1
|
Narayanan L, Suseem SR. Exploring the Antibacterial Activity of Ipomoea staphylina Extracts Against H. pylori: A Pharmacognostic Investigation of Whole Plant and Matured Stem with Emphasis on Quercetin Isolation. Trop Life Sci Res 2024; 35:215-242. [PMID: 39464660 PMCID: PMC11507966 DOI: 10.21315/tlsr2024.35.3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/20/2024] [Indexed: 10/29/2024] Open
Abstract
Ipomoea staphylina Rome & Schult, entrenched in ethnomedicinal practices, is recognised for its efficacy in treating stomach disorders. Traditionally used in Dharmapuri, Tamil Nadu for stomach ulcers, its matured stem bark latex is therapeutically relevant, especially for Helicobacter pylori (H. pylori) infections. This prompts scientific exploration into its antibacterial properties. The research validates the antibacterial efficacy of I. staphylina extracts against H. pylori, scrutinising the whole plant and matured stem through a comparative pharmacognostic analysis. Utilising herbal standardisation techniques, we confirm the heightened purity of the powder. Antimicrobial assessments show exceptional efficacy of DME (dried Ethanolic extract of I. staphylina) and HLS (hydro alcoholic extract of I. staphylina) extracts. Quercetin isolation by using advanced instrumentation (Nuclear magnetic resonance [NMR], High resolution mass spectrometry [HR-MS], High-performance thin-layer chromatography [HPTLC], Fourier transform infrared spectroscopy [FTIR]) ensures precise compound identification. This methodology guarantees an exhaustive analysis, confirming purity and identifying bioactive components. Standardisation underscores the elevated purity of I. staphylina, with phytochemical screening revealing a predominant presence of phenolics and flavonoids. Antibacterial investigations highlight significant activity, particularly with DME and HLS extracts. These findings substantiate I. staphylina's medicinal significance, especially its matured stem latex, as a promising treatment for H. pylori-induced stomach ulcers, affirming traditional use by Dharmapuri villagers.
Collapse
Affiliation(s)
- Lakshmanan Narayanan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, India
| | - SR Suseem
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Fernanda Arias-Santé M, Fuentes J, Ojeda C, Aranda M, Pastene E, Speisky H. Amplification of the antioxidant properties of myricetin, fisetin, and morin following their oxidation. Food Chem 2024; 435:137487. [PMID: 37827059 DOI: 10.1016/j.foodchem.2023.137487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Quercetin oxidation leads to the formation of a metabolite, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone, whose antioxidant potency was recently reported to be a 1000-fold higher than that of its precursor. The formation of similar metabolites (BZF) is limited to certain flavonols (FL), among which are myricetin, fisetin, and morin. Here we addressed the consequences of inducing the auto-oxidation of these flavonols in terms of their antioxidant properties (assessed in ROS-exposed Caco-2 cells). The mixtures that result from their oxidation (FLox) exhibited antioxidant activities 10-to-50-fold higher than those of their precursors. Such amplification was fully attributable to the presence of BZF in each FLox (established by HPLC-ESI-MS/MS and chemical subtraction techniques). An identical amplification was also found when the antioxidant activities of BZF, isolated from each FLox, and FL were compared. These findings warrant the search of these BZF in edible plants and their subsequent evaluation as a new type of functional food ingredients.
Collapse
Affiliation(s)
- M Fernanda Arias-Santé
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile.
| | - Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile.
| | - Camila Ojeda
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile.
| | - Mario Aranda
- Laboratory of Food & Drug Research, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Edgar Pastene
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.
| | - Hernán Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile.
| |
Collapse
|
3
|
Abstract
The term "scavengome" refers to the chemical space of all the metabolites that may be formed from an antioxidant upon scavenging reactive oxygen or nitrogen species (ROS/RNS). This chemical space covers a wide variety of free radical metabolites with drug discovery potential. It is very rich in structures representing an increased chemical complexity as compared to the parent antioxidant: a wide range of unusual heterocyclic structures, new CC bonds, etc. may be formed. Further, in a biological environment, this increased chemical complexity is directly translated from the localized conditions of oxidative stress that determines the amounts and types of ROS/RNS present. Biomimetic oxidative chemistry provides an excellent tool to model chemical reactions between antioxidants and ROS/RNS. In this chapter, we provide an overview on the known metabolites obtained by biomimetic oxidation of a few selected natural antioxidants, i.e., a stilbene (resveratrol), a pair of hydroxycinnamates (caffeic acid and methyl caffeate), and a flavonol (quercetin), and discuss the drug discovery perspectives of the related chemical space.
Collapse
Affiliation(s)
- Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary.
| | - Orinhamhe G Agbadua
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Gábor Takács
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest, Hungary; Mcule.com Ltd., Budapest, Hungary
| | - Gyorgy T Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest, Hungary; Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Phukan K, Devi R, Chowdhury D. Insights into Anti-Inflammatory Activity and Internalization Pathway of Onion Peel-Derived Gold Nano Bioconjugates in RAW 264.7 Macrophages. ACS OMEGA 2022; 7:7606-7615. [PMID: 35284751 PMCID: PMC8908513 DOI: 10.1021/acsomega.1c06131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 05/28/2023]
Abstract
Green synthesis of nanoparticles plays an important role in their efficient therapeutic effects in various biomedical applications. Here, we prepared gold nano bioconjugates (GNBCs) from the ethyl acetate fraction of onion peels and investigated their anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. The GNBCs were characterized by UV-visible spectroscopy, dynamic light scattering, and transmission electron microscopy. Comparative studies have been conducted among GNBCs, fractionate alone [onion peel drug (OPD)], and the standard drug dexamethasone in various anti-inflammatory assays. It was observed that GNBCs showed comparatively good therapeutic efficacy than the fractionate alone. At the lowest 10 μg/mL concentration, the GNBC and OPD exhibited 70.86 and 91.98% of reactive oxygen species production, 10.88 and 20.97 ng/μL of nitrite production, 337 and 378 pg/mL of TNF-α production, 27.1 and 30.64 pg/mL of IL-6 production, respectively, by maintaining a satisfactory cell viability. Moreover, to understand the mechanistic pathway of GNBCs in their entry into the macrophages, their localization, and duration, uptake studies have been performed where a caveolar-mediated endocytosis pathway is found to be prominent. Hence, this study will lead to the development of cheap, green synthesis of nano bioconjugates and their role in inflammation.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rajlakshmi Devi
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim
Boragaon, Garchuk, Guwahati 781035 Assam, India
| | - Devasish Chowdhury
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| |
Collapse
|
5
|
Arif MU, Khan MKI, Riaz S, Nazir A, Maan AA, Amin U, Saeed F, Afzaal M. Role of fruits in aging and age-related disorders. Exp Gerontol 2022; 162:111763. [DOI: 10.1016/j.exger.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 11/24/2022]
|
6
|
Sagar NA, Pareek S, Benkeblia N, Xiao J. Onion (
Allium cepa
L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Noureddine Benkeblia
- Department of Life Sciences/The Biotechnology Centre The University of the West Indies Kingston Jamaica
| | - Jianbo Xiao
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
7
|
Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11010133. [PMID: 35052636 PMCID: PMC8772813 DOI: 10.3390/antiox11010133] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids display a broad range of health-promoting bioactivities. Among these, their capacity to act as antioxidants has remained most prominent. The canonical reactive oxygen species (ROS)-scavenging mode of the antioxidant action of flavonoids relies on the high susceptibility of their phenolic moieties to undergo oxidation. As a consequence, upon reaction with ROS, the antioxidant capacity of flavonoids is severely compromised. Other phenol-compromising reactions, such as those involved in the biotransformation of flavonoids, can also markedly affect their antioxidant properties. In recent years, however, increasing evidence has indicated that, at least for some flavonoids, the oxidation of such residues can in fact markedly enhance their original antioxidant properties. In such apparent paradoxical cases, the antioxidant activity arises from the pro-oxidant and/or electrophilic character of some of their oxidation-derived metabolites and is exerted by activating the Nrf2–Keap1 pathway, which upregulates the cell’s endogenous antioxidant capacity, and/or, by preventing the activation of the pro-oxidant and pro-inflammatory NF-κB pathway. This review focuses on the effects that the oxidative and/or non-oxidative modification of the phenolic groups of flavonoids may have on the ability of the resulting metabolites to promote direct and/or indirect antioxidant actions. Considering the case of a metabolite resulting from the oxidation of quercetin, we offer a comprehensive description of the evidence that increasingly supports the concept that, in the case of certain flavonoids, the oxidation of phenolics emerges as a mechanism that markedly amplifies their original antioxidant properties. An overlooked topic of great phytomedicine potential is thus unraveled.
Collapse
Affiliation(s)
- Hernan Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
| | - Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, Santiago 7501015, Chile
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| |
Collapse
|
8
|
Yao Y, Xiong W, Chen L, Ju X, Wang L. Synergistic growth-inhibition effect of quercetin and N-Acetyl-L-cysteine against HepG2 cells relying on the improvement of quercetin stability. Food Chem 2021; 374:131729. [PMID: 34906805 DOI: 10.1016/j.foodchem.2021.131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
In this study, N-Acetyl-l-cysteine (NAC) as a widely-used antioxidant was first applied to improve the stability of Que in medium. The stability of Que in medium was analyzed, and the growth-inhibition effect of Que and NAC against HepG2 cells was estimated. The results showed NAC could significantly improve the stability of Que in medium (more than 80%), while Que alone in medium was totally degraded within 4 h. Besides, it was found that Que together with NAC could significantly enhance the growth-inhibition effect against HepG2 cells compared with Que alone, with the IC50 value of 40 μM and 200 μM for Que together with NAC and Que alone. Moreover, NAC could inhibit the depletion of GSH induced by Que. The synergistic growth-inhibition effect of Que and NAC against HepG2 cells was attributed to NAC improving Que stability in medium accompanied by NAC inhibiting the depletion of GSH induced by Que. The results showed that NAC could improve the stability of Que and reduce the degradation rate of Que in culture medium. This study can provide a reference for the further study of the mechanism of NAC enhancing the stability of quercetin and the development of broad-spectrum stabilizers.
Collapse
Affiliation(s)
- Yijun Yao
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, 210023 Nanjing, People's Republic of China
| | - Wenfei Xiong
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, 210023 Nanjing, People's Republic of China
| | - Lin Chen
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, 210023 Nanjing, People's Republic of China
| | - Xingrong Ju
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, 210023 Nanjing, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, 210023 Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Experimental studies and computational modeling on cytochrome c reduction by quercetin: The role of oxidability and binding affinity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Effects of Allium cepa and Its Constituents on Respiratory and Allergic Disorders: A Comprehensive Review of Experimental and Clinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5554259. [PMID: 34552650 PMCID: PMC8452398 DOI: 10.1155/2021/5554259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
The health benefits of Allium cepa (A. cepa) have been proclaimed for centuries. Various pharmacological and therapeutic effects on respiratory, allergic, and immunologic disorders are shown by A. cepa and its constituents. Flavonoids such as quercetin and kaempferol, alk(en)yl cysteine sulfoxides including S-methyl cysteine sulfoxide and S-propyl cysteine sulfoxide, cycloalliin, thiosulfinates, and sulfides are the main compounds of the plant. A. cepa displays broad-spectrum pharmacological activities including antioxidant, anti-inflammatory, antihypertensive, and antidiabetic effects. Our objective in this review is to present the effects of A. cepa and its constituents on respiratory, allergic, and immunologic disorders. Different online databases were searched to find articles related to the effect of A. cepa extracts and its constituents on respiratory, allergic, and immunologic disorders until the end of December 2020 using keywords such as onion, A. cepa, constituents of A. cepa, therapeutic effects and pharmacological effects, and respiratory, allergic, and immunologic disorders. Extracts and constituents of A. cepa showed tracheal smooth muscle relaxant effects, indicating possible bronchodilator activities or relieving effects on obstructive respiratory diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of A. cepa was induced by their antioxidant, immunomodulatory, and anti-inflammatory effects. The preventive effects of the plant and its components on lung disorders induced by exposure to noxious agents as well as lung cancer, lung infection, and allergic and immunologic disorders were also indicated in the experimental and clinical studies. Therefore, this review may be considered a scientific basis for development of therapies using this plant, to improve respiratory, allergic, and immunologic disorders.
Collapse
|
11
|
Phukan K, Devi R, Chowdhury D. Green Synthesis of Gold Nano-bioconjugates from Onion Peel Extract and Evaluation of Their Antioxidant, Anti-inflammatory, and Cytotoxic Studies. ACS OMEGA 2021; 6:17811-17823. [PMID: 34308016 PMCID: PMC8296016 DOI: 10.1021/acsomega.1c00861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
Plant secondary metabolites such as flavonoids demonstrate high degrees of antioxidant, anti-inflammatory, and anticancer activities. Among flavonoids, quercetin plays an important role in inflammation by downregulating the level of various cytokines. Thereby, in this work, onion (Allium cepa) peel was successfully utilized for the synthesis of gold nano-bioconjugates acting as a natural therapeutic drug. In this process, crude onion peel extract was first divided into different fractionates, namely, ethyl acetate, butanol, methanol, and water, and they were subjected to various preliminary studies of antioxidant activities. The ethyl acetate fractionate shows high antioxidant activities in all the assays. The bioactive components were identified and found to contain a high amount of quercetin as confirmed by liquid chromatography with tandem mass spectrometry and high-performance liquid chromatogrpahy. Three gold nano-bioconjugates were prepared with different concentrations of the ethyl acetate fractionate. Various biochemical anti-inflammatory assays were carried out and compared with the active ethyl acetate fraction of the onion peel drug (OPD). The cytotoxicity of the nano-bioconjugate system and the OPD was checked in the myoblast L6 cell line from skeletal muscle tissues to evaluate the toxicity. All the three nano-bioconjugates A, B, and E demonstrated high percentages of cell viability, viz., 73.07, 72.3, and 69.15%, respectively, at their highest concentration of 200 μg/mL. The OPD also showed 88.56% cell viability with no toxic effects in the myoblast L6 cell line from skeletal muscle tissues. The reactive oxygen species reduction of nano-bioconjugate B showed a marked reduction of 76.77% at a maximum concentration of 200 μg/mL, whereas the OPD showed 68.17%. Hence, through this work, a cheap source of nano-bioconjugates is developed, which can act as a potent antioxidant and anti-inflammatory agent and are more active in comparison to the OPD alone.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Rajlakshmi Devi
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
- . Tel.: +91 361 2912073. Fax: +91 361 2279909
| |
Collapse
|
12
|
Fuentes J, de Camargo AC, Atala E, Gotteland M, Olea-Azar C, Speisky H. Quercetin Oxidation Metabolite Present in Onion Peel Protects Caco-2 Cells against the Oxidative Stress, NF-kB Activation, and Loss of Epithelial Barrier Function Induced by NSAIDs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2157-2167. [PMID: 33591188 DOI: 10.1021/acs.jafc.0c07085] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The potential of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (BZF), a quercetin oxidation metabolite, and that of a BZF-rich onion peel aqueous extract (OAE) to protect Caco-2 monolayers against the oxidative stress (OS) and an increased permeability (IP) induced by five nonsteroidal anti-inflammatory drugs (NSAIDs) (indomethacin, diclofenac, piroxicam, ibuprofen, and metamizole) were investigated. Under identical OS conditions, the NSAIDs substantially differed in their ability to induce an IP and/or NF-kB activation. The OAE (100 nM BZF) protected in identical magnitude (84-86%) against OS but in a highly dissimilar manner against the IP (18-73%). While all NSAIDs activated NF-kB, the OAE prevented only that induced by indomethacin. Results reveal that the IP has no direct relationship with the OS and that with the exception of indomethacin, the prevention of NSAIDs-induced OS and/or NF-kB activation plays no fundamental role in the IP-protecting effect of OAE. These results warrant the in vivo evaluation of OAE against indomethacin-induced loss of intestinal barrier function.
Collapse
Affiliation(s)
- Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Elías Atala
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380000, Chile
| | - Hernán Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| |
Collapse
|
13
|
Celano R, Docimo T, Piccinelli AL, Gazzerro P, Tucci M, Di Sanzo R, Carabetta S, Campone L, Russo M, Rastrelli L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants (Basel) 2021; 10:antiox10020304. [PMID: 33669451 PMCID: PMC7920456 DOI: 10.3390/antiox10020304] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Food waste is a serious problem for food processing industries, especially when it represents a loss of a valuable source of nutrients and phytochemicals. Increasing consumer demand for processed food poses the problem of minimizing waste by conversion into useful products. In this regard, onion (Allium cepa) waste consisting mainly of onion skin is rich in bioactive phenolic compounds. Here, we characterized the flavonoid profiles and biological activities of onion skin wastes of two traditional varieties with protected geographical indication (PGI), the red “Rossa di Tropea” and the coppery “Ramata di Montoro”, typically cultivated in a niche area in southern Italy. The phytochemical profiles of exhaustive extracts, characterized by ultra-high-performance liquid chromatography coupled with ultraviolet (UV) detection and high-resolution mass spectrometry, revealed that flavonols and anthocyanins were the characteristic metabolite classes of onion skins. Quercetin, quercetin glucosides and their dimer and trimer derivatives, and, among anthocyanins, cyanidin 3-glucoside, were the most abundant bioactive compounds. The potential of onion skins was evaluated by testing several biological activities: ABTS/oxygen radical absorbance capacity (ORAC) and in vitro alpha-glucosidase assays were performed to evaluate the antioxidant and anti-diabetic properties of the extracts and of their main compounds, respectively, and proliferative activity was evaluated by MTT assay on human fibroblasts. In the present study, by observing various biological properties of “Rossa di Tropea” and “Ramata di Montoro” onion-dried skins, we clearly indicated that this agricultural waste can provide bioactive molecules for multiple applications, from industrial to nutraceutical and cosmetical sectors.
Collapse
Affiliation(s)
- Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.C.); (P.G.); (L.R.)
| | - Teresa Docimo
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (T.D.); (M.T.)
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.C.); (P.G.); (L.R.)
- Correspondence: (A.L.P.); (M.R.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.C.); (P.G.); (L.R.)
| | - Marina Tucci
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055 Portici, Italy; (T.D.); (M.T.)
| | - Rosa Di Sanzo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy; (R.D.S.); (S.C.)
| | - Sonia Carabetta
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy; (R.D.S.); (S.C.)
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy;
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy; (R.D.S.); (S.C.)
- Correspondence: (A.L.P.); (M.R.)
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.C.); (P.G.); (L.R.)
| |
Collapse
|
14
|
Analysis of flavonoids with unified chromatography-electrospray ionization mass spectrometry-method development and application to compounds of pharmaceutical and cosmetic interest. Anal Bioanal Chem 2020; 412:6595-6609. [PMID: 32651647 DOI: 10.1007/s00216-020-02798-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
In this project, we aimed at analysing flavonoid-type compounds with unified chromatography (joining supercritical fluid chromatography and enhanced fluidity liquid chromatography with carbon dioxide-methanol mobile phases covering a wide range of compositions) and diode-array and electrospray ionization mass spectrometric detection (UC-DAD-ESI-MS). First, the chromatographic method was developed for 9 standard flavonoid molecules from three different families (flavanols, flavanones and flavonols, glycosylated or not), with a strong focus on mobile phase composition to achieve the elution of a wide range of flavonoids with good chromatographic quality (efficiency and resolution). For this purpose, two stationary phases were selected (ACQUITY UPC2 DEA and Diol), and five different additives (formic acid, citric acid, phosphoric acid, methanesulfonic acid and ammonium hydroxide) were successively introduced in the methanol co-solvent. The composition containing 0.1% methanesulfonic acid in methanol was retained as it provided the best chromatographic quality together with the possibility of hyphenating the chromatography to mass spectrometry. The DEA column appeared to provide the best efficiency and was retained for further method development. The gradient method was then optimized to achieve a fast analysis, which involved elution with a wide range of mobile phase composition (from 20 to 100% co-solvent in methanol) together with reversed flow rate and reversed pressure gradients at fixed temperature. The final gradient lasted 10 min, followed by 2.5 min of re-equilibration. Then, ESI-MS detection was optimized. Because the single-quadrupole mass spectrometer employed (ACQUITY UPC2 QDa) allowed the variation of only a few parameters, a design of experiments was used to define the best compromise for three parameters (probe temperature, cone voltage and capillary voltage). The make-up fluid introduced before entering the MS was also varied: different compositions of methanol-water containing either formic acid, ammonium hydroxide or sodium chloride were tested. The best results in terms of signal-to-noise ratio were obtained with methanol containing 20 mM ammonium hydroxide and 2% water. The optimal UC-DAD-ESI-MS method was then applied to two different flavonoid formulation ingredients. The first one, hidrosmin (5-O-(β-hydroxyethyl)diosmin), is known for its vasoprotective properties and therefore employed in pharmaceutical formulations. The second one, α-glucosyl-hesperidin (sometimes referred to as vitamin P), is employed in cosmetic formulations. Identification of the major compounds in each sample was achieved with the help of MS detection. Graphical abstract.
Collapse
|
15
|
Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cáceres-Castillo D, Mena-Rejón GJ, Castro-Segura CS, Quijano-Quiñones RF. Mechanistic study of the formation of quercetine cycloadducts under microwave conditions: a theoretical approach. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1643509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- David Cáceres-Castillo
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, Autonomous University of Yucatan, Merida, Mexico
| | - Gonzalo J. Mena-Rejón
- Department of Pharmaceutical Chemistry, Faculty of Chemistry, Autonomous University of Yucatan, Merida, Mexico
| | - Carolina S. Castro-Segura
- Department of Theoretical Chemistry, Faculty of Chemistry, Autonomous University of Yucatan, Merida, Mexico
| | - Ramiro F. Quijano-Quiñones
- Department of Theoretical Chemistry, Faculty of Chemistry, Autonomous University of Yucatan, Merida, Mexico
| |
Collapse
|
17
|
Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants (Basel) 2020; 9:antiox9030205. [PMID: 32131401 PMCID: PMC7139729 DOI: 10.3390/antiox9030205] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
In this study, the anti-ferroptosis effects of catecholic flavonol quercetin and its metabolite quercetin Diels-Alder anti-dimer (QDAD) were studied using an erastin-treated bone marrow-derived mesenchymal stem cell (bmMSCs) model. Quercetin exhibited higher anti-ferroptosis levels than QDAD, as indicated by 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 2',7'-dichlorodihydrofluoroscein diacetate (H2DCFDA), lactate dehydrogenase (LDH) release, cell counting kit-8 (CCK-8), and flow cytometric assays. To understand the possible pathways involved, the reaction product of quercetin with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH●) was measured using ultra-performance liquid-chromatography coupled with electrospray-ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS). Quercetin was found to produce the same clusters of molecular ion peaks and fragments as standard QDAD. Furthermore, the antioxidant effects of quercetin and QDAD were compared by determining their 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging, Cu2+-reducing, Fe3+-reducing, lipid peroxidation-scavenging, and DPPH●-scavenging activities. Quercetin consistently showed lower IC50 values than QDAD. These findings indicate that quercetin and QDAD can protect bmMSCs from erastin-induced ferroptosis, possibly through the antioxidant pathway. The antioxidant pathway can convert quercetin into QDAD-an inferior ferroptosis-inhibitor and antioxidant. The weakening has highlighted a rule for predicting the relative anti-ferroptosis and antioxidant effects of catecholic flavonols and their Diels-Alder dimer metabolites.
Collapse
|
18
|
Vásquez-Espinal A, Yañez O, Osorio E, Areche C, García-Beltrán O, Ruiz LM, Cassels BK, Tiznado W. Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products. Front Chem 2019; 7:818. [PMID: 31828060 PMCID: PMC6890856 DOI: 10.3389/fchem.2019.00818] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
It was recently shown that, when tested in cellular systems, quercetin oxidized products (Qox) have significantly better antioxidant activity than quercetin (Q) itself. The main Qox identified in the experiments are either 2,5,7,3',4'-pentahydroxy-3,4-flavandione (Fl) or its tautomer, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (Bf). We have now performed a theoretical evaluation of different physicochemical properties using density functional theory (DFT) calculations on Q and its main Qox species. The most stable structures (for Q and Qox) were identified after a structural search on their potential energy surface. Since proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs) of phenolic hydrogens, we consider that direct antioxidant activity in these species is mainly due to the sequential proton loss electron transfer (SPLET) mechanism. Moreover, our kinetic studies, according to transition state theory, show that Q is more favored by this mechanism. However, Qox have lower PAs than Q, suggesting that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivity to transfer protons (which favors Qox) and the reaction kinetics of the conjugated base in the sequential electron transfer mechanism (which favors Q). Therefore, our results support the idea that Q is a better direct antioxidant than its oxidized derivatives due to its kinetically favored SPLET reactions. Moreover, our molecular docking calculations indicate a stabilizing interaction between either Q or Qox and the kelch-like ECH-associated protein-1 (Keap1), in the nuclear factor erythroid 2-related factor 2 (Nrf2)-binding site. This should favor the release of the Nrf2 factor, the master regulator of anti-oxidative responses, promoting the expression of the antioxidant responsive element (ARE)-dependent genes. Interestingly, the computed Keap1-metabolite interaction energy is most favored for the Bf compound, which in turn is the most stable oxidized tautomer, according to their computed energies. These results provide further support for the hypothesis that Qox species may be better indirect antioxidants than Q, reducing reactive oxygen species in animal cells by activating endogenous antioxidants.
Collapse
Affiliation(s)
- Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Lina María Ruiz
- Facultad Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Bruce K. Cassels
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Influence of Pickling Process on Allium cepa and Citrus limon Metabolome as Determined via Mass Spectrometry-Based Metabolomics. Molecules 2019; 24:molecules24050928. [PMID: 30866428 PMCID: PMC6429351 DOI: 10.3390/molecules24050928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 01/22/2023] Open
Abstract
Brine, the historically known food additive salt solution, has been widely used as a pickling media to preserve flavor or enhance food aroma, appearance, or other qualities. The influence of pickling, using brine, on the aroma compounds and the primary and secondary metabolite profile in onion bulb Allium cepa red cv. and lemon fruit Citrus limon was evaluated using multiplex metabolomics technologies. In lemon, pickling negatively affected its key odor compound “citral”, whereas monoterpene hydrocarbons limonene and γ-terpinene increased in the pickled product. Meanwhile, in onion sulphur rearrangement products appeared upon storage, i.e., 3,5-diethyl-1,2,4-trithiolane. Profiling of the polar secondary metabolites in lemon fruit via ultra-performance liquid chromatography coupled to MS annotated 37 metabolites including 18 flavonoids, nine coumarins, five limonoids, and two organic acids. With regard to pickling impact, notable and clear separation among specimens was observed with an orthogonal projections to least squares-discriminant analysis (OPLS-DA) score plot for the lemon fruit model showing an enrichment of limonoids and organic acids and that for fresh onion bulb showing an abundance of flavonols and saponins. In general, the pickling process appeared to negatively impact the abundance of secondary metabolites in both onion and lemon, suggesting a decrease in their food health benefits.
Collapse
|
20
|
Photiades A, Grigorakis S, Makris DP. Kinetics and modeling of L-cysteine effect on the Cu(II)-induced oxidation of quercetin. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1574767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Angelos Photiades
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Spyros Grigorakis
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Dimitris P. Makris
- Green Processes & Biorefinery Group School of Agricultural Technology, Food Technology & Nutrition, University of Applied Sciences of Thessaly, Karditsa, Greece
| |
Collapse
|
21
|
Empirical Kinetic Modelling of the Effect of l-Ascorbic Acid on the Cu(II)-Induced Oxidation of Quercetin. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed at investigating the effect of l-ascorbic acid on the Cu2+-induced oxidation of quercetin, within a pH range from 6.7 to 8.3 and temperatures varying from 53 to 87 °C. Initial examinations showed that quercetin degradation obeyed apparent first-order kinetics and it was significantly affected by temperature. Modelling of the effect of l-ascorbic acid by implementing response surface methodology suggested that l-ascorbic acid did not impact quercetin oxidation significantly (p < 0.05) and led to an empirical kinetic model based on temperature (T) and pH. Liquid chromatography–diode array–mass spectrometry analyses revealed the presence of typical quercetin degradation and oxidation products, including protocatechuic acid and 2-(hydroxybenzoyl)-2-hydroxybenzofuran-3(2H)-one. It was concluded that the formation of l-ascorbyl or other radicals (superoxide anion) may be involved in quercetin oxidation and this fact merits further attention to illuminate the possible beneficial or adverse nutritional consequences of such reactions in foods.
Collapse
|
22
|
Abouzed TK, Contreras MDM, Sadek KM, Shukry M, H Abdelhady D, Gouda WM, Abdo W, Nasr NE, Mekky RH, Segura-Carretero A, Kahilo KAA, Abdel-Sattar E. Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in Wistar rats in relation to their metabolite fingerprint. Diabetes Res Clin Pract 2018; 140:253-264. [PMID: 29626589 DOI: 10.1016/j.diabres.2018.03.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 12/29/2022]
Abstract
AIM The present study was designed to investigate the effect of red onion scales extract (ROS) against diabetic nephropathy, in relation to its metabolic profiling. METHODS Four groups of male Wistar rats were assigned as follows; 1st untreated group, 2nd group (animals with diabetes) treated with streptozotocin (STZ, 50 mg/kg) IP, 3rd group co-treated with ROS (150 mg/kg + STZ, 50 mg/kg) and 4th group co-treated with ROS by a dose (300 mg/kg + STZ, 50 mg/kg) daily. After four weeks, random and fasting blood glucose (FBG) levels, serum insulin, advanced glycation end products (AGEs), urea, uric acid and inflammatory and fibrotic gene expression were evaluated. Moreover, histopathological examination of the renal tissues was performed. In addition, the metabolic profiling of ROS was performed via RP-HPLC-DAD-QTOF-MS and -MS/MS. RESULTS The metabolic profiling of ROS revealed that protocatechuic acid and cyanidin-3-O-glucoside were the predominant compounds among 32 metabolites identified in the extract. ROS treated groups showed improvement of FBG and AGEs levels, whereas serum insulin level showed significant elevation. In addition, down-regulation of inflammatory mRNA expression associated with the hyperglycemic condition and amelioration in histopathological alterations in kidney tissues were observed. CONCLUSION This study displayed the presence of 32 phenolic compounds in the ethanolic extract of ROS, a common by-product of the industrial production of onion in Egypt. This study proved the therapeutic potential of ROS as antidiabetic agent and its preventive effect against diabetic nephropathy. Therefore, this study represents a perspective of the utilization of food waste products.
Collapse
Affiliation(s)
- Tarek Kamal Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr-Elsheikh University, 33516 Kafr-Elsheikh, Egypt
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Kadry Mohamed Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, 22511 Damanhur, Egypt
| | - Moustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, 33516 Kafr-Elsheikh, Egypt
| | - Doaa H Abdelhady
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, 33516 Kafr-Elsheikh, Egypt
| | - Wael Mohamed Gouda
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, 22511 Damanhur, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, 33516 Kafr-Elsheikh, Egypt
| | - Nasr Elsayed Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr-Elsheikh University, 33516 Kafr-Elsheikh, Egypt
| | - Reham Hassan Mekky
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Khaled Abdel-Aleim Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr-Elsheikh University, 33516 Kafr-Elsheikh, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
23
|
Newair EF, Nafady A, Abdel-Hamid R, Al-Enizi AM, Garcia F. Mechanistic Pathways and Identification of the Electrochemically Generated Oxidation Products of Flavonoid Eriodictyol in the Presence of Glutathione. ELECTROANAL 2018. [DOI: 10.1002/elan.201800071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emad F. Newair
- Unit of Electrochemistry Applications (UEA), Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
- Unit of Electrochemistry Applications (UEA), Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - Refat Abdel-Hamid
- Unit of Electrochemistry Applications (UEA), Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - Abdullah M. Al-Enizi
- Department of Chemistry, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - François Garcia
- SPO, INRA, Montpellier Supagro; Univ Montpellier; Montpellier France
| |
Collapse
|
24
|
Fuentes J, Atala E, Pastene E, Carrasco-Pozo C, Speisky H. Quercetin Oxidation Paradoxically Enhances its Antioxidant and Cytoprotective Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11002-11010. [PMID: 29179550 DOI: 10.1021/acs.jafc.7b05214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quercetin oxidation is generally believed to ultimately result in the loss of its antioxidant properties. To test this assertion, quercetin oxidation was induced, and after each of its major metabolites was identified and isolated by HPLC-DAD-ESI-MS/MS, the antioxidant (dichlorodihydrofluorescein oxidation-inhibiting) and cytoprotective (LDH leakage-preventing) properties were evaluated in Hs68 and Caco2 cells exposed to indomethacin. Compared to quercetin, the whole mixture of metabolites (QOX) displayed a 20-fold greater potency. After resolution of QOX into 12 major peaks, only one (peak 8), identified as 2,5,7,3',4'-pentahydroxy-3,4-flavandione or its 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone tautomer, could account for the antioxidant and cytoprotective effects afforded QOX. Peak 8 exerted such effects at a 50 nM concentration, revealing a potency 200-fold higher than that of quercetin. The effects of peak 8 were seen regardless of whether it was added to the cells 40 min before or simultaneously with the oxygen-reactive species-generating agent, suggesting an intracellular ability to trigger early antioxidant responses. Thus, the present study is the first to reveal that in regard to the intracellular actions of quercetin, attention should be extended toward some of its oxidation products.
Collapse
Affiliation(s)
- Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile , Santiago, Chile
| | - Elías Atala
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile , Santiago, Chile
| | - Edgar Pastene
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Concepcion , Concepcion, Chile
| | - Catalina Carrasco-Pozo
- Nutrition Department, Faculty of Medicine, University of Chile , Santiago, Chile
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University , Nathan, Queensland 4111, Australia
| | - Hernán Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile , Santiago, Chile
- Pharmacology Department, Faculty of Chemical and Pharmaceutical Sciences, University of Chile , Santiago, Chile
| |
Collapse
|
25
|
Savic S, Keckes S, Petronijevic Z. Modification of quercetin with l-cysteine by horseradish peroxidase. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1247829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sasa Savic
- Faculty of Technology, University of Nis, Leskovac, Serbia and
| | | | | |
Collapse
|
26
|
Krych-Madej J, Stawowska K, Gebicka L. Oxidation of flavonoids by hypochlorous acid: reaction kinetics and antioxidant activity studies. Free Radic Res 2016; 50:898-908. [DOI: 10.1080/10715762.2016.1194520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Hypocholesterolemic effect of quercetin-rich onion peel extract in C57BL/6J mice fed with high cholesterol diet. Food Sci Biotechnol 2016; 25:855-860. [PMID: 30263345 DOI: 10.1007/s10068-016-0141-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 02/08/2023] Open
Abstract
Onion peel (OP) extract is known as a rich source of flavonoids, mainly quercetin. We hypothesized that OP has hypocholesterolemic effects. To investigate the effect of OP, C57BL/6J mice were divided into 4 dietary groups (n=10); normal diet (ND); high cholesterol diet (HC); and high cholesterol diet with 100 or 200 mg OP extract (OP-100 or OP-200, respectively) per kg of body weight. After 12 weeks, lower values of liver weight, serum total cholesterol levels, LDL cholesterol, atherogenic index, cardiac risk factor, hepatic triacylglycerol, and total cholesterol, and higher fecal cholesterol levels were observed in the OP-200 than in the HC group. The hepatic mRNA expression levels of low-density lipoprotein receptors (LDL-R) and cholesterol 7-alpha-monooxygenase (CYP7A1) were high in the OP-200 compared to the HC group. These observations suggest that OP promoted lowering of serum and hepatic cholesterol in mice primarily via fecal excretion.
Collapse
|
28
|
Sharma K, Mahato N, Nile SH, Lee ET, Lee YR. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Funct 2016; 7:3354-69. [DOI: 10.1039/c6fo00251j] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
General anatomy and different layers in onion.
Collapse
Affiliation(s)
- Kavita Sharma
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Neelima Mahato
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Shivraj Hariram Nile
- Department of Bio-resources and Food Science
- College of Life and Environmental Sciences
- Konkuk University
- Seoul 143-701
- South Korea
| | - Eul Tal Lee
- Department of Bio-resources and Food Science
- College of Life and Environmental Sciences
- Konkuk University
- Seoul 143-701
- South Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|
29
|
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: A mechanistic view. Biotechnol Adv 2015; 34:532-549. [PMID: 26740171 DOI: 10.1016/j.biotechadv.2015.12.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 12/24/2022]
Abstract
Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiabá, MT, Brazil.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Touqeer Ahmed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Enzymatic synthesis, purification and in vitro antioxidant capacity of polyphenolic oxidation products from apple juice. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Suleria HAR, Butt MS, Anjum FM, Saeed F, Khalid N. Onion: Nature Protection Against Physiological Threats. Crit Rev Food Sci Nutr 2014; 55:50-66. [DOI: 10.1080/10408398.2011.646364] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Immunomodulatory effect of red onion (Allium cepa Linn) scale extract on experimentally induced atypical prostatic hyperplasia in Wistar rats. Mediators Inflamm 2014; 2014:640746. [PMID: 24829522 PMCID: PMC4009127 DOI: 10.1155/2014/640746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023] Open
Abstract
Red onion scales (ROS) contain large amounts of flavonoids that are responsible for the reported antioxidant activity, immune enhancement, and anticancer property. Atypical prostatic hyperplasia (APH) was induced in adult castrated Wistar rats by both s.c. injection of testosterone (0.5 mg/rat/day) and by smearing citral on shaved skin once every 3 days for 30 days. Saw palmetto (100 mg/kg) as a positive control and ROS suspension at doses of 75, 150, and 300 mg/kg/day were given orally every day for 30 days. All medications were started 7 days after castration and along with testosterone and citral. The HPLC profile of ROS methanolic extract displayed two major peaks identified as quercetin and quercetin-4′-β-O-D-glucoside. Histopathological examination of APH-induced prostatic rats revealed evidence of hyperplasia and inflammation with cellular proliferation and reduced apoptosis Immunohistochemistry showed increased tissue expressions of IL-6, IL-8, TNF-α, IGF-1, and clusterin, while TGF-β1 was decreased, which correlates with the presence of inflammation. Both saw palmetto and RO scale treatment have ameliorated these changes. These ameliorative effects were more evident in RO scale groups and were dose dependent. In conclusion, methanolic extract of ROS showed a protective effect against APH induced rats that may be attributed to potential anti-inflammatory and immunomodulatory effects.
Collapse
|
33
|
Qiao L, Sun Y, Chen R, Fu Y, Zhang W, Li X, Chen J, Shen Y, Ye X. Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PLoS One 2014; 9:e87766. [PMID: 24516562 PMCID: PMC3916345 DOI: 10.1371/journal.pone.0087766] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/30/2013] [Indexed: 02/01/2023] Open
Abstract
The sonochemical effects of ultrasound (US) treatment on 14 flavonoids representing the main flavonoids in citrus fruit were investigated in a standard mixture by stability evaluation of a model system. Degradation products were further tentatively identified by Fourier transform infrared spectroscopy and high-performance liquid chromatography–ultraviolet detection–electrospray ionization tandem mass spectrometry. Thirteen flavonoids (i.e., eriocitrin, narirutin, neohesperidin, quercitrin, eridictyol, didymin, naringenin, luteolin, sinensetin, nobiletin, tangeretin, naringin, and hesperidin) were fairly stable whereas quercetin was degraded significantly by US treatment. The types of solvent and temperature used were important factors that determined the resulting degradation reactions. The degradation rate of quercetin was highest in 80% ethanol aqueous solution and decreased with increasing temperature. Longer US durations caused increases in the extent of quercetin degradation. Liquid height, ultrasonic intensity, pulse length, and duty cycle of US affected degradation rates but did not change the nature of degradation of the flavonoids. Four types of reactions occurred simultaneously for quercetin under US treatment: oxidation, addition, polymerization, and decomposition. Eight degradation products were tentatively identified as dimer, alcohol addition, oxidation, and decomposition products.
Collapse
Affiliation(s)
- Liping Qiao
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Yujing Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
| | - Rongrong Chen
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Yu Fu
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Wenjuan Zhang
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Xin Li
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Yan Shen
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
- * E-mail:
| |
Collapse
|
34
|
Matuz A, Giorgi M, Speier G, Kaizer J. Structural and functional comparison of manganese-, iron-, cobalt-, nickel-, and copper-containing biomimic quercetinase models. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Savic S, Vojinovic K, Milenkovic S, Smelcerovic A, Lamshoeft M, Petronijevic Z. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry. Food Chem 2013; 141:4194-9. [PMID: 23993605 DOI: 10.1016/j.foodchem.2013.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 03/26/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
Abstract
Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety.
Collapse
Affiliation(s)
- Sasa Savic
- Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | | | | | | | | | | |
Collapse
|
36
|
Bystrická J, Musilová J, Vollmannová A, Timoracká M, Kavalcová P. Bioactive components of onion (Allium cepaL.) — a Review. ACTA ALIMENTARIA 2013. [DOI: 10.1556/aalim.42.2013.1.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Ozyurt D, Goc B, Demirata B, Apak R. Effect of Oven and Microwave Heating on the Total Antioxidant Capacity of Dietary Onions Grown in Turkey. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.555900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Pham A, Bortolazzo A, White JB. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells. Biochem Biophys Res Commun 2012; 427:415-20. [DOI: 10.1016/j.bbrc.2012.09.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/30/2023]
|
39
|
Huvaere K, Sinnaeve B, Van Bocxlaer J, Skibsted LH. Flavonoid deactivation of excited state flavins: reaction monitoring by mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9261-9272. [PMID: 22889117 DOI: 10.1021/jf301823h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Flavin mononucleotide (FMN, as a B(2) vitamin model) was shown to induce dimerization of flavonoids (flavanone, apigenin, naringenin, eriodictyol, taxifolin, catechin, kaempferol, luteolin, quercetin, rutin, and seven smaller model phenols studied) as the major photoreaction, when aqueous solutions were exposed to visible light using a new, real-time electrospray ionization mass-spectrometric (ESI-MS) technique supported by LC-MS and MS(2) analysis. Electrophilic intermediates such as transient radical cations, o-quinones, and p-quinone methide were proposed to be involved in the coupling process. The C(3)-OH in flavon-3-ols gave rise to atypical compounds such as a depside or a dioxane-linked dimer. Flavonoid dimers, formed in vegetal extracts added to food during storage in light and for which structures are proprosed based on MS and MS(2), may affect colloidal stability, color, astringency, and antioxidative capacity.
Collapse
Affiliation(s)
- Kevin Huvaere
- Food Chemistry, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
40
|
Bio-inspired flavonol and quinolone dioxygenation by a non-heme iron catalyst modeling the action of flavonol and 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases. J Inorg Biochem 2012; 108:15-21. [DOI: 10.1016/j.jinorgbio.2011.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/27/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
|
41
|
Košinová P, Gažák R, Duroux JL, Lazzaroni R, Křen V, Assfeld X, Trouillas P. Dimerisation Process of Silybin-Type Flavonolignans: Insights from Theory. Chemphyschem 2011; 12:1135-42. [DOI: 10.1002/cphc.201100066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Indexed: 11/08/2022]
|
42
|
Arung ET, Furuta S, Ishikawa H, Kusuma IW, Shimizu K, Kondo R. Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.07.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Arung ET, Wijaya Kusuma I, Shimizu K, Kondo R. Tyrosinase inhibitory effect of quercetin 4′-O-β-D-glucopyranoside from dried skin of red onion (Allium cepa). Nat Prod Res 2011; 25:256-63. [DOI: 10.1080/14786411003754256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Osman A, Makris DP. Comparison of fisetin and quercetin oxidation with a cell-free extract of onion trimmings and peel, plant waste, containing peroxidase enzyme: a further insight into flavonol degradation mechanism. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02408.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
KIM Y, JIN S, PARK W, KIM B, JOO S, YANG H. THE EFFECT OF GARLIC OR ONION MARINADE ON THE LIPID OXIDATION AND MEAT QUALITY OF PORK DURING COLD STORAGE. J FOOD QUALITY 2010. [DOI: 10.1111/j.1745-4557.2010.00333.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Factors influencing antioxidant activities and total phenolic content of guava leaf extract. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2010.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Zielinska D, Pierozynski B, Wiczkowski W. On the electrooxidation mechanism of quercetin glucosides at glassy carbon electrode. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2009.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Singh BN, Singh BR, Singh RL, Prakash D, Singh DP, Sarma BK, Upadhyay G, Singh HB. Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem Toxicol 2009; 47:1161-7. [PMID: 19425188 DOI: 10.1016/j.fct.2009.02.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In order to determine antioxidant activity, the five extracts/fractions of red onion peel were studied for their total content of phenolics (TPC), flavonoids (TFC), antioxidant activity (AOA), free radical scavenging activity (FRSA), assayed by DPPH radical in the terms of anti-radical power (ARP) and reducing power (RP), expressed as ascorbic acid equivalents (ASE)/ml. High TPC (384.7 +/- 5.0 mg GAE/g), TFC (165.2+/- 3.2 mg QE/g), AOA (97.4 +/- 7.6%), ARP (75.3 +/-4.5) and RP (1.6 +/-0.3 ASE/ml) were found for the ethyl acetate (EA) fraction. EA fraction had markedly higher antioxidant capacity than butylated hydroxytoluene (BHT) in preventive or scavenging capacities against FeCl3-induced lipid peroxidation, protein fragmentation, hydroxyl (site-specific and non-site-specific), superoxide anion and nitric oxide radicals. EA fraction also showed dose dependent antimutagenic activity by following the inhibition of tobacco-induced mutagenicity in Salmonella typhimurium strains (TA102) and hydroxyl radical-induced nicking in plasmid pUC18 DNA. HPLC and MS/MS analysis showed the presence of ferulic, gallic, protocatechuic acids, quercetin and kaempferol. The large amount of polyphenols contained in EA fraction may cause its strong antioxidant and antimutagenic properties. This information shows that EA fraction of red onion peel can be used as natural antioxidant in nutraceutical preparations.
Collapse
Affiliation(s)
- Brahma N Singh
- Nutraceutical Chemistry, National Botanical Research Institute, Lucknow 226 001, India
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhou A, Sadik OA. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:12081-12091. [PMID: 19053369 DOI: 10.1021/jf802413v] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Quercetin, the most abundant flavonoid in dietary fruits and vegetables, acts as antioxidant or prooxidant depending on the environmental conditions. The antioxidant behavior is believed to involve initial oxidative steps with subsequent changes in the flavonoid skeleton, which ultimately alters the chemical and biological properties of these molecules. Although the mechanism is still unclear, it has been suggested to be strongly influenced by the surrounding media. This paper reports the oxidation of quercetin by air oxygen or autoxidation, bulk electrolysis, mushroom tyrosinase, and azodiisobutyronitrile (AIBN). The central aim of this study is to systematically examine how the similarities and differences of quercetin transformation can be affected by the nature of the oxidation systems. Using a range of molecular and structural characterization techniques (UV-vis, LC-MS, GC-MS, and NMR), the oxidation of quercetin was found to result in the generation of somewhat similar metabolites including depside, phenolic acids, and quercetin-solvent adducts, although the transformation process and quantities of each product depend on the type of oxidation method employed. The rate of quercetin autoxidation can be fitted to a monoexponential first-order decay with a k value of 6.45 x 10(-2) M(-1) s(-1). Comparison of quercetin oxidative products in the different systems provides a deeper insight into the underlying mechanism involved in the oxidation process. This work demonstrates that the presence of water and/or nucleophiles as well as different catalysts (tyrosinase, AIBN, or air oxygen in solution) may have very important implications for the formation of quinone with subsequent oxidative cleavage or polymerization. Moreover, the apparent first-order kinetics of autoxidation can indicate a rate-determining, one-electron oxidation of quercetin anions followed by two fast steps of radical disproportionation and solvent addition on the resulting quinone.
Collapse
Affiliation(s)
- Ailing Zhou
- Department of Chemistry, State University of New York-Binghamton, P.O. Box 6000, Binghamton, New York 13902, USA
| | | |
Collapse
|
50
|
Chervyakovsky EM, Bolibrukh DA, Kurovskii DL, Gilep AA, Vlasova TM, Kurchenko VP, Usanov SA. Oligomeric oxidation products of the flavonoid quercetin. Chem Nat Compd 2008. [DOI: 10.1007/s10600-008-9092-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|