1
|
Wang H, Chen X, Yang H, Wu K, Guo M, Wang X, Fang Y, Li L. A novel gelatin composite film with melt extrusion for walnut oil packaging. Food Chem 2025; 462:141021. [PMID: 39226644 DOI: 10.1016/j.foodchem.2024.141021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Gelatin have excellent film-forming and barrier properties, but its lack of biological activity limits its application in packaging. In this study, fish gelatin incorporated with apple polyphenol/cumin essential oil composite films were successfully prepared by melt extrusion. The cross-linking existed in gelatin and apple polyphenol improved the thermal stability and oxidation resistance of the film. The synergistic effect of apple polyphenols and cumin essential oil decreased the sensitivity of the film to water, especially the water solubility decreased from 41.60 % to 26.07 %. The plasticization of essential oil nearly doubled the elongation at break while maintaining the tensile strength of the film (11.45 MPa). Furthermore, the FG-CEO-AP film can inhibit peroxide value to extend the shelf life about 20 days in the walnut oil preservation. In summary, the apple polyphenol/cumin essential oil of FG film exhibits excellent comprehensive properties and high preparation efficiency for utilization as an active packaging material.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Xiaohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Hui Yang
- Xinyang Vocational and Technical College, Xinyang 464000, China
| | - Kuo Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Min Guo
- COFCO Nutrition and Health Research Institute, Beijing 102209, China.
| | - Xuliang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China
| | - Yuxuan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal Processing Technology, Shanghai 201306, China.
| |
Collapse
|
2
|
Ghasempour A, Allaf MRN, Charoghdoozi K, Dehghan H, Mahmoodabadi S, Bazrgaran A, Savoji H, Sedighi M. Stimuli-responsive carrageenan-based biomaterials for biomedical applications. Int J Biol Macromol 2024:138920. [PMID: 39706405 DOI: 10.1016/j.ijbiomac.2024.138920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Carrageenan-based biomaterials have attracted considerable attention in recent years due to their unique biological properties, including their biodegradability, compatibility, and lack of adverse effects. These biomaterials exhibit a variety of beneficial properties, such as antiviral, antitumor, and immunomodulatory effects, which set them apart from other polysaccharides. Stimuli-responsive carrageenan-based biomaterials have attracted particular attention due to their unique properties such as reducing systemic toxicity and controlling drug release. In this review, a comprehensive investigation of stimuli-responsive carrageenan-based biomaterials was conducted under the influence of various stimuli such as pH, electric field, magnetic field, temperature, light, and ions. These structures exhibited good stimulus-responsive properties and involved corresponding physical and chemical changes, such as changes in swelling ratio and gelling power, etc. The biomedical application of carrageenan-based stimuli-responsive biomaterials in the field of tissue engineering, anticancer, antibacterial, and food monitoring has been investigated, showing the great potential of these structures. Although there are promising developments in the design and use of stimuli-responsive carrageenan-based biomaterials, further research is advisable to further investigate their potential applications, particularly in animal models. Extensive studies are needed to investigate the benefits and limitations of these materials to ensure their safety and effective use in biomedical applications.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Naderi Allaf
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Bazrgaran
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
3
|
Jiang G, Yang Y, Sheng W, Yang L, Yang H, Tang T, Wang C, Tian Y. Preparation and characterization of κ-carrageenan/dextran films blended with nano-ZnO and anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 282:137203. [PMID: 39489236 DOI: 10.1016/j.ijbiomac.2024.137203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The κ-carrageenan/microbial-originated dextran-based multifunctional intelligent packaging films, integrated with natural anthocyanins as a colorant and ZnO as an antibacterial agent, were successfully developed using a casting method. Their applicability and functionality were systematically assessed through various analytical techniques. The addition of dextran, anthocyanins, and ZnO in the films resulted in an increased tensile strength (from 13.66 ± 0.53 to 29.70 ± 1.29 MPa) and elongation at break (from 16.69 ± 1.05 % to 39.49 ± 0.73 %), and decreased water solubility (from 64.94 ± 0.34 % to 32.84 ± 1.55 %) and water vapor barrier property (from 8.29 ± 0.12 × 10-10 g/m•s•Pa to 6.92 ± 0.1 × 10-10 g/m•s•Pa). Spectroscopic analysis revealed that the dextran, ZnO and anthocyanins were uniformly dispersed within the film-forming substrates, achieved through hydrogen bonds and electrostatic interactions. The addition of anthocyanins and ZnO not only enhanced the antibacterial and antioxidant properties of the film but also provided it with good pH sensitivity and color stability, making it highly promising for use in shrimp freshness monitoring. All the films were shown to be biodegradable, decomposing completely in soil within 30 days. Overall, these results suggest that the films could serve as a potential replacement for plastic food packaging and additionally monitor the freshness of food.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Yicheng Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - WenYang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
5
|
Ruan P, Zhang K, Zhang W, Kong Y, Zhou Y, Yao B, Wang Y, Wang Z. Polyphenolic truxillic acid crosslinked sodium alginate film with notable antimicrobial and biodegradable properties for food packaging. Int J Biol Macromol 2024; 279:135184. [PMID: 39216579 DOI: 10.1016/j.ijbiomac.2024.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
This work demonstrated an innovative antimicrobial and biodegradable food packaging film CBDA-10-SA which was prepared by crosslinking a natural polyphenolic truxillic acid (cyclobutane-dicarboxylic acid, CBDA-10) and sodium alginate (SA). The CBDA-10-SA film exhibited improved tensile strength (148 MPa) and UV shielding capabilities. The maximum thermal decomposition temperature was achieved of 249 °C. Compared to SA film, CBDA-10-SA showed increased antibacterial activities. In food packaging test, the CBDA-10-SA inhibited the rapid growth of potential of hydrogen (pH) value, slowed down the weight loss, reduced total plate count (TPC) value of pork, and delayed the spoilage process of pork. Notably, CBDA-10-SA displayed remarkable degradability in soil, with 60 % degrading in four weeks. In this study, CBDA-10-SA showed enhanced physicochemical and mechanical properties compared to traditional SA film. Those improvements make it anticipated to be used in not only food packaging but also mechanical, pharmaceutical, and agricultural fields.
Collapse
Affiliation(s)
- Panyao Ruan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kexin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Kong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Bin Yao
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Kafashan A, Babaei A. Development and investigation of a polysaccharide ternary nanocomposite based on basil seed gum/graphene oxide/anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 280:135537. [PMID: 39306180 DOI: 10.1016/j.ijbiomac.2024.135537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
A new pH-sensitive intelligent packaging system was developed composed of extracted and purified basil seed gum (BG) containing aqueous malva sylvestris extract (MS) and varying amounts of synthesized graphene oxide (GO). In the following, the characteristics of prepared films including spectroscopic, physio-mechanical, thermogravimetry, fracture-surface morphology, anthocyanin release, and pH and TVB-N sensitivity, were investigated. Our results revealed that the addition of 0.5 wt % MS into the BG matrix induced pH sensitivity to the film and resulted in a visible color change from pH 2.0 to 14.0; however, it reduced the thermal and physio-mechanical properties. In this regard, the effective presence of the optimum concentration of GO (0.25 wt%) in enhancing the mechanical and thermal properties of the BG-MS films was shown. Moreover, inspecting the release kinetics demonstrated a controllable release for BG-MS-GO film compared to the BG-MS film in 48 h. Furthermore, the total volatile basic nitrogen (TVB-N) content and pH value were shown to be highly correlated with the color changes of the freshness indicator film during the storage of salmon fillets at 25 °C for 36 h. Therefore, it was shown that BG-MS-GO film can be used as a highly effective freshness/spoilage indicator of proteinic products.
Collapse
Affiliation(s)
- Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| |
Collapse
|
7
|
Liu M, Chen H, Pan F, Wu X, Zhang Y, Fang X, Li X, Tian W, Peng W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr Polym 2024; 343:122445. [PMID: 39174125 DOI: 10.1016/j.carbpol.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
8
|
Sabu Mathew S, Jaiswal AK, Jaiswal S. Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydr Polym 2024; 342:122267. [PMID: 39048183 DOI: 10.1016/j.carbpol.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024]
Abstract
This article explores the use of carrageenan-based biomaterials in developing sustainable and efficient intelligent food packaging solutions. The research in this field has seen a notable surge, evident from >1000 entries in databases such as Web of Science, PubMed and Science Direct between 2018 and 2023. Various film preparation techniques are explored, including solvent casting, layer-by-layer (LbL) assembly, and electrospinning. Solvent casting is commonly used to incorporate active compounds, while LbL assembly and electrospinning are favored for enhancing mechanical properties and solubility. Carrageenan's film-forming characteristics enable the production of transparent films, ideal for indicator films that facilitate visual inspection for color changes indicative of pH variations, crucial for detecting food spoilage. Surface properties can be modified using additives like plant extracts to regulate moisture interaction, affecting shelf life and food safety. These materials' antioxidant and antimicrobial attributes are highlighted, demonstrating their efficacy against pathogens such as E. coli.
Collapse
Affiliation(s)
- Sneha Sabu Mathew
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
9
|
Yang Z, Wang Z, Liu P, Liu W, Xu Y, Zhou Y, Yu Z, Zheng M, Xiao Y, Liu Y. Development of dual-channel starch-based film incorporated with betanin@β-cyclodextrin inclusion complex and berberine for indicating shrimp freshness. Food Chem 2024; 454:139830. [PMID: 38820633 DOI: 10.1016/j.foodchem.2024.139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
In this study, the β-cyclodextrin encapsulated betanin (BET@β-CD) with improved thermal stability and retention as well as the berberine (BBR) with aggregate induced luminescence effect were incorporated into corn amylose (CA) biomatrix to develop colorimetric/fluorescent dual-channel smart film. Results shown that the added functional components were uniformly distributed in the film matrix. The high tensile strength (78.87%), low water solubility (31.15%) and water vapor permeability (1.24 × 10-10 g Pa-1 s-1 m-1) of the film predicted its acceptable stability. It was worth mentioning that the film displayed excellent responsiveness to volatile ammonia (0.025-25 mg/mL) with at least 4 times recyclability. Application experiment demonstrated that the film can achieve macroscopic dynamic monitoring of the freshness of shrimps stored at 25 °C, 4 °C, -20 °C under daylight (red to yellow) and UV light (yellow-green to blue-green). Thus, the study suggests an attractive and effective strategy for constructing dual-mode smart packaging materials for food freshness detection.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Pan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Fang H, Cao L, Sui J, Lin H, Wang L, Wang X, Wang K. Multifunctional metal-organic framework-enhanced sodium alginate-based intelligent indicator: Mechanism and application for freshness monitoring. Int J Biol Macromol 2024; 276:133914. [PMID: 39029842 DOI: 10.1016/j.ijbiomac.2024.133914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Intelligent food packaging has recently gained significant attention due to the heightened consumer awareness regarding food quality. Although anthocyanins avoid safety issues, the instability and leakage of anthocyanins restrict their utilization in freshness indicator labels. In this study, we introduced an innovative metal-organic framework (UiO-66-NH2) synergistic pH-colorimetric label with fast ammonia-responsive, incorporating sodium alginate, red cabbage anthocyanin, and UiO-66-NH2. The cross-linked sodium alginate substrate enabled the label to possess superior insolubility. The microscopic morphology of the labels was intricately analyzed, while their sensitivity was rigorously tested utilizing ammonia as a representative gas. Due to the remarkable UV absorption capability of UiO-66-NH2 and various molecular interactions with anthocyanins, the label exhibited good UV absorption, enhanced stability, and optimized performance in reducing anthocyanin leakage, ensuring the stability and effectiveness of the labels in practical applications. The prepared label exhibited good specificity for volatile amines and ammonia gases, and robust anti-interference properties, enabling visualization and early detection of shrimp spoilage during storage at different temperatures. The strategy employed in this study presents promising new possibilities for developing intelligent packaging solutions for food products.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
11
|
Erge A, Dülger BD. A novel biodegradable film based on chicken gelatin and κ-carrageenan cross-linked with oxidized phenolic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51211-51221. [PMID: 39106016 DOI: 10.1007/s11356-024-33988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 08/07/2024]
Abstract
Natural and renewable polymers are gradually replacing petroleum-based plastics, mostly as a result of environmental concerns. Moreover, upcycling industrial food waste into new added-value products is a creative approach that is crucial for cleaner and more sustainable manufacturing. The aim of this study was to obtain an environmentally friendly biodegradable film using a combination of k-carrageenan (KCAR) and chicken gelatin (CGEL), which obtained from poultry by-products. The effects of varying concentrations of KCAR (0-2%) on the physical, permeability, textural, thermal, and microstructural properties of CGEL/KCAR composite films were evaluated. The findings demonstrated that an increase in KCAR enhanced the lightness and opacity levels of the films. Water vapor permeability (WVP) values reduced as the KCAR concentration increased. The lowest WVP value (0.0012 g.mm/h.m2.kpa) was seen in the treatment with 2% KCAR. Tensile strength (TS) values increased with increasing KCAR. The films' thermal stability was increased by the addition of KCAR. Microstructure assessments revealed a more compact and smooth structure in the KCAR-containing treatments, indicating improvements in WVP, thermal stability, and TS. Compared to the commercial cattle gelatin film, the CGEL film had higher TS and lower water solubility (WS). Overall, this study showed that the physical, mechanical, barrier and thermal and microstructural qualities of gelatin-based films may be enhanced by combining CGEL and KCAR to create an effective biodegradable film. Moreover, the comparison study between commercial cattle and chicken gelatin films revealed that cross-linked chicken gelatin films would be a suitable alternative for bovine gelatin films in the production of biodegradable film.
Collapse
Affiliation(s)
- Aydın Erge
- Faculty of Agriculture, Poultry Science Department, Gölköy Campus, Bolu Abant İzzet Baysal University, Bolu, Turkey.
| | - Berk Demir Dülger
- Faculty of Agriculture, Poultry Science Department, Gölköy Campus, Bolu Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
12
|
Guo C, Li Y, Zhang H, Zhang Q, Wu X, Wang Y, Sun F, Shi S, Xia X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr Rev Food Sci Food Saf 2024; 23:e13390. [PMID: 39031881 DOI: 10.1111/1541-4337.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.
Collapse
Affiliation(s)
- Chang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
14
|
Hu Y, Li T. Smart food packaging: Recent advancement and trends. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:1-33. [PMID: 39103211 DOI: 10.1016/bs.afnr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Food packaging plays an important role in protecting the safety and quality of food products and enables communication with consumers. With the improved consumers' awareness of safety and quality of food products, the changes in consumers' lifestyle, and the growing demand for transparency of food products along the supply chain, food packaging technologies have evolved from only providing the four fundamental functions (i.e., protection and preservation, containment, communication and marketing, and convenience) to possessing additional functions including active modification of the inside microenvironment (i.e., active packaging) and monitoring the safety and quality of products in real-time (i.e., intelligent packaging). A variety of active and intelligent packaging systems have been developed to better protect and monitor the quality and safety of food products during the past several decades. Recently, advanced versions of smart packaging technologies, such as smart active packaging and smart intelligent packaging technologies have also been developed to enhance the effectiveness of conventional smart packaging systems. Additionally, smart packaging systems that harvest the advantages of both active packaging and intelligent packaging have also been developed. In this chapter, a brief overview of smart packaging technologies was provided. Specific technologies being covered include conventional smart packaging technologies and advanced smart packaging technologies, such as smart active packaging, smart intelligent packaging and dual-function smart packaging.
Collapse
Affiliation(s)
- Yaxi Hu
- Food Science Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.
| | - Tianqi Li
- Food Science Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
15
|
Ying Q, Zhan S, Yu H, Li J, Jia R, Wei H, Roura E, Tan X, Qiao Z, Huang T. Gelatin based preservation technologies on the quality of food: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38850027 DOI: 10.1080/10408398.2024.2361298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Gelatin has played a great potential in food preservation because of its low price and superior film forming characteristics. This review provides a comprehensive overview of the latest research progress and application of gelatin preservation technologies (film, coating, antifreeze peptide, etc.), discussing their preservation mechanisms and efficiency through the viewpoints of quality and shelf life of animal and aquatic products as well as fruits and vegetables. It showed that bioactive and intelligent gelatin-based films exhibit antibacterial, antioxidant, water resistance and pH responsive properties, making them excellent for food preservation. In addition, pH responsive properties of films also intuitively reflect the freshness of food by color. Similarly, gelatin and its hydrolysate can be widely used in antifreeze peptides to reduce the mass loss of food during freezing and extend the shelf life of frozen food. However, extensive works are still required to extend their commercial application values.
Collapse
Affiliation(s)
- Qingfang Ying
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Haixia Yu
- Ocean Research Centre of Zhoushan, Zhejiang University, Zhoushan, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Ru Jia
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Huamao Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Eugeni Roura
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Xinle Tan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- Juxiangyuan Health Food (Zhongshan) Co., Ltd, Zhongshan, China
| | - Zhaohui Qiao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Tao Huang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Wagh RV, Riahi Z, Kim JT, Rhim JW. Carrageenan-based functional films hybridized with carbon dots and anthocyanins from rose petals for smart food packaging applications. Int J Biol Macromol 2024; 272:132817. [PMID: 38834126 DOI: 10.1016/j.ijbiomac.2024.132817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Multifunctional smart biopolymeric films were fabricated using rose petal anthocyanin (RPA) and carrageenan (CAR) doped with rose petal-derived carbon dots (RP-CDs). Response surface-optimized RPA showed the highest total anthocyanins and radical scavenging ability. Produced RP-CD exhibited UV absorption and high fluorescence with antibacterial/antioxidant abilities. Enrichment with 2 % RP-CD and 5 % RPA in the CAR matrix results in improved physicochemical, i.e., water contact angle, water vapor permeability, and UV-blocking properties of the fabricated material. Results showed that nanocomposite films scavenged radicals better than the neat CAR films. Zeta potential, FTIR, SEM, and XPS suggested improved compatibility/stability and enhanced elemental configuration of RP-CDs/RPA additives in the CAR polymer matrix. Perishable food packaging (minced pork and shrimp) demonstrated that nanocomposite films work efficiently and non-destructively and are promising tools for monitoring real-time freshness through interpretable visual changes from red to yellow. The CAR/RP-CDs/RPA-based nanocomposite indicator films are expected to be applied as various smart packaging materials. These films possess the ability to promptly detect changes in quality, preserve the quality, and prolong the shelf life of packaged foods.
Collapse
Affiliation(s)
- Rajesh V Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India; BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Hong SJ, Riahi Z, Shin GH, Kim JT. Development of innovative active packaging films using gelatin/pullulan-based composites incorporated with cinnamon essential oil-loaded metal-organic frameworks for meat preservation. Int J Biol Macromol 2024; 267:131606. [PMID: 38631566 DOI: 10.1016/j.ijbiomac.2024.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
18
|
Belov E, Nadaraia K, Imshinetskiy I, Mashtalyar D, Ignatieva L, Marchenko Y, Osmushko I, Gerasimenko M, Sinebruykhov S, Gnedenkov S. Polymer System Based on Polyethylene Glycol and TFE Telomers for Producing Films with Switchable Wettability. Int J Mol Sci 2024; 25:4904. [PMID: 38732121 PMCID: PMC11084564 DOI: 10.3390/ijms25094904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper presents results of the studies of a new synthesized supramolecular polymer system based on polyethylene glycol and tetrafluoroethylene telomers. The films formed from the polymer substance have the property of switching wettability depending on temperature after heating activation. It has been established that the wettability changes at 60 °C. The contact angle of activated hydrophobic polymer film reaches 143°. Additionally, the system exhibits its properties regardless of the pH of the environment. Based on data obtained by the methods of infrared and x-ray photoelectron spectroscopy, differential thermal analysis and thermal analysis in conjunction with wettability and morphology, a model of the behavior of molecules in a polymer system was built that ensures switching of the hydrophilic/hydrophobic surface state. The resulting polymer system, as well as films based on it, can be used in targeted drug delivery, implantation surgery, as sensors, etc.
Collapse
Affiliation(s)
- Evgeniy Belov
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Konstantine Nadaraia
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Igor Imshinetskiy
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Dmitry Mashtalyar
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Lidia Ignatieva
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Yurii Marchenko
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Ivan Osmushko
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Maria Gerasimenko
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
- Department of Nuclear Technologies, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Sergey Sinebruykhov
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| | - Sergey Gnedenkov
- Institute of Chemistry Far Eastern Branch Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.B.); (K.N.); (I.I.); (L.I.); (Y.M.); (I.O.); (M.G.); (S.S.); (S.G.)
| |
Collapse
|
19
|
Saini RK, Khan MI, Shang X, Kumar V, Kumari V, Kesarwani A, Ko EY. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins-A Review. Foods 2024; 13:1227. [PMID: 38672900 PMCID: PMC11049351 DOI: 10.3390/foods13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Varsha Kumari
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Jaipur 302001, Rajasthan, India;
| | - Amit Kesarwani
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India;
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
20
|
Kassab Z, Daoudi H, Salim MH, El Idrissi El Hassani C, Abdellaoui Y, El Achaby M. Process-structure-property relationships of cellulose nanocrystals derived from Juncus effusus stems on ҡ-carrageenan-based bio-nanocomposite films. Int J Biol Macromol 2024; 265:130892. [PMID: 38513904 DOI: 10.1016/j.ijbiomac.2024.130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
This study investigates the potential of Juncus plant fibers as a renewable source for producing cellulose nanocrystals (CNs) to reinforce polymers. Cellulose microfibers (CMFs) were extracted with a 0.43 ± 0.2 μm diameter and 69 % crystallinity through alkaline and bleaching treatments, then subjected to sulfuric acid hydrolysis, yielding four CN types (CN10, CN15, CN20 and CN30) with distinct physico-chemical properties and aspect ratios (47, 55, 57, and 60). The study assessed the influence of cellulose nanocrystals (CNs), incorporated at different weight percentages (3 %, 5 %, and 8 %), on thermal, transparency, and mechanical properties in k-carrageenan (CA) biocomposite films. The results indicate significant enhancements in these characteristics, highlighting good compatibility between CNs and CA matrix. Particularly noteworthy is the observed substantial improvement in tensile strength at an 8 wt% loading, with values of 23.43 ± 0.83 MPa for neat CA, 33.53 ± 0.83 MPa for CA-CN10, 36.67 ± 0.71 MPa for CA-CN15, 37.65 ± 0.56 MPa for CA-CN20, and 39.89 ± 0.77 MPa for CA-CN30 composites. Furthermore, the research explores the connection between the duration of hydrolysis and the properties of cellulose nanocrystals (CNs), unveiling their influence on the characteristics of nanocomposite films. Prolonged hydrolysis enhances CN crystallinity (CrI), aspect ratio, and surface charge content, consequently enhancing mechanical features like strength and flexibility in these films. These findings demonstrate the potential of Juncus plant fibers as a natural and eco-friendly resource for producing CNs that effectively reinforce polymers, making them an attractive option for diverse applications in the field.
Collapse
Affiliation(s)
- Zineb Kassab
- Materials Science, Energy, and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Hamza Daoudi
- Materials Science, Energy, and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Hamid Salim
- Department of Chemical Engineering, Khalifa University SAN Campus Umm Al Nar, 127788, Abu Dhabi, United Arab Emirates
| | - Chirâa El Idrissi El Hassani
- Laboratory of Materials, Catalysis & Natural Resources Valorization, Faculty of Sciences and Techniques, University Hassan II, URAC 24, Casablanca, Morocco
| | - Youness Abdellaoui
- CONAHCyT-Cinvestav Saltillo, Department of Sustainability of Natural Resources and Energy, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Saltillo 25900, Mexico
| | - Mounir El Achaby
- Materials Science, Energy, and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
21
|
Eshaghi R, Mohsenzadeh M, Ayala-Zavala JF. Bio-nanocomposite active packaging films based on carboxymethyl cellulose, myrrh gum, TiO 2 nanoparticles and dill essential oil for preserving fresh-fish (Cyprinus carpio) meat quality. Int J Biol Macromol 2024; 263:129991. [PMID: 38331078 DOI: 10.1016/j.ijbiomac.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.
Collapse
Affiliation(s)
- Reza Eshaghi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. Gustavo E. Astiazarán Rosas No. 46, Col. La Victoria, C.P. 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
22
|
Li Y, Wu Y, Li C. Development of CO 2-sensitive antimicrobial bilayer films based on gellan gum and sodium alginate/sodium carboxymethyl cellulose and its application in strawberries. Int J Biol Macromol 2024; 264:130572. [PMID: 38447825 DOI: 10.1016/j.ijbiomac.2024.130572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
To effectively extend the shelf life of fruits meanwhile facilitating consumers to judge their freshness, in this work, a double-layer multifunctional film combining CO2 sensitivity and antibacterial properties was successfully prepared by adding methyl red (MR), bromothymol blue (BTB) into gellan gum (GG) as the sensing inner layer, and doping tannic acid (TA) into sodium alginate with sodium carboxymethyl cellulose (CMC) as the antimicrobial outer layer, which was applied to the freshness indication of strawberries. Microscopic morphology and spectral analysis demonstrated that the bi-layer films were fabricated successfully. The mechanical characteristics, thermal stability, water vapor resistance, and antibacterial capabilities of the bilayer films improved as TA concentration rose. They exhibited noticeable color changes at pH = 2-10 and different concentrations of CO2. Application of the prepared films to strawberries revealed that the GG-MB@SC-6%TA film performed most favorably under 4 °C storage conditions, not only monitoring strawberry freshness but also retaining high soluble solids and titratable acidity, resulting in a slight decrease in hardness and weight loss. Therefore, taking into account all of the physical-functional characteristics, the GG-MB@6%TA film has a broad application prospect for intelligent food packaging.
Collapse
Affiliation(s)
- Ying Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
23
|
Cetinkaya T, Bildik F, Altay F, Ceylan Z. Gelatin nanofibers with black elderberry, Au nanoparticles and SnO 2 as intelligent packaging layer used for monitoring freshness of Hake fish. Food Chem 2024; 437:137843. [PMID: 37931424 DOI: 10.1016/j.foodchem.2023.137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The electrospun gelatin nanofibers containing black elderberry (BE) extract, Au nanoparticles (AuNPs) and SnO2 were fabricated as intelligent packaging layer for Hake fish (Merluccius merluccius) fillets. Image analysis confirmed the formation of continuous ultrafine fibers. Differences between nanofibers were evaluated in terms of thermal stability, and chemical composition during storage. Fourier transform infrared spectrums indicated strong bonding interactions between gelatin and other compounds. Thermal analysis results showed that the addition of AuNPs contributed to the thermal stabilization of the gelatin chain. L, a, and b values of nanofibers were also measured. A rapid color change occurred after exposure to volatiles with the highest difference in L (52.29 %) of the sample containing gelatin, BE, SnO2 and AuNPs (p < 0.05). This study showed that the absorption of volatiles on nanofibers can be detected from color changes of nanofibers. The outcomes of this study can be applied for intelligent packaging layer in seafood products.
Collapse
Affiliation(s)
- Turgay Cetinkaya
- Yalova University, Armutlu Vocational School, Department of Food Processing, Armutlu 77500, Yalova, Turkiye
| | - Fatih Bildik
- Istanbul Technical University, Faculty of Chemical and Metallurgical, Department of Food Engineering, Sarıyer, 34469 Istanbul, Turkiye
| | - Filiz Altay
- Istanbul Technical University, Faculty of Chemical and Metallurgical, Department of Food Engineering, Sarıyer, 34469 Istanbul, Turkiye.
| | - Zafer Ceylan
- Bartın University, Science Faculty, Department of Molecular Biology and Genetics/Biotechnology, Bartın, Turkiye
| |
Collapse
|
24
|
Mao X, Hao C. Recent advances in the use of composite titanium dioxide nanomaterials in the food industry. J Food Sci 2024; 89:1310-1323. [PMID: 38343295 DOI: 10.1111/1750-3841.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Titanium dioxide (TiO2 ) nanomaterials have attracted significant attention due to their good biocompatibility and potential for multifunctional applications. In the last few years, there has been growing interest in the use of TiO2 nanomaterials in the food industry. However, a systematic review of the synthesis methods, properties, and applications of TiO2 nanomaterials in the food industry is lacking. In this review, we provide a summary of the synthesis and properties of TiO2 nanomaterials and their composites, with a focus on their applications in the food industry. We also discuss the potential benefits and risks of using TiO2 nanomaterials in food applications. This review aims to promote food innovation and improve food quality and safety.
Collapse
Affiliation(s)
- Xixi Mao
- School of Marxism, Jiangnan University, Wuxi, Jiangsu, China
| | - Changlong Hao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Sharaby MR, Soliman EA, Khalil R. Halochromic smart packaging film based on montmorillonite/polyvinyl alcohol-high amylose starch nanocomposite for monitoring chicken meat freshness. Int J Biol Macromol 2024; 258:128910. [PMID: 38141710 DOI: 10.1016/j.ijbiomac.2023.128910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Polyvinyl alcohol (PVA) was blended with high amylose starch (HAS) at a ratio of 3:1, and reinforced with montmorillonite (MMT K10) at different concentrations (1, 2, 5, and 7 % w/w of polymers) and anthocyanins (ANT) to develop an active and smart packaging film. MMT addition enhanced the film's mechanical, barrier, thermal, and water resistance properties. Incorporating ANT extracted from roselle calyx into the optimal nanocomposite film (MMT/PVA-HAS II) increased the films' antioxidant, pH-response, and antibacterial properties. FTIR, XRD, and SEM confirmed the intermolecular interactions and even distribution of ANT and MMT in the film matrix. Release rate of ANT was dependent on type of simulant, with higher rate in aqueous solutions compared to alcoholic/fatty food simulants, and cytotoxicity evaluation proved safety of films for food packaging applications. Storage experiments confirmed the potential applicability of the novel halochromic smart film as a promising candidate for monitoring chicken spoilage under abusive storage conditions.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab city, Alexandria 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
26
|
Zhang W, Liu J, Zhang T, Teng B. A High-Performance Food Package Material Prepared by the Synergistic Crosslinking of Gelatin with Polyphenol-Titanium Complexes. Antioxidants (Basel) 2024; 13:167. [PMID: 38397765 PMCID: PMC10885897 DOI: 10.3390/antiox13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
This study aims to enhance gelatin film performance in the food industry by incorporating polyphenol-titanium complexes (PTCs) as crosslinkers. PTCs introduce multiple linkages with gelatin, including coordination and hydrogen bonds, resulting in synergistic crosslinking effects. This leads to an increased hydrodynamic volume, particle size, and thermal stability of the gelatin films. Compared to films crosslinked solely by polyphenols or titanium, PTC-crosslinked gelatin films exhibit significant improvements. They show enhanced mechanical properties with a tensile strength that is 1.7 to 2.6 times higher than neat gelatin films. Moreover, these films effectively shield UV light (from 82% to 99%), providing better protection for light-sensitive food ingredients and preserving lutein content (from 74.2% to 78.1%) under light exposure. The incorporation of PTCs also improves film hydrophobicity, as indicated by water contact angles ranging from 115.3° to 131.9° and a water solubility ranging from 31.5% to 33.6%. Additionally, PTC-enhanced films demonstrate a superior antioxidant ability, with a prolonged polyphenol release (up to 18 days in immersed water) and a higher free radical scavenging ability (from 22% to 25.2%). Overall, the improved characteristics of gelatin films enabled by PTCs enhance their performance, making them suitable for various food packaging applications.
Collapse
Affiliation(s)
- Wanqin Zhang
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
| | - Jiaman Liu
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Bo Teng
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
27
|
Bakeshlouy Afshar M, Poursattar Marjani A, Gozali Balkanloo P. Introducing graphene quantum dots in decomposable wheat starch-gelatin based nano-biofilms. Sci Rep 2024; 14:2069. [PMID: 38267510 PMCID: PMC10808199 DOI: 10.1038/s41598-024-52560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
This research aims to discover a viable substitute for the common harmful plastic packaging utilized in food products. Citric acid was employed as an accessible and risk-free precursor in synthesizing graphene quantum dots (GQDs). Using the efficient carbonization technique, GQDs were obtained and subsequently transferred to nano-biofilms in varying percentages relative to natural polymers. FT-IR, XRD, FE-SEM, EDX, and AFM analyses were conducted to examine the formation of the nano-biofilms. GQDs demonstrated optimal performance in the disk diffusion method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical approach. Adding GQDs to starch and gelatin composite improved the physical properties of nano-biofilms such as moisture contact, swelling index, and solubility. The transparency of the films was reduced by GQDs, which reduces the transmission of visible light and plays an important role in food protection. The packaging films' weight loss due to decomposition was examined after being buried in soil for 50 days, which relieved the eco-concerns of these packaging films. To evaluate the performance of the films in inhibiting food spoilage, cherries, and cucumbers were packed with a control film and the fabricated film containing 14 wt% of GQD. After 14 days, the modified nano-biofilm was able to maintain the freshness of the samples.
Collapse
|
28
|
Raghuvanshi S, Khan H, Saroha V, Sharma H, Gupta HS, Kadam A, Dutt D. Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging- A review. Int J Biol Macromol 2023; 253:127420. [PMID: 37852398 DOI: 10.1016/j.ijbiomac.2023.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
In food packaging, biopolymer films are biodegradable films made from biomacromolecule-based natural materials, while biocomposite films are hybrids of two or more materials, with at least one being biodegradable. Bionanocomposites are different than the earlier ones, as they consist of various nanofillers (both natural and inorganic) in combination with biomacromolecule-based biodegradable materials to make good compostable bionanocomposites. In this regard, a new type of material known as bionanocomposite has been recently introduced to improve the properties and performance of biocomposite films. Bionanocomposites are primarily developed for active packaging, but their use in intelligent packaging is also noteworthy. For example, bionanocomposites developed using a hybrid of anthocyanin and carbon dots as intelligent materials have shown their high pH-sensing properties. The natural nanofillers (like nanocellulose, nanochitosan, nanoliposome, cellulose nanocrystals, cellulose nanofibers, etc.) are being employed to promote the sustainability, degradability and safety of bionanocomposites. Overall, this article comprehensively reviews the latest innovations in bionanocomposite films for intelligent food packaging over the past five years. In addition to packaging aspects, the role of nanofillers, the importance of life cycle assessment (LCA) and risk assessment, associated challenges, and future perspectives of bionanocomposite intelligent films are also discussed.
Collapse
Affiliation(s)
- Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Hina Khan
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Harish Sharma
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Hariome Sharan Gupta
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Ashish Kadam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
29
|
Wu Y, Xu F, Zhao H, Wu H, Sun C, Li Q. Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. Int J Biol Macromol 2023; 253:126883. [PMID: 37709222 DOI: 10.1016/j.ijbiomac.2023.126883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Considering the growing threats to the environment and human health, such as plastic pollution and food spoilage, the development of naturally antibacterial food packaging materials with biodegradable capabilities has recently attracted considerable attention. This work applies the concept of green environmental protection to packaging technology, and a new type of green edible antibacterial packaging film was developed. The basic idea is to incorporate furoic acid (FA), which possesses excellent antibacterial activity, into the flaxseed gum and konjac glucomannan matrix (FK) as a filler to obtain a series of FK-FA bioactive films. This incorporation simultaneously improves the hydrophobicity and UV-barrier ability by 12.28 % and 42.87 %, respectively. Meanwhile, the diameters of the antibacterial zone of the FK-FA0.4% films (composite FK films containing 0.4 % FA) against E. coli and S. aureus increased to 38.98 mm and 36.29 mm from 24.00 mm of pure FK film, respectively. As a consequence, the grape sample sealed with FK-FA0.4% film remained edible on the 18th day of storage, while those packaged with commercial PE film and pure FK were seriously rotted and lost edible value on the 12th day, further confirming the enhanced preservation capacity. Finally, the as-prepared films were established to be biodegradable and were almost completely degraded within 25 days under simulated environmental conditions. Overall, these promising results show the potential of FK-FA films for replacing plastic packaging materials as eco-friendly edible films with prolonged shelf life for active packaging.
Collapse
Affiliation(s)
- Yi Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fei Xu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongyang Zhao
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Li
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
30
|
James J, Verma M, Sharma N. Nanotechnology-driven improvisation of red algae-derived carrageenan for industrial and bio-medical applications. World J Microbiol Biotechnol 2023; 40:4. [PMID: 37923917 DOI: 10.1007/s11274-023-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Algae biomass has been recognized as feedstock with diverse application including production of biofuel, biofertilizer, animal feed, wastewater treatment and bioremediation. In addition, algae species are a potential reservoir of metabolites and polymers with potential to be utilized for biomedicine, healthcare and industrial purposes. Carrageenan is one such medicinally and industrially significant polysaccharide which is extracted from red algae species (Kappaphycus alvarezii and Eucheuma denticulatum, among the common species). The extraction process of carrageenan is affected by different environmental factors and the source of biomass, which can vary and significantly impact the yield. Diverse applications of carrageenan include hydrogel beads, bio-composites, pharmacological properties, application in cosmetics, food and related industries. Carrageenan biological activities including antioxidant, anti-inflammatory, antimicrobial, and antitumor activities are significantly influenced by sulfation pattern, yield percentage and molecular weight. In addition to natural biomedical potential of carrageenan, synergetic effect of carrageenan- nanocomposites exhibit potential for further improvisation of biomedical applications. Nanotechnology driven bio-composites of carrageenan remarkably improve the quality of films, food packaging, and drug delivery systems. Such nano bio-composites exhibit enhanced stability, biodegradability, and biocompatibility, making them suitable alternatives for drug delivery, wound-healing, and tissue engineering applications. The present work is a comprehensive study to analyze biomedical and other applications of Carrageenan along with underlying mechanism or mode of action along with synergetic application of nanotechnology.
Collapse
Affiliation(s)
- Jerin James
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Monu Verma
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Nishesh Sharma
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
31
|
Khezerlou A, Tavassoli M, Alizadeh-Sani M, Hashemi M, Ehsani A, Bangar SP. Multifunctional food packaging materials: Lactoferrin loaded Cr-MOF in films-based gelatin/κ-carrageenan for food packaging applications. Int J Biol Macromol 2023; 251:126334. [PMID: 37586631 DOI: 10.1016/j.ijbiomac.2023.126334] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In this study, antimicrobial biocomposite films based on gelatin-κ-carrageenan (Gκ) with 1, 2 and 4 % lactoferrin (L) loaded chromium-based metal-organic frameworks (L@Cr-MOFs) nanoparticles were synthesized by casting methods. The addition of L loaded Cr-MOFs into Gκ based films increased elongation at break from 2.19 to 14.92 % and decreased the tensile strength from 65.1 to 31.22 MPa. L@Cr-MOFs addition reduced swelling index (from 105 to 70.8 %), water solubility (from 61.3 to 34.63 %) and water vapor permeability (from 2.46 to 2.19 × 10-11 g. m/m2. s). When the additional amount was 4 wt%, the Gκ/L@Cr-MOFs films showed antibacterial effects against Escherichia coli and Staphylococcus aureus with the inhibition zone of 19.7 mm and 20.2 mm, respectively. In addition, strawberries preservation trial shown that the Gκ/L@Cr-MOFs films delayed the growth of spoilage molds on the surface of fruits. This research indicated that Gκ/L@Cr-MOFs are promising active packaging materials for the preservation of perishable fruits.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh-Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, South Carolina, 29634, USA.
| |
Collapse
|
32
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
33
|
Sar T, Kiraz P, Braho V, Harirchi S, Akbas MY. Novel Perspectives on Food-Based Natural Antimicrobials: A Review of Recent Findings Published since 2020. Microorganisms 2023; 11:2234. [PMID: 37764078 PMCID: PMC10536795 DOI: 10.3390/microorganisms11092234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Various fruit and vegetable wastes, particularly peels, seeds, pulp, and unprocessed residues from the food industry, are abundant sources of antioxidants and essential antimicrobial agents. These valuable bioactive compounds recovered from the food industry have a great application in food, agriculture, medicine, and pharmacology. Food-derived natural antimicrobials offer advantages such as diminishing microbial loads and prolonging the shelf life of food products particularly prone to microbial spoilage. They not only enrich the foods with antioxidants but also help prevent microbial contamination, thereby prolonging their shelf life. Similarly, incorporating these natural antimicrobials into food packaging products extends the shelf life of meat products. Moreover, in agricultural practices, these natural antimicrobials act as eco-friendly pesticides, eliminating phytopathogenic microbes responsible for causing plant diseases. In medicine and pharmacology, they are being explored as potential therapeutic agents. This review article is based on current studies conducted in the last four years, evaluating the effectiveness of food-based natural antimicrobials in food, agriculture, medicine, and pharmacology.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Pelin Kiraz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Türkiye; (P.K.); (M.Y.A.)
| | - Vjola Braho
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Türkiye; (P.K.); (M.Y.A.)
| |
Collapse
|
34
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023; 64:12448-12472. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
35
|
Zhang C, Chi W, Zhou T, Wang Y, Li J, Wang L. Fabricating a visibly colorimetric film via self-releasing of anthocyanins from distributed mulberry pomace particles in hydrophilic sodium carboxymethyl starch-based matrix to monitor meat freshness. Int J Biol Macromol 2023; 246:125617. [PMID: 37390997 DOI: 10.1016/j.ijbiomac.2023.125617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
A highly distinguishable indicator film was developed based on sodium carboxymethyl starch, κ-carrageenan, carboxylated cellulose nanocrystals and mulberry pomace particles (MPPs). As the content of MPPs increased from 0 % to 6 %, the tensile strength decreased from 11.71 MPa to 5.20 MPa, the elongation at break increased from 26.84 % to 43.76 %, respectively, and the haze increased from 34.12 % to 52.10 %. The films accurately exhibit a color change from purple to blue-green under alkaline conditions. The enhanced haze improved the visible resolution of the films during the color-changing process. The films with the size of 7.50 mm × 7.50 mm and 10.0 mm × 10.0 mm exhibited obvious color changes when the total volatile basic nitrogen reached 14.60 mg/100 g and 19.04 mg/100 g, respectively, which accurately indicated the quality of pork and fish. This study will offer a simplified path to improve both accurate sensitivity and distinguishability for smart films.
Collapse
Affiliation(s)
- Cijian Zhang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenrui Chi
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Tao Zhou
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuxi Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Jian Li
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, 26th Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
36
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
37
|
Li R, Zhuang D, Feng H, Wang S, Zhu J. Novel “all-in-one” multifunctional gelatin-based film for beef freshness maintaining and monitoring. Food Chem 2023; 418:136003. [PMID: 36996647 DOI: 10.1016/j.foodchem.2023.136003] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
In this study, a novel multifunctional food packaging was developed by incorporating alizarin (AL) and oregano essential oil Pickering emulsion (OEOP) into a gelatin film matrix. The incorporation of OEOP and alizarin improved the UV-vis resistance property of the film, blocking almost all UV-vis light (decreasing 71.80% to 0.06% at 400 nm). The elongation-at-break (EBA) was 4.02 times of that of gelatin film, indicating the improved mechanical properties of the films. This film showed a significant color change from yellow to purple in the pH range of 3-11 and a considerable sensitivity to ammonia vapor within 4 min, which was attributed to the deprotonation of the alizarin molecule. The film's antioxidant and dynamic antimicrobial capacity was significantly improved owing to the sustained release effect of OEOP. Furthermore, the multifunctional film effectively slowed down the beef spoilage rate and provided real-time visual monitoring of freshness through color changes. Additionally, the color change of the beef quality was linked to the RGB values of the film through a smartphone APP. Overall, this work broadens the possibilities of applications in the food packaging industry for multifunctional food packaging film with preservation and monitoring functions.
Collapse
|
38
|
Adeyemi JO, Fawole OA. Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review. Biomolecules 2023; 13:1092. [PMID: 37509128 PMCID: PMC10377377 DOI: 10.3390/biom13071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Food security has continued to be a topic of interest in our world due to the increasing demand for food. Many technologies have been adopted to enhance food supply and narrow the demand gap. Thus, the attempt to use nanotechnology to improve food security and increase supply has emerged due to the severe shortcomings of conventional technologies, which have made them insufficient to cater to the continuous demand for food products. Hence, nanoparticles have been identified to play a major role in areas involving food production, protection, and shelf-life extensions. Specifically, metal-based nanoparticles have been singled out to play an important role in manufacturing materials with outstanding properties, which can help increase the shelf-life of different food materials. The physicochemical and biological properties of metal-based nanoparticles, such as the large surface area and antimicrobial properties, have made them suitable and adequately useful, not just as a regular packaging material but as a functional material upon incorporation into biopolymer matrices. These, amongst many other reasons, have led to their wide synthesis and applications, even though their methods of preparation and risk evaluation remain a topic of concern. This review, therefore, briefly explores the available synthetic methods, physicochemical properties, roles, and biological properties of metal-based nanoparticles for food packaging. Furthermore, the associated limitations, alongside quality and safety considerations, of these materials were summarily explored. Although this area of research continues to garner attention, this review showed that metal-based nanoparticles possess great potential to be a leading material for food packaging if the problem of migration and toxicity can be effectively modulated.
Collapse
Affiliation(s)
- Jerry O Adeyemi
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
39
|
Perera KY, Jaiswal AK, Jaiswal S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023; 12:2422. [PMID: 37372632 DOI: 10.3390/foods12122422] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. In recent years, numerous biopolymers-such as starch, chitosan, carrageenan, polylactic acid, etc.-have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging. Some of the packaging materials, e.g., cellulose, starch, polylactic acid, and polybutylene adipate terephthalate, are currently used in the packaging industry. The trend of using biopolymers in the packaging industry has increased immensely; therefore, many legislations have been approved by various organizations. This review article describes various challenges and possible solutions associated with food packaging materials. It covers a wide range of biopolymers used in food packaging and the limitations of using them in their pure form. Finally, a SWOT analysis is presented for biopolymers, and the future trends are discussed. Biopolymers are eco-friendly, biodegradable, nontoxic, renewable, and biocompatible alternatives to synthetic packaging materials. Research shows that biopolymer-based packaging materials are of great essence in combined form, and further studies are needed for them to be used as an alternative packaging material.
Collapse
Affiliation(s)
- Kalpani Y Perera
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
40
|
Khalifa I, Nilsuwan K, Prodpran T, Benjakul S. Covalently phenolated-β-lactoglobulin-pullulan as a green halochromic biosensor efficiency monitored Barramundi fish's spoilage. Int J Biol Macromol 2023:125189. [PMID: 37285883 DOI: 10.1016/j.ijbiomac.2023.125189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The effect of the covalent binding between anthocyanins extracted from purple potato peels and beta-lactoglobulin (β-Lg) on its ability to fabricate a green/smart halochromic biosensor combined with pullulan (Pul) was studied. The physical, mechanical, colorimetry, optical, morphological, stability, functionality, biodegradability, and applicability of β-Lg/Pul/Anthocyanin biosensors to monitor the Barramundi fish's freshness during storage were entirely evaluated. The docking and multispectral results proved that β-Lg could be successfully phenolated with anthocyanins and subsequently interacted with Pul via H-bonding and other forces which mainly subsequently form the smart biosensors. Phenolation with anthocyanins significantly heightened the mechanical, moisture resistance, and thermal steadiness of β-Lg/Pul biosensors. Anthocyanins also nearly duplicated the bacteriostatic and antioxidant activities of β-Lg/Pul biosensors. The biosensors changed the color associated with the loss in freshness of the Barramundi fish, mostly due to the ammonia production and pH-alteration throughout fish deterioration. Most importantly, β-Lg/Pul/Anthocyanin biosensors are biodegradable and decomposed within ∼30 d of simulated environmental circumstances. Overall, β-Lg/Pul/Anthocyanin smart biosensors could minimize the usage of plastic packaging materials and employ to monitor the freshness of stored fish and fish-stuffs.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Department of Food Technology, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt; International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
41
|
Tavassoli M, Khezerlou A, Moghaddam TN, Firoozy S, Bakhshizadeh M, Sani MA, Hashemi M, Ehsani A, Lorenzo JM. Sumac (Rhus coriaria L.) anthocyanin loaded-pectin and chitosan nanofiber matrices for real-time monitoring of shrimp freshness. Int J Biol Macromol 2023; 242:125044. [PMID: 37224901 DOI: 10.1016/j.ijbiomac.2023.125044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Niknazar Moghaddam
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Milad Bakhshizadeh
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain.
| |
Collapse
|
42
|
Ding K, Geng H, Guo W, Sun W, Zhan S, Lou Q, Huang T. Ultrasonic-assisted glycosylation with κ-carrageenan on the functional and structural properties of fish gelatin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016806 DOI: 10.1002/jsfa.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Fish gelatin (FG) has multifunctional properties similar to mammalian gelatin (MG), and it has been recognized as the optimal alternative to MG. While its poor surface-active and gelling properties significantly limit its application values, glycosylation has been successfully used to increase surface-active properties of FG, but the influence of ultrasonic-associated glycosylation (UAG) on the gelling and structural characteristics of FG is still rarely reported. This article explores UAG (100-200 W, 0.5-1 h) with κ-carrageenan (κC) on the functional properties (emulsifying, gelling and rheological properties) and structural characteristics of FG. RESULTS The longer time and higher power of ultrasonics accelerated the glycosylation reaction with an increase in glycosylation degree and browning index values. Compared with original FG, FG-κC mixture and bovine gelatin, UAG-modified FG possessed higher emulsification activity index, emulsion stability index, gel strength, hardness and melting temperature values. Among them, gelatin modified by appropriate ultrasonic conditions (200 W, 0.5 h) had the highest emulsifying and gelling properties. Rheological results showed that UAG contributed to the gelation process of gelatin with advanced gelation time and endowed it with high viscosity. Structural analysis indicated that UAG promoted κC to link with FG by the formation of covalent and hydrogen bonds, restricting more bound and immobilized water in the gels, exhibiting higher gelling properties. CONCLUSION This work showed that UAG with κC is a promising method to produce high gelling and emulsifying properties of FG that could replace MG. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Hulin Geng
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Wanyi Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| |
Collapse
|
43
|
Wagh RV, Khan A, Priyadarshi R, Ezati P, Rhim JW. Cellulose nanofiber-based multifunctional films integrated with carbon dots and anthocyanins from Brassica oleracea for active and intelligent food packaging applications. Int J Biol Macromol 2023; 233:123567. [PMID: 36754263 DOI: 10.1016/j.ijbiomac.2023.123567] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
A new generation of carbon dot-based active and intelligent packaging films with UV blocking, antibacterial, and real-time sensing potentials was fabricated using Brassica oleracea (BO) extract. The cellulose nanofiber (CNF) was used to prepare the multifunctional intelligent nanocomposite film integrated with BO anthocyanins (BOA) and BO-biowaste-derived carbon dots (BO-CDs). The incorporation of 1.5 % BO-CD and 6 % BOA in the CNF matrix improved the physicochemical and UV blocking (>189 % increase) properties of the fabricated films. The synthesized BO-CD exhibits high fluorescence, UV absorption, antibacterial and antioxidant functions. It showed strong radical scavenging activity against ABTS (~90 %) and DPPH (~80 %) compared to the neat CNF film. Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) have shown enhanced compatibility and elemental composition of the BO-CDs/BOA additives in the CNF-polymer matrix. Packaging tests showed that the prepared film worked efficiently and non-destructively and was able to monitor the freshness of minced pork, fish, and shrimp in real-time through a distinct visual change from red to colorless/yellow during storage at 25 °C for 48 h. Active and intelligent films developed based on CNF/BO-CDs/BOA are expected to be applied as multifunctional packaging materials that can indicate quality changes and extend the shelf life of packaged perishable foods.
Collapse
Affiliation(s)
- Rajesh V Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 14004, India; BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
44
|
Mavelil-Sam R, Ouseph EM, Morreale M, Scaffaro R, Thomas S. Recent Developments and Formulations for Hydrophobic Modification of Carrageenan Bionanocomposites. Polymers (Basel) 2023; 15:polym15071650. [PMID: 37050264 PMCID: PMC10097169 DOI: 10.3390/polym15071650] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Versatility of the anionic algal polysaccharide carrageenan has long been discussed and explored, especially for their affinity towards water molecules. While this feature is advantageous in certain applications such as water remediation, wound healing, etc., the usefulness of this biopolymer is extremely limited when it comes to applications such as food packaging. Scientists around the globe are carrying out research works on venturing diverse methods to integrate a hydrophobic nature into these polysaccharides without compromising their other functionalities. Considering these foregoing studies, this review was designed to have an in-depth understanding of diverse methods and techniques adopted for tuning the hydrophobic nature of carrageenan-based bionanocomposites, both via surface alterations or by changes made to their chemical structure and attached functional groups. This review article mainly focused on how the hydrophobicity of carrageenan bionanocomposites varied as a function of the type and refinement of carrageenan, and with the incorporation of additives including plasticisers, nanofillers, bioactive agents, etc. Incorporation of nanofillers such as polysaccharide-based nanoparticles, nanoclays, bioceramic and mineral based nanoparticles, carbon dots and nanotubes, metal oxide nanoparticles, etc., along with their synergistic effects in hybrid bionanocomposites are also dealt with in this comprehensive review article.
Collapse
Affiliation(s)
- Rubie Mavelil-Sam
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686 560, India;
| | | | - Marco Morreale
- Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy
- Correspondence: (M.M.); (R.S.); (S.T.)
| | - Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (M.M.); (R.S.); (S.T.)
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686 560, India;
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686 650, India
- Correspondence: (M.M.); (R.S.); (S.T.)
| |
Collapse
|
45
|
Lin W, Hong W, Sun Y, Huang J, Li Z. Triple-function chitosan-based film for pork and shrimp packaging. Food Chem 2023; 417:135903. [PMID: 36924724 DOI: 10.1016/j.foodchem.2023.135903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
A film simultaneously with colorimetric, fluorescent and active functions was engineered using chitosan (CS) and polyvinyl alcohol (PVA) as the film matrix and curcumin-β-cyclodextrin complex (Cur-β-CD) as the indicator for freshness monitoring and maintaining of pork and shrimp. In addition to the efficacy of prolonging shelf life, the film's color could change from yellow to orange with ΔE > 5 and its fluorescence intensity could decrease during storage. The incorporation of PVA significantly enhanced the mechanical properties of CS film with tensile strength of 31.80 MPa and elongation at break of 127.22 %. The Cur-β-CD improved the antioxidant and antibacterial properties, water contact angle (from 86.3° to 111.2°), water vapor permeability (from 3.28 × 10-10 g (m s Pa)-1 to 0.42 × 10-10 g (m s Pa)-1) and mechanical properties of CS/PVA film. These results show the potential of the film as promising alternatives for intelligent and active food packaging.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Hong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuanxin Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China.
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
46
|
Yun X, Chen W, Zhang J, Dong T. Colorimetric porous microspheres of natural sodium alginate for chilled pork visual monitoring. Int J Biol Macromol 2023; 230:123198. [PMID: 36623625 DOI: 10.1016/j.ijbiomac.2023.123198] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Chilled meat is subject to deterioration by various factors during storage and distribution. Therefore, it is very important to monitor the quality of meat in real time. This study aims at preparing a natural, low-cost indicating microsphere to visualize the freshness of meat by the combination of sodium alginate (SA) and chitosan with 0-10 wt% anthocyanins derived from chokeberry as a colorant using ionic gelation method. Size-controlled porous SA microspheres with were further constructed by freeze-drying and their physicochemical properties were characterized by SEM, FTIR, DSC, and XRD. Results showed that microspheres with 1 wt% anthocyanin showed good responsiveness to different concentrations of ammonia and were able to effectively identify the freshness of chilled meat by color change. Principal component analysis showed that the color difference of the porous microspheres was highly significantly correlated with pH, TVB-N, total plate count and thiobarbituric acid active substance (p < 0.01), suggesting a visible satisfactory capability of the microspheres to identify the spoilage in pork. Principal component analysis showed that the color difference of the porous microspheres was highly significantly correlated with pH, TVB-N, total plate count and thiobarbituric acid active substance (P < 0.01), suggesting a visible satisfactory capability of the microspheres to identify the spoilage in pork.
Collapse
Affiliation(s)
- Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Wenjin Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Jiatao Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
47
|
Rong L, Zhang T, Ma Y, Wang T, Liu Y, Wu Z. An intelligent label using sodium carboxymethyl cellulose and carrageenan for monitoring the freshness of fresh-cut papaya. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
49
|
Structural, physicochemical and biodegradable properties of composite plastics prepared with polyvinyl alcohol (PVA), OSA potato starch and gliadin. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Zhao R, Chen J, Yu S, Niu R, Yang Z, Wang H, Cheng H, Ye X, Liu D, Wang W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|