1
|
Janner DE, Poetini MR, Musachio EAS, Chaves NSG, Meichtry LB, Fernandes EJ, Mustafa MMD, De Carvalho AS, Gonçalves OH, Leimann FV, de Freitas RA, Prigol M, Guerra GP. Neurodevelopmental changes in Drosophila melanogaster are restored by treatment with lutein-loaded nanoparticles: Positive modulation of neurochemical and behavioral parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109998. [PMID: 39106915 DOI: 10.1016/j.cbpc.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), are characterized by persistent changes in communication and social interaction, as well as restricted and stereotyped patterns of behavior. The complex etiology of these disorders possibly combines the effects of multiple genes and environmental factors. Hence, exposure to insecticides such as imidacloprid (IMI) has been used to replicate the changes observed in these disorders. Lutein is known for its anti-inflammatory and antioxidant properties and is associated with neuroprotective effects. Therefore, the aim of this study was to evaluate the protective effect of lutein-loaded nanoparticles, along with their mechanisms of action, on Drosophila melanogaster offspring exposed to IMI-induced damage. To simulate the neurodevelopmental disorder model, flies were exposed to a diet containing IMI for 7 days. Posteriorly, their offspring were exposed to a diet containing lutein-loaded nanoparticles for a period of 24 h, and male and female flies were subjected to behavioral and biochemical evaluations. Treatment with lutein-loaded nanoparticles reversed the parameters of hyperactivity, aggressiveness, social interaction, repetitive movements, and anxiety in the offspring of flies exposed to IMI. It also protected markers of oxidative stress and cell viability, in addition to preventing the reduction of Nrf2 and Shank3 immunoreactivity. These results demonstrate that the damage induced by exposure to IMI was restored through treatment with lutein-loaded nanoparticles, elucidating lutein's mechanisms of action as a therapeutic agent, which, after further studies, can become a co-adjuvant in the treatment of neurodevelopmental disorders, such as ASD and ADHD.
Collapse
Affiliation(s)
- Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Nathalie Savedra Gomes Chaves
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Dahleh Mustafa
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | | | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
2
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Song X, Luo Y, Zhao W, Liu S, Wang Y, Zhang H. Preparation and Characterization of Lutein Co-Amorphous Formulation with Enhanced Solubility and Dissolution. Foods 2024; 13:2029. [PMID: 38998535 PMCID: PMC11241110 DOI: 10.3390/foods13132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Lutein is an oxygenated fat-soluble carotenoid and a functional compound with proven health benefits for the human body. Nevertheless, the poor water solubility and low oral bioavailability of lutein greatly limit its application. To address this, we developed an effective approach to enhance the water solubility of lutein through co-amorphous formulation. Specifically, the lutein-sucralose co-amorphous mixture was prepared at a molar ratio of 1:1 using ethanol and water as solvents by employing the solvent evaporation method, followed by solid-state characterization and dissolution testing conducted to assess the properties of the formulation. The X-ray diffraction pattern with an amorphous halo and the differential scanning calorimetry thermogram with no sharp melting peaks confirmed the formation of a binary co-amorphous system. Changes in peak shape, position, and intensity observed in the Fourier transform infrared spectroscopy spectrum revealed intermolecular interactions between lutein and sucralose molecules, while molecular dynamics simulations identified interaction sites between their hydroxyl groups. Additionally, dissolution testing demonstrated better dissolution performance of lutein in the co-amorphous form compared to pure lutein and physical mixture counterparts. Our findings present a novel strategy for improving the water solubility of lutein to make better use of it.
Collapse
Affiliation(s)
- Xuening Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Yingting Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Wenduo Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Simiao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Yuzhuo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.S.); (Y.L.); (W.Z.); (S.L.); (Y.W.)
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
4
|
Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K, de Parrodi CA, López-Mena ER, Mejía-Méndez JL, Lozada-Ramírez JD. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. PLANTS (BASEL, SWITZERLAND) 2024; 13:1584. [PMID: 38931016 PMCID: PMC11207240 DOI: 10.3390/plants13121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Carotenoids constitute compounds of significant biological interest due to their multiple biological activities, such as antimicrobial, anticancer, antiadipogenic, antidiabetic, and antioxidant properties. Metabolic syndrome (MetS) comprehends a series of metabolic abnormalities (e.g., hypertension, obesity, and atherogenic dyslipidemia) that can affect children, adolescents, and the elderly. The treatment of MetS involves numerous medications, which, despite their efficacy, pose challenges due to prolonged use, high costs, and various side effects. Carotenoids and their derivatives have been proposed as alternative treatments to MetS because they reduce serum triglyceride concentrations, promote insulin response, inhibit adipogenesis, and downregulate angiotensin-converting enzyme activity. However, carotenoids are notably sensitive to pH, light exposure, and temperature. This review addresses the activity of carotenoids such as lycopene, lutein, fucoxanthin, astaxanthin, crocin, and β-carotene towards MetS. It includes a discussion of sources, extraction methods, and characterization techniques for analyzing carotenoids. Encapsulation approaches are critically reviewed as alternatives to prevent degradation and improve the biological performance of carotenoids. A brief overview of the physiopathology and epidemiology of the diseases, including MetS, is also provided.
Collapse
Affiliation(s)
- Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico;
| | - Juan Alonso Martínez-Thomas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Karen Schürenkämper-Carrillo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Zapopan 45121, Colonia Nuevo México, Mexico;
| | - Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| | - J. Daniel Lozada-Ramírez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, Puebla 72810, San Andrés Cholula, Mexico; (J.A.M.-T.); (K.S.-C.); (C.A.d.P.)
| |
Collapse
|
5
|
Xiao K, Zhang J, Pan L, Tu K. Investigation of 3D printing product of powder-based white mushroom incorporated with soybean protein isolate as dysphagia diet. Food Res Int 2024; 175:113760. [PMID: 38129002 DOI: 10.1016/j.foodres.2023.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The elderly people are prone to dysphagia due to weakened muscle strength. 3D food printing could modify the nutritional ratio and shape design to produce personalized nutritious food suitable for patients with dysphagia. White mushroom (Agaricus bisporus) is rich in a variety of active ingredients such as polysaccharides and polyphenols which are beneficial to human body, but its unique texture is not suitable for patients with dysphagia to chew. This study investigated the impact of different concentrations of soybean protein isolate (SPI, 3%, 5%, 7%, w/w) on 3D food printing of white mushroom powder and carried out the hierarchical representation of dysphagia diet within the framework of International Dysphagia Diet Standardization Initiative (IDDSI). The results illustrated that SPI addition to white mushroom gel reduced water mobility and promoted hydrogen bond formation, which significantly improved the mechanical strength and cohesiveness of printing inks, including yield stress, viscosity and hardness. IDDSI tests showed that the SPI addition of 3% and 5% helped the printing ink pass the spoon tilt test and the fork drip test, which could be classified as level 5 minced and moist food under the consideration of the fork pressure test. The 3D printing results indicated that the 7% SPI addition made the yield stress too high and was not easy for extrusion, resulting in the appearance defects of the printed sample. The addition of 3% SPI could make the printed sample have smooth surface and excellent self-supporting capacity. This work provides insights of white mushroom 3D printing technology as a more visually appealing dysphagia diet.
Collapse
Affiliation(s)
- Kunpeng Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingwen Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Ma L, Yang X, Yang X, Lu S, Zhang H, Fan Y. Stability protection of lutein emulsions by utilizing a functional conjugate of collagen and Lycium barbarum L. leaf flavonoid. Food Res Int 2024; 176:113775. [PMID: 38163700 DOI: 10.1016/j.foodres.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Lutein exhibits excellent functional activity making it useful in many fields. Nevertheless, its use is limited by its physical and chemical instability. Here, collagen and Lycium barbarum L. leaf flavonoids (LBLF) were used as emulsifiers, their structures were characterized, the properties of the complexes were evaluated, and their stabilizing effects on lutein emulsions were explored. According to the results, the encapsulation rate of the complex of collagen-LBLF was (68.67 ± 1.43) % and the drug loading was (6.92 ± 0.13) %. Collagen compounded LBLF with a changed structure and morphology, resulting in improved antioxidant capacity, better foaming and emulsification, and reduced hydrophobicity. In addition, the thiobarbituric acid value of collagen-LBLF stabilized lutein emulsion (0.0012 ± 0.00011) mg/kg was significantly lower than that of collagen stabilized lutein emulsion (0.0021 ± 0.00016) mg/kg (P < 0.05), indicating that the composite stabilized lutein emulsion obtained higher stability. LBLF contributed a high free radical scavenging effect and inhibited lutein degradation during storage. During simulated digestion, collagen-LBLF effectively stabilized the emulsion and protected lutein from destruction, made it release more slowly, and benefited the bio-accessibility of lutein during the next utilization step. Based on the present study, improved storage and digestion stabilities of lutein wereachievedby the utilization of collagen-LBLF complex, which provides a new method for the preparation and application of composite functional emulsifiers.
Collapse
Affiliation(s)
- Li Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xiaohua Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xue Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Shun Lu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Huiling Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Yanli Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
7
|
Hu YQ, Hu TG, Xu YJ, Wu JJ, Song XL, Yu YS. Interaction mechanism of carotenoids and polyphenols in mango peels. Food Res Int 2023; 173:113303. [PMID: 37803615 DOI: 10.1016/j.foodres.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
In this study, carotenoids and polyphenols were demonstrated to be the major active substances in the crude pigment extracts (CPE) of mango peels, accounting for 0.26 mg/g and 0.15 mg/g, respectively. The interactions between carotenoids and polyphenols in CPE was observed, as evidenced by that polyphenols significantly improved the antioxidant activity and storage stability of carotenoids in the CPE. Meanwhile, scanning electron microscopy showed that polyphenols are tightly bound to carotenoids. To further elucidate the interaction mechanism, the monomers of carotenoids and polyphenols were identified by HPLC and LC-MS analysis. Lutein (203.85 μg/g), β-carotene (41.40 μg/g), zeaxanthin (4.20 μg/g) and α-carotene (1.50 μg/g) were authenticated as the primary monomers of carotenoids. Polyphenols were mainly consisted of gallic acid (95.10 μg/g), quercetin-3-β-glucoside (29.10 μg/g), catechin (11.85 μg/g) and quercetin (11.55 μg/g). The interaction indexes between carotenoid and polyphenol monomer of CPE were calculated. The result indicated that lutein and gallic acid showed the greatest synergistic effect on the scavenging of DPPH and ABTS radical, suggesting the interaction between carotenoids and polyphenols in CPE was mainly caused by lutein and gallic acid. Molecular dynamics simulations and thermodynamic parameters analysis demonstrated that hydrogen bonding, electrostatic interactions, and van der Waals forces played dominant roles in the interaction between lutein and gallic acid, which was confirmed by Raman and X-ray diffraction. These results provided a new perspective on the interaction mechanism between carotenoids and polyphenols, which offered a novel strategy for the enhancement of the activities and stability of bioactive substances.
Collapse
Affiliation(s)
- Yu-Qing Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Teng-Gen Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517001, PR China.
| | - Yu-Juan Xu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Ji-Jun Wu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China
| | - Xian-Liang Song
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yuan-Shan Yu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, PR China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517001, PR China.
| |
Collapse
|
8
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
9
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
10
|
Wang Y, Zhang X, Yan M, Zhao Q. Enhancing the stability of lutein emulsions with a water-soluble antioxidant and a oil-soluble antioxidant. Heliyon 2023; 9:e15459. [PMID: 37113795 PMCID: PMC10126903 DOI: 10.1016/j.heliyon.2023.e15459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lutein is critical for protecting the eye against light damage. The low solubility and high sensitivity of lutein to environmental stresses prevent its further application. The hypothesis is that the combination of one water-soluble antioxidant and one oil-soluble antioxidant will be beneficial to improve the stability of lutein emulsions. A low-energy method was performed to prepare lutein emulsions. The combination of a lipid-soluble antioxidant (propyl gallate or ethylenediaminetetraacetic acid) and a water-soluble antioxidant (tea polyphenol or ascobic acid) were investigated for improving the lutein retention rates. It was shown that the highest lutein retention rate was achieved by using propyl gallate and tea polyphenol, 92.57%, at Day 7. It was proven that the lutein retention rates of emulsions with propyl gallate and tea polyphenol were 89.8%, 73.5% and 55.2% at 4 °C, 25 °C and 37 °C, respectively, at Day 28. The current study is helpful to prepare for the further application of lutein emulsions for ocular delivery.
Collapse
|
11
|
Cao L, Jeong SJ, Shin JH. Effect of gelation technique on lipid digestibility of emulsion-loaded alginate microparticles: a systematic review and meta-analysis. Food Sci Biotechnol 2023; 32:135-144. [PMID: 36647522 PMCID: PMC9839912 DOI: 10.1007/s10068-022-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Alginate microparticles fabricated via calcium gelation or layer-by-layer assembly are commonly used for encapsulating emulsions. In this study, the impact of these two gelation methods on the lipid digestibility of emulsions was reviewed through a systematic screening of relevant studies. From the literature search (Scopus, PubMed, and Web of Science databases), 604 records were screened and 25 articles were included in the analysis. The fold change of free fatty acid release rate at the end of in vitro digestion process between alginate-encapsulated emulsion and emulsions not encapsulated by alginate was calculated for calcium gelation (weighted mean of response ratio 0.64, 95% CI 0.54-0.75) and layer-by-layer assembly (weighted mean of response ratio 0.89, 95% CI 0.81-0.98). Alginate-calcium hydrogels showed stronger inhibition of the extent of lipid digestion than alginate-coated multilayer emulsions. The structural and particle size differences between alginate microparticles acquired using different techniques may contribute to this phenomenon.
Collapse
Affiliation(s)
- Lei Cao
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Seung Jin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joong Ho Shin
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
12
|
Nanostructured lipid carriers (NLCs) stabilized by natural or synthetic emulsifiers for lutein delivery: Improved physicochemical stability, antioxidant activity, and bioaccessibility. Food Chem 2022; 403:134465. [DOI: 10.1016/j.foodchem.2022.134465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
|
13
|
Hu Y, Lin Q, Zhao H, Li X, Sang S, McClements DJ, Long J, Jin Z, Wang J, Qiu C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Li G, Zhao Y, Zhang J, Hao J, Xu D, Cao Y. CaCO3 loaded lipid microspheres prepared by the solid-in-oil-in-water emulsions technique with propylene glycol alginate and xanthan gum. Front Nutr 2022; 9:961326. [PMID: 36071930 PMCID: PMC9441954 DOI: 10.3389/fnut.2022.961326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium carbonate (CaCO3) is difficult to deliver in food matrices due to its poor solubility. In this work, CaCO3 powders were encapsulated into Solid-in-Oil-in-Water (S/O/W) emulsions to fabricate delivery systems. The impact of the concentrations of propylene glycol alginate and Xanthan gum (PGA-XG) complexes on the physical stability and structural characteristics of S/O/W calcium-lipid emulsions microspheres were studied. The S/O/W calcium-lipid emulsions were characterized by the particle size, zeta potential, physical stability, and apparent viscosity. The S/O/W calcium-lipid emulsion has higher physical stability (including 6-week storage at 4°C), smaller mean particle size (7.60 ± 1.10 μm), and higher negative zeta-potential (45.91 ± 0.97 mV) when the concentration of PGA-XG complexes was 0.8 wt%. Moreover, Confocal laser scanning microscopy (CLSM) images confirmed that the CaCO3 powders were encapsulated in the O phase. Transmission electron microscopy (TEM) showed that S/O/W calcium-lipid emulsion was spherical. The X-ray diffraction (XRD) analysis further confirmed that CaCO3 was loaded in the S/O/W calcium-lipid emulsion as an amorphous state. The formation mechanism of S/O/W calcium-lipid microspheres was studied by Fourier transform infrared spectroscopy (FTIR) and Raman spectrum analysis. This study provided new ideas that accelerate the creation of a novel type of calcium preparation with higher quality utilization.
Collapse
|
15
|
Piao J, Liu L, Cai L, Ri HC, Jin X, Sun H, Piao X, Shang HB, Jin X, Pu Q, Cai Y, Yao Z, Nardiello D, Quinto M, Li D. High-Resolution Micro-object Separation by Rotating Magnetic Chromatography. Anal Chem 2022; 94:11500-11507. [PMID: 35943850 DOI: 10.1021/acs.analchem.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work. Magnetic nanoparticles, placed in a microfluidic separation channel, are forced to move in well-defined trajectories by an external magnetic field, colliding with microparticles that are in this way separated on the basis of their dimensions with high accuracy and reproducibility. The method was optimized by using fluorescein isothiocyanate-modified polystyrene particles (chosen as a reference standard) and then applied to the analysis of cancer cells like Hep-3B and SK-Hep-1, allowing their fast and high-resolution chromatographic separation as a function of their dimensions. Due to its unmatched sub-micrometer cell separation capabilities, RMC can be considered a break-through technique that can unlock new perspectives in different scientific fields, that is, in medical oncology.
Collapse
Affiliation(s)
- Jishou Piao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Long Cai
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Hyok Chol Ri
- College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangzi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Huaze Sun
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xiangfan Piao
- Engineering College Department of Electronics, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Xuejun Jin
- College of Pharmacy, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong Cai
- College of Life Science, Jilin University, Changchun City, Jilin province 130012, China
| | - Zhongping Yao
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Donatella Nardiello
- DAFNE─Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China.,DAFNE─Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| |
Collapse
|