanning microscopy and scanning electron microscopy. Fairly good stability (>64%) of the encapsulated carotenoids in the alginate hydrogel beads during storage (30 days, 4 °C and 25 °C) was found, with zeaxanthin esters being the most stable compounds, for all the experimental conditions. The bioaccessibility of the total carotenoids (INFOGEST protocol) was 42.1 ± 4.6% from hydrated, and, respectively, 40.8 ± 4% from dehydrated SBP alginate hydrogel beads. The addition of yogurt to the dehydrated hydrogel beads had a positive effect on the bioaccessibility of free and esterified zeaxanthin, but not on that of the carotenes. In conclusion, SBP is a valuable source of carotenoids which can be protected by encapsulation in alginate hydrogel beads, thus still retaining a good bioaccessibility.
Collapse
Affiliation(s)
- Cristina Elena Gherasim
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Mănăştur Street 3–5, 400372 Cluj-Napoca, Romania; (C.E.G.); (A.B.); (A.P.)
| | - Monica Focşan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, 1 Mihail Kogalniceanu Str., 400084 Cluj-Napoca, Romania;
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurean Street, 42, 400271 Cluj-Napoca, Romania
| | - Călina Ciont
- Institute of Life Sciences, University of Agricultural Science and Veterinary Medicine, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania;
| | - Andrea Bunea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Mănăştur Street 3–5, 400372 Cluj-Napoca, Romania; (C.E.G.); (A.B.); (A.P.)
| | - Dumitriţa Rugină
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Mănăştur Street 3–5, 400372 Cluj-Napoca, Romania; (C.E.G.); (A.B.); (A.P.)
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Mănăştur Street 3–5, 400372 Cluj-Napoca, Romania; (C.E.G.); (A.B.); (A.P.)
| |
Collapse
|
7
|
Pérez-Villagrán K, Martínez-Prado MA, Núñez-Ramírez DM, Medina-Torres L, Rojas-Contreras JA, Cabrales-González AM. Evaluation of functional characteristics of Acidithiobacillus thiooxidans microencapsulated in gum arabic by spray-drying as biotechnological tool in the mining industry. Arch Microbiol 2024; 206:320. [PMID: 38907882 DOI: 10.1007/s00203-024-04041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
The mining and metallurgical industry represents one of the leading causes of environmental pollution. In this context, the optimization of mineral waste management and the efficient extraction of metals of interest becomes an imperative priority for a sustainable future. Microorganisms such as Acidithiobacillus thiooxidans have represented a sustainable and economical alternative in recent years due to their capacity for environmental remediation in bioleaching processes because of their sulfur-oxidizing capacity and sulfuric acid generation. However, its use has been limited due to the reluctance of mine operators because of the constant reproduction of the bacterial culture in suitable media and the care that this entails. In this work, the central objective was to evaluate the functional characteristics of A. thiooxidans, microencapsulated and stored at room temperature for three years in vacuum bags, using a spray drying process with gum arabic as a wall vector. Growth kinetics showed a survival of 80 ± 0.52% after this long period of storage. Also, a qualitative fluorescence technique with a 5-cyano-2-3 ditolyl tetrazolium (CTC) marker was used to determine the respiratory activity of the microorganisms as soon as it was resuspended. On the other hand, the consumption of resuspended sulfur was evaluated to corroborate the correct metabolic functioning of the bacteria, with results of up to 50% sulfur reduction in 16 days and sulfate generation of 513.85 ± 0.4387 ppm and 524.15 ± 0.567 ppm for microencapsulated and non-microencapsulated cultures, respectively. These results demonstrate the success after three years of the microencapsulation process and give guidelines for its possible application in the mining-metallurgical industry.
Collapse
Affiliation(s)
- Karla Pérez-Villagrán
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México - Instituto Tecnológico de Durango (TecNM - ITD), Durango, Dgo, 34080, México
| | - María Adriana Martínez-Prado
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México - Instituto Tecnológico de Durango (TecNM - ITD), Durango, Dgo, 34080, México.
| | - Diola Marina Núñez-Ramírez
- Universidad Juárez del Estado de Durango - Facultad de Ciencias Químicas (UJED - FCQ), Durango, Dgo, 34120, México.
| | - Luis Medina-Torres
- Universidad Nacional Autónoma de México - Facultad Química (UNAM - FQ), Coyoacán, Ciudad de México, 04510, México
| | - Juan Antonio Rojas-Contreras
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México - Instituto Tecnológico de Durango (TecNM - ITD), Durango, Dgo, 34080, México
| | - Angel Manuel Cabrales-González
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México - Instituto Tecnológico de Durango (TecNM - ITD), Durango, Dgo, 34080, México
| |
Collapse
|
8
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
10
|
Cheng E, Geng Z, Xiang L, Zhao X, Xiang A, Tian H. Development of Vitamin C-Loaded Electrospun Nanofibers of Mixture of Polysaccharides of Pullulan/Xanthan Gum for Fast Dissolving Oral Film Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:861. [PMID: 38399112 PMCID: PMC10890053 DOI: 10.3390/ma17040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, polysaccharide-based nanofibrous fast dissolving oral films (FDOFs) were developed using pullulan (PUL) and xanthan gum (XG) via electrospinning. The edible, continuous, and bead-free nanofibers with average diameters ranging from 181.17 nm to 260.84 nm were prepared. The morphological, thermal, mechanical, and water-soluble properties of the nanofibrous FDOFs were characterized. For prospective future applications of the developed PUL/XG FDOFs, a model nutrient of vitamin C (VC) was encapsulated into the FDOFs. The success of VC encapsulation was confirmed by Fourier transform infrared spectroscopy. The encapsulation efficiency of VC was above 85% by ultraviolet-visible spectrophotometer. The amorphous structure of PUL/XG in the nanofibers film was demonstrated by X-ray diffractometer. In addition, the edible FDOFs could dissolve in water within 3 s. The nanofibers film we prepared could be used as nutrient or drug carriers and edible packaging film.
Collapse
Affiliation(s)
- En Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (E.C.); (L.X.); (A.X.); (H.T.)
| | - Zhanhui Geng
- Systems Engineering Institute, Academy of Military Science, People’s Liberation Army, Beijing 100010, China;
| | - Lubing Xiang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (E.C.); (L.X.); (A.X.); (H.T.)
| | - Xiaoying Zhao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (E.C.); (L.X.); (A.X.); (H.T.)
| | - Aimin Xiang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (E.C.); (L.X.); (A.X.); (H.T.)
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (E.C.); (L.X.); (A.X.); (H.T.)
| |
Collapse
|
11
|
Karwacka M, Galus S, Janowicz M. The effect of apple pomace powder and calcium ions on selected physicochemical properties of freeze-dried carrot-orange-ginger snacks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1713-1722. [PMID: 37851851 DOI: 10.1002/jsfa.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND This study aimed to determine the effect of various amounts of dried apple pomace (AP) powder and calcium ions on selected physicochemical properties of restructured freeze-dried snacks in comparison with products obtained with low-methoxyl pectin (LMP). The material was prepared using frozen carrot, orange concentrate, ginger, water, and various concentrations of AP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). The reference samples were without additives, and with 0.5 or 1.5% of LMP combined with 0.01% of calcium lactate. RESULTS The material was studied in terms of water content and activity, hygroscopic properties, structure, texture, color, and polyphenol content (TPC), and antioxidant activity. The addition of AP resulted in reducing water activity and porosity. As a consequence of the increasing density of the structure, the reduction of hygroscopic properties by up to 16% followed the increasing amount of AP. Apple pomace and calcium ions strengthened the structure. The addition of 3% and 5% of AP gave a hardening effect close to or better than 0.5% LMP. Because of the pigment dilution, LMP caused significantly greater total color change than AP. The incorporation of AP also increased TPC and enhanced antioxidant activity in comparison with the reference materials by up to 18%. CONCLUSION The results showed that dried AP powder can be applied successfully as an additive enhancing stability, texture and bioactive compound content, thus fortifying the physicochemical properties of restructured freeze-dried fruit and vegetable snacks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Karwacka
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| |
Collapse
|
12
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
13
|
Pandiselvam R, Mitharwal S, Rani P, Shanker MA, Kumar A, Aslam R, Barut YT, Kothakota A, Rustagi S, Bhati D, Siddiqui SA, Siddiqui MW, Ramniwas S, Aliyeva A, Mousavi Khaneghah A. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr Res Food Sci 2023; 6:100529. [PMID: 37377494 PMCID: PMC10290997 DOI: 10.1016/j.crfs.2023.100529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The color of any food is influenced by several factors, such as food attributes (presence of pigments, maturity, and variety), processing methods, packaging, and storage conditions. Thus, measuring the color profile of food can be used to control the quality of food and examine the changes in chemical composition. With the advent of non-thermal processing techniques and their growing significance in the industry, there is a demand to understand the effects of these technologies on various quality attributes, including color. This paper reviews the effects of novel, non-thermal processing technologies on the color attributes of processed food and the implications on consumer acceptability. The recent developments in this context and a discussion on color systems and various color measurement techniques are also included. The novel non-thermal techniques, including high-pressure processing, pulsed electric field, ultrasonication, and irradiation which employ low processing temperatures for a short period, have been found effective. Since food products are processed at ambient temperature by subjecting them to non-thermal treatment for a very short time, there is no possibility of damage to heat-sensitive nutrient components in the food, any deterioration in the texture of the food, and any toxic compounds in the food due to heat. These techniques not only yield higher nutritional quality but are also observed to maintain better color attributes. However, suppose foods are exposed to prolonged exposure or processed at a higher intensity. In that case, these non-thermal technologies can cause undesirable changes in food, such as oxidation of lipids and loss of color and flavor. Developing equipment for batch food processing using non-thermal technology, understanding the appropriate mechanisms, developing processing standards using non-thermal processes, and clarifying consumer myths and misconceptions about these technologies will help promote non-thermal technologies in the food industry.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, India
| | - Poonam Rani
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - M. Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Amit Kumar
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Yeliz Tekgül Barut
- Food Processing Department, Köşk Vocational School, Aydın Adnan Menderes University, Aydın, 09100, Turkey
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dolly Bhati
- Department of Food Bioscienes, Teagasc, Agriculture and Food Development Authority, D15 DY05, Dublin, Ireland
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | - Mohammed Wasim Siddiqui
- Department Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
14
|
Escobar-García JD, Prieto C, Pardo-Figuerez M, Lagaron JM. Dragon's Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology. Molecules 2023; 28:molecules28104137. [PMID: 37241878 DOI: 10.3390/molecules28104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Dragon's blood sap (DBS) obtained from the bark of Croton lechleri (Müll, Arg.) is a complex herbal remedy of pharmacological interest due to its high content in polyphenols, specifically proanthocyanidins. In this paper, electrospraying assisted by pressurized gas (EAPG) was first compared with freeze-drying to dry natural DBS. Secondly, EAPG was used for the first time to entrap natural DBS at room temperature into two different encapsulation matrices, i.e., whey protein concentrate (WPC) and zein (ZN), using different ratios of encapsulant material: bioactive compound, for instance 2:1 w/w and 1:1 w/w. The obtained particles were characterized in terms of morphology, total soluble polyphenolic content (TSP), antioxidant activity, and photo-oxidation stability during the 40 days of the experiment. Regarding the drying process, EAPG produced spherical particles with sizes of 11.38 ± 4.34 µm, whereas freeze-drying produced irregular particles with a broad particle size distribution. However, no significant differences were detected between DBS dried by EAPG or freeze-drying in TSP, antioxidant activity, and photo-oxidation stability, confirming that EAPG is a mild drying process suitable to dry sensitive bioactive compounds. Regarding the encapsulation process, the DBS encapsulated within the WPC produced smooth spherical microparticles, with average sizes of 11.28 ± 4.28 µm and 12.77 ± 4.54 µm for ratios 1:1 w/w and 2:1 w/w, respectively. The DBS was also encapsulated into ZN producing rough spherical microparticles, with average sizes of 6.37 ± 1.67 µm and 7.58 ± 2.54 µm for ratios 1:1 w/w and 2:1 w/w, respectively. The TSP was not affected during the encapsulation process. However, a slight reduction in antioxidant activity measured by DPPH was observed during encapsulation. An accelerated photo-oxidation test under ultraviolet light confirmed that the encapsulated DBS showed an increased oxidative stability in comparison with the non-encapsulated DBS, with the stability being enhanced for the ratio of 2:1 w/w. Among the encapsulating materials and according to the ATR-FTIR results, ZN showed increased protection against UV light. The obtained results demonstrate the potential of EAPG technology in the drying or encapsulation of sensitive natural bioactive compounds in a continuous process available at an industrial scale, which could be an alternative to freeze-drying.
Collapse
Affiliation(s)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Research & Development Department, Bioinicia S.L. Calle Algepser 65, 46980 Paterna, Spain
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
15
|
Feitosa BF, Decker BLA, Brito ESD, Rodrigues S, Mariutti LRB. Microencapsulation of anthocyanins as natural dye extracted from fruits - A systematic review. Food Chem 2023; 424:136361. [PMID: 37216779 DOI: 10.1016/j.foodchem.2023.136361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Anthocyanins are naturally colored compounds that can be extracted from plants, especially fruits. Their molecules are unstable under normal processing conditions; thus, they must be protected using modern technologies, such as microencapsulation. For this reason, many industries are searching for information from review studies to find the conditions that improve these natural pigments' stability. This systematic review aimed to elucidate different aspects of anthocyanins, such as main extraction and microencapsulation methods, gaps in analytical techniques, and industrial optimization measurements. Initially, 179 scientific articles were retrieved, of which seven clusters were found with 10-36 cross-linked references. Sixteen articles containing 15 different botanical specimens were included in the review, most focusing on the whole fruit, pulp, or subproducts. The extraction and microencapsulation technique resulting in the highest anthocyanin content was sonication with ethanol, temperature below 40 °C, and maximum time of 30 min, followed by microencapsulation by spray drying with maltodextrin or gum Arabic. Color apps and simulation programs may help verify natural dyes' composition, characteristics, and behavior.
Collapse
Affiliation(s)
| | | | | | - Sueli Rodrigues
- Federal University of Ceará, 60020-181 Fortaleza, CE, Brazil.
| | | |
Collapse
|
16
|
Otálora MC, Wilches-Torres A, Gómez Castaño JA. Spray-Drying Microencapsulation of Andean Blueberry ( Vaccinium meridionale Sw.) Anthocyanins Using Prickly Pear ( Opuntia ficus indica L.) Peel Mucilage or Gum Arabic: A Comparative Study. Foods 2023; 12:foods12091811. [PMID: 37174349 PMCID: PMC10178270 DOI: 10.3390/foods12091811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The recovery of byproducts from the food industry is a promising approach to obtain hydrophilic biopolymers with potential health benefits. In this work, the mucilage obtained from the peel of the Opuntia ficus-indica (OFI) fruit was compared with gum arabic (GA) as wall materials for the microencapsulation of Colombian blueberry anthocyanins, using the spray-drying process. For both types of microencapsulates, the following were determined: anthocyanin content (UV-vis and HPLC/MS-MS), total dietary content (enzymatic-gravimetric method), antioxidant activity (ORAC), color (CIELab parameters), morphology (SEM and particle size), and thermal behavior (DSC/TGA). Six different anthocyanins were identified by HPLC/MS-MS in the non-lyophilized Andean blueberry sample (LABP) and in the OFI-mucilage and GA microcapsules. OFI mucilage, compared to GA, favors the formation of larger spherical particles, a smoother surface without cracks, and greater thermal stability. The higher anthocyanin retention capacity in OFI microcapsules leads to higher antioxidant capacity and red coloration for this biomaterial. Consequently, the microencapsulation of anthocyanins with mucilage from the peel of the OFI fruit is proposed as a promising alternative for the protection and incorporation of this natural dye with high antioxidant capacity and dietary fiber content in new functional food/cosmetic formulations, while giving added value to the natural byproducts of OFI.
Collapse
Affiliation(s)
- Maria Carolina Otálora
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Andrea Wilches-Torres
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Jovanny A Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL®), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
17
|
Salama HE, Abdel Aziz MS. Non-toxic chitosan-pyrazole adsorbent enriched with greenly synthesized zinc oxide nanoparticles for dye removal from wastewater. Int J Biol Macromol 2023; 241:124632. [PMID: 37119918 DOI: 10.1016/j.ijbiomac.2023.124632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The limited usage of chitosan as a dye adsorbent is attributed to its compact structure and low swelling ability, despite its exceptional properties. The present study aimed to prepare novel chitosan/pyrazole Schiff base (ChS) adsorbents enriched with greenly synthesized zinc oxide nanoparticles. The preparation of ZnO-NPs was carried out through a green approach using the Coriandrum sativum extract. The presence of ZnO-NPs at the nanoscale was validated through TEM, DLS and XRD analyses. FTIR, 1H NMR confirmed the successful preparation of the Schiff base and its ZnO-NPs adsorbents. The incorporation of ZnO-NPs improved the thermal, swelling and antimicrobial properties of the chitosan Schiff base. In addition, a significant improvement in the adsorption of Maxilon Blue dye from its aqueous solution by the Schiff base/ZnO-NPs adsorbent. The prepared ChS/ZnO-NPs adsorbent has the potential to be used as an alternative to conventional adsorbents for the removal of dyes from wastewater.
Collapse
Affiliation(s)
- Hend E Salama
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
18
|
Singh S, Aeri V, Sharma V. Encapsulated natural pigments: Techniques and applications. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Shivani Singh
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Vidhu Aeri
- Department of Pharmacognosy and Phytochemistry School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi India
| | - Vasudha Sharma
- Department of Food Technology Jamia Hamdard New Delhi India
| |
Collapse
|
19
|
Gelatin-maltodextrin microcapsules as carriers of vitamin D3 improve textural properties of synbiotic yogurt and extend its probiotics survival. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
20
|
Li M, Guo Q, Lin Y, Bao H, Miao S. Recent Progress in Microencapsulation of Active Peptides-Wall Material, Preparation, and Application: A Review. Foods 2023; 12:foods12040896. [PMID: 36832971 PMCID: PMC9956665 DOI: 10.3390/foods12040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.
Collapse
Affiliation(s)
- Mengjie Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
| | - Hairong Bao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (H.B.); (S.M.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland
- Correspondence: (H.B.); (S.M.)
| |
Collapse
|
21
|
Evaluation of the release, stability and antioxidant activity of Brazilian red propolis extract encapsulated by spray-drying, spray-chilling and using the combination of both techniques. Food Res Int 2023; 164:112423. [PMID: 36737998 DOI: 10.1016/j.foodres.2022.112423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/08/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Red propolis, originary from Northeast Brazil, has a unique composition and a great commercial interest. However, due to the presence of ethanol and its remarkable sensory characteristic, its application in food products is challenging. Thus, the aim of this work was to microencapsulate the red propolis extract by spray-drying, spray-chilling, and combining both techniques. The particles loaded with propolis extracts were characterised and evaluated according to the stability of phenolic compounds, flavonoids and formononetin, during 60 days of storage. In addition, the formononetin release was also monitored during the oral, gastric, and intestinal phases in the in vitro digestion process. All produced particles presented matrix-type with size, distribution, shape, hygroscopicity, and dispersibility parameters that varied according to the carrier and encapsulation process applied. The techniques used to fabricate the particles efficiently obtained powdered propolis extract and protected the extract's bioactive compounds, total flavonoids and formononetin throughout the analysed period. The gastrointestinal release study presented distinctive releases in all phases (oral, gastric, and intestinal). The spray-dried particles, for example, released formononetin mainly in the oral stage. While the spray-chilled particles were primarily released in the intestinal phase, and coated particles were released gradually throughout the assay, reaching maximum relief in the intestinal phase. In conclusion, using microencapsulation techniques by spray-drying, spray-chilling, and their combination developed particles with different levels of protection during storage, releases and characteristics, which resulted in a range of possible applications in the food, feed, cosmetic, and pharmaceutical industries.
Collapse
|
22
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
23
|
Packaging ink microcapsules with high stability and biocompatibility based on natural dye gardenia blue. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Borah U, Baruah R, Kalita S, Dutta F, Borah A, Purkayastha MD. Core-shell structured α-tocopherol acetate encapsulation using elephant apple mucilage-alginate matrix: In vitro digestion and thermal degradation kinetics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Perez-Palacios T, Ruiz-Carrascal J, Solomando JC, de-la-Haba F, Pajuelo A, Antequera T. Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment. Foods 2022; 11:3291. [PMID: 37431039 PMCID: PMC9601459 DOI: 10.3390/foods11203291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
Due to the beneficial health effects of omega-3 fatty acids and antioxidants and their limited stability in response to environmental and processing factors, there is an increasing interest in microencapsulating them to improve their stability. However, despite recent developments in the field, no specific review focusing on these topics has been published in the last few years. This work aimed to review the most recent developments in the microencapsulation of fish oil and natural antioxidant compounds. The impact of the wall material and the procedures on the quality of the microencapsulates were preferably evaluated, while their addition to foods has only been studied in a few works. The homogenization technique, the wall-material ratio and the microencapsulation technique were also extensively studied. Microcapsules were mainly analyzed for size, microencapsulation efficiency, morphology and moisture, while in vitro digestion, flowing properties, yield percentage and Fourier transform infrared spectroscopy (FTIR) were used more sparingly. Findings highlighted the importance of optimizing the most influential variables of the microencapsulation procedure. Further studies should focus on extending the range of analytical techniques upon which the optimization of microcapsules is based and on addressing the consequences of the addition of microcapsules to food products.
Collapse
Affiliation(s)
- Trinidad Perez-Palacios
- Meat and Meat Product University Institute (IProCar), University of Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Bocker R, Silva EK. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem X 2022; 15:100398. [PMID: 36211728 PMCID: PMC9532718 DOI: 10.1016/j.fochx.2022.100398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Pulsed electric field (PEF) technology enables the extraction of food pigments at lower temperatures. PEF process intensification may reduce the extraction yield depending on the plant matrix. Coupling PEF with other emerging technologies is a smart strategy to extract natural pigments. The application of PEF technology in natural food pigment extraction still requires further studies.
Coloring compounds are widely applied to manufacturing foods and beverages. The worldwide food market is replacing artificial colorants with natural alternatives, given the increased consumer demand for natural products. However, these substitutes are still an issue due to their high production cost and low chemical and physical stability. Furthermore, natural pigments are highly sensitive to processes applied in conventional extraction techniques, such as thermal, mechanical, and chemical stresses. In this regard, pulsed electric field (PEF) technology has emerged as a promising non-thermal alternative for recovering and producing natural colorings from food matrices. Its action mechanism on cell structures through the electroporation effect is a smart alternative to overcoming the challenging issues associated with producing natural colorants. In this scenario, this review provides an overview of the PEF assisted extraction of natural pigments and colorants, such as anthocyanins (red-blue-purple), betalains (red), carotenoids (yellow-orange-red), and chlorophylls (green) from plant sources. Moreover, the potential and limitations of this emerging technology to integrate the extraction process of natural colorants were discussed.
Collapse
|
27
|
Biobased diglycidyl ether diphenolates: Effect of the ester moiety on fragrance oil microencapsulation by interfacial polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Effects of Different Zn2+ Concentrations and High Hydrostatic Pressures (HHP) on Chlorophyll Stability. Foods 2022; 11:foods11142129. [PMID: 35885372 PMCID: PMC9316298 DOI: 10.3390/foods11142129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
This study provides a new idea for improving chlorophyll stability and color quality of green leafy vegetables by Zn2+ synergistic HHP. Zn-chlorophyll was prepared with zinc acetate and chlorophyll under HHP treatment. The effects of different zinc acetate concentrations and pressures on chlorophyll color, antioxidant activity, Zn2+ replacement rate, structure, and thermal stability were analyzed. Results showed with increased zinc acetate concentration and pressure, −a* value, antioxidant activity, and Zn2+ replacement rate of samples gradually increased. However, FTIR indicated the structure did not change. HHP fluorescence online analysis showed fluorescence intensity of samples decreased with zinc acetate concentration and pressure increasing. With zinc acetate 10 mg/100 mL and HHP 500 MPa, the highest −a* value (5.19), antioxidant activity (ABTS, DPPH, and FRAP were 37.03 g ACE/100 g, 25.95 g ACE/100 g, 65.43 g TE/100 g DW, respectively), and Zn2+ replacement rate (42.34%) were obtained. Thermal stability of Zn-chlorophyll obtained by synergistic effect was improved significantly.
Collapse
|
29
|
The Physicochemical Properties and Antioxidant Activity of Spirulina ( Artrhospira platensis) Chlorophylls Microencapsulated in Different Ratios of Gum Arabic and Whey Protein Isolate. Foods 2022; 11:foods11121809. [PMID: 35742007 PMCID: PMC9223014 DOI: 10.3390/foods11121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Collapse
|
30
|
Song J, Yu Y, Chen M, Ren Z, Chen L, Fu C, Ma ZF, Li Z. Advancement of Protein- and Polysaccharide-Based Biopolymers for Anthocyanin Encapsulation. Front Nutr 2022; 9:938829. [PMID: 35782917 PMCID: PMC9247465 DOI: 10.3389/fnut.2022.938829] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Although evidence shows that anthocyanins present promising health benefits, their poor stability still limits their applications in the food industry. Increasing the stability of anthocyanins is necessary to promote their absorption and metabolism and improve their health benefits. Numerous encapsulation approaches have been developed for the targeted release of anthocyanins to retain their bioactivities and ameliorate their unsatisfactory stability. Generally, choosing suitable edible encapsulation materials based on biopolymers is important in achieving the expected goals. This paper presented an ambitious task of summarizing the current understanding and challenges of biopolymer-based anthocyanin encapsulation in detail. The food-grade edible microencapsulation materials, especially for proteins and polysaccharides, should be employed to improve the stability of anthocyanins for effective application in the food industry. The influence factors involved in anthocyanin stability were systematically reviewed and highlighted. Food-grade proteins, especially whey protein, caseinate, gelatin, and soy protein, are attractive in the food industry for encapsulation owing to the improvement of stability and their health benefits. Polysaccharides, such as starch, pectin, chitosan, cellulose, mucilages, and their derivatives, are used as encapsulation materials because of their satisfactory biocompatibility and biodegradability. Moreover, the challenges and perspectives for the application of anthocyanins in food products were presented based on current knowledge. The proposed perspective can provide new insights into the amelioration of anthocyanin bioavailability by edible biopolymer encapsulation.
Collapse
Affiliation(s)
- Jiahui Song
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Yue Yu
| | - Minghuang Chen
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Caili Fu
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Zheng feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Zheng feei Ma
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
31
|
Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers (Basel) 2022; 14:polym14122361. [PMID: 35745937 PMCID: PMC9228233 DOI: 10.3390/polym14122361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Due to its abundance in nature and low cost, starch is one of the most relevant raw materials for replacing synthetic polymers in a number of applications. It is generally regarded as non-toxic, biocompatible, and biodegradable and, therefore, a safe option for biomedical, food, and packaging applications. In this review, we focused on studies that report the use of starch as a matrix for stabilization, incorporation, or release of bioactive compounds, and explore a wide range of applications of starch-based materials. One of the key application areas for bioactive compounds incorporated in starch matrices is the pharmaceutical industry, especially in orally disintegrating films. The packaging industry has also shown great interest in using starch films, especially those with antioxidant activity. Regarding food technology, starch can be used as a stabilizer in nanoemulsions, thus allowing the incorporation of bioactive compounds in a variety of food types. Starch also presents potential in the cosmetic industry as a delivery system. However, there are still several types of industry that could benefit from the incorporation of starch matrices with bioactive compounds, which are described in this review. In addition, the use of microbial bioactive compounds in starch matrices represents an almost unexplored field still to be investigated.
Collapse
|
32
|
Reverchon E, Scognamiglio M, Baldino L. The Nanostructure of Polymer-Active Principle Microparticles Produced by Supercritical CO 2 Assisted Processing. NANOMATERIALS 2022; 12:nano12091401. [PMID: 35564110 PMCID: PMC9105249 DOI: 10.3390/nano12091401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/22/2022]
Abstract
Traditional and supercritical CO2 assisted processes are frequently used to produce microparticles formed by a biopolymer containing an active principle to improve the bioavailability of the active principle. However, information about the internal organization of these microparticles is still scarce. In this work, a suspension of dextran + Fe3O4 nanoparticles (model system) and a solution of polyvinylpyrrolidone (PVP) + curcumin were used to produce spherical microparticles by supercritical CO2 processing. Periodic dynamic light scattering measurements were used to analyze the evolution of the microparticles dissolution, size, and size distribution of the guest active principle in the polymeric matrix. It was found that curcumin was dispersed in the form of nanoparticles in the PVP microparticles, whose size largely depended on its relative concentration. These results were validated by transmission electron microscopy and scanning electron microscopy of the PVP microparticles and curcumin nanoparticles, before and after the dissolution tests.
Collapse
|
33
|
Oliveira WQD, Sousa PHMD, Pastore GM. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci Technol 2022; 122:104-109. [PMID: 35039714 PMCID: PMC8755554 DOI: 10.1016/j.tifs.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Background Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science. Scope and approach The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies. Key findings and conclusions Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Paulo Henrique Machado De Sousa
- Department of Food Technology, Federal University of Ceará, Av. Mister Hull, 2977, Pici University Campus, Fortaleza, Ceará, ZIP 60356-000, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
34
|
Zhang QW, Kong CL, Tao YS. Fate of carotenoids in yeasts: synthesis and cleavage. Crit Rev Food Sci Nutr 2022; 63:7638-7652. [PMID: 35275506 DOI: 10.1080/10408398.2022.2048352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids and their cleavage products (norisoprenoids) have excellent functional properties with diverse applications in foods, medicaments, cosmetics, etc. Carotenoids can be oxidatively cleaved through nonspecific reactions or by carotenoid cleavage oxygenases (CCOs), the product of which could further modify food flavor. This review provides comprehensive information on both carotenoid synthesis and cleavage processes with emphasis on enzyme characterization and biosynthetic pathway optimization. The use of interdisciplinary approaches of bioengineering and computer-aided experimental technology for key enzyme modification and systematic pathway design is beneficial to monitor metabolic pathways and assess pathway bottlenecks, which could efficiently lead to accumulation of carotenoids in microorganisms. The identification of CCOs spatial structures isolated from different species has made a significant contribution to the current state of knowledge. Current trends in carotenoid-related flavor modification are also discussed. In particular, we propose the carotenoid-synthesizing yeast Rhodotorula spp. for the production of food bioactive compounds. Understanding the behavior underlying the formation of norisoprenoids from carotenoids using interdisciplinary approaches may point toward other areas of investigation that could lead to better exploiting the potential use of autochthonous yeast in flavor enhancement.
Collapse
Affiliation(s)
- Qian-Wei Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cai-Lin Kong
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Sheng Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, China
| |
Collapse
|
35
|
Penna ACG, Durço BB, Pagani MM, Pimentel TC, Mársico ET, Silva ACO, Esmerino EA. Kefir with artificial and natural dyes: Assessment of consumer knowledge, attitude, and emotional profile using emojis. J SENS STUD 2022. [DOI: 10.1111/joss.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna Carolina G. Penna
- Department of Food Technology, Faculty of Veterinary Federal Fluminense University Niterói Rio de Janeiro Brazil
| | - Bruna B. Durço
- Department of Food Technology, Faculty of Veterinary Federal Fluminense University Niterói Rio de Janeiro Brazil
| | - Monica M. Pagani
- Department of Food Technology, Faculty of Food Engineering Federal Rural University of Rio de Janeiro Seropédica Rio de Janeiro Brazil
| | | | - Eliane T. Mársico
- Department of Food Technology, Faculty of Veterinary Federal Fluminense University Niterói Rio de Janeiro Brazil
| | - Adriana C. O. Silva
- Department of Food Technology, Faculty of Veterinary Federal Fluminense University Niterói Rio de Janeiro Brazil
| | - Erick A. Esmerino
- Department of Food Technology, Faculty of Food Engineering Federal Rural University of Rio de Janeiro Seropédica Rio de Janeiro Brazil
| |
Collapse
|
36
|
VÁZQUEZ-RODRÍGUEZ JA, ESCALANTE FME. Analysis of the stability of phycocyanin when trehalose and citric acid are used as protectants in nutraceutical gelatin candies under in vitro digestion assays’. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
AMORIM IS, ALMEIDA MCS, CHAVES RPF, CHISTÉ RC. Technological applications and color stability of carotenoids extracted from selected Amazonian fruits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.01922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Bu Y, He W, Zhu L, Zhu W, Li J, Liu H, Li X. Effects of different wall materials on stability and umami release of microcapsules of Maillard reaction products derived from
Aloididae aloidi. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ying Bu
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Wei He
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Lunwei Zhu
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Wenhui Zhu
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - He Liu
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities Jinzhou Liaoning 121013 China
| |
Collapse
|
40
|
Molino RJEJ, Rellin KFB, Nellas RB, Junio HA. Sustainable Hues: Exploring the Molecular Palette of Biowaste Dyes through LC-MS Metabolomics. Molecules 2021; 26:6645. [PMID: 34771057 PMCID: PMC8587104 DOI: 10.3390/molecules26216645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Underutilized biowaste materials are investigated for their potential as sustainable textile colorants through an approach based on mass spectrometry, bioinformatics, and chemometrics. In this study, colorful decoctions were prepared from the outer bark of Eucalyptus deglupta and fruit peels of Syzygium samarangense, Syzygium malaccense, Diospyros discolor, and Dillenia philippinensis. Textile dyeing was performed along with liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics to determine the small molecules responsible for the observed colors. Global Natural Products Social Molecular Networking (GNPS) guided the annotation of black-producing proanthocyanidins in D. philippinensis and E. deglupta through complexation with FeSO4 mordant. Flavonoids from the yellow-colored D. philippinensis extracts were found to be similar to those in Terminalia catappa, a known traditional dye source. A higher intensity of epicatechin in E. deglupta produced a red-brown color in the presence of Cu2+. Furthermore, Syzygium fruit peels have poor wash-fastness in cotton fibers, but bioactive chalcone unique to S. samarangense samples may be a potential nutritional food colorant. Unsupervised PCA and supervised OPLS-DA chemometrics distinguished chemical features that affect dyeing properties beyond the observed color. These findings, along with growing data on natural dyes, could guide future research on sustainable colorants.
Collapse
Affiliation(s)
- Ralph John Emerson J. Molino
- Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines; (R.J.E.J.M.); (K.F.B.R.)
| | - Klidel Fae B. Rellin
- Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines; (R.J.E.J.M.); (K.F.B.R.)
| | - Ricky B. Nellas
- Virtual Biochemical Simulations Laboratory (Good VIBEs), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines;
| | - Hiyas A. Junio
- Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines; (R.J.E.J.M.); (K.F.B.R.)
| |
Collapse
|
41
|
Goh KM, Low SS, Nyam KL. The changes of chemical composition of microencapsulated roselle (
Hibiscus sabdariffa
L.) seed oil by co‐extrusion during accelerated storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kok Ming Goh
- Department of Food Science and Nutrition Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| | - Soo San Low
- Department of Food Science and Nutrition Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| | - Kar Lin Nyam
- Department of Food Science and Nutrition Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
42
|
Influence of Drying Type of Selected Fermented Vegetables Pomace on the Natural Colorants and Concentration of Lactic Acid Bacteria. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nowadays, foods with probiotic bacteria are valuable and desired, because of their influence on human gut and health. Currently, in the era of zero waste, the food industry is interested in managing its waste. Therefore, the aim of the study was to determine the influence of drying process on the physicochemical properties of fermented vegetable pomace. The work included examining the influence of the lactic acid bacteria (Levilactobacillus brevis, Lactiplantibacillus plantarum, Limosilactobacillus fermentum and its mixture in the ratio 1:1:1) used for vegetable fermentation (beetroot, red pepper, carrot), obtaining pomace from fermented vegetables, and then selection of drying technique using the following methods: convection drying (CD) or freeze-drying (FD) on the physical and chemical properties of pomace. In the obtained pomace and its dried form, dry substance, water activity, color, and active substances such as betalains and carotenoids by spectrophotometric method and also bacteria concentration were evaluated. After fermentation of pomace from the same vegetable, a similar concentration of lactic acid bacteria was found as well as dry substances, color and colorants. Results of physico-chemical properties were related to the used vegetable type. After drying of pomace, it could be seen a high decrease in bacteria and colorant concentration (betalains, carotenoids) independently from drying and vegetable type as well as used starter cultures. The smallest change was observed for spontaneously fermented vegetables compared to those in which the starter culture was used.
Collapse
|
43
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
44
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
45
|
Iqbal R, Liaqat A, Jahangir Chughtai MF, Tanweer S, Tehseen S, Ahsan S, Nadeem M, Mehmood T, Ur Rehman SJ, Saeed K, Sameed N, Aziz S, Tahir AB, Khaliq A. Microencapsulation: a pragmatic approach towards delivery of probiotics in gut. J Microencapsul 2021; 38:437-458. [PMID: 34192983 DOI: 10.1080/02652048.2021.1949062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Probiotics confer numerous health benefits and functional foods prepared with these microbes own largest markets. However, their viability during transit from gastrointestinal tract is a concerning issue. Microencapsulation of probiotics is a novel technique of major interest to increase their survivability in GIT and food matrices by providing a physical barrier to protect them under harsh conditions. This article contributes the knowledge regarding microencapsulation by discussing probiotic foods, different methods and approaches of microencapsulation, coating materials, their release mechanisms at the target site, and interaction with probiotics, efficiency of encapsulated probiotics, their viability assessment methods, applications in food industry, and their future perspective. In our opinion, encapsulation has significantly got importance in the field of innovative probiotic enriched functional foods development to preserve their viability and long-term survival rate until product expiration date and their passage through gastro-intestinal tract. Previous review work has targeted some aspects of microencapsulation, this article highlights different methods of probiotics encapsulation and coating materials in relation with food matrices as well as challenges faced during applications: Gut microbiota; Lactic acid bacteria; Micro-encapsulation; Stability enhancement; Cell's release, Health benefits.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- University College of Agriculture and Environmental Sciences, Islamia University, Bahawalpur, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Samreen Ahsan
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Syed Junaid Ur Rehman
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kanza Saeed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Nimra Sameed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoaib Aziz
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Assam Bin Tahir
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
46
|
Microencapsulation of Anthocyanins—Critical Review of Techniques and Wall Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anthocyanins are value-added food ingredients that have health-promoting impacts and biological functionalities. Nevertheless, there are technological barriers to their application in the food industry, mainly because of their poor stability and susceptibility to harsh environmental conditions, such as oxygen, temperature, pH, and light, which could profoundly influence the final food product′s physicochemical properties. Microencapsulation technology is extensively investigated to enhance stability, bioaccessibility, and impart controlled release properties. There are many varieties of microencapsulation methods and diverse types of wall materials. However, choosing a proper approach involves considering the processing parameters, equipment availability, and application purposes. The present review thoroughly scrutinizes anthocyanins′ chemical structure, principles, benefits, and drawbacks of different microencapsulation methods, including spray drying, freeze drying, electrospinning/electrospraying, inclusion complexes, emulsification, liposomal systems, ionic gelation, and coacervation. Furthermore, wall materials applied in different techniques plus parameters that affect the powders′ encapsulation efficiency and physicochemical properties are discussed. Future studies should focus on various processing parameters and the combination of different techniques and applications regarding microencapsulated anthocyanins in functional foods to assess their stability, efficiency, and commercialization potentials.
Collapse
|
47
|
(Lupoae) SDR, Mihalcea L, Aprodu I, Socaci SA, Cotârleț M, Enachi E, Crăciunescu O, Barbu V, Oancea A, Dulf FV, Alexe P, Bahrim GE, Râpeanu G, Stănciuc N. Fostering Lavender as a Source for Valuable Bioactives for Food and Pharmaceutical Applications through Extraction and Microencapsulation. Molecules 2020; 25:molecules25215001. [PMID: 33126733 PMCID: PMC7662620 DOI: 10.3390/molecules25215001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Lavender flowers were used in this study as a source of phytochemicals as naturally occurring antioxidants. Two different extraction techniques were applied, such as ultrasound-assisted (UAE) and supercritical fluids (SCE) methods. The comparative evaluation of the phytochemicals profile evidenced a higher content of chlorophyll a and b of 5.22 ± 0.12 mg/g dry weight (D.W.) and 2.95 ± 0.16 mg/g D.W, whereas the carotenoids content was 18.24 ± 0.04 mg/g D.W. in the SCE extract. Seven main compounds were found in both extracts: β-linalool, eucalyptol, linalool acetate, β-trans-ocimene, and limonene in SCE and linalool acetate, β-linalool, 6-methyl-2-(2-oxiranyl)-5-hepten-2-ol, linalool oxide, lavandulyl acetate and camphor in UAE. The (n-3) acids had a higher contribution in SCE. The extracts were microencapsulated in different combinations of wall materials based on polysaccharides and milk proteins. The four variants showed different phytochemical and morphological profiles, with a better encapsulating efficiency for proteins (up to 98%), but with a higher content of encapsulated carotenoids for polysaccharides, the latter showing remarkable antimicrobial activity against selected microorganisms. Carboxymethyl cellulose and whey proteins led to a double encapsulation of lipophilic compounds. The powders were tested in two food matrices as ingredients, with multiple targeted functions, such as flavoring, antimicrobial, antioxidant activity that can successfully replace synthetic additives.
Collapse
Affiliation(s)
- Simona Daniela Radu (Lupoae)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Liliana Mihalcea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Sonia A. Socaci
- Faculty of Food Science and Technology, Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Mihaela Cotârleț
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Oana Crăciunescu
- National Institute of Research and & Development for Biological Sciences, 296 Splaiul Independentei, 060031 București, Romania; (O.C.); (A.O.)
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Anca Oancea
- National Institute of Research and & Development for Biological Sciences, 296 Splaiul Independentei, 060031 București, Romania; (O.C.); (A.O.)
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Petru Alexe
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (S.D.R.); (L.M.); (I.A.); (M.C.); (E.E.); (V.B.); (P.A.); (G.E.B.); (G.R.)
- Correspondence: ; Tel.: +40-0336-130-183
| |
Collapse
|