1
|
Guo J, Khan MR, Ahmad N, Zhang W. Enhancing fruit preservation with sodium alginate films incorporating propolis extract and graphene oxide. Int J Biol Macromol 2025; 288:138778. [PMID: 39675617 DOI: 10.1016/j.ijbiomac.2024.138778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
In this work, sodium alginate (SA) composite films containing propolis extract (PRO) and graphene oxide (GO) were developed. Subsequently, the effects of PRO and GO on different properties of SA composite films were studied, and the films were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The PRO release properties and fruit preservation performance of the developed composite films were also investigated. The results showed that the incorporation of PRO resulted in a 51.16% increase in tensile strength. The simultaneous incorporation of PRO and GO reduced water vapor permeability (WVP) by 22.56% compared to the SA film. The temperatures at which the SA/GO/PRO film lost 5% of its weight were 8.0°C higher than those of the SA film. The incorporation of GO into the SA/PRO composite film also modulates the release of PRO. Furthermore, the incorporation of PRO and GO improved the tensile strength of the SA film, as reflected in the microstructure of the films. The reduced WVP of the SA composite film allowed the packaged blueberries to exhibit less weight loss and shrinkage, thereby prolonging their shelf life.
Collapse
Affiliation(s)
- Junyan Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China.
| |
Collapse
|
2
|
Ke F, Yang M, Ji W, Liu D. Functional pH-sensitive film based on pectin and whey protein for grape preservation and shrimp freshness monitoring. Food Chem 2025; 463:141092. [PMID: 39255696 DOI: 10.1016/j.foodchem.2024.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wei Ji
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Shi C, Guo C, Wang S, Li W, Zhang X, Lu S, Ning C, Tan C. The mechanism of pectin in improving anthocyanin stability and the application progress of their complexes: A review. Food Chem X 2024; 24:101955. [PMID: 39568512 PMCID: PMC11577125 DOI: 10.1016/j.fochx.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Improving anthocyanin stability is a major challenge for the food industry. Studies have revealed that the interaction with pectin through non-covalent bonds can improve the anthocyanin stability, thus showing the potential to alleviate the above challenges. However, the interactions are highly complex and diverse. Thus, analyzing the effect of this interaction on anthocyanin stability is essential to promote anthocyanin-pectin complexes application in functional foods. Pectin can interact with anthocyanins through covalent and non-covalent interactions, and these interactions are affected by their structure, the external environment, and the processing methods. Through their interaction with pectin, the thermal, color, and storage stability of anthocyanins are improved, enhancing their bioavailability in the gastrointestinal and facilitating their application range in food processing. This review provides a theoretical reference for improving anthocyanin stability and increasing the application range of anthocyanin-pectin complexes.
Collapse
Affiliation(s)
- Chenyang Shi
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chongting Guo
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Wang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Weixuan Li
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Xue Zhang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Lu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chong Ning
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| |
Collapse
|
4
|
Xu Y, Wang K, Liu P, Wang Z, Liu W, Yang Z, Jiang W, Zhou Y, Zheng M, Xiao Y, Liu Y. A novel dual-channel cassava starch/polyvinyl alcohol-based film for visual monitoring of shrimp freshness. Carbohydr Polym 2024; 335:122107. [PMID: 38616081 DOI: 10.1016/j.carbpol.2024.122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
In this study, the polyvinylpyrrolidone-alizarin nanoparticles (PVP-AZ NPs) with favorable water dispersion and the carbon quantum dots (RQDs) with aggregate induced emission effect were synthesized to construct an eco-friendly film for food freshness monitoring. The introduction of PVP-AZ NPs and RQDs enhanced the network structure and thermal stability of the cassava starch/polyvinyl alcohol film, and reduced its crystallinity and light transmittance via non-covalent binding with the film-forming matrix. The developed film exhibited visually recognizable colorimetric and fluorescent responses to ammonia at 0.025-25 mg/mL, and it can be reused at least 6 times. Practical application experiment proved that the film, as an indicator label, can achieve accurate, real-time, and visual dynamic monitoring of the freshness of shrimp stored at 25 °C, 4 °C, and - 20 °C under daylight (orange yellow to purple) and UV light (red to blue). The integration of multivariate detection technology can eliminate the interference of external factors by self-correction to improve sensitivity and reliability, which provides a reference for the development of other food quality and safety monitoring platforms.
Collapse
Affiliation(s)
- Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Pan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wanqi Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
He Y, Yuan Y, Gao Y, Chen M, Li Y, Zou Y, Liao L, Li X, Wang Z, Li J, Zhou W. Enhancement of Colorimetric pH-Sensitive Film Incorporating Amomum tsao-ko Essential Oil as Antibacterial for Mantis Shrimp Spoilage Tracking and Fresh-Keeping. Foods 2024; 13:1638. [PMID: 38890874 PMCID: PMC11171633 DOI: 10.3390/foods13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Anthocyanin-based smart packaging has been widely used for food freshness monitoring, but it cannot meet the requirements of smart films with antibacterial properties. This study aimed to enhance the antibacterial properties of intelligent films by incorporating Amomum tsao-ko essential oil (AEO) for mantis shrimp spoilage tracking and keeping the product fresh. A smart film was designed by introducing AEO and purple potato anthocyanin (PPA) to a polyvinyl alcohol/cellulose nanocrystal (PVA/CNC) polymer matrix. Our findings revealed that APP and AEO imparted the smart film with a favorable oxygen barrier, UV protection, mechanical properties, and antioxidant and pH/NH3-sensitive functions. Interestingly, the PVA/CNC-AEO-PPA film achieved 45.41% and 48.25% bactericidal efficacy against S. putrefaciens and V. parahaemolyticus, respectively. Furthermore, a visual observation confirmed that the target film (PVA/CNC-AEO-PPA) changed color significantly during mantis shrimp spoilage: rose red-light red-pink-light gray-dark gray. Meanwhile, the PVA/CNC-AEO-PPA film retarded the quality deterioration of the mantis shrimp effectively. The PVA/CNC-AEO-PPA film shows great application potential in mantis shrimp preservation and freshness monitoring; it is expected to become a rapid sensor for detecting seafood quality non-destructively and a multifunctional film for better preservation of product quality.
Collapse
Affiliation(s)
- Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuanyuan Gao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yingying Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Xiaotong Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| |
Collapse
|
6
|
Su Z, Liu Y, Kang L, Chang X, Tan X, Shen D, Wang X, Wang HH, Li G. Physicochemical and antioxidant properties of pectin fractions extracted from lemon (Citrus Eureka) peels. Int J Biol Macromol 2024; 268:132014. [PMID: 38697443 DOI: 10.1016/j.ijbiomac.2024.132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Pectin, a natural polysaccharide, holds versatile applications in food and pharmaceuticals. However, there is a need for further exploration into extracting novel functional fractions and characterizing them thoroughly. In this study, a sequential extraction approach was used to obtain three distinct lemon pectin (LP) fractions from lemon peels (Citrus Eureka): LP extracted with sodium acetate (LP-SA), LP extracted with ethylenediaminetetraacetic acid (LP-EDTA), and LP extracted with sodium carbonate and sodium borohydride (LP-SS). Comprehensive analysis revealed low methyl-esterification in all fractions. LP-SA and LP-SS displayed characteristics of rhamnogalacturonan-I type pectin, while LP-EDTA mainly consisted of homogalacturonan pectin. Notably, LP-SA formed self-aggregated particles with rough surfaces, LP-EDTA showed interlocking linear structures with smooth planes, and LP-SS exhibited branch chain structures with smooth surfaces. Bioactivity analysis indicated that LP-SA had significant apparent viscosity and ABTS radical scavenging activity, while both LP-EDTA and LP-SS showed excellent thermal stability according to thermogravimetric analysis (TGA). Furthermore, LP-SS exhibited remarkable gel-forming ability and significant hydroxyl free radicals scavenging activity. In conclusion, this study presents a novel method for extracting various lemon pectin fractions with unique structural and bioactive properties, contributing insights for advanced applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yuchen Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xue Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
7
|
Chen K, Tian R, Jiang J, Xiao M, Wu K, Kuang Y, Deng P, Zhao X, Jiang F. Moisture loss inhibition with biopolymer films for preservation of fruits and vegetables: A review. Int J Biol Macromol 2024; 263:130337. [PMID: 38395285 DOI: 10.1016/j.ijbiomac.2024.130337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
In cold storage, fruits and vegetables still keep a low respiratory rate. Although cold storage is beneficial to maintain the quality of some fruits and vegetables, several factors (temperature and humidity fluctuations, heat inflow, air velocity, light, etc.) will accelerate moisture loss. Biopolymer films have attracted great attention for fruits and vegetables preservation because of their biodegradable and barrier properties. However, there is still a certain amount of water transfer occurring between storage environment/biopolymer films/fruits and vegetables (EFF). The effect of biopolymer films to inhibit moisture loss of fruits and vegetables and the water transfer mechanism in EFF system need to be studied systematically. Therefore, the moisture loss of fruits and vegetables, crucial properties, major components, fabrication methods, and formation mechanisms of biopolymer films were reviewed. Further, this study highlights the EFF system, responses of fruits and vegetables, and water transfer in EFF. This work aims to clarify the characteristics of EFF members, their influence on each other, and water transfer, which is conducive to improving the preservation efficiency of fruits and vegetables purposefully in future studies. In addition, the prospects of studies in EFF systems are shown.
Collapse
Affiliation(s)
- Kai Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Runmiao Tian
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Jun Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Man Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaojun Zhao
- Angel Biotechnology Co., Ltd., Yichang 443000, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Ke F, Liu D, Qin J, Yang M. Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation. Foods 2024; 13:736. [PMID: 38472849 DOI: 10.3390/foods13050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
An antioxidative and pH-sensitive multifunctional film, incorporating anthocyanin-rich purple sweet potato extract (PPE) was fabricated from polyvinyl alcohol (PVA) and sodium alginate (SA)/sodium carboxymethyl cellulose (CMC-Na). The film was composed of 6:4 PVA:SA/CMC-Na (mass ratio, SA:CMC-Na at 1:1) with added PPE, and changed color with changes in pH, and also had useful UV-blocking, antioxidant, mechanical, and water vapor barrier properties, which enable its use as a food coating film. In addition, the incorporation of 300 mg PPE increased the biodegradability of the film in soil from 52.47 ± 1.12% to 64.29 ± 1.75% at 17 days. The pH sensitivity of the film enabled its successful use for the evaluation of pork freshness. Cherries coated with the film had an extended shelf life from 3-4 to 7-9 days, during storage at 25 °C. Consequently, the multifunctional film can be applied to packaging for real-time pH/freshness monitoring and for effectively preserving the freshness of meat and fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Feng X, Li Y, Cui Z, Tang R. Sodium alginate/carboxymethyl cellulose films embedded with liposomes encapsulated green tea extract: characterization, controlled release, application. RSC Adv 2024; 14:245-254. [PMID: 38173599 PMCID: PMC10758806 DOI: 10.1039/d3ra05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
To maintain the freshness of the fruit during storage, sodium alginate/carboxymethyl cellulose films embedded with pH-senstive liposomes encapsulated green tea extract were developed (SA/CMC/TP-Lip). An orthogonal design was used to optimise the preparation of TP-Lip and SA/CMC/TP-Lip was prepared through response surface. The stability of TP-Lip structure was measured. The morphology of SA/CMC/TP-Lip was characterised by SEM, and the mechanical properties and oxidation resistance of films were measured. Special attention was paid to the pH sensitivity of TP-Lip and the improvement of film properties. The zeta potential and encapsulation rate of TP-Lip were -45.85 ± 2.13 mV and 61.45 ± 0.23%. The average release rate of TP encapsulated into TP-Lip at pH 3 was 41.08%, an increase of 23.07% over pH 6 during 12 h. SEM and FTIR showed that TP-Lip was structurally stable and had good compatibility with SA/CMC. Tensile strength was increased by 30.55% and DPPH radical scavenging capacity was increased by 7.16% with the addition of TP-Lip. SA/CMC/TP-Lip is applied to blueberries to reduce their weight loss and improve the loss of freshness of blueberries during storage. Thus, SA/CMC/TP-Lip could provide a new way to extend active packaging materials and maintain fruit freshness during storage.
Collapse
Affiliation(s)
- Xin Feng
- Department of Forestry Engineering, Northeast Forestry University Harbin Heilongjiang China
| | - Yang Li
- Department of Logistics Engineering and Management, Northeast Forestry University Harbin Heilongjiang China
| | - Zhuoyu Cui
- Department of Forestry Engineering, Northeast Forestry University Harbin Heilongjiang China
| | - Rongrong Tang
- Department of Logistics Engineering and Management, Northeast Forestry University Harbin Heilongjiang China
| |
Collapse
|
10
|
Jiang H, Zhang W, Cao J, Jiang W. Development of biodegradable active films based on longan seed starch incorporated with banana flower bract anthocyanin extracts and applications in food freshness indication. Int J Biol Macromol 2023; 251:126372. [PMID: 37595722 DOI: 10.1016/j.ijbiomac.2023.126372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The recovery of food by-products is of great significance. Food by-products contain diverse materials showing promise for the development of food packaging or edible coatings. In the present study, the effects of banana flower bract anthocyanin extracts (BFBAEs) on properties of longan seed starch (LSS) films were investigated for the first time. The prepared BFBAEs presented great compatibility with LSS matrix without changing the film chemical structures. The LSS films containing BFBAEs presented improved UV light barrier capacities, increased water vapor permeability, and lowered thermal stability compared to the pure LSS films. Additionally, the introduction of BFBAEs significantly reduced tensile strength and increased elongation at break of LSS films. There is growing demands for the fabrication of intelligent films for the visible monitoring of food freshness. BFBAEs imparted great antioxidant activities and pH-sensitive and ammonia-sensitive discoloration capacities on LSS films. LSS/BFBAEs III films were employed to detect food (beef and shrimp) freshness, and distinguishable color variations could be observed as the food freshness reduced. The LSS-based films were almost completely degraded after 30 days. Two types of by-products were combined to develop novel biodegradable active films, which showed promise for the discernible detection of the freshness of perishable foods.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Bian Z, Xu W, Zhang H, Shi M, Ji X, Dong S, Chen C, Zhao G, Zhuo X, Komarneni S, Zhang K, Ni Z, Hu G. Simultaneously realizing enhancement of sensitivity for freshness monitoring and multinomial properties of carrageenan/konjac glucomannan/blueberry anthocyanin-based intelligent film by diatomite. Int J Biol Macromol 2023; 251:126192. [PMID: 37558038 DOI: 10.1016/j.ijbiomac.2023.126192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Here, highly sensitive blueberry anthocyanin (BBA)-induced intelligent indicating films were fabricated by incorporating a novel composite ingredient, diatomite (DA), into a matrix of konjac glucomannan (KGM), carrageenan (CAR) and BBA. We systematically investigated the effects of introducing DA and BBA on the structure, physical properties, colorimetric response, and practical application of the KGM/CAR film. Our findings revealed that the DA particles and BBA were well-distributed in the KGM/CAR matrix through hydrogen bonding interactions. This distribution significantly improved tensile strength, surface hydrophobicity, thermal stability, and barrier properties of the KGM/CAR film. Notably, the KGM/CAR-based intelligent film loaded with 6 % DA exhibited the most optimal properties. Furthermore, DA exhibited a hierarchical porous structure, enabling the KGM/CAR film to detect volatile amines with heightened sensitivity. When applied to monitor shrimp spoilage in transparent plastic packaging, the color of the composite film underwent remarkable changes from bright pink to bluish violet. These color changes correlated well with the total volatile basic nitrogen (TVB-N) and pH changes in the shrimp, as determined by standard laboratory procedures. Our work presents a promising approach to the development of high-performance and intelligent food packaging materials. These materials hold great potential for practical applications in the field of food packaging.
Collapse
Affiliation(s)
- Zhentao Bian
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China; Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Wenxue Xu
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Haoqiang Zhang
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Meng Shi
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Xiaoyi Ji
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Shicheng Dong
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Chong Chen
- Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Guangzhen Zhao
- Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Xin Zhuo
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000, Anhui Province, PR China
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Keying Zhang
- Bio-based Functional Materials and Composite Technology Research Center, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, Anhui Province, PR China; Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000, Anhui Province, PR China.
| | - Zhonghai Ni
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China.
| | - Guangzhou Hu
- Chemical Technology, Institute of Chemical Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
12
|
Yang J, Cai W, Rizwan Khan M, Ahmad N, Zhang Z, Meng L, Zhang W. Application of Tannic Acid and Fe 3+ Crosslinking-Enhanced Pectin Films for Passion Fruit Preservation. Foods 2023; 12:3336. [PMID: 37761045 PMCID: PMC10528638 DOI: 10.3390/foods12183336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the role of tannic acid (TA) and Fe3+ in crosslinking pectin (PE) to enhance its physicochemical properties was investigated. Specifically, PE/TA/Fe3+ composite films were prepared using the solution casting method, and the UV-blocking properties, transparency, water content, physico-mechanical properties, antioxidant properties and degradability of the PE composite films were investigated. The microstructure of the PE composite films and the interactions between the contained components were analyzed using FTIR, X_crystal diffraction and SEM scanning electron microscopy. The results showed that the addition of TA and Fe3+ can significantly improve the UV barrier properties and antioxidant properties of PE films. Meanwhile, Fe3+ could form a metal phenol network with TA and crosslink with the PE film, which makes the structure of the PE film denser and thus significantly reduces the water vapor permeability of the PE film. In addition, this work also indicated that the PE composite coatings have a favorable preservation effect on passion fruit, which leads to the lowest weight loss rate and wrinkle index of the passion fruit within 7 days of storage and shows good appearance quality and commercial value. This work indicates that the addition of tannic acid and Fe3+ significantly improved the mechanical and barrier properties of pectin films, and the composite pectin coating extended the shelf life of passion fruit.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenjin Cai
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Tavassoli M, Khezerlou A, Moghaddam TN, Firoozy S, Bakhshizadeh M, Sani MA, Hashemi M, Ehsani A, Lorenzo JM. Sumac (Rhus coriaria L.) anthocyanin loaded-pectin and chitosan nanofiber matrices for real-time monitoring of shrimp freshness. Int J Biol Macromol 2023; 242:125044. [PMID: 37224901 DOI: 10.1016/j.ijbiomac.2023.125044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Niknazar Moghaddam
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Milad Bakhshizadeh
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain.
| |
Collapse
|
14
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
15
|
Jiang H, Zhang W, Pu Y, Chen L, Cao J, Jiang W. Development and characterization of a novel active and intelligent film based on pectin and betacyanins from peel waste of pitaya (Hylocereus undatus). Food Chem 2022; 404:134444. [PMID: 36244062 DOI: 10.1016/j.foodchem.2022.134444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
In the present study, peel waste of pitaya (Hylocereus spp.) was used to develop a novel active and functional film. The film was developed with a combination of the white-fleshed pitaya peel pectin (WPPP) as a biopolymer and white-fleshed pitaya peel betacyanins (WPPB) as an active constituent, respectively. Furthermore, montmorillonite (MMT), a cheap and environmental-friendly silicate material, was introduced into film matrix as a filler to reduce the moisture sensitivity of the film. The effect of the incorporation of WPPB on the properties of WPPP/MMT films was investigated. The colorimetric response of WPPP/MMT/WPPB to pH and ammonia was examined, respectively. Moreover, WPPP/MMT/WPPB-2 was employed to monitor the freshness of shrimp. The color of the film changed from redness to reddish-brown, and further to brownness, echoing the shrimp turned from fresh to spoiled. Therefore, WPPP/MMT/WPPB-2 composite films showed promise for the applications in monitoring the freshness of shrimp.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|