1
|
Ahmadpour R, Zanjani BM, Garoosi GA, Farjaminezhad R, Haddad R. Ultrasound-assisted extraction of scopolamine and hyoscyamine from Hyoscyamus niger roots using central compost design. Heliyon 2024; 10:e38856. [PMID: 39435070 PMCID: PMC11493190 DOI: 10.1016/j.heliyon.2024.e38856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Hyoscyamus niger is an important medicinal plant used in medicine and contains tropane alkaloid compounds such as hyoscyamine and scopolamine. In this study, after the selection of the solvent for extracting hyoscyamine and scopolamine, the central composite design of the response surface methodology was used to study the effect of solvent concentrations (0, 25, 50, 75, and 100 %), temperatures (25, 30, 35, 40, and 45 °C) and ultrasonication times (10, 20, 30, 40, and 50 min). The hyoscyamine and scopolamine content were obtained by HPLC-DAD. The results indicated that the predicted optimal condition for hyoscyamine and scopolamine extraction from H. niger root was as follows. Hyoscyamine: 100 % methanol, temperature 45 °C and ultrasonication time 10 min, obtained 172.06 μg/g dry weight; and scopolamine: 98.50 % methanol, temperature 25 °C and ultrasonication time 10 min, provided 229.48 μg/g dry weight. To confirm the predicted extraction conditions, a separate experiment was conducted, and the results showed that the hyoscyamine and scopolamine contents were 164.72 and 209.23 μg/g dry weight, respectively.
Collapse
Affiliation(s)
- Roghayeh Ahmadpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Bahram Maleki Zanjani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ghasem-ali Garoosi
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Reza Farjaminezhad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
2
|
Yang H, Zhou P, Li X, Shen L. A green and efficient approach for the simultaneous extraction and mechanisms of essential oil and lignin from Cinnamomum camphora: Process optimization based on deep learning. Int J Biol Macromol 2024; 277:134215. [PMID: 39074705 DOI: 10.1016/j.ijbiomac.2024.134215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The utilization and economic benefits of biomass resources can be maximized through rational design and process optimization. In this study, an innovative approach for the simultaneous extraction of essential oil and lignin from Cinnamomum camphora leaves by deep eutectic solvent (DES) and optimization of the process parameters was achieved using deep learning tools. With the water content of 40 %, liquid-solid ratio of 9.00 mL/g, and distillation time of 51.81 min, the yields of the essential oil and lignin reached 3.15 ± 0.02 % and 9.75 ± 0.15 %, respectively. Notably, the efficiency of simultaneous extraction of essential oil improved by 23 % compared to that of traditional steam distillation. Moreover, the extraction mechanism of the process was clarified. The connection between lignin with cellulose and hemicellulose was disintegrated by the DES, resulting in lignin shedding and hence accelerating the dissolution of essential oil. Moreover, the compositions of lignin and essential oil were also identified.
Collapse
Affiliation(s)
- Hongxiang Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Liqun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China
| |
Collapse
|
3
|
Gao W, Liu J, Zhang P, Zeng XA, Han Z, Teng Y. Physicochemical, structural and functional properties of pomelo peel pectin extracted by combination of pulsed electric field and cellulase hydrolysis. Int J Biol Macromol 2024; 278:134469. [PMID: 39102911 DOI: 10.1016/j.ijbiomac.2024.134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.
Collapse
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiajing Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peilin Zhang
- Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongxin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Tristanto NA, Cao W, Chen N, Suryoprabowo S, Soetaredjo FE, Ismadji S, Hua X. Pectin extracted from red dragon fruit (Hylocereus polyrhizus) peel and its usage in edible film. Int J Biol Macromol 2024; 276:133804. [PMID: 38996891 DOI: 10.1016/j.ijbiomac.2024.133804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pectin was extracted from red dragon fruit (Hylocereus polyrhizus) peel using two different extraction methods: subcritical water extraction (SCWE) and conventional acid extraction (AE), from two different types of peels, fresh peel puree and dried peel powder. SCWE method on fresh peel puree showed an ∼18.88 % increase in pectin yield compared to AE. Extracted pectin is classified as low methoxyl pectin (DE: 8.51-50.64 %), with an average molecular weight ranging from 115.23 kDa to 577.84 kDa and a Gal-A content of 44.09 % - 53.90 %. The potential of pectin from fresh peel puree to be applied as a biodegradable film was further explored. Different pectin concentrations (3-5 % w/v) were used to prepare the films. Regarding the film performance, PF-S5, which was produced from SCWE with 5 % of pectin concentration, exhibits better thermal stability (Tdmax 250 °C, residue of 28.69 %) and higher moisture barrier (WVP 5.59 × 10-11 g.cm-1.s-1.Pa-1). In comparison, PF-A showed lower water solubility (45.14-69.15 %), higher water contact angle (33.01° - 44.35°), and better mechanical properties (TS: 2.12-4.11 MPa, EB: 48.72-61.39 %). Higher molecular weight accompanied by higher DE and Gal-A content contributes to better pectin film properties.
Collapse
Affiliation(s)
| | - Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Steven Suryoprabowo
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Dambuza A, Rungqu P, Oyedeji AO, Miya GM, Kuria SK, Hosu SY, Oyedeji OO. Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules 2024; 29:3878. [PMID: 39202957 PMCID: PMC11357295 DOI: 10.3390/molecules29163878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Pectin is a natural polymer that is found in the cell walls of higher plants. This study presents a comprehensive analysis of pectin extracted from lemon in two different geographic regions (Peddie and Fort Beaufort) in two consecutive years (2023 and 2024) named PP 2023, PP 2024, FBP 2023, and FBP 2024. The dried lemon peels were ground into a powder, sifted to obtain particles of 500 μm, and then subjected to pectin extraction using a conventional method involving mixing lemon peel powder with distilled water, adjusting the pH level to 2.0 with HCl, heating the mixture at 70 °C for 45 min, filtering the acidic extract, and precipitating pectin with ethanol. The yield of these pectin samples was statistically significant, as FBP 2024 had a maximum yield of 12.2 ± 0.02%, PP 2024 had a maximum yield of 13.0 ± 0.02%, FBP 2023 had a maximum yield of 12.2 ± 0.03%, and PP 2023 had a maximum yield of 13.1 ± 0.03%, The variation in yield could be due to the differences in the growing conditions, such as the climate and soil, which could have affected the pectin content in the lemons. The physicochemical characterization of all samples proved that our pectin samples could be used in the pharmaceutical and food industries, with anhydrouronic acid content which was greater than 65%, as suggested by the FAO. The scanning electron microscope analysis of all extracted pectin was rough and jagged, while the commercial pectin displayed a smooth surface morphology with a consistent size. FTIR confirmed the functional groups which were present in our samples. Thermogravimetric analysis was employed to investigate the thermal behavior of the extracted pectin in comparison with commercial pectin. It was found that the extracted pectin had three-step degradation while the commercial pectin had four-step degradation. Additionally, pectin samples have been shown to have antioxidants, as the IC50 of PP 2024, PP 2023, FBP 2023, FBP 2024, and Commercial P was 1062.5 ± 20.0, 1201.3 ± 22.0, 1304.6 ± 19.0, 1382.6 ± 29.9, and 1019.4 ± 17.1 mg/L, respectively. These findings indicate that lemon pectin has promising characteristics as a biopolymer for use in biomedical applications.
Collapse
Affiliation(s)
- Anathi Dambuza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Gugulethu M Miya
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Simon K Kuria
- Department of Biological and Environmental Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Sunday Yiseyon Hosu
- Department of Business Management and Economics, Faculty of Economics and Financial Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| |
Collapse
|
6
|
Aguilera Flores MM, Robles Miranda OE, Ávila Vázquez V, Medellín Castillo NA, Sánchez Mata O, Medina Leaños R, González Fernández LA. Effectiveness of a natural coagulant based on common mallow ( Malva sylvestris) in urban wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 38686920 DOI: 10.1080/09593330.2024.2346861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
This study evaluated the effectiveness of a natural coagulant based on common mallow (Malva sylvestris) to remove turbidity in urban wastewater. A 22 factorial design was selected to determine the optimal dose and the working pH of the natural coagulant. Its potential was studied in 50.0-450 mg/L and 4.00-10.0 ranges of doses and pH, respectively. A simplex lattice mixture evaluated its effectiveness as a coagulant aid combined with aluminum sulfate (conventional coagulant). Mixture proportions 0.000-1.00 were studied for each component, finding the proportion more effective. Results showed that the coagulation treatment could be feasible since a turbidity removal efficiency of 73.7% can be achieved under optimal conditions (50.0 mg/L and pH of 10.0). Likewise, a turbidity removal of 58.9% is obtained using 250 mg/L and maintaining wastewater pH (7.45). This efficiency can be increased using 31.0% natural coagulant mixed with 69.0% aluminum sulfate at 250 mg/L without modifying the wastewater pH. This improvement was associated with the natural coagulant's high molecular weight and long-chained structure since these properties enhance settling time, floc size and strength, and low sludge production. These results support using common mallow as a natural coagulant, making its use more feasible in alkaline water pH or as a coagulant aid combined with aluminum sulfate for urban wastewater treatment. A cost of USD 370/Kg of natural coagulant was estimated, which is higher than conventional coagulants. However, a cost-effectiveness analysis of its implementation should be performed since process scaling costs could significantly reduce its price.
Collapse
Affiliation(s)
| | | | - Verónica Ávila Vázquez
- Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Zacatecas, Mexico
| | - Nahum Andrés Medellín Castillo
- Graduate Studies and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
| | - Omar Sánchez Mata
- Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Zacatecas, Mexico
| | - Raudel Medina Leaños
- Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Zacatecas, Mexico
| | | |
Collapse
|
7
|
Du H, Olawuyi IF, Said NS, Lee WY. Comparative Analysis of Physicochemical and Functional Properties of Pectin from Extracted Dragon Fruit Waste by Different Techniques. Polymers (Basel) 2024; 16:1097. [PMID: 38675016 PMCID: PMC11054079 DOI: 10.3390/polym16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Dragon fruit peel, often discarded, is a valuable source of commercial pectin. This study investigates different extraction methods, including cold-water (CW), hot-water (HW), ultrasound (US), and novel enzyme extraction (xylanase: EZX), to extract pectins from dragon fruit peel and compare their characteristics. The pectin yield ranged from 10.93% to 20.22%, with significant variations in physicochemical properties across methods (p < 0.05). FTIR analysis revealed that extraction methods did not alter the primary structural configuration of the pectins. However, molecular weights (Mws) varied significantly, from 0.84 to 1.21 × 103 kDa, and the degree of esterification varied from 46.82% to 51.79% (p < 0.05). Monosaccharide analysis identified both homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) pectic configurations in all pectins, predominantly comprising galacturonic acid (77.21-83.12 %mol) and rhamnose (8.11-9.51 %mol), alongside minor side-chain sugars. These properties significantly influenced pectin functionalities. In the aqueous state, a higher Mw impacted viscosity and emulsification performance, while a lower Mw enhanced antioxidant activities and promoted the prebiotic function of pectin (Lactis brevies growth). This study highlights the impact of extraction methods on dragon fruit peel pectin functionalities and their structure-function relationship, providing valuable insights into predicting dragon fruit peel's potential as a food-grade ingredient in various products.
Collapse
Affiliation(s)
- Huimin Du
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Yang W, Chen Y, Li K, Jin W, Zhang Y, Liu Y, Ren Z, Li Y, Chen P. Optimization of microwave-expanding pretreatment and microwave-assisted extraction of hemicellulose from bagasse cells with the exploration of the extracting mechanism. Carbohydr Polym 2024; 330:121814. [PMID: 38368097 DOI: 10.1016/j.carbpol.2024.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Hemicellulose is mainly distributed in the tightly packed S2 layer of the plant cell wall and the middle lamella. This rigid microstructure of wood and interactions among hemicellulose, lignin, and cellulose jointly restrict the separation and transformation of hemicellulose in the wood matrix. To address this issue, a method combined with microwave-expanding pretreatment (MEP) and microwave-assisted extraction (MAE) with a NaOH solution was carried out. We found that the MEP could effectively create new pathways for bagasse cells in mass transferring. More specifically, 195 % of the specific surface area (m2/g) with 193 % of the pores (>50 nm) increased after MEP; the SEM images also confirmed that the microstructure of bagasse was modified. MAE could considerably exfoliate hemicellulose from cellulose fiber and accelerate mass transfer. Additionally, we optimized MEP and MAE by using response surface methodology (RSM). The optimal parameters were 370 K, 3.7 min, 1081 W microwave power, and 9.9 wt% NH4HCO3 consumption for the MEP and 1100 W microwave power, 2.5 wt% NaOH concentration, 34.6 min reaction time for MAE, respectively. Moreover, molecular dynamics (MD) simulation suggests that NaOH could significantly lower the work needed to peel off the xylan chain from cellulose nanofibril.
Collapse
Affiliation(s)
- Wenjin Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yu Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Wen Jin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ya Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuxin Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China.
| | - Zixing Ren
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuke Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Pan Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
9
|
Iñiguez-Moreno M, Pizaña-Aranda JJP, Ramírez-Gamboa D, Ramírez-Herrera CA, Araújo RG, Flores-Contreras EA, Iqbal HMN, Parra-Saldívar R, Melchor-Martínez EM. Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. Int J Biol Macromol 2024; 263:130230. [PMID: 38373564 DOI: 10.1016/j.ijbiomac.2024.130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - José Juan Pablo Pizaña-Aranda
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda A Flores-Contreras
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico.
| |
Collapse
|
10
|
Dambuza A, Rungqu P, Oyedeji AO, Miya G, Oriola AO, Hosu YS, Oyedeji OO. Therapeutic Potential of Pectin and Its Derivatives in Chronic Diseases. Molecules 2024; 29:896. [PMID: 38398646 PMCID: PMC10892547 DOI: 10.3390/molecules29040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024] Open
Abstract
Non-communicable diseases (NCDs) are described as a collection of chronic diseases that do not typically develop from an acute infection, have long-term health effects, and frequently require ongoing care and therapy. These diseases include heart disease, stroke, cancer, chronic lung disease, neurological diseases, osteoporosis, mental health disorders, etc. Known synthetic drugs for the treatment or prevention of NCDs become increasingly dangerous over time and pose high risks due to side effects such as hallucination, heart attack, liver failure, etc. As a result, scientists have had to look for other alternatives that are natural products and that are known to be less detrimental and contain useful bioactive compounds. The increasing understanding of the biological and pharmacological significance of carbohydrates has helped to raise awareness of their importance in living systems and medicine, given they play numerous biological roles. For example, pectin has been identified as a class of secondary metabolites found in medicinal plants that may play a significant role in the treatment and management of a variety of NCDs. Pectin is mainly made of homogalacturonan, which is a linear polymer composed primarily of D-galacturonic acid units (at least 65%) linked in a chain by α-(1,4)-glycosidic linkages. There are also modified pectins or derivatives that improve pectin's bioavailability. Pectin is found in the cell walls of higher plants (pteridophytes, angiosperms, and gymnosperms), particularly in the middle lamella of the plant material. Citrus pectin is used in various industries. This article compiles information that has been available for years about the therapeutic importance of pectin in chronic diseases, different modes of pectin extraction, the chemistry of pectin, and the potency of pectin and its derivatives.
Collapse
Affiliation(s)
- Anathi Dambuza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa;
| | - Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa; (A.O.O.); (G.M.); (A.O.O.)
| | - Gugulethu Miya
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa; (A.O.O.); (G.M.); (A.O.O.)
| | - Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa; (A.O.O.); (G.M.); (A.O.O.)
| | - Yiseyon Sunday Hosu
- Department of Business Management and Economics, Faculty of Economics and Financial Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa;
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa;
| |
Collapse
|
11
|
Silvestri T, Di Donato P, Bonadies I, Poli A, Frigione M, Biondi M, Mayol L. Physico-Chemical Properties and Valorization of Biopolymers Derived from Food Processing Waste. Molecules 2023; 28:6894. [PMID: 37836737 PMCID: PMC10574608 DOI: 10.3390/molecules28196894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The widespread use of synthetic plastics, as well as the waste produced at the end of their life cycle, poses serious environmental issues. In this context, bio-based plastics, i.e., natural polymers produced from renewable resources, represent a promising alternative to petroleum-based materials. One potential source of biopolymers is waste from the food industry, the use of which also provides a sustainable and eco-friendly solution to waste management. Thus, the aim of this work concerns the extraction of polysaccharide fractions from lemon, tomato and fennel waste. Characterizing the chemical-physical and thermodynamic properties of these polysaccharides is an essential step in evaluating their potential applications. Hence, the solubility of the extracted polysaccharides in different solvents, including water and organic solvents, was determined since it is an important parameter that determines their properties and applications. Also, acid-base titration was carried out, along with thermoanalytical tests through differential scanning calorimetry. Finally, the electrospinning of waste polysaccharides was investigated to explore the feasibility of obtaining polysaccharide-based membranes. Indeed, electrospun fibers are a promising structure/system via which it is possible to apply waste polysaccharides in packaging or well-being applications. Thanks to processing feasibility, it is possible to electrospin waste polysaccharides by combining them with different materials to obtain porous 3D membranes made of nanosized fibers.
Collapse
Affiliation(s)
- Teresa Silvestri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Paola Di Donato
- Department of Science and Technology, University of Naples Parthenope, Centro Direzionale, Isola C4, 80143 Naples, Italy;
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy;
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy;
| | - Mariaenrica Frigione
- Department of Innovation Engineering, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, P.l Tecchio, 80, 80125 Naples, Italy;
| | - Laura Mayol
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, P.l Tecchio, 80, 80125 Naples, Italy;
- Department of Advanced Biomedical Sciences, School of Medicine and Surgery, University of Naples, Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Siraj EA, Yayehrad AT, Belete A. How Combined Macrolide Nanomaterials are Effective Against Resistant Pathogens? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5289-5307. [PMID: 37732155 PMCID: PMC10508284 DOI: 10.2147/ijn.s418588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Macrolide drugs are among the broad-spectrum antibiotics that are considered as "miracle drugs" against infectious diseases that lead to higher morbidity and mortality rates. Nevertheless, their effectiveness is currently at risk owing to the presence of devastating, antimicrobial-resistant microbes. In view of this challenge, nanotechnology-driven innovations are currently being anticipated for promising approaches to overcome antimicrobial resistance. Nowadays, various nanostructures are being developed for the delivery of antimicrobials to counter drug-resistant microbial strains through different mechanisms. Metallic nanoparticle-based delivery of macrolides, particularly using silver and gold nanoparticles (AgNPs & AuNPs), demonstrated a promising outcome with worthy stability, oxidation resistance, and biocompatibility. Similarly, macrolide-conjugated magnetic NPs resulted in an augmented antimicrobial activity and reduced bacterial cell viability against resistant microbes. Liposomal delivery of macrolides also showed favorable synergistic antimicrobial activities in vitro against resistant strains. Loading macrolide drugs into various polymeric nanomaterials resulted in an enhanced zone of inhibition. Intercalated nanomaterials also conveyed an outstanding macrolide delivery characteristic with efficient targeting and controlled drug release against infectious microbes. This review abridges several nano-based delivery approaches for macrolide drugs along with their recent achievements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Ebrahim Abdela Siraj
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashagrachew Tewabe Yayehrad
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Konrade D, Gaidukovs S, Vilaplana F, Sivan P. Pectin from Fruit- and Berry-Juice Production by-Products: Determination of Physicochemical, Antioxidant and Rheological Properties. Foods 2023; 12:foods12081615. [PMID: 37107409 PMCID: PMC10137805 DOI: 10.3390/foods12081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Plums (Prunus domestica); red currants (Ribes rubrum); black currants (Ribes nigrum); gooseberries (Ribes uva-crispa); sour cherries (Prunus cerasus); pumpkins (Cuccurbita spp.) are sources for valuable fruit- and berry-juice and cider production. This process leaves a large number of by-products (BP) in the form of pomace, which accounts for up to 80% of the raw material. This by-product represents a rich source of biologically active compounds, especially in the form of different pectic polysaccharides. The pectin extracted from commercial fruits such as citric fruits and apples has high medicinal properties, can be used as edible films and coatings, and is also useful in texture improvement and gel production in the food industry. However, many under-utilized fruits have received little attention regarding the extraction and characterization of their high/value pectin from their by-products. Moreover, the commercial extraction process involving strong acids and high temperature to obtain high-purity pectin leads to the loss of many bioactive components, and these lost components are often compensated for by the addition of synthetic antioxidants and colorants. The aim of the research is to extract pectin from juice production by-products with hot-water extraction using weak organic (0.1 N) citric acid, thus minimizing the impact on the environment. The yield of pectin (PY = 4.47-17.8% DM), galacturonic acid content (47.22-83.57 g 100-1), ash content (1.42-2.88 g 100 g-1), degree of esterification (DE = 45.16-64.06%), methoxyl content (ME = 4.27-8.13%), the total content of phenolic compounds (TPC = 2.076-4.668 µg mg-1, GAE) and the antiradical scavenging activity of the pectin samples (DPPH method (0.56-37.29%)) were determined. Free and total phenolic acids were quantified by saponification using high-pressure liquid chromatography (HPLC). The pectin contained phenolic acids-benzoic (0.25-0.92 µg mg-1), gallic (0.14-0.57 µg mg-1), coumaric (0.04 µg mg-1), and caffeic (0.03 µg mg-1). The pectin extracts from by-products showed glucose and galactose (3.89-21.72 g 100 g-1) as the main neutral sugar monosaccharides. Pectin analysis was performed using FT-IR, and the rheological properties of the pectin gels were determined. The quality of the obtained pectin from the fruit and berry by-products in terms of their high biological activity and high content of glucuronic acids indicated that the products have the potential to be used as natural ingredients in various food products and in pharmaceutical products.
Collapse
Affiliation(s)
- Daiga Konrade
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, LV-1048 Riga, Latvia
| | - Sergejs Gaidukovs
- Latvia Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, LV-1048 Riga, Latvia
| | - Francisco Vilaplana
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Pramod Sivan
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
14
|
Zakaria NA, Abd Rahman NH, Rahman RA, Zaidel DNA, Hasham R, Illias RM, Mohamed R, Ahmad RA. Extraction optimization and physicochemical properties of high methoxyl pectin from Ananas comosus peel using microwave-assisted approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
15
|
Ling B, Ramaswamy HS, Lyng JG, Gao J, Wang S. Roles of physical fields in the extraction of pectin from plant food wastes and byproducts: A systematic review. Food Res Int 2023; 164:112343. [PMID: 36737935 DOI: 10.1016/j.foodres.2022.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Pectin is a naturally occurring hydrocolloid found in the cell wall and middle lamella of many plants and has numerous functional applications in food and other related industries. The type of extraction methods used in production has a strong influence on the structural or physicochemical properties of the resultant pectin and the potential application or market value of the produced pectin. Many conventional extraction methods are well-established and commercially well adopted. However, the increased demand for pectin due to limitations of the existing methods in terms of efficiency and influence on end product quality has been renewed in developing novel techniques or procedures that help to alleviate these problems. In this review paper, a series of strategies involving the application of physical fields, such as acoustic, electromagnetic, electric and mechanical one, are reviewed for potential opportunities to improve the yield and quality attributes of pectin extracted from plant food wastes and byproducts. The extraction mechanism, processing equipment, key operating parameters as well as advantages and disadvantages of each method are systematically reviewed, and findings and conclusions on the potential applications of each method are described. Moreover, the challenges and future directions of physical field assisted extraction (PFAE) of pectin are also discussed to facilitate a better understanding of the complex mechanism in PFAE and optimizing operational parameters. This review may also provide specific theoretical information and practical applications to improve the design and scale up PFAE of pectin.
Collapse
Affiliation(s)
- Bo Ling
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal H9X 3V9, Canada.
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jilong Gao
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA.
| |
Collapse
|
16
|
Zhang X, Li M, Zhen L, Wang Y, Wang Y, Qin Y, Zhang Z, Zhao T, Cao J, Liu Y, Cheng G. Ultra-High Hydrostatic Pressure Pretreatment on White Que Zui Tea: Chemical Constituents, Antioxidant, Cytoprotective, and Anti-Inflammatory Activities. Foods 2023; 12:628. [PMID: 36766156 PMCID: PMC9914134 DOI: 10.3390/foods12030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Herbal tea has numerous biological activities and exhibits broad benefits for human health. In China, the flower buds of Lyonia ovalifolia are traditionally processed as herbal tea, namely White Que Zui tea (WQT). This study was aimed to evaluate the effect of ultra-high hydrostatic pressure (UHHP) pretreatment on the chemical constituents and biological activities of free, esterified, and insoluble-bound phenolic fractions from WQT. A total of 327 chemical constituents were identified by a quasi-targeted metabolomics analysis. UHHP pretreatment extremely inhibited reactive oxygen species (ROS) production and cell apoptosis in H2O2-induced HepG2 cells, and it increased the activities of intracellular antioxidant enzymes (SOD and CAT) and GSH content in different phenolic fractions from WQT. In addition, after UHHP pretreatment, the anti-inflammatory effects of different phenolic fractions from WQT were improved by inhibiting the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-induced RAW264.7 cells. Thus, the UHHP method might be a potential pretreatment strategy for improving the bioavailability of phytochemicals from natural plants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengcheng Li
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Li Zhen
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuyue Qin
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Zhang
- The Faculty of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Zhao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
17
|
Chen S, Zhang H, Yang L, Zhang S, Jiang H. Optimization of Ultrasonic-Assisted Extraction Conditions for Bioactive Components and Antioxidant Activity of Poria cocos (Schw.) Wolf by an RSM-ANN-GA Hybrid Approach. Foods 2023; 12:foods12030619. [PMID: 36766147 PMCID: PMC9914185 DOI: 10.3390/foods12030619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, a response surface methodology and an artificial neural network coupled with a genetic algorithm (RSM-ANN-GA) was used to predict and estimate the optimized ultrasonic-assisted extraction conditions of Poria cocos. The ingredient yield and antioxidant potential were determined with different independent variables of ethanol concentration (X1; 25-75%), extraction time (X2; 30-50 min), and extraction solution volume (mL) (X3; 20-60 mL). The optimal conditions were predicted by the RSM-ANN-GA model to be 55.53% ethanol concentration for 48.64 min in 60.00 mL solvent for four triterpenoid acids, and 40.49% ethanol concentration for 30.25 min in 20.00 mL solvent for antioxidant activity and total polysaccharide and phenolic contents. The evaluation of the two modeling strategies showed that RSM-ANN-GA provided better predictability and greater accuracy than the response surface methodology for ultrasonic-assisted extraction of P. cocos. These findings provided guidance on efficient extraction of P. cocos and a feasible analysis/modeling optimization process for the extraction of natural products.
Collapse
Affiliation(s)
| | | | | | | | - Haiyang Jiang
- Correspondence: ; Tel.: +86-010-62734478; Fax: +86-010-62731032
| |
Collapse
|
18
|
Wang Y, Li Y, Yang Y, Jiang B, Li D, Liu C, Feng Z. A novel adsorbent drived from salted egg white for efficient removal of cationic organic dyes from wastewater. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Fuso A, Viscusi P, Larocca S, Sangari FS, Lolli V, Caligiani A. Protease-Assisted Mild Extraction of Soluble Fibre and Protein from Fruit By-Products: A Biorefinery Perspective. Foods 2022; 12:foods12010148. [PMID: 36613364 PMCID: PMC9818357 DOI: 10.3390/foods12010148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
By-products from the fruit supply chain, especially seeds/kernels, have shown great potential to be valorised, due to their high content of macronutrients, such as lipids, protein, and fibre. A mild enzymatic assisted extraction (EAE) involving the use of a protease was tested to evaluate the feasibility of a cascade approach to fractionate the main fruit by-products components. Protease from Bacillus licheniformis (the enzyme used in the AOAC 991.43 official method for dietary fibre quantification) was used, and besides protein, the conditions of hydrolysis (60 °C, neutral pH, overnight) allowed us to dissolve a portion of soluble fibres, which was then separated from the solubilized peptide fraction through ethanol precipitation. Good protein extraction yields, in the range 35-93%, were obtained. The soluble fibre extraction yield ranged from 1.6% to 71% depending on the by-product, suggesting its applicability only for certain substrates, and it was found to be negatively correlated with the molecular weight of the fibre. The monosaccharide composition of the soluble fibres extracted was also diverse. Galacturonic acid was present in a low amount, indicating that pectin was not efficiently extracted. However, a predominance of arabinose and galactose monomers was detected in many fractions, indicating the isolation of a fruit soluble fibre portion with potential similarity with arabinogalactans and gum arabic, opening up perspectives for technological applications. The residual solid pellet obtained after protease assisted extraction was found to be an excellent fibre-rich substrate, suitable for being subjected to more "hard" processing (e.g., sequential pectin and hemicellulose extraction) with the objective to derive other fractions with potential great added economic value.
Collapse
Affiliation(s)
- Andrea Fuso
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Pio Viscusi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Susanna Larocca
- Sogis Industria Chimica Spa, Via Giuseppina 132, 26048 Sospiro, Italy
| | | | - Veronica Lolli
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Augusta Caligiani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
20
|
Zioga M, Tsouko E, Maina S, Koutinas A, Mandala I, Evageliou V. Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Structural, functional and physicochemical properties of pectin from grape pomace as affected by different extraction techniques. Int J Biol Macromol 2022; 224:739-753. [DOI: 10.1016/j.ijbiomac.2022.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
22
|
Microwave-assisted extraction of pectin from grape pomace. Sci Rep 2022; 12:12722. [PMID: 35882905 PMCID: PMC9325980 DOI: 10.1038/s41598-022-16858-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
The utilization of microwave technique for the pectin extraction from grape pomace (Fetească Neagră and Rară Neagră), its influence on yield, galacturonic acid content, degree of esterification and molecular weight of pectin were analyzed. The optimal conditions of the extraction process were microwave power of 560 W, pH of 1.8 for 120 s. The pectin samples extracted by MAE in optimal conditions were analyzed by comparing with commercial apple and citrus pectin based on FT-IR analysis, thermal behavior, rheological characteristics and microstructure. The FT-IR analysis established the presence of different functional groups which are attributed to the finger print region of extracted pectin, while the rheological behavior presented a good viscoelasticity of pectin solutions. The obtained data assumes that grape pomace has a great potential to be a valuable source of pectin which can be extracted by simple and quick techniques, while maintaining analogous quality to conventional sources of pectin.
Collapse
|
23
|
Costa KPB, Reichembach LH, de Oliveira Petkowicz CL. Pectins with commercial features and gelling ability from peels of Hylocereus spp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Pectin extraction from lime pomace by cold-active polygalacturonase-assisted method. Int J Biol Macromol 2022; 209:290-298. [DOI: 10.1016/j.ijbiomac.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
|
25
|
Du M, Sun Z, Liu Z, Yang Y, Liu Z, Wang Y, Jiang B, Feng Z, Liu C. High efficiency desalination of wasted salted duck egg white and processing into food-grade pickering emulsion stabilizer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Chen X, Yang J, Shen M, Chen Y, Yu Q, Xie J. Structure, function and advance application of microwave-treated polysaccharide: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Han JW, Ren QS, Ji ZT, Yang XT. Mathematical model of postharvest variation in tomato color based on optimized response surface methodology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2972-2980. [PMID: 34766342 DOI: 10.1002/jsfa.11637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/17/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Manual inspection and instrumentation form the traditional approach to determining tomato color but these methods only determine tomato color at a given moment and cannot predict dynamically how tomato color varies during storage and transportation. Such methods thus cannot help suppliers and retailers establish good management practices for the flexible control of tomato maturity, accurate judgment of market positioning in the industry, or during distribution and marketing. To address this shortcoming, this work first investigates how tomato color parameters (a* and h°) evolve through the various stages of maturity (green, turn, and light red) under different storage conditions. Based on experimental results, it develops an optimized response-surface model (RSM) by using differential evolution to predict how tomato color varies during storage. RESULTS Tomatoes are more likely to change color at high temperatures and under conditions of high humidity. Temperature affects tomato color more strongly than humidity. The accuracy of the RSM was confirmed by a good agreement with experiments. All determination coefficients R2 of the RSMs for a* and h° are greater than 0.91. The mean absolute errors for a* and h° are 3.8112 and 5.6500, respectively. The root mean square errors for a* and h° are 4.6840 and 6.9198, respectively. CONCLUSION This research reveals how storage temperature and humidity affect the postharvest variations in tomato color and thus establishes a dynamic model for predicting tomato color. The proposed RSM provides a reliable theoretical foundation for dynamic, nondestructive monitoring of tomato ripeness in the cold chain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Wei Han
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Qing-Shan Ren
- College of Information and Intelligence, Hunan Agricultural University, Changsha, China
| | - Zeng-Tao Ji
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xin-Ting Yang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| |
Collapse
|
28
|
Enzyme-assisted extraction of apricot polysaccharides: process optimization, structural characterization, rheological properties and hypolipidemic activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Roriz CL, Heleno SA, Alves MJ, Oliveira MBPP, Pinela J, Dias MI, Calhelha RC, Morales P, Ferreira ICFR, Barros L. Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chem 2022; 372:131344. [PMID: 34818747 DOI: 10.1016/j.foodchem.2021.131344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
Hylocereus costaricensis peel contains large amounts of betacyanins and can be exploited as a source of natural colorants. This work aimed the chemical characterization and evaluation of bioactive properties of this by-product and the optimization of the ultrasound-assisted extraction (UAE) of betacyanins using the response surface methodology (RSM). Oxalic and malic acids and traces of fumaric acid were detected, as well as the four tocopherol isoforms, predominantly γ-tocopherol. Four betacyanins were identified and used as response criteria for UAE optimization, namely phyllocactin, isobetanin, isophyllocactin, and betanin. Sample processing at 487 W for 38 min result in the maximum betacyanin content (36 ± 1 mg/g dw). The peel extract inhibit the oxidative haemolysis, with IC50 values of 255 and 381 μg/mL for Δt of 60 and 120 min, respectively, and the growth of pathogenic bacteria, with minimum inhibitory concentrations ranging from 5 to 20 mg/mL. Furthermore, no toxicity was observed for normal cells.
Collapse
Affiliation(s)
- Custódio Lobo Roriz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia. Universidad Complutense de Madrid (UCM), Pza Ramón y Cajal, s/n. E-28040, Madrid, Spain
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228 4050-313 Porto, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Dpto. Nutrición y Ciencia de los Alimentos, Facultad de Farmacia. Universidad Complutense de Madrid (UCM), Pza Ramón y Cajal, s/n. E-28040, Madrid, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
30
|
Manyatsi TS, Al-Hilphy AR, Majzoobi M, Farahnaky A, Gavahian M. Effects of infrared heating as an emerging thermal technology on physicochemical properties of foods. Crit Rev Food Sci Nutr 2022; 63:6840-6859. [PMID: 35225100 DOI: 10.1080/10408398.2022.2043820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Infrared (IR) radiation is part of an electromagnetic spectrum between the ultraviolet and microwave regions. IR radiation impacts the surface of the food, generating heat that can be used as an efficient drying technique. Apart from drying, IR heating is an emerging food processing technology with applications in baking, roasting, microbial inactivation, insect control, extraction for antioxidant recovery, peeling, and blanching. Physicochemical properties such as texture, color, hardness, total phenols, and antioxidants capability of foods are essential quality attributes that affect the food quality. In this regard, the main objective of this review study was to highlight and discuss the effects of IR heating on food quality to expand its food applications and commercial adoption. The fundamental mechanisms, type of emitters, and IR processing parameters are discussed in this review to explore their impacts on food quality. Infrared heating has been shown that the appropriate operating conditions (distance, exposure time, IR power, and temperature) with high heat transfer, thus leading to a shorter drying time. Besides, IR heating used in food processing to improve food-surface color and flavor, it also enhances hardness, firmness, shrinkage, crispiness, and viscosity. Meanwhile, antioxidant activity is enhanced, and some nutrients are retained.
Collapse
Affiliation(s)
- Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Asaad R Al-Hilphy
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| |
Collapse
|
31
|
Comparison of different extraction methods on yield, purity, antioxidant, and antibacterial activities of proanthocyanidins from chokeberry (Aronia melanocarpa). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Lasunon P, Sengkhamparn N. Effect of Ultrasound-Assisted, Microwave-Assisted and Ultrasound-Microwave-Assisted Extraction on Pectin Extraction from Industrial Tomato Waste. Molecules 2022; 27:molecules27041157. [PMID: 35208946 PMCID: PMC8877420 DOI: 10.3390/molecules27041157] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to study the effect of ultrasound-assisted (UAE), microwave-assisted (MAE), and ultrasound-microwave-assisted (UMAE) methods for pectin extraction from industrial tomato waste. The overall performance index from the fuzzy analytical method with three criteria, pectin yield, galacturonic acid, and lycopene content, was applied to evaluate the best extraction conditions by using the weight of 75, 20, and 5, respectively. The UAE conditions was performed at a temperature of 80 °C for 20 min with the variations in the extraction pH and the solid liquid (SL) ratio. The best UAE conditions with high pectin yield, and high total carboxyl group, as well as a lycopene content, was the pH of 1.5 and the SL ratio of 1:30. The MAE conditions was performed with variations in the microwave powers and times. The results showed that the best MAE conditions were 300 W for 10 min, which gave high pectin yield with high galacturonic acid and lycopene content. Various conditions of UMAE at the best conditions of MAE and UAE were performed and exhibited that the UAE had more positively affected the pectin yield. However, the FTIR spectra of obtained pectins from different extraction techniques showed a similar pectin structure.
Collapse
|
33
|
Fernández-Delgado M, Del Amo-Mateos E, Lucas S, García-Cubero MT, Coca M. Liquid fertilizer production from organic waste by conventional and microwave-assisted extraction technologies: Techno-economic and environmental assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150904. [PMID: 34653470 DOI: 10.1016/j.scitotenv.2021.150904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The use of mineral fertilizers in agriculture has significantly increased to support the growing global food demand. Organic fertilizers are produced from renewable waste materials to overcome the drawbacks of inorganic fertilizers. The development of novel production processes of organic fertilizers entails a significant advance towards the circular economy that reincorporates waste materials into the production cycle. In this work, the economic and environmental feasibility of an industrial plant with a treatment capacity of 300 kg/h of organic waste for the production of liquid fertilizers has been performed. Two extraction technologies (conventional and microwave) and two solvents (water and alkaline) have been compared to select the most sustainable and profitable scenario for scaling-up. The extraction process consists of 2 steps: extraction followed by a concentration stage (necessary only if water extraction is applied). The resolution of the mass balances shows that the fertilizer production under alkaline conditions is ten times higher than for water-based extraction. The economic analysis demonstrated that the total investment cost of microwave technology (>3.5 M€) is three times higher compared to the conventional extraction technology (<1.5 M€), mainly due to the higher complexity of the equipment. These facts directly impact the minimum selling price, because the fertilizers obtained by conventional extraction with alkaline solvent would have a lower selling price (about 1 €/L). As for environmental assessment, the indicators show that the environmental impact produced by water-based extraction is higher than alkaline-solvent extraction, mainly due to the necessity of a concentration stage of the liquid extract to meet the requirements of European regulations. In view of the results obtained in the economic and environmental evaluation, it could be concluded that the most favourable scenario for scaling up the production of liquid fertilizers from organic waste is the conventional extraction under alkaline conditions.
Collapse
Affiliation(s)
- Marina Fernández-Delgado
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Esther Del Amo-Mateos
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Susana Lucas
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - M Teresa García-Cubero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Mónica Coca
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
34
|
Duwee YS, Kiew PL, Yeoh WM. Multi-objective optimization of pectin extraction from orange peel via response surface methodology: yield and degree of esterification. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Tirado-Kulieva VA, Sánchez-Chero M, Yarlequé MV, Villegas Aguilar GF, Carrión-Barco G, Ygnacio Santa Cruz AG, Sánchez-Chero J. An Overview on the Use of Response Surface Methodology to Model and Optimize Extraction Processes in the Food Industry. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.3.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Response surface methodology (RSM) is a widely used tool for modeling and optimization for food processes. The objective of this review is to evaluate recent findings on the use of RSM in the extraction of compounds from agri-food products. First, the steps for the application of RSM were briefly detailed. According to the analysis performed, RSM is suitable because it evaluates the effects of the independent variables and their interactions on the responses, which is ideal for the optimization of different techniques for the extraction of multiple bioactive compounds and therefore, in the various studies, has allowed to significantly increase the yield and even the biological activities of the extracts; however, RSM has limitations and considering the complexity and dynamics of foods, the challenge is much greater. In this sense, it was determined that simultaneous use with other techniques is necessary in order to optimally describe the process and obtain more accurate results.
Collapse
Affiliation(s)
| | - Manuel Sánchez-Chero
- 1Facultad de Ingeniería de Industrias Alimentarias, Universidad Nacional de Frontera, Sullana, Perú
| | | | | | - Gilberto Carrión-Barco
- 4Carrera de Ingeniería de Sistemas e Informática, Universidad Tecnológica del Perú, Chiclayo, Peru
| | | | - José Sánchez-Chero
- 2Facultad de Ingeniería Económica, Universidad Nacional de Frontera, Sullana, Perú
| |
Collapse
|
37
|
Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Microwave vs. conventional extraction of pectin from Malus domestica ‘Fălticeni’ pomace and its potential use in hydrocolloid-based films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|
40
|
Extraction, Characterization, and Applications of Pectins from Plant By-Products. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146596] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, pectins are widely used in the cosmetic, pharmaceutical, and food industries, mainly as texturizing, emulsifying, stabilizing, and gelling agents. Pectins are polysaccharides composed of a large linear segment of α-(1,4) linked d-galactopyranosyluronic acids interrupted by β-(1,2)-linked l-rhamnoses and ramified by short chains composed of neutral hexoses and pentoses. The characteristics and applications of pectins are strongly influenced by their structures depending on plant species and tissues but also extraction methods. The aim of this review is therefore to highlight the structures of pectins and the various methods used to extract them, including conventional ones but also microwave heating, ultrasonic treatment, and dielectric barrier discharge techniques, assessing physico-chemical parameters which have significant effects on pectin characteristics and applications as techno-functional and bioactive agents.
Collapse
|
41
|
Devi N, Sahoo S, Kumar R, Singh RK. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. NANOSCALE 2021; 13:11679-11711. [PMID: 34190274 DOI: 10.1039/d1nr01134k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, nanomaterials are considered to be the backbone of modern civilization. Especially in the energy sector, nanomaterials (mainly, carbon- and metal oxide/hydroxide-based nanomaterials) have contributed significantly. Among the various green approaches for the synthesis of these nanomaterials, the microwave-assisted approach has attracted significant research interest worldwide. In this context, it is noteworthy to mention that because of their enhanced surface area, high conducting nature, and excellent electrical and electrochemical properties, carbon nanomaterials are being extensively utilized as efficient electrode materials for both supercapacitors and secondary batteries. In this review article, we briefly demonstrate the characteristics of microwave-synthesized nanomaterials for next-generation energy storage devices. Starting with the basics of microwave heating, herein, we illustrate the past and present status of microwave chemistry for energy-related applications, and finally present a brief outlook and concluding remarks. We hope that this review article will positively convey new insights for the microwave synthesis of nanomaterials for energy storage applications.
Collapse
Affiliation(s)
- Nitika Devi
- School of Physical and Material Sciences, Central University of Himachal Pradesh (CUHP), Dharamshala, Kangra, HP-176215, India.
| | | | | | | |
Collapse
|
42
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of Microwave-Assisted Extraction Parameters on Antioxidant Activity of the Extract from Akebia trifoliata Peels. Foods 2021; 10:foods10061432. [PMID: 34205582 PMCID: PMC8234544 DOI: 10.3390/foods10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Akebia trifoliata is a fruit with rich nutritional properties, and its peel is produced as a by-product. In this research, we investigated the influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels, and the ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) as well as total phenolic contents (TPC) were used to optimize extraction parameters. The influences of ethanol concentration, microwave power and solvent-to-material ratio, as well as extraction temperature and time on TPC, FRAP and TEAC values, were assessed using single-factor tests. Three parameters with obvious effects on antioxidant capacity were selected to further investigate their interactions by response surface methodology. The optimal extraction parameters of natural antioxidants from Akebia trifoliata peels were ethanol concentration, 49.61% (v/v); solvent-to-material ratio, 32.59:1 mL/g; extraction time, 39.31 min; microwave power, 500 W; and extraction temperature, 50 °C. Under optimal conditions, the FRAP, TEAC and TPC values of Akebia trifoliata peel extracts were 351.86 ± 9.47 µM Fe(II)/g dry weight (DW), 191.12 ± 3.53 µM Trolox/g DW and 32.67 ± 0.90 mg gallic acid equivalent (GAE)/g DW, respectively. Furthermore, the main bioactive compounds (chlorogenic acid, rutin and ellagic acid) in the extract were determined by high-performance liquid chromatography. The results are useful for the full utilization of the by-product from Akebia trifoliate fruit.
Collapse
Affiliation(s)
- Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
43
|
Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115937. [PMID: 34205897 PMCID: PMC8198840 DOI: 10.3390/ijerph18115937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.
Collapse
|
44
|
Zannini D, Dal Poggetto G, Malinconico M, Santagata G, Immirzi B. Citrus Pomace Biomass as a Source of Pectin and Lignocellulose Fibers: From Waste to Upgraded Biocomposites for Mulching Applications. Polymers (Basel) 2021; 13:1280. [PMID: 33919976 PMCID: PMC8070950 DOI: 10.3390/polym13081280] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/30/2023] Open
Abstract
Citrus pomace derived from the industrial processing of juice and essential oils mostly consists of pectin, cellulose, hemicellulose, and simple sugars. In this work, citrus pomace waste from an agricultural company in South Italy was used as source of pectin. The extraction conditions of the polysaccharide were optimized using a suitable combination of time and a concentration of a mild organic solvent, such as acetic acid; thus recovering high Mw pectin and bioactive molecules (flavonoids and polyphenols). The pectin was structurally (GPC, FTIR), morphologically (SEM), thermally (TGA/DTG), and mechanically characterized, while bioactive molecules were separated and the total phenolic content (TPC) and total flavonoids content (TFC) were evaluated. With the aim to develop novel biocomposite-based materials, the pectin extracted from citrus waste was reinforced with different amounts of lignocellulose fractions also recovered from citrus waste after polysaccharide extraction, according to a "zero waste" circular economy approach. The prepared biocomposites were morphologically and mechanically characterized to be used as biodegradable mulching systems for crop protection. Thus, the citrus waste biomass was recovered, fractionated into its main raw materials, and these were recombined to develop novel upgraded biocomposites for mulching applications, by means of a cost-effective and eco-sustainable approach.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Immirzi
- Institute of Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (D.Z.); (G.D.P.); (M.M.); (G.S.)
| |
Collapse
|