1
|
Mišina I, Lazdiņa D, Górnaś P. Tocochromanols in the Leaves of Plants in the Hypericum and Clusia Genera. Molecules 2025; 30:709. [PMID: 39942812 PMCID: PMC11820847 DOI: 10.3390/molecules30030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Now under Clusiaceae and Hypericaceae, Clusia and Hypericum were previously categorized under one family until they were divided in 2003 by the APG III system. The Clusia genus is characterized by the presence of tocotrienol derivatives with antiangiogenic properties, and only Hypericum perforatum tocochromanol content has been studied in the Hypericum genus. Twelve species were analyzed: H. aegypticum, H. calycinum, H. empetrifolium, H. lancasteri, H. olympicum f. minus 'Sulphureum', H. perforatum, H. xylosteifolium, C. fluminensis, C. minor, C. odorata, C. palmicida, and C. tocuchensis. Plant leaves were analyzed for their tocochromanol (α-, β-, γ-, and δ-tocotrienol and tocopherol) contents using a reverse-phase high-performance liquid chromatography with fluorescent light detector (RP-HPLC-FLD) method. While α-tocopherol (α-T) was present in the highest proportion, the leaves had significant tocotrienol (T3) contents. Following α-T, δ-T3 was present in most Clusia samples, and γ-T3 in most Hypericum samples, except H. olympicum, in which α-T3 followed. C. minor had the highest α-T (112.72 mg 100 g-1) and total tocochromanol (141.43 mg 100 g-1) content, followed by C. palmicida (65.97 and 82.96 mg 100 g-1, respectively) and H. olympicum (α-T 32.08, α-T3 30.68, and total tocochromanols 89.06 mg 100 g-1). The Hypericum genus is a valuable source of tocotrienols, with potential use after purification.
Collapse
Affiliation(s)
| | | | - Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia; (I.M.); (D.L.)
| |
Collapse
|
2
|
Chauca-Cerrutti A, Inga M, Pasquel-Reátegui JL, Betalleluz-Pallardel I, Puma-Isuiza G. Optimization of extraction in supercritical fluids in obtaining Pouteria lucuma seed oil by response surface methodology and artificial neuronal network coupled with a genetic algorithm. Front Chem 2024; 12:1491479. [PMID: 39720553 PMCID: PMC11666378 DOI: 10.3389/fchem.2024.1491479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 12/26/2024] Open
Abstract
When processing lucuma (Pouteria lucuma), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact. LS was previously characterized, and the extraction parameters were optimized using a Box-Behnken design, considering temperature (40-60°C), pressure (100-300 bar), and CO2 flow rate (3-7 mL/min), applying the response surface methodology (RSM) and neural networks with genetic algorithm (ANN+GA). The optimal parameters were 45°C, 300 bar, and 6 mL/min, obtaining 97.35% of the total oil content. The RSM and ANN+GA models showed R2 values of 0.9891 and 0.9999 respectively, indicating that both models exhibited a good fit to the experimental data. However, ANN+GA provided a greater proportion of the total variability, which facilitates the identification of the optimal parameters for the extraction of oil from lucuma seeds. Compared to the Soxhlet method, the LSO obtained by SCF presented better acidity (4.127 mg KOH/g), iodine (100.294 g I2/100 g), and refraction indices (1.4710), as well as to a higher content of mono- and polyunsaturated fatty acids. Supercritical CO2 extraction is presented as a sustainable green alternative to Soxhlet extraction for extracting oil from lucuma seed due to its high extraction efficiency and similar fatty acid profile.
Collapse
Affiliation(s)
- Alex Chauca-Cerrutti
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Marianela Inga
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - José Luis Pasquel-Reátegui
- Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, San Martin, Peru
| | | | - Gustavo Puma-Isuiza
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
3
|
Blejan AM, Nour V, Corbu AR, Codină GG. Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt. Gels 2024; 10:616. [PMID: 39451268 PMCID: PMC11507111 DOI: 10.3390/gels10100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Fruit processing by-products could represent a sustainable ingredient for developing innovative dairy products. The present study was conducted to develop a novel functional yogurt by adding bilberry pomace powder (BPP) at 0.5%, 1.0%, and 1.5% (w/w) levels in stirred-type yogurt production to confer color and to increase the dietary fiber and polyphenol content. Physicochemical properties of the yogurt samples, including color parameters, titratable acidity, pH, water holding capacity (WHC), and syneresis, as well as textural and rheological properties, were evaluated in yogurts on the 1, 14, and 28 days of refrigerated storage (4 °C). In addition, total phenolic content, total anthocyanin content, and radical scavenging activity were determined in yogurts, and sensory analysis was conducted. The results showed that BPP is a valuable source of polyphenols, dietary fiber, and oils rich in n-3 polyunsaturated fatty acids (n-3 PUFAs, n-6/n-3 ratio = 0.91). The incorporation of BPP imparted an attractive purple color to the yogurts, increased WHC, and reduced syneresis. Moreover, the addition of BPP improved the rheological properties, demonstrating that a more dense and stable yogurt gel network structure was obtained than the control. The yogurt enriched with 1.0% BPP received the highest scores for color, consistency, taste, and overall acceptability. Hence, bilberry pomace powder might be used as an ingredient to improve the nutritional and functional value of yogurts.
Collapse
Affiliation(s)
- Ana Maria Blejan
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
4
|
Roy S, Sarkar T, Upadhye VJ, Chakraborty R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol 2024; 196:4472-4643. [PMID: 37755640 DOI: 10.1007/s12010-023-04674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.
Collapse
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | | | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
5
|
Tamašauskaitė L, Minelgaitė V, Šipailienė A, Vinauskienė R, Eisinaitė V, Leskauskaitė D. Bigel Matrix Loaded with Probiotic Bacteria and Prebiotic Dietary Fibers from Berry Pomace Suitable for the Development of Probiotic Butter Spread Product. Gels 2024; 10:349. [PMID: 38786266 PMCID: PMC11121513 DOI: 10.3390/gels10050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents a novel approach to developing a probiotic butter spread product. We evaluated the prebiotic activity of soluble dietary fibers extracted from cranberry and sea buckthorn berry pomace with different probiotic strains (Limosilactobacillus reuteri, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum), uploaded selected compatible combination in the bigel matrix, and applied it in the probiotic butter spread formulation. Bigels and products were characterized by physical stability, rheological, textural properties, and viability of probiotics during storage at different conditions. The highest prebiotic activity score was observed in soluble cranberry (1.214 ± 0.029) and sea buckthorn (1.035 ± 0.009) fibers when cultivated with L. reuteri. The bigels loaded with probiotics and prebiotic fiber exhibited a significant increase in viscosity (higher consistency coefficient 40-45 Pa·sn) and better probiotic viability (>6 log CFU/g) during long-term storage at +4 °C temperature, surpassing the bigels loaded with probiotics alone. Bigels stored at a lower temperature (-18 °C) maintained high bacterial viability (above 8.5 log CFU/g). The butter spread enriched with the bigel matrix was softer (7.6-14.2 N), indicating improved spreadability. The butter spread product consistently met the required 6 log CFU/g for a functional probiotic food product until 60 days of storage at +4 °C temperature. The butter stored at -18 °C remained probiotic throughout the entire storage period, confirming the protective effect of the bigel matrix. The study's results showed the potential of the bigel to co-encapsulate, protect, and deliver probiotics during prolonged storage under different conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Daiva Leskauskaitė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl 19, LT-50254 Kaunas, Lithuania (V.M.)
| |
Collapse
|
6
|
Ak G, Tüfekci EF, Mustafa AM, Caprioli G, Altunoglu YC, Baloglu MC, Cakılcıoglu U, Polat R, Darendelioglu E, Zengin G. Exploring Sorbus torminalis Leaves: Unveiling a Promising Natural Resource for Diverse Chemical and Biological Applications. Chem Biodivers 2024; 21:e202301596. [PMID: 38126959 DOI: 10.1002/cbdv.202301596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Sorbus torminalis (L.) Crantz has a rich history of versatile applications spanning the fields of medicine and nutrition. It is noteworthy that the decoction obtained from S. torminalis leaves is a traditional treatment method against both diabetes and stomach disorders. Phytochemical profiling determined by HPLC/MS-MS. The effects of the extracts on cell viability were investigated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method against MDA-MB-231 cell line (human breast adenocarcinoma).The ethanol/water extract contained more concentration of total phenolic (91.41 mg gallic acid (GAE) equivalent /gr) and flavanoid (29.10 mg rutin (RE) equivalent/gr) in the tested extract (p<0.05). Resulting of HPLC analysis, the chemical constituents varied depending on the solvents and chlorogenic acid, hyperoside, isoquercetin, delphindin-3,5-diglucoside, procyanidin B2, epicatechin, neochlorogenic acid, 3,5-dicaffeoylquinic acid were identified in all extracts. Overall, ethanol, n-hexane and ethyl acetate extracts showed the highest inhibition for the tyrosinase enzyme. The effect of leaf extracts of S. torminalis on antimicrobial, biofilm inhibitory, and anticancer activities was examined. Based on outcomes of our study recognize this plant as a critical source of medically active chemicals for feasible phytopharmaceutical and nutraceutical applications, providing the first scientific insight into the detailed biological and chemical profiles of S. torminalis.
Collapse
Affiliation(s)
- Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Enis Fuat Tüfekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Ahmed M Mustafa
- School of Pharmacy, University of Camerino, Chemistry Interdisciplinary Project (CHIP), via Madonna delle Carceri, 62032, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Chemistry Interdisciplinary Project (CHIP), via Madonna delle Carceri, 62032, Camerino, Italy
| | - Yasemin Celik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
- Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Turkey
| | - Ugur Cakılcıoglu
- Munzur University, Pertek Sakine Genç Vocational School, Tunceli, Turkey
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Turkey
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bingol University, Bingol, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| |
Collapse
|
7
|
Arvinte OM, Senila L, Becze A, Amariei S. Rowanberry-A Source of Bioactive Compounds and Their Biopharmaceutical Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3225. [PMID: 37765389 PMCID: PMC10536293 DOI: 10.3390/plants12183225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
After a period of intense development in the synthesis pharmaceutical industry, plants are making a comeback in the public focus as remedies or therapeutic adjuvants and in disease prevention and ensuring the wellbeing and equilibrium of the human body. Plants are being recommended more and more in alimentation, in their natural form, or as extracts, supplements or functional aliments. People, in general, are in search of new sources of nutrients and phytochemicals. As a result, scientific research turns to lesser known and used plants, among them being rowanberries, a species of fruit very rich in nutrients and underused due to their bitter astringent taste and a lack of knowledge regarding the beneficial effects of these fruit. Rowan fruits (rowanberries) are a rich source of vitamins, polysaccharides, organic acids and minerals. They are also a source of natural polyphenols, which are often correlated with the prevention and treatment of modern world diseases. This article presents the existing data regarding the chemical composition, active principles and biopharmaceutical properties of rowan fruits and the different opportunities for their usage.
Collapse
Affiliation(s)
- Ofelia Marioara Arvinte
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Lăcrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (A.B.)
| | - Anca Becze
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (A.B.)
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
8
|
Grajzer M, Wiatrak B, Jawień P, Marczak Ł, Wojakowska A, Wiejak R, Rój E, Grzebieluch W, Prescha A. Evaluation of Recovery Methods for Fragaria vesca L. Oil: Characteristics, Stability and Bioactive Potential. Foods 2023; 12:foods12091852. [PMID: 37174392 PMCID: PMC10178134 DOI: 10.3390/foods12091852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Wild strawberry (Fragaria vesca L.) seed oil (WSO) recovered by two methods-cold pressing (CP) and extraction with supercritical carbon dioxide (SCO2E)-taking into account the different extraction times, was characterized for its composition and quality. The cytotoxicity assessment of WSOs was also carried out using the normal human dermal fibroblast (NHDF) cell line. Tocopherol and total polyphenol contents were significantly higher in WSO recovered by SCO2E, up to 1901.0 and 58.5 mg/kg, respectively, in comparison with CP oil. In CP oil, the highest content of carotenoids and squalene was determined (123.8 and 31.4 mg/kg, respectively). Phytosterol summed up to 5396 mg/kg in WSO collected in 30 min of SCO2E. Moreover, the highest oxidative stability was found for this oil. All studied WSOs were non-cytotoxic in lactate dehydrogenase (LDH) leaching and sulforhodamine B (SRB) assays; however, oils collected by SCO2E in 15 and 30 min were found to be cytotoxic in the tetrazolium salt (MTT) test, with the CC50 at a concentration of 3.4 and 5.5%, respectively. In conclusion, the composition of WSO indicates that, depending on the method of its recovery, seeds can have different bio-potencies and various applications.
Collapse
Affiliation(s)
- Magdalena Grajzer
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-138 Poznanń, Poland
| | - Anna Wojakowska
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-138 Poznanń, Poland
| | - Rafał Wiejak
- Research Group Supercritical Extraction, Łukasiewicz Research Network-New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Edward Rój
- Research Group Supercritical Extraction, Łukasiewicz Research Network-New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Wojciech Grzebieluch
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Anna Prescha
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Sosnówka-Czajka E, Skomorucha I, Obremski K, Wojtacha P. Performance and meat quality of broiler chickens fed with the addition of dried fruit pomace. Poult Sci 2023; 102:102631. [PMID: 37004287 PMCID: PMC10091109 DOI: 10.1016/j.psj.2023.102631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of the study was to evaluate the addition to feed of 3% of dried pomace from apples (AP), cherries (CH), and strawberries (ST) on the production results and meat quality of broiler chickens. Birds fed only the standard mixture for broiler chickens were the control group (CO). On d 42, a lower body weight of broiler chickens from group ST was noted compared to birds from group CO at P = 0.032. When feed conversion per 1 kg of weight gain and loss of broiler chickens was assessed, no differences between groups were shown (P ˃ 0.05). The leg muscles of AP and CH broiler chickens had less drip loss compared to the control group at P = 0.036. For other quality parameters of breast and leg muscles, no differences between groups were noted (P ˃ 0.05). It was found that the addition of dried apple and cherry pomace to the feed in the amount of 3% did not adversely affect the production results and the quality of broiler chicken meat. On the other hand, the addition to feed of dried pomace from strawberries reduced the final body weight of experimental birds. The most interesting additive turned out to be dried cherry pomace, because it improved slaughter efficiency, contributed to reducing drip loss of leg muscles, and influenced the lower level of crude fat in the breast muscles. However, further research should be carried out on the optimal concentration of CH in the diet of fattening chickens in order to achieve the most beneficial results.
Collapse
|
10
|
Free tocopherols and tocotrienols in 82 plant species' oil: Chemotaxonomic relation as demonstrated by PCA and HCA. Food Res Int 2023; 164:112386. [PMID: 36737971 DOI: 10.1016/j.foodres.2022.112386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The tocopherol (T) and tocotrienol (T3) profile were investigated in the present study for four hundred and eighteen plant oil samples, including thirty-one families, eighty-two species, and five cross-species. Fifteen species were dominated by tocotrienols, while sixty-seven - by tocopherols. The mean proportion of γ-T was almost half of the total tocochromanol content (49.3%) in the investigated samples, while α-T constituted to one quarter (25.0%), and the remaining other tocochromanols were present as minor constituents. A strong relationship between the taxonomic plant origin and the presence of the characteristic tocochromanol profile in oils obtained from those plants was noted. This is the first study to demonstrate that not only monocotyledonous, but also dicotyledons families can be rich in tocotrienols. The usefulness of statistical tools - principal component analysis (PCA) and hierarchical cluster analysis (HCA) for plant sample discrimination based on their tocochromanol profile was also shown.
Collapse
|
11
|
Wójciak M, Mazurek B, Tyśkiewicz K, Kondracka M, Wójcicka G, Blicharski T, Sowa I. Blackcurrant ( Ribes nigrum L.) Seeds-A Valuable Byproduct for Further Processing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248679. [PMID: 36557810 PMCID: PMC9781738 DOI: 10.3390/molecules27248679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The rational exploitation of byproducts is important from the point of view of their potential applicability in various fields. In this study, the possibility of further processing of blackcurrant seeds (BCs), which are a byproduct of fruit processing, was investigated. BCs were used as a material for the extraction of oil on a semi-industrial scale, and the residues were assessed in terms of their potential application in skin care products. Supercritical fluid extraction (SFE) using CO2 at pressures of 230 and 330 bar and extraction temperature of 40 °C was exploited for isolation of oil, and the products were characterised taking into account lipophilic constituents. After 120 min, the oil yields were 19.67% and 20.94% using CO2 at 230 and 330 bar, respectively, which showed that SFE was an effective method on a semi-industrial scale, taking into account the extraction yield. The oils had similar fatty acid compositions with a high percentage of linoleic acid (ca. 43%); however, tocopherols and carotenoids were most abundant in the oil obtained at 230 bar. It was also found that the composition of the SFE oils was comparable with that of cold-pressed oil, which shows that supercritical fluid extraction provides a high-quality product; therefore, it can be an alternative to cold pressing. Furthermore, the chemical compositions of the extracts from the oil isolation residues were established using UPLC-MS, and the impact of the extracts on human skin fibroblasts was assessed using the MTT and NR assays. The quantitative analysis revealed that the residues contained high amounts of polyphenolic acids, including gallic, protocatechuic, and hydroxybenzoic acid derivatives, as well as flavonoids, especially quercetin and kaempferol glucoside. Moreover, it was found that the extracts were nontoxic and exerted a stimulatory effect on cell metabolism. Therefore, they can be a valuable additive to natural plant-based cosmetics. Our results showed that blackcurrant seeds, regarded as a byproduct, can be a valuable material for further use.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Barbara Mazurek
- Analytical Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Pulawy, Poland
| | - Katarzyna Tyśkiewicz
- Analytical Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Pulawy, Poland
| | - Małgorzata Kondracka
- Analytical Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Pulawy, Poland
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
12
|
Génier CSV, Guglielmo CG, Hobson KA. Combining bulk stable H isotope (δ2H) measurements with fatty acid profiles to examine differential use of aquatic vs. terrestrial prey by three sympatric species of aerial insectivorous birds. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aerial insectivorous songbirds such as swallows and martins have declined substantially in North America in recent decades. Aquatic-emergent insects provide more beneficial omega-3 fatty acids than terrestrial insects, and thus, diet quality is expected to vary among aerial insectivores with differential access to aquatic-emergent insects. We compared the stable hydrogen isotope (δ2H) values of feathers and bulk blood plasma fatty acids of nestling purple martins (Progne subis), tree swallows (Tachycineta bicolor), and barn swallows (Hirundo rustica), at lakeshore and inland sites near Lake Erie, Ontario, Canada. We found that diet quality differed between inland and lakeshore nesting habitats, but differences depended on species. Overall, purple martin and tree swallow nestlings had lower feather δ2H values, indicating a more aquatic-emergent diet, and lakeshore populations of both species had higher omega-3 fatty acid levels in their blood plasma compared to inland populations. Conversely, higher plasma levels of omega-6 fatty acids were found in inland birds. Tree swallows have a low omega-3 conversion efficiency from precursor substrates and so depend on aquatic subsidies to fulfill their nutritional needs. We suggest this may also be the case with purple martins. Barn swallows had the most positive feather δ2H values, regardless of proximity to the lakeshore, indicating a more terrestrial diet. However, barn swallow nestlings had consistently higher plasma omega-3 docosahexaenoic acid (DHA) regardless of nesting location, suggesting that barn swallows can efficiently convert omega-3 precursors into their beneficial elongated fatty acid chains. Our study indicates the benefit of combining plasma fatty acid compositional analyses with bulk feather δ2H values to decipher interspecific differences in adaptations to availability of aquatic-emergent insects.
Collapse
|
13
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
14
|
Red Raspberry Seed Oil Low Energy Nanoemulsions: Influence of Surfactants, Antioxidants, and Temperature on Oxidative Stability. Antioxidants (Basel) 2022; 11:antiox11101898. [PMID: 36290621 PMCID: PMC9598911 DOI: 10.3390/antiox11101898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess and improve the oxidative stability of red raspberry seed oil−RO, a potential topical ingredient derived from food industry by-products, on its own and when incorporated in low energy nanoemulsion (NE). The RO’s oxidative stability was assessed at 5, 25, and 40 °C during one month of storage and expressed in: peroxide value, p-anisidine, and thiobarbituric reactive substances—TBARS value, while for NEs, lipid hydroperoxides and TBARS values were monitored. Both synthetic (butylated hydroxytoluene—BHT and ethylenediaminetetraacetic acid—EDTA), and natural (oregano essential oil—ORE and oak fruit extract—OAK) antioxidants were used. Pure RO and RO with BHT or ORE were stable at 5 °C and 25 °C, but at 40 °C BHT showed only moderate protection, while ORE was prooxidant. NEs prepared with new biodegradable polyglycerol esters-based surfactants, with droplet sizes of < 50 nm and narrow size distribution, showed improved physicochemical stability at room temperature, and especially at 40 °C, compared to NEs with polysorbate 80, which required the addition of antioxidants to preserve their stability. Natural antioxidants ORE and OAK were compatible with all NEs; therefore, their use is proposed as an effective alternative to synthetic antioxidants.
Collapse
|
15
|
Mane S, Kumari P, Singh A, Taneja NK, Chopra R. Amelioration for oxidative stability and bioavailability of N-3 PUFA enriched microalgae oil: an overview. Crit Rev Food Sci Nutr 2022; 64:2579-2600. [PMID: 36128949 DOI: 10.1080/10408398.2022.2124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Technological improvements in dietary supplements and nutraceuticals have highlighted the significance of bioactive molecules in a healthy lifestyle. Eicosapentaenoic acid and Cervonic acid (DHA), omega-3 polyunsaturated fatty acids seem to be famed for their ability to prevent diverse physiological abnormalities. Selection of appropriate pretreatments and extraction techniques for extraction of lipids from robust microalgae cell wall are very important to retain their stability and bioactivity. Therefore, extraction techniques with optimized extraction parameters offer an excellent approach for obtaining quality oil with a high yield. Oils enriched in omega-3 are particularly imperiled to oxidation which ultimately affects customer acceptance. Bio active encapsulation could be one of the effective approaches to overcome this dilemma. This review paper aims to give insight into the cultivation methods, and downstream processes, various lipid extraction approaches, techniques for retaining oxidative stability, bioavailability and food applications based on extracted or encapsulated omega-3.
Collapse
Affiliation(s)
- Sheetal Mane
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Purnima Kumari
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, India
| |
Collapse
|
16
|
de Souza Correa M, Boschen NL, Rodrigues PRP, Corazza ML, de Paula Scheer A, Ribani RH. Supercritical CO2 with co-solvent extraction of blackberry (Rubus spp. Xavante cultivar) seeds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Mihalcea L, Turturică M, Cucolea EI, Dănilă GM, Dumitrașcu L, Coman G, Constantin OE, Grigore-Gurgu L, Stănciuc N. CO 2 Supercritical Fluid Extraction of Oleoresins from Sea Buckthorn Pomace: Evidence of Advanced Bioactive Profile and Selected Functionality. Antioxidants (Basel) 2021; 10:antiox10111681. [PMID: 34829552 PMCID: PMC8615056 DOI: 10.3390/antiox10111681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
The processing of sea buckthorn generates a significant amount of pomace, seeds and skin considered valuable sources of health-promoting macromolecules, such as carotenoids, pectin, flavonoids, phytosterols, polyunsaturated fatty acids and tocopherols. In this study, the bioactives from sea buckthorn pomace (SBP) were extracted using supercritical carbon dioxide (SFE-CO2), at different temperatures and pressures, allowing for obtaining four fractions according to separators (S40 and S45). The highest carotenoid content of 396.12 ± 1.02 mg/g D.W. was found in the S40 fraction, at extraction parameters of 35 °C/45 MPa, yielding an antioxidant activity of 32.10 ± 0.17 mMol TEAC/g D.W. The representative carotenoids in the extract were zeaxanthin, β-carotene and lycopene, whereas all enriched SFE-CO2 extracts contained α-, β- and δ-tocopherol, with α-tocopherol representing around 82% of all fractions. β-sitosterol was the major phytosterol in the fractions derived from S45. All fractions contained significant fatty acids, with a predominance of linoleic acid. Remarkably, the enriched extracts showed a significant palmitoleic acid content, ranging from 53 to 65 µg/g. S40 extracts showed a good antibacterial activity against Staphylococcus aureus and Aeromonas hydrophila ATCC 7966, whereas S45 extracts showed a growth inhibition rate of 100% against Aspergillus niger after three days of growth. Our results are valuable, and they allow identifying the different profiles of extracts with many different applications in food, pharmaceutics, nutraceuticals and cosmeceuticals.
Collapse
Affiliation(s)
- Liliana Mihalcea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Mihaela Turturică
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Elena Iulia Cucolea
- Cromatec Plus SRL, Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street 1, 077176 Tâncăbești, Romania; (E.I.C.); (G.-M.D.)
| | - George-Mădălin Dănilă
- Cromatec Plus SRL, Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street 1, 077176 Tâncăbești, Romania; (E.I.C.); (G.-M.D.)
| | - Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Gigi Coman
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
- Correspondence:
| |
Collapse
|
18
|
Influence of Murta (Ugni molinae Turcz) Powder on the Frankfurters Quality. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Frankfurters are one of the most demanded meat products in the world due to their low cost and good taste. However, they contain up to 30% animal fat, which is negative for the consumer’s health. Moreover, high-fat contents could also decrease frankfurter sensory properties, since it accelerates the rancidity of the products. This fact is highly dependent on the fatty acids composition since the unsaturation promotes oxidative reactions. Currently, strategies have been developed to replace animal fat with vegetable oils or the inclusion of new raw materials. The murta (Ugni molinae Turcz), an endemic plant in Chile, is a specie that contains high levels of flavonoids in its fruits and has a pleasant flavor, as well as a sweet and floral aroma. However, the effect of the addition of these fruits in the formulation of meat products has been scarcely studied. The present study aims to reduce the use of synthetic additives using natural ones (murta powder). Therefore, this research evaluated the influence of the inclusion of murta on the chemical, sensory, and instrumental parameters of traditional frankfurters. Three batches of frankfurters were manufactured: control sausages without additives (T0); samples with chemical antioxidant (T1); and with murta fruit powder (T2). The chemical composition, physicochemical parameters and sensory properties were determined. Frankfurters made with murta (T2) presented middle values in energy, moisture and sodium compared with control. Also, the reformulated sausages (T2) presented the lowest water holding capacity, redness (a*) and yellowness and the highest values of fat and carbohydrates. Regarding fatty acids content, the most important changes were observed in the C18:0 and C14:0 (T2 presented the lowest values) and C18:2n-6 (T2 had the highest values), but minimal differences were observed in the total SFA, MUFA and PUFA content. Cholesterol content from T2 were similar to the control samples, and T1 presented the highest values. Although these differences, both chemical and nutritional quality of all frankfurters manufactured in the present study were very similar among treatments. Finally, according to the sensory analysis, T2 presented better acceptability and sensory characteristics compared with the other treatments (p ≤ 0.05). Therefore, the inclusion of murta in the production of frankfurters could be a strategy to improve the sensory characteristics of this product with minimal changes in chemical and nutritional properties. However, the effect of murta on oxidative stability and frankfurter shelf-life should be studied in depth in future research.
Collapse
|
19
|
Trivedi P, Nguyen N, Klavins L, Kviesis J, Heinonen E, Remes J, Jokipii-Lukkari S, Klavins M, Karppinen K, Jaakola L, Häggman H. Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant. Food Chem 2021; 354:129517. [PMID: 33756336 DOI: 10.1101/2020.04.01.019893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 05/18/2023]
Abstract
In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty acids in the cuticular wax. Especially CER26-like, FAR2, CER3-like, LTP, MIXTA, and BAS genes showed fruit skin preferential expression patterns indicating their role in cuticular wax biosynthesis and secretion.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Jorens Kviesis
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Esa Heinonen
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | - Janne Remes
- Centre for Material Analysis, University of Oulu, FI-90014 Oulu, Finland.
| | | | - Maris Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway.
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
20
|
Mazurek B, Ryszko U, Kostrzewa D, Chmiel M, Kondracka M. Brief characteristics of oxidative stability, fatty acids and metal content in selected berry seed extracts obtained by the SFE technique and used as potential source of nutrients. Food Chem 2021; 367:130752. [PMID: 34384988 DOI: 10.1016/j.foodchem.2021.130752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Berry seeds are rich source of high quality oil containing valuable compounds such as polyunsaturated fatty acids and therefore, have been gaining increasing significance as potential source of nutrients for food, cosmetic or pharmaceutical industry. Supercritical carbon dioxide extraction of seeds was performed, for which oxidative stability analyzes and determinations of fatty acids, selected microelements and toxic metals were carried out. An attempt was made to evaluate unclassified scCO2 oil extracts from berry seeds, taking into account the lack of legislative documents specifying the required contents of metals and biologically active ingredients. The obtained extracts are products with the consistency of liquid oil. The total fatty acid content range from 59% to 98%, with unsaturated fatty acids predominating and very good n-3/n-6 fatty acids ratio. The analyzed samples were taken systematically from one extraction sequence also determining the acid and the peroxide values in subsequent fractions.
Collapse
Affiliation(s)
- Barbara Mazurek
- Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego13a, 24-110 Puławy, Poland.
| | - Urszula Ryszko
- Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego13a, 24-110 Puławy, Poland
| | - Dorota Kostrzewa
- Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego13a, 24-110 Puławy, Poland
| | - Mariusz Chmiel
- Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego13a, 24-110 Puławy, Poland
| | - Małgorzata Kondracka
- Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego13a, 24-110 Puławy, Poland
| |
Collapse
|
21
|
Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5561672. [PMID: 34211628 PMCID: PMC8205582 DOI: 10.1155/2021/5561672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
There are growing interests in the complex combinations of natural compounds that may advance the therapy of cancer. Such combinations already exist in foods, and a good representative is seed oils. Two raspberry oils: cold pressed (ROCOP) and one extracted by supercritical CO2 (ROSCO2) were evaluated for their chemical characteristics and oil emulsions for cell suppression potential against colon adenocarcinoma (LoVo), doxorubicin-resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF7), doxorubicin-resistant breast cancer (MCF7/DX), and lung cancer (A549) cell lines. The cytotoxicity was also assessed on normal human dermal fibroblasts (NHDFs). With increasing concentration of raspberry oil emulsions (0.5–10%), increasing inhibition of cancer cell viability and proliferation in all of the lines was observed, with different degrees of potency between cancer types and oil tested. ROSCO2 strongly induced free radical production and DNA strand damage in LoVo and MCF7 cells especially doxorubicin-resistant lines. This suggests that ROSCO2 engages and effectively targets the vulnerabilities of the cancer cell. Generally, both ROSCO2 and ROCOP could be a nontoxic support in therapy of selected human cancers.
Collapse
|
22
|
Yuan WQ, Hu JZ, Yin LQ, Lv ZL. Comparative Analysis of Essential Bioactive Components of Oils Originating from Three Chinese Loess Plateau Wild Crops. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Qiong Yuan
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing 100083 China
| | - Jian Zhong Hu
- Plant Development Center for Soil and Water Conservation The Water Resources Ministry Beijing 100038 China
| | - Li Qiang Yin
- Plant Development Center for Soil and Water Conservation The Water Resources Ministry Beijing 100038 China
| | - Zhao Lin Lv
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing 100083 China
- Department of Beijing Key Laboratory of Forest Food Process and Safety Beijing Forestry University Beijing 100083 China
| |
Collapse
|
23
|
Old Plant, New Possibilities: Wild Bilberry ( Vaccinium myrtillus L., Ericaceae) in Topical Skin Preparation. Antioxidants (Basel) 2021; 10:antiox10030465. [PMID: 33809607 PMCID: PMC8002374 DOI: 10.3390/antiox10030465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Bilberry represents a valuable source of antioxidant substances responsible for its application for the treatment of different conditions (such as inflammation, cardiovascular disease, cancer, diabetes, and different age-related diseases) associated with increased oxidative stress. As oxidative stress might cause skin impairments, we aim to evaluate a topical preparation containing bilberry leaves extract and bilberry seeds oil, obtained as a byproduct of the food industry. To obtain the extracts, the conventional maceration technique for leaves, and supercritical carbon dioxide extraction for seeds were employed. The chemical profile of both actives was achieved by HPLC and GC methods, revealing the presence of phenolic acids (chlorogenic being the most abundant), flavonoids (isoquercetin in the highest amount), and resveratrol in leaves extract, while in seeds oil the essential ω-3 and ω-6 fatty acids were determined in favorable ratio, almost being 1. Antioxidant potential of the wild bilberry extract and seed oil was evaluated using in vitro DPPH and FRAP assays. Finally, effects of the oil-in-water creams with mentioned wild bilberry isolates on the skin were investigated in an in vivo study conducted on healthy human volunteers, revealing the significant beneficial effects when topically applied.
Collapse
|
24
|
Klavins L, Mezulis M, Nikolajeva V, Klavins M. Composition, sun protective and antimicrobial activity of lipophilic bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) extract fractions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Correa MS, Fetzer DL, Hamerski F, Corazza ML, Scheer AP, Ribani RH. Pressurized extraction of high-quality blackberry (Rubus spp. Xavante cultivar) seed oils. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Marsol-Vall A, Aitta E, Guo Z, Yang B. Green technologies for production of oils rich in n-3 polyunsaturated fatty acids from aquatic sources. Crit Rev Food Sci Nutr 2021; 62:2942-2962. [PMID: 33480261 DOI: 10.1080/10408398.2020.1861426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fish and algae are the major sources of n-3 polyunsaturated fatty acids (n-3 PUFAs). Globally, there is a rapid increase in demand for n-3 PUFA-rich oils. Conventional oil production processes use high temperature and chemicals, compromising the oil quality and the environment. Hence, alternative green technologies have been investigated for producing oils from aquatic sources. While most of the studies have focused on the oil extraction and enrichment of n-3 PUFAs, less effort has been directed toward green refining of oils from fish and algae. Enzymatic processing and ultrasound-assisted extraction with environment-friendly solvents are the most promising green technologies for extracting fish oil, whereas pressurized extractions are suitable for extracting microalgae oil. Lipase-catalysed ethanolysis of fish and algae oil is a promising green technology for enriching n-3 PUFAs. Green refining technologies such as phospholipase- and membrane-assisted degumming deserve investigation for application in fish and algal oils. In the current review, we critically examined the currently existing research on technologies applied at each of the steps involved in the production of oils rich in n-3 PUFAs from fish and algae species. Special attention was placed on assessment of green technologies in comparison with conventional processing methods.
Collapse
Affiliation(s)
- Alexis Marsol-Vall
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Ella Aitta
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Zheng Guo
- Biological and Chemical Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Lipophilic extracts isolated from European cranberry bush (Viburnum opulus) and sea buckthorn (Hippophae rhamnoides) berry pomace by supercritical CO 2 - Promising bioactive ingredients for foods and nutraceuticals. Food Chem 2021; 348:129047. [PMID: 33515951 DOI: 10.1016/j.foodchem.2021.129047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/23/2022]
Abstract
Lipophilic extracts of Viburnum opulus (VOP) and Hippophae rhamnoides (SBP) berry pomace recovered by supercritical CO2 (SFE-CO2) were analysed by UPLC-Q-TOF-MS and GC × GC-TOF for their triacylglycerol, tocopherol, phytosterol and fatty acid composition, while oxidative stability was evaluated by Oxipres and Rancimat methods. SFE-CO2 recovered 16.99% and 26.24% of lipids from SBP and VOP, respectively. Linoleic, linolenic, oleic, palmitic and palmitoleic acids were major in SBP oil, while VOP oil was composed of almost equal amounts of linoleic and oleic acids. Therefore, remarkably higher diversity of triacylglycerols was identified in SBP. The content of β-sitosterol and α-tocopherol was 359.5-514.5 and 65.38-118.6 mg/100 g, respectively. Hydrocarbons were other quantitatively important lipophilic components, including health beneficial squalene. All extracts improved oxidative stability of mayonnaise. The extracts of berry processing by-products by green extraction method contain valuable bioactive constituents and could be of high interest for applications in functional foods and nutraceuticals.
Collapse
|
28
|
Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn ( Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021; 62:3798-3816. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophaë rhamnoides L., SB), as a multi-functional plant, is widely grown in Asia, Europe and Canada. The berries and leaves of SB contain a diverse array of health-supporting phytochemicals, which are also related to the sensory qualities of berry and berry products. This review summarizes the biologically active key-compounds of the berries and leaves of SB, their health-promoting effects, as well as the contributions to the sensory quality of the berries. The target compounds consist of sugars, sugar derivatives, organic acids, phenolic compounds and lipophilic compounds (mainly carotenoids and tocopherols), which play an important role in anti-inflammatory and antioxidant functions, as well as in metabolic health. In addition, these compounds contribute to the orosensory qualities of SB berries, which are closely related to consumer acceptance and preference of the products. Studies regarding the bioavailability of the compounds and the influence of the processing conditions are also part of this review. Finally, the role of the sensory properties is emphasized in the development of SB products to increase utilization of the berry as a common meal component and to obtain value-added products to support human health.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
29
|
Kajszczak D, Zakłos-Szyda M, Podsędek A. Viburnum opulus L.-A Review of Phytochemistry and Biological Effects. Nutrients 2020; 12:E3398. [PMID: 33167421 PMCID: PMC7694363 DOI: 10.3390/nu12113398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Viburnum opulus (VO) is a valuable decorative, medicinal, and food plant. This deciduous shrub is found in natural habitats in Europe, Russia, and some regions in North Africa and North Asia. The VO is traditionally used to treat aliments such as cough, colds, tuberculosis, rheumatic aches, ulcers, stomach, and kidney problems, among others. Many of the health-promoting properties of VO are associated with antioxidant activity, which has been demonstrated in both in vitro and in vivo studies. The results of in vitro studies show the antimicrobial potential of VO, especially against Gram-positive bacteria. In cell-based studies, VO demonstrated anti-inflammatory, anti-obesity, anti-diabetic, osteogenic, cardio-protective, and cytoprotective properties. The applicability of VO in the treatment of urinary tract diseases, endometriosis, and some cancers has been confirmed in in vivo studies. The health benefits of VO result from the presence of bioactive components such as phenolic compounds, vitamin C, carotenoids, iridoids, and essential oils. The aim of this review is to present an overview of the botanical characteristics, chemical compositions, including bioactive compounds, and pro-health properties of VO different morphological parts.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łódź, Poland;
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łódź, Poland;
| | | |
Collapse
|
30
|
Jiang X, Li W, Zhou S, Jiang Y. Changes of physicochemical properties, oxidative stability and cellular anti-inflammatory potentials for sea-buckthorn pulp oils during refining. RSC Adv 2020; 10:36678-36685. [PMID: 35517976 PMCID: PMC9057029 DOI: 10.1039/d0ra07095e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 12/01/2022] Open
Abstract
The impact of the refining process on physicochemical properties, oxidative stability and cellular anti-inflammatory potentials of sea-buckthorn pulp oil (SBO) was investigated in this study. The results showed that acid and peroxide values of the tested SBOs decreased significantly after the refining process, while oxidative stability index (OSI) and anti-inflammatory potentials, measured as reduction in cellular inflammatory cytokine production, increased significantly. Interestingly, bleaching caused an unexpected increase in tocopherols as well as the greatest reduction in polycyclic aromatic hydrocarbons (PAHs). According to correlation analyses, tocopherol concentrations were significantly and positively correlated with OSI values and cellular anti-inflammatory potentials, while PHAs were negatively correlated with these factors. In general, refining is an effective way to improve the oxidative stability and anti-inflammatory capacity of SBO. The impact of the refining process on physicochemical properties, oxidative stability and cellular anti-inflammatory potentials of sea-buckthorn pulp oil (SBO) was investigated in this study.![]()
Collapse
Affiliation(s)
- Xiaofei Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd No. 118 Gaodong Road Shanghai 200137 P. R. China +86 21 58481079 +86 21 31153015
| | - Wei Li
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd No. 118 Gaodong Road Shanghai 200137 P. R. China +86 21 58481079 +86 21 31153015.,University of Shanghai for Science and Technology, School of Medical Instrument & Food Engineering Shanghai 200093 P. R. China
| | - Shengmin Zhou
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd No. 118 Gaodong Road Shanghai 200137 P. R. China +86 21 58481079 +86 21 31153015
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd No. 118 Gaodong Road Shanghai 200137 P. R. China +86 21 58481079 +86 21 31153015
| |
Collapse
|
31
|
Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Sarv V, Venskutonis PR, Bhat R. The Sorbus spp.-Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential. Antioxidants (Basel) 2020; 9:E813. [PMID: 32882984 PMCID: PMC7555345 DOI: 10.3390/antiox9090813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
The Sorbus spp. are valuable plants, which have been used for ornamental purposes, in traditional medicines and less seldom in foods. Recent studies have revealed different anatomical parts of the Sorbus spp. to contain valuable phytochemicals demonstrating various bioactivities. However, in terms of applications in the products intended for human consumption, Sorbus still remains as an underutilised genus. The increasing number of studies on phytochemicals, antioxidant potential and other bioactivities of Sorbus extracts has revealed the prospects of expanding its use in natural medicines, cosmetics and as innovative food ingredients, which might find wider applications in functional foods and/or nutraceuticals. Caffeoylquinic acids, flavonoids and proanthocyanidins have been reported in various Sorbus spp. as the most abundant polyphenolic antioxidants. The preparations of various plant anatomical parts have been used in ethnopharmacology as natural remedy for treating bacterial, viral, inflammatory diseases including tumors. Sorbus spp. plant parts have also been tested for management of diabetes, neurological, and cardiovascular disorders. The present review is focused on Sorbus plants (in total 27 Sorbus spp.), their composition and properties in terms of developing promising ingredients for foods, nutraceutical, cosmeceutical and other applications. It is expected that this review will assist in designing further studies of rowans and other Sorbus spp. in order to expand their uses for various human applications.
Collapse
Affiliation(s)
- Viive Sarv
- ERA Chair for Food (By-) Products Valorisation Technologies of Estonian University of Life Sciences -VALORTECH, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51014 Tartu, Estonia; (P.R.V.); (R.B.)
- Institute of Agricultural and Environmental Sciences, Polli Horticultural Research Centre, 69108 Polli, Estonia
| | - Petras Rimantas Venskutonis
- ERA Chair for Food (By-) Products Valorisation Technologies of Estonian University of Life Sciences -VALORTECH, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51014 Tartu, Estonia; (P.R.V.); (R.B.)
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of Estonian University of Life Sciences -VALORTECH, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1a, 51014 Tartu, Estonia; (P.R.V.); (R.B.)
| |
Collapse
|
33
|
Physico-chemical characterisation of Capparis scabrida seed oil and pulp, a potential source of eicosapentaenoic acid. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Marić B, Pavlić B, Čolović D, Abramović B, Zeković Z, Bodroža-Solarov M, Ilić N, Teslić N. Recovery of high-content ω–3 fatty acid oil from raspberry (Rubus idaeus L.) seeds: Chemical composition and functional quality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Kitrytė V, Kavaliauskaitė A, Tamkutė L, Pukalskienė M, Syrpas M, Rimantas Venskutonis P. Zero waste biorefining of lingonberry (Vaccinium vitis-idaea L.) pomace into functional ingredients by consecutive high pressure and enzyme assisted extractions with green solvents. Food Chem 2020; 322:126767. [PMID: 32330787 DOI: 10.1016/j.foodchem.2020.126767] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/09/2023]
|
36
|
Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020; 9:foods9050623. [PMID: 32414083 PMCID: PMC7278679 DOI: 10.3390/foods9050623] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The popularity of small berries has rapidly increased in Western countries given their antioxidant, anti-inflammatory, and antimicrobial activities and health-promoting properties. The aim of this study was to compare the fatty acid (FA) profile, phenolic compounds, and antioxidant capacity of extracts of 11 berries cultivated in the North West of Italy. Berry samples were extracted and evaluated for FA profile and total anthocyanin (TAC), total flavonoid contents (TFC), ferric-reducing antioxidant power (FRAP), and for their radical scavenging activities against 2,2′-diphenyl-1-picrylhydrazyl (DPPH•) radical. The main polyphenols of berry extracts were characterized by HPLC-DAD-UV-ESI HRMS in positive ion mode. Results showed that the highest TAC and TFC contents were recorded in black currants, blackberries, and blueberries. Maximum and minimum DPPH• radical scavenging activities, Trolox Equivalent Antioxidant Capacity, and FRAP measurements confirmed the same trend recorded for TAC and TFC values. HPLC-HRMS analyses highlight how blueberries and blackberries have the highest concentration in polyphenols. Palmitic, stearic, oleic, linoleic, α-linolenic, and γ-linolenic acids significantly differ between berries, with oleic and α-linolenic acid representing the most abundant FAs in raspberries. Among the berries investigated, results of phytochemical characterization suggest choosing black currants and blueberries as an excellent source of natural antioxidants for food and health purposes.
Collapse
|
37
|
Colucci Cante R, Prisco I, Garella I, Gallo M, Nigro R. Extracting the lipid fraction from waste bilberry seeds with a hydrofluorocarbon solvent. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Recovery of bioactive substances from rowanberry pomace by consecutive extraction with supercritical carbon dioxide and pressurized solvents. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Gledovic A, Janosevic Lezaic A, Krstonosic V, Djokovic J, Nikolic I, Bajuk-Bogdanovic D, Antic Stankovic J, Randjelovic D, Savic SM, Filipovic M, Tamburic S, Savic SD. Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity. PLoS One 2020; 15:e0230993. [PMID: 32298275 PMCID: PMC7161953 DOI: 10.1371/journal.pone.0230993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/06/2020] [Indexed: 02/02/2023] Open
Abstract
Considering a growing demand for medicinal/cosmetic products with natural actives, this study focuses on the low-energy nanoemulsions (LE-NEs) prepared via the Phase inversion composition (PIC) method at room temperature as potential carriers for natural oil. Four different red raspberry seed oils (ROs) were tested, as follows: cold-pressed vs. CO2-extracted, organic vs. non-organic, refined vs. unrefined. The oil phase was optimized with Tocopheryl acetate and Isostearyl isostearate, while water phase was adjusted with either glycerol or an antioxidant hydro-glycolic extract. This study has used a combined approach to formulation development, employing both conventional methods (pseudo-ternary phase diagram - PTPD, electrical conductivity, particle size measurements, microscopical analysis, and rheological measurements) and the methods novel to this area, such as textural analysis and Raman spectroscopy. Raman spectroscopy has detected fine differences in chemical composition among ROs, and it detected the interactions within nanoemulsions. It was shown that the cold-pressed, unrefined, organic grade oil (RO2) with 6.62% saturated fatty acids and 92.25% unsaturated fatty acids, was optimal for the LE-NEs. Textural analysis confirmed the existence of cubic gel-like phase as a crucial step in the formation of stable RO2-loaded LE-NEs, with droplets in the narrow nano-range (125 to 135 nm; PDI ≤ 0.1). The DPPH test in methanol and ABTS in aqueous medium have revealed a synergistic free radical scavenging effect between lipophilic and hydrophilic antioxidants in LE-NEs. The nanoemulsion carrier has improved the biological effect of raw materials on HeLa cervical adenocarcinoma cells, while exhibiting good safety profile, as confirmed on MRC-5 normal human lung fibroblasts. Overall, this study has shown that low-energy nanoemulsions present very promising carriers for topical delivery of natural bioactives. Raman spectroscopy and textural analysis have proven to be a useful addition to the arsenal of methods used in the formulation and characterization of nanoemulsion systems.
Collapse
Affiliation(s)
- Ana Gledovic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Janosevic Lezaic
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Veljko Krstonosic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Djokovic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Antic Stankovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Danijela Randjelovic
- Department of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Mila Filipovic
- Higher Education School of Professional Health Studies, Belgrade, Serbia
| | - Slobodanka Tamburic
- London College of Fashion, University of the Arts London, London, United Kingdom
| | - Snezana D. Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Tahmouzi S, Salek Nejat MR. New infertility therapy effects of polysaccharides from Althaea officinalis leaf with emphasis on characterization, antioxidant and anti-pathogenic activity. Int J Biol Macromol 2020; 145:777-787. [PMID: 31891699 DOI: 10.1016/j.ijbiomac.2019.12.224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023]
Abstract
Characterization, antioxidant, anti-pathogenic and infertility therapy effects of polysaccharides from Althaea officinalis (marshmallow) leaf (AOLPS) were investigated. AOLPS was fractionated using ion-exchange chromatography, affording fractions of AOLPS-1, AOLPS-2, AOLPS-3 and AOLPS-4. The fractions were mainly composed of d-galactopyranose (α-(1 → 4)-glycosidic bond) with the average molecular weight of 1220, 2240, 998 and 2670 Da, respectively which means it was a pectin-like polysaccharide. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FT-IR) techniques were employed to characterize the structure of purified polysaccharides. Compared with AOLPS-1, AOLPS-2 and AOLPS-4, AOLPS-3 had higher potential as a natural antioxidant and antimicrobial. At the same time, the infertility therapy effects of four fractions of AOLPS were in the order AOLPS-3 > AOLPS-4 > AOLPS-1 > AOLPS-2. The experimental study provides strong evidence to exploit A. officinalis leaf in food and pharma manufacturing processes and presents new benefit of this plant in infertility therapy.
Collapse
Affiliation(s)
- Saeed Tahmouzi
- Department of Quality Control and Product Engineering, Nejati Industrial Group (ANATA), Tabriz, Iran.
| | - Mohammad Reza Salek Nejat
- Department of Quality Control and Product Engineering, Nejati Industrial Group (ANATA), Tabriz, Iran
| |
Collapse
|
41
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|
42
|
Kitrytė V, Laurinavičienė A, Syrpas M, Pukalskas A, Venskutonis PR. Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Bastías-Montes JM, Monterrosa K, Muñoz-Fariña O, García O, Acuña-Nelson SM, Vidal-San Martín C, Quevedo-Leon R, Kubo I, Avila-Acevedo JG, Domiguez-Lopez M, Wei ZJ, Thakur K, Cespedes-Acuña CL. Chemoprotective and antiobesity effects of tocols from seed oil of Maqui-berry: Their antioxidative and digestive enzyme inhibition potential. Food Chem Toxicol 2019; 136:111036. [PMID: 31862287 DOI: 10.1016/j.fct.2019.111036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 11/18/2022]
Abstract
Maqui-berry (Aristotelia chilensis) is the emerging Chilean superfruit with high nutraceutical value. Until now, the research on this commodity was focused on the formulations enriched with polyphenols from the pulp. Herein, contents of tocols were compared in the seed oil of Maqui-berry obtained through three different extraction methods followed by determining their antioxidative and enzyme inhibitions in-vitro. Firstly, oilseed was extracted with n-hexane (Soxhlet method), chloroform/methanol/water (Bligh and Dyer method) and pressing (industrial). These samples were used to access their effects against DPPH, HORAC, ORAC, FRAP, Lipid-peroxidation (TBARS), α-amylase, α-glucosidase, and pancreatic lipase. All the isomers of tocopherol and tocotrienol were identified, and β-sitosterol was the only sterol found in higher amounts than other vegetable oils. The Bligh and Dyer method could lead to the highest antioxidative capacity compared to Soxhlet and press methods likely because the latter have a higher amount of tocopherols. Further, seed oil from Maqui berry and their tocols (α, β, γ, δ-tocopherols, tocotrienols, and β-sitosterol) warrant clinical investigation for their antioxidative and antiobesity potential. Taken together, these findings provide relevant and suitable conditions for the industrial processing of Maqui-berry.
Collapse
Affiliation(s)
| | - Karen Monterrosa
- Departamento de Ingeniería en Alimentos, Universidad Del Bío-Bío, P.O. Box 447, Chillán, Chile
| | - Ociel Muñoz-Fariña
- Instituto de Ciencia y Tecnología en Alimentos, Universidad Austral de Chile, Valdivia, Chile
| | - Olga García
- Instituto de Ciencia y Tecnología en Alimentos, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio M Acuña-Nelson
- Departamento de Ingeniería en Alimentos, Universidad Del Bío-Bío, P.O. Box 447, Chillán, Chile
| | - Carla Vidal-San Martín
- Departamento de Ingeniería en Alimentos, Universidad Del Bío-Bío, P.O. Box 447, Chillán, Chile
| | - Roberto Quevedo-Leon
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Osorno, Chile
| | - Isao Kubo
- ESPM Department, UC-Berkeley, CA, 94720-3112, USA
| | | | - Mariana Domiguez-Lopez
- Departamento de Biología Celular y Desarrollo, Laboratorio 305-Sur, Instituto de Fisiología Celular. Universidad Nacional Autónoma de Mexico, Mexico D.F., Mexico
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello Avenue, Chillan, Chile.
| |
Collapse
|
44
|
Ogorzałek M, Wasilewski T, Klimaszewska E, Zięba M. Effect of Hydrophobic Plant Extract on the Physicochemical Properties of a Transparent Fabric Softener. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Ogorzałek
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| | - Tomasz Wasilewski
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| | - Emilia Klimaszewska
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| | - Małgorzata Zięba
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| |
Collapse
|
45
|
Fidelis M, de Moura C, Kabbas Junior T, Pap N, Mattila P, Mäkinen S, Putnik P, Bursać Kovačević D, Tian Y, Yang B, Granato D. Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019; 24:E3854. [PMID: 31731548 PMCID: PMC6864632 DOI: 10.3390/molecules24213854] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Collapse
Affiliation(s)
- Marina Fidelis
- MSc in Food Science and Technology, Ponta Grossa 84035010, Brazil;
| | - Cristiane de Moura
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Tufy Kabbas Junior
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Nora Pap
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Pirjo Mattila
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Sari Mäkinen
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| |
Collapse
|
46
|
Wang Z, Lin Y, Li T, Dai F, Luo G, Xiao G, Tang C. Phenolic profiles and antioxidant capacities of mulberry (Morus atropurpurea Roxb.) juices from different cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1646272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhenjiang Wang
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yimin Lin
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tingting Li
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanwei Dai
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoqing Luo
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gengsheng Xiao
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cuiming Tang
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
47
|
Trivedi P, Karppinen K, Klavins L, Kviesis J, Sundqvist P, Nguyen N, Heinonen E, Klavins M, Jaakola L, Väänänen J, Remes J, Häggman H. Compositional and morphological analyses of wax in northern wild berry species. Food Chem 2019; 295:441-448. [PMID: 31174780 DOI: 10.1016/j.foodchem.2019.05.134] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
Abstract
Aerial surfaces of plants are covered by a waxy cuticle protecting plants from excessive water loss and UV light. In the present study, composition and morphology of cuticular waxes of northern wild berry species bilberry (Vaccinium myrtillus L.), lingonberry (V. vitis-idaea L.), bog bilberry (V. uliginosum L.) and crowberry (Empetrum nigrum L.) were investigated. Scanning electron microscopy (SEM) revealed differences in epicuticular wax morphology, and gas chromatography-mass spectrometry (GC-MS) analysis confirmed variation in chemical composition of cuticular waxes between the berry species. The dominant compounds in bilberry and lingonberry cuticular waxes were triterpenoids, while fatty acids and alkanes were the dominant ones in bog bilberry and crowberry, respectively. Wax extracted by supercritical fluid extraction (SFE) from industrial press cakes of bilberry and lingonberry contained linoleic acid and γ-linolenic acid as the dominant compounds. Furthermore, in vitro sun protection factor (SPF) of berry waxes depicted good UV-B absorbing capacities.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Jorens Kviesis
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Petri Sundqvist
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Esa Heinonen
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Laura Jaakola
- NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway; Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Juha Väänänen
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Janne Remes
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
48
|
Seweryn A, Wasilewski T. Detergents in the coacervate form with plant extracts obtained under supercritical carbon dioxide conditions as examples of sustainable products. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1611446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Artur Seweryn
- Faculty of Material Science, Technology and Design, Department of Chemistry, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland
| | - Tomasz Wasilewski
- Faculty of Material Science, Technology and Design, Department of Chemistry, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland
| |
Collapse
|
49
|
Bioactive compounds, antioxidant activity and some physicochemical properties of the seed and seed-oil of Mahonia aquifolium berries. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00042-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Rapid Separation of All Four Tocopherol Homologues in Selected Fruit Seeds via Supercritical Fluid Chromatography Using a Solid-Core C18 Column. J CHEM-NY 2019. [DOI: 10.1155/2019/5307340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tocopherol separations employing the same Kinetex™ C18 column via supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (RP-LC) were compared. The application of the SFC system with UV diode array detection (DAD) resulted in rapid separation of all four tocopherol homologues with a total analysis time below 2 min. The RP-LC approach could not separate the isomers β and γ. The developed SFC-DAD method was precise, accurate, and most importantly more environmentally friendlier compared to the RP-LC method due to the 125-fold decrease in methanol consumption. The present study illustrated the selectivity differences between LC and SFC and how the C18 column can be used for tocopherol characterization. The optimized SFC method was successfully applied for the tocopherol determination in the seeds of nine different fruit species.
Collapse
|