1
|
Liu L, Zhao Y, Huang Z, Long Z, Qin H, Lin H, Zhou S, Kong L, Ma J, Lin Y, Li Z. Dietary supplementation of Lycium barbarum polysaccharides alleviates soybean meal-induced enteritis in spotted sea bass Lateolabrax maculatus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:1-22. [PMID: 39949731 PMCID: PMC11815959 DOI: 10.1016/j.aninu.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 10/24/2024] [Indexed: 02/16/2025]
Abstract
The aim of this experiment was to investigate the effect of Lycium barbarum polysaccharides (LBP) on alleviating soybean meal-induced enteritis (SBMIE) in spotted sea bass Lateolabrax maculatus. The diet with 44% fishmeal (FM) content was used as a blank control, and soybean meal (SM) was used to replace 50% FM as an experimental control to induce enteritis. Then, on the basis of experimental control, 0.10%, 0.15%, and 0.20% LBP were added as experimental diets. A total of 225 spotted sea bass (44.52 ± 0.24 g) were randomly divided into 5 groups and fed the corresponding diets for 52 d. The results showed that 0.15% LBP decreased serum D-lactic acid (D-LA) content and diamine oxidase (DAO) activity (P < 0.05). In addition, in all LBP supplementation groups, the intestinal tissue morphology was significantly improved (P < 0.05); the intestinal microbial structure gradually recovered to a level close to that without adding SM; and the microbial species richness and diversity were significantly increased (P < 0.05). Through transcriptomic and metabolomic analysis, it was found that the expression of proinflammatory factors such as interleukin-1β (IL-1β), interleukin-12 (IL-12), nuclear factor kappa B subunit 2 (NF-κB2), and Toll-like receptor 2 (TLR2) were significantly down-regulated in the mitogen-activated protein kinase (MAPK) and Toll-like receptor signaling pathways (P < 0.05), and the important tight junction protein gene Occludin was up-regulated (P < 0.05). In addition, LBP down-regulated saponin metabolites and up-regulated amino acid metabolites (P < 0.05). In conclusion, LBP demonstrated a significant alleviating effect on SBMIE of spotted sea bass L. maculatus.
Collapse
Affiliation(s)
- Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yanbo Zhao
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
2
|
Li P, Wang S, Yu L, Liu A, Zhai D, Yang Z, Qin Y, Yang Y. Non-destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125913. [PMID: 39987608 DOI: 10.1016/j.saa.2025.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/26/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
American ginseng is widely in demand as a famous medicinal herb, but the production conditions affect the content of ginsenosides in American ginseng, which in turn affects its medicinal value. Currently, it remains a challenge to simultaneously identify the origin and ginsenoside content of American ginseng in a non-destructive manner. In this study, we developed a mixed multi-task deep learning network, MMTDL, combined with near-infrared (NIR) spectroscopy, for the origin traceability and total ginsenoside content prediction of American ginseng. The MMTDL model integrates residual networks, attention mechanisms, and mixed head networks, utilizing residual modules, channel attention, and self-attention mechanisms to enhance feature extraction from NIR spectral data. The network with mixed classification and regression heads is designed to address the effects of spectral overlap and mixed effective bands. MMTDL and its four competitors are trained and tested using a dataset containing 150 samples from four different origins. The experimental results demonstrated that the proposed method outperformed the other four methods, achieving R2, RMSE, RPD, overall accuracy (OA), precision (P), and recall (R) values of 0.94, 3.13, 4.13, 99.21 %, 98.95 %, and 99.14 %. In conclusion, NIR spectroscopy combined with a multi-task deep learning network can simultaneously identify the origin of American ginseng and predict the total ginsenoside content.
Collapse
Affiliation(s)
- Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China
| | - Siqi Wang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China; Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China
| | - Lingyi Yu
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China
| | - Anqi Liu
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dandan Zhai
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiqing Yang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China; Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China
| | - Yao Qin
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yu Yang
- Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China; Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China; Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2025; 33:42-59. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
4
|
Liu S, Matsuo T, Matsuo C, Abe T, Chen J, Sun C, Zhao Q. Perspectives of traditional herbal medicines in treating retinitis pigmentosa. Front Med (Lausanne) 2024; 11:1468230. [PMID: 39712182 PMCID: PMC11660805 DOI: 10.3389/fmed.2024.1468230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742. This article aims to review the origin of Kampo (Japanese traditional medicine), and to present the overview of neurodegenerative diseases and retinitis pigmentosa as well as medicinal plants in some depth. Through the study of medical history of the origin of Kampo, we found that herbs medicines contain many neuroprotective ingredients. It provides us a new perspective on extracting neuroprotective components from herbs medicines to treat neurodegenerative diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) is an incurable blinding disease and has become a popular research direction in global ophthalmology. To date, treatments for retinitis pigmentosa are very limited worldwide. Therefore, we intend to integrate the knowledge and skills from different disciplines, such as medical science, pharmaceutical science and plant science, to take a new therapeutic approach to treat neurodegenerative diseases. In the future, we will use specific active ingredients extracted from medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive ingredients present in medicinal plants, a valuable opportunity will be offered to uncover novel approaches for the development of drugs which target for retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama, Japan
| | - Chie Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jinghua Chen
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Hsu BY, Lin CH, Kao TH. Development of a Rapid UPLC Method for Analysis of Carotenoids in Goji Berry Extract and Evaluation of Their Transformation Affected by Saponification. Molecules 2024; 29:5684. [PMID: 39683844 DOI: 10.3390/molecules29235684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Goji berry (Lycium barbarum L.), also known as wolfberry, is a traditional Chinese medicinal herb widely utilized as a functional food ingredient throughout East Asia. In this study, we developed a rapid high performance liquid chromatography-diode array detection (HPLC-DAD) method for the simultaneous separation of carotenoids in goji berries. This method successfully separates 17 carotenoids and their esters within 21 min using a Sunrise C30 column, with detection at 450 nm, a flow rate of 1.3 mL/min, and a column temperature of 25 °C. Method validation showed intra-day precision ranging from 0.97% to 6.21% and inter-day precision from 0.99% to 7.01%, demonstrating this method effectively minimizes analysis time while providing high separation efficiency and sensitivity. Goji berries extracted with a mixture of n-hexane/ethanol/acetone (1:1:1, v/v/v) and then saponified with a 40% potassium hydroxide methanol solution can completely convert carotenoid esters into free monomer forms. The highest carotenoid content in goji berry was all-trans-zeaxanthin (1721.94 ± 81.01 μg/g), followed by 9- or 9'-cis-zeaxanthin (79.53 ± 3.92 μg/g), 15- or 15'-cis-zeaxanthin (43.71 ± 2.17 μg/g), 9- or 9'-cis-zeaxanthin (36.51 ± 1.81 μg/g), all-trans-β-cryptoxanthin (25.76 ± 1.55 μg/g), all-trans-β-carotene (5.71 ± 0.83 μg/g), and 13- or 13'-cis-β-carotene (0.86 ± 0.13 μg/g).
Collapse
Affiliation(s)
- Bo-Yang Hsu
- Department of Food Science, National Ilan University, Yilan County 260, Taiwan
| | - Chia-Hui Lin
- Department of Food Science, Fu Jen University, New Taipei City 242, Taiwan
| | - Tsai-Hua Kao
- Department of Food Science, Fu Jen University, New Taipei City 242, Taiwan
| |
Collapse
|
6
|
Duan G, Fan G, Li J, Liu M, Qi Y. Investigating the Rhizosphere Fungal Communities of Healthy and Root-Rot-Infected Lycium barbarum in the Tsaidam Basin, China. Microorganisms 2024; 12:2447. [PMID: 39770650 PMCID: PMC11676810 DOI: 10.3390/microorganisms12122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Lycium barbarum is a plant of considerable economic importance in China. However, root rot poses a significant threat to its yield and quality, leading to substantial economic losses. The disparities in rhizosphere soil fungal communities between healthy and root-rot-affected L. barbarum have not been thoroughly explored. Delving into the dynamics between these fungal communities and the onset of root rot may provide pivotal insights for the biological control of this disease in L. barbarum, as well as aid in identifying fungi associated with the condition. In this study, we utilized rhizosphere soil samples from Ningqi No. 1, a distinguished cultivar of L. barbarum, as our experimental material. We assessed the composition and diversity of fungal communities in both diseased (D) and healthy (H) samples using Illumina MiSeq sequencing technology. The study's findings revealed that the mean concentrations of total nitrogen (TN) and soil organic matter (SOM) were significantly higher in the healthy specimens when contrasted with the diseased ones, while the pH levels were notably increased in the latter group. Additionally, the alpha-diversity of fungal communities was observed to be greater within the healthy samples as opposed to the diseased samples. Marked distinctions in fungal diversity were discerned between the healthy (H) and diseased (D) samples. Ascomycota was identified as the predominant fungal phylum in both groups. In the healthy samples, beneficial fungi such as Plectosphaerella and Mortierella were prevalent, in contrast to the diseased samples, the relative abundances of Embellisia and Alternaria demonstrated remarkable increases of 89.59% and 87.41%, respectively. Non-metric Multidimensional Scaling (NMDS) illustrated clear distinctions in the composition of fungal communities between the healthy and diseased samples. Redundancy Analysis (RDA) indicated total nitrogen (TN), organic matter (SOM), total phosphorus (TP), Available Potassium (AK), pH, and Total Potassium (TK). Notably, pH showed a stronger correlation with the diseased samples, while TN and SOM were more significantly associated with the healthy samples.
Collapse
Affiliation(s)
- Guozhen Duan
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (G.D.); (G.F.); (J.L.)
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
| | - Guanghui Fan
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (G.D.); (G.F.); (J.L.)
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
| | - Jianling Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (G.D.); (G.F.); (J.L.)
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, China
| | - Min Liu
- College of Agricultural and Forestry Engineering and Planning, Tongren University, Tongren 554300, China;
| | - Youchao Qi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (G.D.); (G.F.); (J.L.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
7
|
Milinčić DD, Vidović BB, Gašić UM, Milenković M, Kostić AŽ, Stanojević SP, Ilić T, Pešić MB. A systematic UHPLC Q-ToF MS approach for the characterization of bioactive compounds from freeze-dried red goji berries (L. barbarum L.) grown in Serbia: Phenolic compounds and phenylamides. Food Chem 2024; 456:140044. [PMID: 38876071 DOI: 10.1016/j.foodchem.2024.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The aim of this study was to identify and characterise different classes of bioactive compounds from freeze-dried red goji berries (RGB) grown in Serbia, using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC Q-ToF MS). In addition, this study aims to demonstrate the importance of applying the advanced UHPLC Q-ToF MS technique in the identification of various biocompounds. The analysis showed the presence of 28 phenolic compounds, 3 organic acids, and 26 phenylamides. The 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG) was identified by UHPLC Q-ToF MS and quantified by standardised UHPLC-DAD method. Most of the compounds detected were derivatives of caffeic acid and ferulic acid, followed by quercetin derivatives. Among the phenylamides, several glucosylated caffeoyl and/or dihydrocaffeoyl derivatives of spermidine and spermine were characterized, confirming their recent characterization. Some glycosylated/non-glycosylated putrescine derivatives and caffeoyl-dihydrocaffeoyl-feruloyl spermidines were identified in goji berriesfor the first time. Their tentative structures and fragmentations were proposed.
Collapse
Affiliation(s)
- Danijel D Milinčić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana B Vidović
- University of Belgrade - Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Milan Milenković
- Institute of Public Health of Serbia "Dr Milan Jovanović Batut", Center for Hygiene and Human Ecology, 11000 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Slađana P Stanojević
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - T Ilić
- University of Belgrade - Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Mirjana B Pešić
- University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia.
| |
Collapse
|
8
|
Zhou W, Kan X, Dong W, Yan Y, Mi J, Lu L, Cao Y, Sun Y, Zeng X, Wang W. In vivo absorption and fecal excretion of polysaccharides from the fruits of Lycium barbarum L. in rats through fluorescence labeling. Int J Biol Macromol 2024; 278:134613. [PMID: 39127284 DOI: 10.1016/j.ijbiomac.2024.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
In the present study, the in vivo absorption and fecal excretion of a purified fraction of polysaccharides from the fruits of Lycium barbarum L. (LBPs-4) in rats were investigated by labelling LBPs-4 with fluorescein isothiocyanate (FITC). It was found that the fluorescent labeled LBPs-4 (LBPs-4-FITC) was not detected in the plasma within 24 h following the administration of a single dose of LBPs-4-FITC (100 mg/kg of body weight) to rats, indicating that LBPs-4 was hardly absorbed in its prototype form. Instead, a smaller fragment dissociated from LBPs-4-FITC was observed in feces and was accumulated in a time-dependent manner, suggesting that LBPs-4 was excreted into the feces with a form of degradation. Meanwhile, we observed that LBPs-4-FTIC could modulate the fecal bacterial community profile via increasing the relative abundances of Bacteroides ovatus and Alistipes and promote the production of acetic acid. Furthermore, the monoculture experiment confirmed that LBPs-4 could be metabolized into smaller fragment by B. ovatus, producing acetic acid. Collectively, our study provides information on the destiny of LBPs-4 after oral administration: non-absorbed but moved to the large intestine and catabolized by gut microbiota, especially B. ovatus.
Collapse
Affiliation(s)
- Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Jia Mi
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Lu Lu
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Youlong Cao
- Institute of wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan 750004, Ningxia, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
9
|
Zheng Y, Schlag S, Wernlein T, Vetter W. Comprehensive gas chromatography with mass spectrometry analysis of sterols in red goji berries (Lycium sp.). Food Chem 2024; 453:139640. [PMID: 38762945 DOI: 10.1016/j.foodchem.2024.139640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Gas chromatography with mass spectrometry (GC/MS) and fractionation steps were used to determine the sterol patterns of red goji berries in detail. Twenty-five sterols were detected in fresh berries of two species (Lycium barbarum and L. chinense) from bushes grown in the botanical garden of the University of Hohenheim, and 20 sterols were identified. The rarely occurring campesta-5,24(25)-dienol, β-sitosterol, Δ5-avenasterol, campesterol, and cycloartenol represented >60 % of the total sterol content. Maturity and drying of fresh red goji berries caused small changes but did not affect the characteristic sterol pattern. This was confirmed by analyzing various commercial dried red goji berry samples from different sources. Separated flesh and seed samples revealed pronounced differences in the sterol pattern. A new method of merging GC/MS chromatograms showed that ∼75 % of the sterols were present in seeds and ∼25 % in flesh. The unique sterol profile may be exploited to authenticate red goji berries.
Collapse
Affiliation(s)
- Yan Zheng
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany; University of Hohenheim, Institute of Food Chemistry (170a), Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Tanja Wernlein
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| |
Collapse
|
10
|
Qi J, Zhang J, Wang K, Cheng Y, Sheng Q, Kurtovic I, Yuan Y, Yue T. Tibetan kefir grains fermentation alters physicochemical properties and improves antioxidant activities of Lycium barbarum pulp polysaccharides. Food Chem 2024; 453:139659. [PMID: 38776792 DOI: 10.1016/j.foodchem.2024.139659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
There is a lack of research on how Tibetan kefir grains fermentation alters the physicochemical properties and biological activity of Lycium barbarum pulp polysaccharides, despite some reports that fermentation can affect the structure and activity of plant polysaccharides. This study demonstrated that, through fermentation, the molecular weight of polysaccharides decreased from 25.33 to 15.11 kg/mol while the contents of total sugar and uronic acid increased by 19.11% and 40.38%, respectively. Furthermore, after fermentation, the polysaccharides exhibited an uneven and rough surface along with a reduced number of branched chains and triple helix structures. Tibetan kefir grains fermentation enhanced the antioxidant activity of polysaccharides, which may be attributed to an increase in arabinose, galactose, and uronic acid content and a decrease in polysaccharide molecular weight. This research offers an alternative viewpoint on the potential application of Tibetan kefir grains-fermented Lycium barbarum pulp polysaccharides in functional foods.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Ivan Kurtovic
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
Sun C, Su J, Wang J, Ding K, Chen C. Lycium barbarum polysaccharide increases thermogenesis and energy metabolism through modulation of the gut microbiota to confer resistance to cold temperatures. FASEB J 2024; 38:e70010. [PMID: 39230621 DOI: 10.1096/fj.202400870r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Traditional Chinese medical literature contains numerous records of many traditional Chinese herbal medicines that exhibit efficacy in enhancing resistance to cold, yet there is a lack of scientific explanation. Lycium barbarum is among the herbal medicines that are explicitly documented to enhance resistance to cold in the "Ben Cao Gang Mu (Compendium of Materia Medica)". Herein, we investigated L. barbarum polysaccharide (LBP)-induced browning of inguinal white adipose tissue (iWAT), energy expenditure and thermogenic function in a long-term (4 months) treatment mouse model. LBP supplementation resulted in a significant reduction in weight and adipocyte size in iWAT, along with increased gut microbiota diversity. Specifically, the levels of Lachnospiraceae, Ruminococcaceae and Bacteroidaceae (short-chain fatty acid-producing bacteria) were elevated, leading to a higher level of short-chain fatty acids (SCFAs) in the caecal content. These effects subsequently triggered the release of glucagon-like peptide-1 (GLP-1) and activated the CREB/PGC1α signaling pathway in iWAT, thereby increasing energy expenditure and enhancing thermogenic function. The antibiotic treatment experiments confirmed that the LBP-mediated gut microbiota participated in the process of iWAT browning. In summary, our findings provide the first scientific explanation and mechanistic insights into the cold resistance of L. barbarum and identify potentially safe natural product supplements for individuals in alpine areas.
Collapse
Affiliation(s)
- Chuanxin Sun
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Juan Su
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiarui Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kan Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, P.R. China
| | - Chang Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Institute for Brain Disorders Capital Medical University, Beijing, P.R. China
| |
Collapse
|
12
|
Dong W, Peng Y, Xu W, Zhou W, Yan Y, Mi J, Lu L, Cao Y, Zeng X. In vivo absorption and excretion in rats and in vitro digestion and fermentation by the human intestinal microbiota of 2- O-β-D-glucopyranosyl-L-ascorbic acid from the fruits of Lycium barbarum L. Food Funct 2024; 15:8477-8487. [PMID: 39054889 DOI: 10.1039/d4fo01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
2-O-β-D-Glucopyranosyl-L-ascorbic acid (AA-2βG) from Lycium barbarum fruits has diverse bioactivities, yet its absorption and digestion are poorly understood. Therefore, the in vivo absorption of AA-2βG in rats was investigated in the present study. After oral administration to SD rats, AA-2βG was absorbed intact, reaching a peak plasma concentration of 472.32 ± 296.64 nM at 90 min, with fecal excretion peaking at 4-8 h and decreasing rapidly by 12-24 h, indicating a prolonged intestinal presence. Furthermore, the digestibility under simulated gastrointestinal conditions and the impact on the gut flora through in vitro fermentation of AA-2βG were investigated. The results reveal that AA-2βG resisted in in vitro simulated digestion, indicating potential interactions with the gut microbiota. The results of in vitro fermentation showed that AA-2βG regulated the composition of the gut microbiota by promoting Oscillospiraceae, Faecalibacterium, Limosilactobacillus, and Fusicatenibacter, while inhibiting Enterococcus, Phocaeicola, Bacteroides, and Streptococcus. Furthermore, at the species level, AA-2βG promoted the growth of Limosilactobacillus mucosae and Faecalibacterium prausnitzii, and inhibited the growth of Enterococcus. F. prausnitzii is a major producer of n-butyric acid, and the results of short-chain fatty acids also demonstrated a significant promotion of n-butyric acid. Therefore, the study on the absorption, excretion, and regulatory effects of AA-2βG on the gut microbiota supported its potential development as a functional food additive to enhance intestinal health and prevent diseases.
Collapse
Affiliation(s)
- Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
13
|
Jeong E, Eun S, Chae S, Lee S. Prebiotic Potential of Goji Berry ( Lycium barbarum) in Improving Intestinal Integrity and Inflammatory Profiles via Modification of the Gut Microbiota in High-Fat Diet-Fed Rats. J Med Food 2024; 27:704-712. [PMID: 38949912 DOI: 10.1089/jmf.2024.k.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Background: Imbalances in gut microbiota and subsequent destabilization of intestinal barrier equilibrium have been related to the evolution of metabolic disorders. Goji berries (Lycium barbarum; GB) and their fermented counterpart (FGB) have been identified for their prebiotic capacity in managing intestinal barrier functions and inflammatory profiles Consequently, this research was designed to investigate the effects of supplementing GB and FGB on intestinal integrity, inflammation, and changes in the composition of gut microbiota in high-fat (HF)-fed rats. Materials and Methods: Thirty-two male Sprague-Dawley rats (6 weeks old, 8 per group) were divided into four categories based on their weight and provided with either respective diets over a 6-week period: low-fat (LF; 10% of calories from fat), HF (45% of calories from fat), and HF diets supplemented with either GB or FGB at a 2% (w/w). Results: Supplementation of GB and FGB resulted in compositional changes in the gut microbiota, denoted by a distinct abundance of Faecalibacterium prausnitzii with GB and Akkermansia muciniphila species with FGB, which have been linked to ameliorated obesity phenotypes and metabolic parameters. These alterations were correlated with enhancements in gut barrier integrity, thereby protecting against local and systemic inflammation induced by a HF diet. Supplementation with GB and FGB also mitigated lipopolysaccharide-induced inflammation through inhibition of its downstream pathway. Conclusion: These findings indicate that both GB and FGB supplementation can improve gut barrier function and inflammatory profiles in HF-fed rats via modulation of the microbial composition of the gut, supporting the potential application of GB and FGB in improving gut barrier function and managing inflammation amid metabolic challenges.
Collapse
Affiliation(s)
- Eunji Jeong
- Department of Food Science, Sun Moon University, Asan, Korea
| | - Sungjin Eun
- Department of Food Science, Sun Moon University, Asan, Korea
| | - Seoyeon Chae
- Department of Food Science, Sun Moon University, Asan, Korea
| | - Sunhye Lee
- Department of Food Science, Sun Moon University, Asan, Korea
| |
Collapse
|
14
|
Pan W, Chen Z, Wang X, Wang F, Liu J, Li L. Occurrence, dissipation and processing factors of multi-pesticides in goji berry. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134696. [PMID: 38788586 DOI: 10.1016/j.jhazmat.2024.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
As medicine and food homology substance, goji berry is consumed worldwide in the form of fresh, dried and juice; however, pesticide residues have become one of the problems that essentially threaten its quality during cultivation and processing. In this study, a total of 75 dried goji berries were sampled from markets across China, and for the determination of 62 analytes, 28 pesticides were identified. Nine pesticides with high detectable rates and residual levels were selected for folia spraying, and their half-lives were found to range from 1.04 to 2.21 d. The processing factors (PFs) of juice were between 0.25 and 1.02, and this was mainly related with their octanol-water partition coefficient (logKow values). Washing could reduce pesticides residues to varying degrees with the removal rates between 17.00% and 74.05%. Sun drying with higher PF values in the range of 0.61-5.91 exhibited more obvious enrichment effect compared to oven drying. Commercial goji berry had cumulative chronic dietary risks with the hazard index (HI) values of 1.61%-4.97%. Its acute risk quotients (HQas) for consumers were 543.32%-585.92% and were mainly due to insecticides. These results provide important references for rationalizing pesticide application during goji berry cultivation and for the improvement of process to ensure food safety.
Collapse
Affiliation(s)
- Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jin Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
15
|
Isak MA, Bozkurt T, Tütüncü M, Dönmez D, İzgü T, Şimşek Ö. Leveraging machine learning to unravel the impact of cadmium stress on goji berry micropropagation. PLoS One 2024; 19:e0305111. [PMID: 38870239 PMCID: PMC11175477 DOI: 10.1371/journal.pone.0305111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
This study investigates the influence of cadmium (Cd) stress on the micropropagation of Goji Berry (Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employing an array of machine learning (ML) algorithms, including Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Gaussian Process (GP), and Extreme Gradient Boosting (XGBoost). The primary motivation is to elucidate genotype-specific responses to Cd stress, which poses significant challenges to agricultural productivity and food safety due to its toxicity. By analyzing the impacts of varying Cd concentrations on plant growth parameters such as proliferation, shoot and root lengths, and root numbers, we aim to develop predictive models that can optimize plant growth under adverse conditions. The ML models revealed complex relationships between Cd exposure and plant physiological changes, with MLP and RF models showing remarkable prediction accuracy (R2 values up to 0.98). Our findings contribute to understanding plant responses to heavy metal stress and offer practical applications in mitigating such stress in plants, demonstrating the potential of ML approaches in advancing plant tissue culture research and sustainable agricultural practices.
Collapse
Affiliation(s)
- Musab A. Isak
- Department of Agricultural Science and Technology, Graduate School of Natural and Applied Sciences Erciyes University, Kayseri, Türkiye
| | - Taner Bozkurt
- Tekfen Agricultural Research Production and Marketing Inc., Adana, Türkiye
| | - Mehmet Tütüncü
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana, Türkiye
| | - Tolga İzgü
- Institute of BioEconomy, National Research Council of Italy (CNR), Florence, Italy
| | - Özhan Şimşek
- Department of Agricultural Science and Technology, Graduate School of Natural and Applied Sciences Erciyes University, Kayseri, Türkiye
- Department of Horticulture, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
16
|
Fu X, Cao Y, Dong X, Chang J, Huo Z, Meng R. Functional responses of two species of predatory mites (Acari: Phytoseiidae) to eggs and first-instar nymphs of Bactericera Gobica Logniova (Homoptera: Psyllidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:197-210. [PMID: 38869725 DOI: 10.1007/s10493-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The goji berry psyllid, Bactericera gobica Logniova (Homoptera: Psyllidae), is one of the most important pests on goji berry plants (Lycium barbarum L.), whose fruits are widely used in traditional Chinese medicine and food. However, chemical control is still the predominant control strategy of this pest. Recently, two species of predatory mites, Neoseiulus setarius Ma, Meng & Fan and Neoseiulus barkeri Hughes were found to be associated with B. gobica in China. To assess their predation potential against B. gobica, the functional responses of these two phytoseiid species feeding on different densities (2, 4, 8, 12, 16, 24 and 32 individuals) of B. gobica eggs and 1st instar nymphs were compared at a temperature of 25ºC ± 1º C. Logistic regression analysis revealed that both predatory mite species exhibited type Holling-II functional responses on eggs and 1st instar nymphs of B. gobica, with the predation number increased for both predators as the density of prey increased. Overall, N. setarius consumed more prey compared to N. barkeri across all levels of prey densities. Meanwhile, the highest attack rate (α = 0.0283), the lowest handling time (Th = 1.1324 h prey- 1), and the highest estimated maximum predation rate (T/Th = 21.19 prey day- 1) were all observed for N. setarius fed with 1st instar nymphs of B. gobica. These findings suggest that it is worthy considering utilizing N. setarius and N. barkeri as candidate biocontrol agents of B. gobica, with N. setarius appearing to be a more effective predator than N. barkeri.
Collapse
Affiliation(s)
- XiaoTong Fu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - YuanZhi Cao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - XinTong Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jing Chang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - ZhiJia Huo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - RuiXia Meng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
17
|
Li SY, Wang GQ, Long L, Gao JL, Zhou ZQ, Wang YH, Lv JM, Chen GD, Hu D, Abe I, Gao H. Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines. Nat Commun 2024; 15:4588. [PMID: 38816433 PMCID: PMC11139883 DOI: 10.1038/s41467-024-49010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
Collapse
Affiliation(s)
- Shao-Yang Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Liang Long
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jia-Ling Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Wu F, Dang B, Hu L, Zhu S, Liu Z, Cao X, Li Z, Wang C, Lin C. Lycium barbarum polysaccharide inhibits blue-light-induced skin oxidative damage with the involvement of mitophagy. Photochem Photobiol 2024; 100:604-621. [PMID: 37814779 DOI: 10.1111/php.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Although blue light can damage the skin to a certain extent, the pathogenesis of its damage remains still unclear. The available evidence suggests that oxidative stress may be the main cause of its damage. Lycium barbarum polysaccharide (LBP) has antioxidative effects in a variety of cells. In this paper, we investigated the protective role of LBP and its mechanism of action related to mitophagy in blue-light-damaged skin cells. The findings indicated that in HaCaT cells and mouse skin, LBP pretreatment was effective in reducing blue-light-induced apoptosis and ameliorating the elevated level of cellular autophagy/mitophagy caused by excessive blue light exposure. The markers reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were used to assess oxidative stress. LBP could effectively inhibit blue-light-induced oxidative stress. It was also found that blue light exposure caused mitochondrial dysfunction in HaCaT cells, including increased intracellular calcium ion levels and decreased mitochondrial membrane potential. LBP pretreatment significantly relieved mitochondrial dysfunction in HaCaT cells. These findings imply that LBP pretreatment protects skin cells from damage induced by blue light irradiation and that mitophagy may be a significant factor in skin photodamage.
Collapse
Affiliation(s)
- Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Liming Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Du Y, Wen A, Wang H, Xiao Y, Yuan S, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Degradation of carbofuran and acetamiprid in wolfberry by dielectric barrier discharge plasma: Kinetics, pathways, toxicity and molecular dynamics simulation. CHEMOSPHERE 2024; 353:141561. [PMID: 38417492 DOI: 10.1016/j.chemosphere.2024.141561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Carbofuran and acetamiprid pose the highest residual risk among pesticides found in wolfberries. This study aimed to degrade these pesticides in wolfberries using a multi-array dielectric barrier discharge plasma (DBD), evaluate the impact on safety and quality and explore their degradation mechanism. The results showed that DBD treatment achieved 90.6% and 80.9% degradation rates for carbofuran and acetamiprid, respectively, following a first-order kinetic reaction. The 120 s treatment successfully reduced pesticide contamination to levels below maximum residue limits. Treatment up to 180 s did not adversely affect the quality of wolfberries. QTOF/MS identification and degradation pathway analysis revealed that DBD broke down the furan ring and carbamate group of carbofuran, while replacing the chlorine atom and oxidizing the side chain of acetamiprid, leading to degradation. The toxicological evaluation showed that the degradation products were less toxic than undegraded pesticides. Molecular dynamics simulations revealed the reactive oxygen species (ROS) facilitated the degradation of pesticides through dehydrogenation and radical addition reactions. ROS type and dosage significantly affected the breakage of chemical bonds associated with toxicity (C4-O5 and C2-Cl1). These findings deepen insights into the plasma chemical degradation of pesticides.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Huihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
20
|
PING Y, LIU J, WANG H, WANG Y, QIU H, ZHANG Y. Research progress in the treatment of an immune system disease-type 1 diabetes-by regulating the intestinal flora with Chinese medicine and food homologous drugs. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:150-161. [PMID: 38966054 PMCID: PMC11220337 DOI: 10.12938/bmfh.2023-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/06/2024] [Indexed: 07/06/2024]
Abstract
Type 1 diabetes (T1D) is a specific autoimmune disease related to genetic and autoimmune factors. Recent studies have found that the intestinal flora is one of the important environmental factors in the development of T1D. The gut microbiota is the largest microbiota in the human body and has a significant impact on material and energy metabolism. Related studies have found that the intestinal floras of T1D patients are unbalanced. Compared with normal patients, the abundance of beneficial bacteria is reduced, and various pathogenic bacteria are significantly increased, affecting the occurrence and development of diabetes. Medicinal and food homologous traditional Chinese medicine (TCM) has a multicomponent, multitarget, and biphasic regulatory effect. Its chemical composition can increase the abundance of beneficial bacteria, improve the diversity of the intestinal flora, reduce blood sugar, and achieve the purpose of preventing and treating T1D by regulating the intestinal flora and its metabolites. Therefore, based on a review of T1D, intestinal flora, and TCM derived from medicine and food, this review describes the relationship between T1D and the intestinal flora, as well as the research progress of TCM interventions for T1D through regulation of the intestinal flora. Medicine and food homologous TCM has certain advantages in treating diabetes and regulating the intestinal flora. It can be seen that there is still great research space and broad development prospects for the treatment of diabetes by regulating the intestinal flora with drug and food homologous TCM.
Collapse
Affiliation(s)
- Yang PING
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| | - Jianing LIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Huilin WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yan WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Hongbin QIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yu ZHANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| |
Collapse
|
21
|
Liu L, Zhao Y, Huang Z, Long Z, Qin H, Lin H, Zhou S, Kong L, Ma J, Li Z. Effects of Lycium barbarum polysaccharides supplemented to high soybean meal diet on immunity and hepatic health of spotted sea bass Lateolabrax maculatus. Front Immunol 2024; 15:1333469. [PMID: 38380326 PMCID: PMC10876890 DOI: 10.3389/fimmu.2024.1333469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
High soybean meal diet (HSBMD) decreased the immunity and damaged the liver health of spotted sea bass; in this study, Lycium barbarum polysaccharides (LBP) was added to HSBMD to explore its effects on the immunity and liver health. The diet with 44% fish meal content was designed as a blank control. On this basis, soybean meal was used to replace 50% fish meal as HSBMD, and LBP was added in HSBMD in gradient (1.0, 1.5, 2.0 g/kg) as the experimental diet. 225-tailed spotted sea bass with initial body weight of 44.52 ± 0.24 g were randomly divided into 5 groups and fed the corresponding diet for 52 days, respectively. The results show that: after ingestion of HSBMD, the immunity of spotted sea bass decreased slightly and hepatic tissue was severely damaged. And the addition of LBP significantly improved the immune capacity and protected the hepatic health. Specifically, the activities of serum lysozyme (LZM), immunoglobulin M (IgM), liver acid phosphatase (ACP) and alkaline phosphatase (AKP) were increased, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly decreased, and hepatic morphology was improved. In the analysis of transcriptome results, it was found that toll-like receptor 3 (TLR3) and toll-like receptor 5 (TLR5) were down-regulated in toll-like receptor signaling pathway. And LBP may protect hepatic health by regulating Glycolysis/Gluconeogenesis, Insulin signaling pathway, Steroid biosynthesis and other glucolipid-related pathways. In conclusion, the addition of LBP in HSBMD can improve the immunity and protect the hepatic health of spotted sea bass, and its mechanism may be related to glucose and lipid metabolism.
Collapse
Affiliation(s)
- Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yanbo Zhao
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
22
|
Tian X, Dong W, Zhou W, Yan Y, Lu L, Mi J, Cao Y, Sun Y, Zeng X. The polysaccharides from the fruits of Lycium barbarum ameliorate high-fat and high-fructose diet-induced cognitive impairment via regulating blood glucose and mediating gut microbiota. Int J Biol Macromol 2024; 258:129036. [PMID: 38151081 DOI: 10.1016/j.ijbiomac.2023.129036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD.
Collapse
Affiliation(s)
- Xinyi Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China; National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
24
|
Breniere T, Fanciullino AL, Dumont D, Le Bourvellec C, Riva C, Borel P, Landrier JF, Bertin N. Effect of long-term deficit irrigation on tomato and goji berry quality: from fruit composition to in vitro bioaccessibility of carotenoids. FRONTIERS IN PLANT SCIENCE 2024; 15:1339536. [PMID: 38328704 PMCID: PMC10847359 DOI: 10.3389/fpls.2024.1339536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Drought is a persistent challenge for horticulture, affecting various aspects of fruit development and ultimately fruit quality, but the effect on nutritional value has been under-investigated. Here, fruit quality was studied on six tomato genotypes and one goji cultivar under deficit irrigation (DI), from fruit composition to in vitro bioaccessibility of carotenoids. For both species, DI concentrated most health-related metabolites in fresh fruit. On a dry mass basis, DI increased total phenolic and sugar concentration, but had a negative or insignificant impact on fruit ascorbic acid, organic acid, and alcohol-insoluble matter contents. DI also reduced total carotenoids content in tomato (-18.7% on average), especially β-carotene (-32%), but not in goji berry DW (+15.5% and +19.6%, respectively). DI reduced the overall in vitro bioaccessibility of carotenoids to varying degrees depending on the compound and plant species. Consequently, mixed micelles produced by digestion of fruits subjected to DI contained either the same or lesser quantities of carotenoids, even though fresh fruits could contain similar or higher quantities. Thus, DI effects on fruit composition were species and genotype dependent, but an increase in the metabolite concentration did not necessarily translate into greater bioaccessibility potentially due to interactions with the fruit matrix.
Collapse
Affiliation(s)
- Thomas Breniere
- INRAE, PSH UR1115, Avignon, France
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Avignon Université, UPR4278 LaPEC, Avignon, France
| | - Anne-Laure Fanciullino
- INRAE, PSH UR1115, Avignon, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | | | | | - Patrick Borel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | | | | |
Collapse
|
25
|
Du Y, Mi S, Wang H, Yuan S, Yang F, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Intervention mechanisms of cold plasma pretreatment on the quality, antioxidants and reactive oxygen metabolism of fresh wolfberries during storage. Food Chem 2024; 431:137106. [PMID: 37573747 DOI: 10.1016/j.foodchem.2023.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Fresh wolfberries, a nutritious "super fruit", face limited marketing potential due to storage difficulties. This study aimed to enhance their storage stability using dielectric barrier discharge plasma (DBD) pretreatment and investigate the intervention mechanism. The results indicated that the optimal condition of DBD pretreatment for fresh wolfberries was 13.64 kV, 70 s and 2.7 kHz, which extended their shelf from 2 to 5 d at room temperature. This pretreatment reduced decay, weight loss, and firmness reduction by inactivating microorganisms and inhibiting respiration. Additionally, the decline of phenols, flavonoids, ascorbic acid, and antioxidant activity was inhibited, while maintaining high content of polysaccharides, titratable acid, and carotenoids. Interestingly, moderate DBD treatment produced reactive oxygen species (ROS) that triggered the defense response of wolfberries' ROS metabolism system and promoted the biosynthesis of flavonoids, thereby enhancing resistance to decay. The findings offer new insight into plasma effects on fruits and vegetables.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shuna Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Huihui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
26
|
Wang S, Su Q, Zhu Y, Liu J, Zhang X, Zhang Y, Zhu B. Sensory-Guided Establishment of Sensory Lexicon and Investigation of Key Flavor Components for Goji Berry Pulp. PLANTS (BASEL, SWITZERLAND) 2024; 13:173. [PMID: 38256727 PMCID: PMC10820852 DOI: 10.3390/plants13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Many customers prefer goji berry pulp, well-known for its high nutritional content, over fresh goji berries. However, there is limited research on its sensory lexicon and distinctive flavor compounds. This study focused on developing a sensory lexicon for goji berry pulp and characterizing its aroma by sensory and instrumental analysis. Sensory characteristics of goji berry pulp were evaluated by our established lexicon. A total of 83 aromatic compounds in goji berry pulp were quantified using HS-SPME-GC-Orbitrap-MS. By employing OAV in combination, we identified 17 aroma-active compounds as the key ingredients in goji berry pulp. Then, we identified the potentially significant contributors to the aroma of goji berry pulp by combining principal component analysis and partial least squares regression (PLSR) models of aroma compounds and sensory attributes, which included 3-ethylphenol, methyl caprylate, 2-hydroxy-4-methyl ethyl valerate, benzeneacetic acid, ethyl ester, hexanal, (E,Z)-2,6-nonadienal, acetylpyrazine, butyric acid, 2-ethylhexanoic acid, 2-methyl-1-propanol, 1-pentanol, phenylethyl alcohol, and 2-nonanone. This study provides a theoretical basis for improving the quality control and processing technology of goji berry pulp.
Collapse
Affiliation(s)
- Shuying Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Q.S.); (Y.Z.); (J.L.)
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Q.S.); (Y.Z.); (J.L.)
| | - Yuxuan Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Q.S.); (Y.Z.); (J.L.)
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Q.S.); (Y.Z.); (J.L.)
| | - Xinke Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China;
- “The Belt and Road” International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Q.S.); (Y.Z.); (J.L.)
| | - Baoqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Q.S.); (Y.Z.); (J.L.)
| |
Collapse
|
27
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
28
|
Mejri H, Ouerghemi I, Aidi Wannes W, Haddada FM, Tlili N, Hammami M, Dussault C, Girad-La Lancette K, Pichette A, Legault J, Saidani-Tounsi M. Phytochemical analysis, antioxidant, anticancer and anti-inflammatory activities of Lycium europaeum fruits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1676-1685. [PMID: 36001896 DOI: 10.1080/09603123.2022.2115469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Lycium europaeum is used as a medicinal herb in many countries. In this study, cyclohexane, dichloromethane, ethyl acetate, methanol and water were used as solvents in the extraction of L. europaeum fruits. The contents of total phenolics, total flavonoids, total tannins and condensed tannins as well as the biological activities of these extracts were investigated using various in vitro and ex vivo assays. Results showed that all solvent extracts of L. europaeum had no anticancer activity against cancerous (A-549 and DLD-1) and non-cancerous (WS-1) human cells. Methanol and ethyl acetate were the most effective solvent for extraction of phenolic compounds and also exhibited the highest antioxidant and anti-inflammatory activities. The methanol extract of L. europaeum fruits was the richest in phenolic compounds with the predominance of ferulic acid, catechin and narengin. These results supported the use of L. europaeum fruit as natural source of bioactive compound for pharmaceutical applications.
Collapse
Affiliation(s)
- Houda Mejri
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Saguenay, Canada
| | - Ines Ouerghemi
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
| | - Wissem Aidi Wannes
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
| | - Faouzia Mahjoub Haddada
- Laboratoire de Biochimie, Département de Biologie, Faculté des Sciences de Tunis Université Tunis El-Manar Tunis Tunisia
| | - Nizar Tlili
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
- Laboratory of Bioactive Substances, Biotechnologie Center, Hammam-Lif, Tunisia
| | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
| | | | | | - André Pichette
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Saguenay, Canada
| | - Jean Legault
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Saguenay, Canada
| | - Moufida Saidani-Tounsi
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
| |
Collapse
|
29
|
Brecchia G, Muça G, Munga A, Menchetti L, Galosi L, Rossi G, Barbato O, Pastorelli G, Agradi S, Serra V, Sulçe M, Ozuni E, Turmalaj L, Castrica M, Ceccarini MR, Riva F, Fioretti B, Quattrone A, Marongiu ML, Curone G. Goji Berry in the Diet of the Rabbit Buck: Effects on Semen Quality, Oxidative Status and Histological Features of the Reproductive Tract. Antioxidants (Basel) 2023; 12:1959. [PMID: 38001812 PMCID: PMC10669443 DOI: 10.3390/antiox12111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Goji berry (GB) shows beneficial effects on human health, although its effects on the male rabbit have been little investigated. This study examines the impact of GB dietary supplementation on the semen traits, antioxidant capacity of seminal plasma, and histological features of the reproductive tract of rabbit buck. Eighteen rabbits were distributed into two dietary groups: one receiving a commercial feed (Control), and the other a feed supplemented with 1% of GB (Goji). After a nutritional adaptation period of 60 days, the animals were subjected to semen collection every 15 days. The semen traits, libido, antioxidant, and inflammatory parameters were collected and analyzed. The rabbits were sacrificed after 60 days, and tissues of the genital tract were analyzed. Compared to the Control group, the Goji group showed higher spermatozoa concentration, motility, and vitality (p < 0.05), as well as fewer abnormal spermatozoa and a higher libido (p < 0.1). Histological features such as functional activity and hyperplasia were improved by GB and correlated with some semen traits (p < 0.05). Conversely, antioxidant and anti-inflammatory parameters were unaffected by the diet. These findings suggest that GB acts on the tissues of the reproductive tract positively influencing semen quality, although further studies are needed to understand the effect on oxidative stress.
Collapse
Affiliation(s)
- Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Gerald Muça
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Albana Munga
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Majlind Sulçe
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Enkeleda Ozuni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Luigj Turmalaj
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (G.M.); (A.M.); (M.S.); (E.O.); (L.T.)
| | - Marta Castrica
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy;
| | | | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
| | - Alda Quattrone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| | - Maria Laura Marongiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.B.); (G.P.); (S.A.); (V.S.); (F.R.); (A.Q.); (G.C.)
| |
Collapse
|
30
|
Lai S, Liu C, Liu C, Fan L, Li X, Yang Y, Zhu Y, Deng L, Xiao L, Mu Y. Lycium barbarum polysaccharide-glycoprotein promotes osteogenesis in hPDLSCs via ERK activation. Oral Dis 2023; 29:3503-3513. [PMID: 36250230 DOI: 10.1111/odi.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE A lack of relevant research on Lycium barbarum polysaccharide-glycoprotein (LBP) application in oral diseases. Here, we focused on the effect of LBP on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and periodontitis bone loss. METHODS Human periodontal ligament stem cells (hPDLSCs) were isolated and identified by flow cytometry. Alkaline phosphatase (ALP) activity, Alizarin Red staining, and combined qPCR and Western blot analyses were performed to elucidate the effects of LBP on the osteogenic potential of hPDLSCs. In vivo experiments were performed with the treatment of LBP in rat periodontal model. MicroCT scanning and histological analysis were conducted to evaluate osteogenesis in situ. RESULTS Human periodontal ligament stem cells (hPDLSCs) were successfully isolated and identified with CD90, CD29, and CD45. LBP enhanced hPDLSCs proliferation and migration and promoted RUNX2, ALP, Collagen I, and Osteocalcin expression through activating the ERK1/2 signaling pathway in vitro. The inflammatory factors, including interleukin 6 (IL-6) and interleukin 8 (IL-8) were reduced after LBP treatment. Alveolar bone resorption was significantly decreased in the LBP-treated groups in vivo, and osteoclast was markedly decreased by LBP application. CONCLUSION LBP promoted hPDLSC osteogenesis by targeting the ERK1/2 signaling pathway and reverse bone loss by reducing inflammation. These findings provided latent hope for LBP application in periodontal therapy.
Collapse
Affiliation(s)
- Shuang Lai
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Chang Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Cong Liu
- School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Liyuan Fan
- School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Xinlun Li
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Yang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yushu Zhu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Deng
- School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
31
|
Zeng X, Zhao W, Wang S, Xiong H, Wu J, Ren J. L. barbarum (Lycium barbarum L.) supplementation for lipid profiles in adults: A systematic review and meta-analysis of RCTs. Medicine (Baltimore) 2023; 102:e34952. [PMID: 37773857 PMCID: PMC10545344 DOI: 10.1097/md.0000000000034952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Dyslipidemia is a global health concern with an increasing prevalence worldwide. Lycium barbarum (L. barbarum) is widely used as a medicinal and functional food, and evidence suggests that it may be beneficial for lipid management. In this study, we performed a systematic review and meta-analysis of randomized controlled trials investigating the effects of L. barbarum supplementation on lipid profiles in adults. METHODS PubMed, China National Knowledge Infrastructure, The Cochrane Library, Web of Science, and Wanfang Database were searched from inception until October 2022. The random-effect model was applied, and the pooled effect sizes were expressed as mean differences (MDs) and 95% confidence intervals (CIs). RESULTS The meta-analysis of 5 randomized controlled trials involving 259 subjects indicated that L. barbarum supplementation significantly decreased the triglyceride (TG) concentration (MD: 0.14 mmol/L, 95% CI: 0.08-0.20) and increased the high-density lipoprotein cholesterol concentration (HDL-C) (MD: -0.07 mmol/L, 95% CI: -0.13 to -0.01). However, the reductions in total cholesterol (TC) concentration (MD: 0.11 mmol/L, 95% CI: -0.37 to 0.59) and low-density lipoprotein cholesterol (LDL-C) concentration (MD: 0.21 mmol/L, 95% CI: -0.46 to 0.89) were not statistically significant. CONCLUSION The present study showed that L. barbarum supplementation might have some beneficial effects on TG and HDL-C concentrations in adults, and L. barbarum fruit has an even greater effect on TG and HDL-C concentrations. Considering the sensitivity analyses and limitations of the study included, further large-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Xueyuan Zeng
- Traditional Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, PR China
| | - Weimin Zhao
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, PR China
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Huazhong Xiong
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, PR China
| | - Junliang Wu
- Traditional Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, PR China
| | - Jixiang Ren
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, PR China
| |
Collapse
|
32
|
Zheng J, Luo Z, Chiu K, Li Y, Yang J, Zhou Q, So KF, Wan QL. Lycium barbarum glycopetide prolong lifespan and alleviate Parkinson's disease in Caenorhabditis elegans. Front Aging Neurosci 2023; 15:1156265. [PMID: 37469953 PMCID: PMC10353607 DOI: 10.3389/fnagi.2023.1156265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Lycium barbarum glycopeptide (LbGp) is the main bioactive compound extracted from the traditional Chinese medicine. L. barbarum berries and has been proven to have numerous health benefits, including antioxidative, anti-inflammatory, anticancer, and cytoprotective activities. However, the antiaging effect of LbGp remains unknown. Methods The lifespan and body movement of C. elegans were used to evaluate the effect of LbGp on lifespan and health span. The thrashing assay was used to determine the role of LbGp in Parkinson's disease. To investigate the mechanisms of LbGp-induced antiaging effects, we analyzed changes in lifespan, movement, and the expression of longevity-related genes in a series of worm mutants after LbGp treatment. Results We found that LbGp treatment prolonged the lifespan and health span of C. elegans. Mechanistically, we found that LbGp could activate the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, as well as the nuclear receptor DAF-12, thereby upregulating longevity-related genes to achieve lifespan extension. In addition, we found that the lifespan extension induced by LbGp partially depends on mitochondrial function. Intriguingly, LbGp also ameliorated neurodegenerative diseases such as Parkinson's disease in a DAF-16-, SKN-1-, and HSF-1-dependent manner. Conclusion Our work suggests that LbGp might be a viable candidate for the treatment and prevention of aging and age-related diseases.
Collapse
Affiliation(s)
- Jingming Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhenhuan Luo
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Kin Chiu
- State Key Lab of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jing Yang
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhou
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of Central Nervous System (CNS) Regeneration, Ministry of Education Central Nervous System (CNS) Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Ma Z, Yin J, Yang Y, Sun F, Yang Z. Effect of water and nitrogen coupling regulation on the growth, physiology, yield, and quality attributes and comprehensive evaluation of wolfberry ( Lycium barbarum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1130109. [PMID: 37416888 PMCID: PMC10320590 DOI: 10.3389/fpls.2023.1130109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/27/2023] [Indexed: 07/08/2023]
Abstract
The characteristics of the growing environment (arid and semi-arid regions with abundant light), wastage of water, types of fertilizers used, quality of the plants, and the decline in yield due to the need for large quantities of water and fertilizers are the most significant obstacles to wolfberry cultivation. To cope with the scarcity of water caused by the increase in the area of wolfberry cultivation and to improve the efficiency of the utilization of water and fertilizers, a two-year field experiment was conducted in a typical area of the central dry zone of Ningxia in 2021 and 2022. The effects of different water and nitrogen coupling on the physiology, growth, quality, and yield of wolfberry were investigated, and a water and nitrogen management model with better indicators was constructed based on the TOPSIS model and a comprehensive scoring method. In the experiment, three irrigation quotas of 2,160, 2,565, and 2,970 m3 ha-1 (I1, I2, and I3) and three N applications of 165, 225, and 285 kg ha-1 (N1, N2, and N3) were established; the local conventional management served as the control (CK). The results showed that the growth index of wolfberry was most significantly affected by irrigation, followed by the water and nitrogen interaction effect, and the nitrogen application had the least effect. The growth and development of wolfberry plants mainly takes place during the fruit ripening and flowering periods, and growth almost stops after entering the fruit ripening period. The chlorophyll (SPAD) values were affected by irrigation and nitrogen application to a significant level, except for during the spring tip period, but the effect of water and nitrogen interaction was not significant. The SPAD values of N2 treatment were better under different irrigation. The daily photosynthetic activity of wolfberry leaves peaked between 10:00 am and noon. The daily photosynthetic dynamics of wolfberry were affected by irrigation and nitrogen application to a significant level during the fruit ripening period, and the transpiration rate and leaf water use efficiency were affected by water and nitrogen interaction to a significant level during 8:00 am and noon, while the effect was not significant during the spring tip period. The yield, dry-to-fresh ratio, and 100 grain weight of wolfberry were significantly affected by the irrigation, nitrogen application, and their interaction effects. Specifically, the two-year yield with I2N2 treatment increased by 7.48% and 3.73%, respectively, compared to CK. The quality indices were significantly affected by irrigation and nitrogen application, except for the total sugars; other indexes were also significantly affected by water and nitrogen interaction effects. The evaluation of the TOPSIS model showed that the I3N1 treatment yielded the best quality of wolfberry, and the results of the integrated scoring method based on the growth, physiology, yield, and quality indicators and water-saving objectives showed that the I2N2 (2,565 m3 ha-1, 225 kg ha-1) treatment was the optimal water and nitrogen management mode for drip-irrigated wolfberry. Our findings provide a scientific basis for the optimal irrigation and management of fertilization of wolfberry in arid regions.
Collapse
Affiliation(s)
- Zhenghu Ma
- School of Civil and Water Engineering, Ningxia University, Yingchuan, China
| | - Juan Yin
- School of Civil and Water Engineering, Ningxia University, Yingchuan, China
- Ministry of Education Engineering Research Center for Modern Agricultural Water Resources Efficient Utilization in Dry Areas, Ningxia University, Yingchuan, China
- Ningxia Water-saving Irrigation and Water Resources Control Engineering Technology Research Center, Ningxia University, Yingchuan, China
| | - Yingpan Yang
- School of Civil and Water Engineering, Ningxia University, Yingchuan, China
| | - Fubin Sun
- School of Civil and Water Engineering, Ningxia University, Yingchuan, China
| | - Zhen Yang
- School of Civil and Water Engineering, Ningxia University, Yingchuan, China
| |
Collapse
|
34
|
Tang X, Zhang Y, Li F, Zhang N, Yin X, Zhang B, Zhang B, Ni W, Wang M, Fan J. Effects of traditional and advanced drying techniques on the physicochemical properties of Lycium barbarum L. polysaccharides and the formation of Maillard reaction products in its dried berries. Food Chem 2023; 409:135268. [PMID: 36592603 DOI: 10.1016/j.foodchem.2022.135268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This study explored the effect of three different industrial drying methods on the physicochemical, nutritional, and safety profile of goji berries. The hot-air (HD) and microwave drying (MD) methods yielded berries with relatively high polysaccharide content, while vacuum freeze-drying (FD) yielded dried berries with better sensory qualities but relatively less polysaccharide content. The polysaccharides obtained from the HD and MD berries had lower molecular weight, high antioxidant activity and high degrees of Maillard reaction. Further investigations revealed that all three methods, in particular HD and MD, generated high levels of intermediate Maillard reaction products (55.8-86.3 mg/kg) and advanced glycation end-products (fluorescent intensity of 26784-51712), based on significant reduction of reducing sugar and amino acids in the HD and MD berries (p < 0.05). These findings highlight the need to scrutinize the effectiveness of traditional and emerging drying technologies used to produce safe fruits.
Collapse
Affiliation(s)
- Xiaomin Tang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yaqiong Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Feiyang Li
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Na Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bo Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenrui Ni
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengze Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China.
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Zhou W, Liu P, Xu W, Ran L, Yan Y, Lu L, Zeng X, Cao Y, Mi J. A purified fraction of polysaccharides from the fruits of Lycium barbarum L. improves glucose homeostasis and intestinal barrier function in high-fat diet-fed mice. Food Funct 2023. [PMID: 37203380 DOI: 10.1039/d3fo00262d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-fat diet (HFD) consumption can induce intestinal barrier dysfunction and disrupt glucose metabolism. Our previous studies have demonstrated that polysaccharides obtained from the fruits of Lycium barbarum L. (LBPs) could suppress acute experimental diabetes as well as colitis in mice. In the present study, the modulating effects of a purified fraction of LBPs, named LBPs-4, on glucose homeostasis and intestinal barrier function in mice fed with a HFD were investigated. Our results indicated that the oral administration of LBP-4 (200 mg per kg per day) improved hyperglycemia, glucose intolerance, insulin resistance and islet β-cell hyperplasia in HFD-fed mice. Moreover, LBPs-4 intervention enhanced the intestinal barrier integrity by increasing the expression levels of zonula occludens 1 and claudin-1 and the number of goblet cells in the colon. LBPs-4 also modulated the composition of gut microbiota by increasing the relative abundances of butyrate producer Allobaculum and acetate producer Romboutsia. The results of fecal transplantation experiments, transferring of microbiota from LBPs-4-fed donor mice to HFD-fed recipient mice, validated the cause-effect relationship between LBPs-4-evoked changes in the gut microbiota and improvement of glucose homeostasis and intestinal barrier function. Collectively, these findings suggested that LBPs-4 might be developed as promising prebiotics to improve glucose metabolism and gut health.
Collapse
Affiliation(s)
- Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Peiyun Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Linwu Ran
- Laboratory Animal Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yamei Yan
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| | - Lu Lu
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| | - Jia Mi
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
36
|
Rajkowska K, Otlewska A, Broncel N, Kunicka-Styczyńska A. Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules 2023; 28:molecules28104058. [PMID: 37241797 DOI: 10.3390/molecules28104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study compares the microbial diversity and content of bioactive compounds in dried goji berries available on the Polish market to those of the most highly valued goji berries from the Ningxia region in China. The content of phenols, flavonoids, and carotenoids were determined, as well as the antioxidant capacities of the fruits. The quantitative and qualitative composition of the microbiota inhabiting the fruits was assessed using metagenomics by high-throughput sequencing on the Illumina platform. The highest quality was demonstrated by naturally dried fruits from the Ningxia region. These berries were characterized by a high content of polyphenols and high antioxidant activity, as well as high microbial quality. The lowest antioxidant capacity was shown by goji berries cultivated in Poland. However, they contained a high amount of carotenoids. The highest microbial contamination was found in the goji berries available in Poland (>106 CFU/g), which is important in terms of consumer safety. Despite the widely accepted benefits of consuming goji berries, both the country of cultivation and the preservation method may influence their composition, bioactivity, and microbial quality.
Collapse
Affiliation(s)
- Katarzyna Rajkowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Natalia Broncel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
- Bionanopark Ltd., Dubois 114/116, 93-465 Łódź, Poland
| | - Alina Kunicka-Styczyńska
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| |
Collapse
|
37
|
Li X, Holt RR, Keen CL, Morse LS, Zivkovic AM, Yiu G, Hackman RM. Potential roles of dietary zeaxanthin and lutein in macular health and function. Nutr Rev 2023; 81:670-683. [PMID: 36094616 PMCID: PMC11494239 DOI: 10.1093/nutrit/nuac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin are three xanthophyll carotenoid pigments that selectively concentrate in the center of the retina. Humans cannot synthesize lutein and zeaxanthin, so these compounds must be obtained from the diet or supplements, with meso-zeaxanthin being converted from lutein in the macula. Xanthophylls are major components of macular pigments that protect the retina through the provision of oxidant defense and filtering of blue light. The accumulation of these three xanthophylls in the central macula can be quantified with non-invasive methods, such as macular pigment optical density (MPOD). MPOD serves as a useful tool for assessing risk for, and progression of, age-related macular degeneration, the third leading cause of blindness worldwide. Dietary surveys suggest that the dietary intakes of lutein and zeaxanthin are decreasing. In addition to low dietary intake, pregnancy and lactation may compromise the lutein and zeaxanthin status of both the mother and infant. Lutein is found in modest amounts in some orange- and yellow-colored vegetables, yellow corn products, and in egg yolks, but rich sources of zeaxanthin are not commonly consumed. Goji berries contain the highest known levels of zeaxanthin of any food, and regular intake of these bright red berries may help protect against the development of age-related macular degeneration through an increase in MPOD. The purpose of this review is to summarize the protective function of macular xanthophylls in the eye, speculate on the compounds' role in maternal and infant health, suggest the establishment of recommended dietary values for lutein and zeaxanthin, and introduce goji berries as a rich food source of zeaxanthin.
Collapse
Affiliation(s)
- Xiang Li
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Roberta R Holt
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Carl L Keen
- are with the Department of Nutrition, UC Davis, Davis, California, USA
- is with the Department of Internal Medicine, UC Davis, Sacramento, California, USA
| | - Lawrence S Morse
- are with the Department of Ophthalmology and Vision Science, UC Davis Medical Center, Sacramento, California, USA
| | - Angela M Zivkovic
- re with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Glenn Yiu
- are with the Department of Ophthalmology and Vision Science, UC Davis Medical Center, Sacramento, California, USA
| | - Robert M Hackman
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| |
Collapse
|
38
|
Ding L, Zhou X, Liang X, Dong Y, Fang C, Wu Y, Li B, Mu W, Lin J, Li Y. Achieving High Efficacy and Low Safety Risk by Balancing Pesticide Deposition on Leaves and Fruits of Chinese Wolfberry ( Lycium barbarum L.). ACS OMEGA 2023; 8:14672-14683. [PMID: 37125088 PMCID: PMC10134462 DOI: 10.1021/acsomega.3c00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Pesticide residue has become the main technical barrier that restricts the export of Chinese wolfberry. Can we achieve high efficacy and low safety risk by balancing pesticide deposition on the leaves and fruits of Chinese wolfberry? In this research, the structural characteristics and wettability of leaves and fruits of Chinese wolfberry at different growth stages were studied. The adaxial and abaxial surfaces of leaves were hydrophobic, whereas the fruit surfaces were hydrophilic. Adding spray adjuvant could increase the retention of droplets on the leaf surfaces of Chinese wolfberry by 52.28-97.89% and reduce the retention on the fruit surfaces by 21.68-42.14%. A structural equation model analysis showed that the adhesion tension was the key factor affecting the retention of the solutions among various interface behaviors. When the concentrations of Silwet618, AEO-5, Gemini 31551, and 1227 were 2-5 times higher than their CMCs, the retention of pesticide solutions (pyraclostrobin and tylophorine) on Chinese wolfberry leaves significantly increased, and the control efficacies on aphids and powdery mildew also dramatically improved (65.90-105.15 and 41.18-133.06%, respectively). Meanwhile, the retention of pesticides on the fruit of Chinese wolfberry was reduced. This study provides new insights into increasing the utilization of pesticides in controlling pests and improving food safety.
Collapse
Affiliation(s)
- Lei Ding
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Xuan Zhou
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| | - Xiaojie Liang
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| | - Yujin Dong
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Cunbao Fang
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Yueming Wu
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Beixing Li
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Wei Mu
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Jin Lin
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Yuekun Li
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| |
Collapse
|
39
|
Sun Y, Meng X, Hu X, Liu R, Zhao Z, Wang S, Zhang R, Guo K, Luo L. Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int J Biol Macromol 2023; 232:123500. [PMID: 36736520 DOI: 10.1016/j.ijbiomac.2023.123500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Lycium barbarum (L. barbarum), which has important medicinal and nutritional value. However, the effect of LBP treatment on Luciobarbus capito (L. capito) still remains unknown. Given this, the current work aims to probe the underlying effect of different levels of LBP treatment (i.e. 0.10, 0.50 and 1.00 g/L) on L. capito in the context of enzymatic activity analysis, histological observations and gut microbiota analysis. Compared with control group, the activities of hepatic antioxidant enzymes, intestinal digestive enzymes and hepatic immune enzyme were found to be significantly increased after 0.10 g/L LBP and 0.50 g/L LBP treatment (P < 0.05). This result indicated that moderate levels of LBP treatment could dramatically enhance the immunity and antioxidant capacity of L. capito. Furthermore, the compositional structures of the gut microbiota in L. capito were found to be greatly shaped after LBP treatment, whereas the diversity and abundance of the gut microbiota were only found to be slightly changed (P > 0.05). No significant changes were screened in the morphologic structures of gut constructions. This work would provide theoretical and experimental basis for future application of LBP as supplement in the culture process of the farmed fish.
Collapse
Affiliation(s)
- Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Xiaowei Hu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
40
|
Yu Z, Xia M, Lan J, Yang L, Wang Z, Wang R, Tao H, Shi Y. A comprehensive review on the ethnobotany, phytochemistry, pharmacology and quality control of the genus Lycium in China. Food Funct 2023; 14:2998-3025. [PMID: 36912477 DOI: 10.1039/d2fo03791b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Lycium genus, perennial herbs of the Solanaceae family, has been an important source of medicines and nutrient supplements for thousands of years in China, where seven species and three varieties are cultivated. Among these, Lycium barbarum L. and Lycium chinense Mill., two "superfoods", together with Lycium ruthenicum Murr, have been extensively commercialized and studied for their health-related properties. The dried ripe fruits of the genus Lycium are well recognized as functional foods for the management of various ailments including waist and knee pain, tinnitus, impotence, spermatorrhea, blood deficiency and weak eyes since ancient times. Phytochemical studies have reported numerous chemical components in the Lycium genus, categorized as polysaccharides, carotenoids, polyphenols, phenolic acids, flavonoids, alkaloids and fatty acids, and its therapeutic roles in antioxidation, immunomodulation, antitumor treatment, hepatoprotection and neuroprotection have been further confirmed by modern pharmacological studies. As a multi-functional food, the quality control of Lycium fruits has also attracted attention internationally. Despite its popularity in research, limited systematic and comprehensive information has been provided on the Lycium genus. Therefore, herein, we provide an up-to-date review of the distribution, botanical features, phytochemistry, pharmacology and quality control of the Lycium genus in China, which will provide evidence for further in-depth exploration and comprehensive utilization of Lycium, especially its fruits and active ingredients in the healthcare field.
Collapse
Affiliation(s)
- Zhonglian Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mengqin Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiping Lan
- Experiment center for teaching & learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212016, China
| | - Yanhong Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
41
|
Sanghavi AD, Chopra A, Shah A, Lobo R, Shenoy PA. Antimicrobial, anti-adhesion, anti-biofilm properties of goji berry ( Lycium barbarum) against periodontal bacteria: potential benefits for periodontal diseases. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:129-136. [PMID: 36398568 DOI: 10.1515/jcim-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Lycium barbarum, commonly known as goji berry, Himalayan berry, or Tibetian berry, is emerging as a popular "superfood" with anti-inflammatory and antioxidant properties. However, its use for the management of oral inflammatory diseases has not been explored. The present study aims to evaluate the antimicrobial, anti-adhesion, anti-biofilm, and cytotoxic properties of an ethanolic extract of L. barbarum (LBE) against common oral and periodontal pathogens. METHODS The antimicrobial properties of LBE against five potential periodontal pathogens (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Tanerella forsythia) were tested and compared to chlorhexidine and doxycycline using serial dilution and disc diffusion assay. The MTT Assay was performed for evaluating the cytotoxicity and cell viability of the LBE on the gingival fibroblast and modified keratinocyte cell lines. The anti-adhesion and anti-biofilm properties of LBE against P. gingivalis at its minimal bactericidal value were also assessed. RESULTS LBE inhibited the growth of periodontal pathogens as compared to control, however, the zone of inhibition of LBE was less when compared to doxycycline and chlorhexidine. The de novo extract showed a maximum zone of inhibition against Tf and Aa. The LBE extract was also compatible to gingival fibroblast tissues and oral keratinocytes at 1 mg/mL. CONCLUSIONS L. barbarum is a promising alternative to Chlorhexidine for the management of oral and periodontal infections.
Collapse
Affiliation(s)
- Amee Dilip Sanghavi
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashmeet Shah
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
42
|
Dinç E, Üçer A, Ünal N, Üstündağ Ö. A New Ultra-Performance Liquid Chromatographic Method for the Quantification of Vitamin C in Fresh and Dried Goji Berries (Lycium barbarum L.) Cultivated in Turkey. J AOAC Int 2023; 106:429-435. [PMID: 36303317 DOI: 10.1093/jaoacint/qsac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The potential background of the study is related to comprehensive detection of the content of vitamin C with an actual chromatographic method. OBJECTIVE Vitamin C is of vital importance in terms of human life and health due to its polyfunctional activity such as antioxidant activity and antiviral effect with other biological functions. In this regard, it may be necessary to update analytical methods or develop up-to-date analytical methods to accurately estimate the amount of vitamin C in natural samples. In this study, a new ultra-performance liquid chromatography with photodiode array detection (UPLC-PDA) method has been developed for the determination of vitamin C content in fresh and dried goji berries (Lycium barbarum L.), which are cultivated in Turkey. METHOD The chromatographic elution of vitamin C in natural fruit samples was achieved on an ACQUITY UPLC BEH C18 (1.7 µm, 2.1 mm × 100 mm) column using methanol and 0.1 M H3PO4 pH 2.15 (20:80, v/v), which are mobile phase. UPLC determination was done at the 242.8 nm. Flow rate was 0.20 mL/min at a column temperature of 30°C. Linearity range of the calibration graph was found to be at 5-30 µg/mL. The validity of the newly developed UPLC method was tested by analyzing individual test samples and added samples. RESULTS Applicability of the validated UPLC method was verified by the quantitative analysis of vitamin C content in both fresh and dried goji berries. CONCLUSIONS We believe that the newly developed and validated UPLC method would be a useful and promising approach for simple quantitative analysis of goji berry samples for vitamin C. HIGHLIGHTS In previous studies, no UPLC-PDA method was reported for the analysis of vitamin C in goji berries. The method provided a good repeatability for the analysis of real samples.
Collapse
Affiliation(s)
- Erdal Dinç
- Ankara University, Department of Analytical Chemistry, Faculty of Pharmacy, 06560 Yenimahalle, Ankara, Turkey
| | - Asiye Üçer
- Ankara University, Department of Analytical Chemistry, Faculty of Pharmacy, 06560 Yenimahalle, Ankara, Turkey.,Ankara Yıldırım Beyazıt University, Department of Analytical Chemistry, Faculty of Pharmacy, 06010 Etlik, Keçiören, Ankara, Turkey
| | - Nazangül Ünal
- Ankara University, Department of Analytical Chemistry, Faculty of Pharmacy, 06560 Yenimahalle, Ankara, Turkey.,Uşak University, Department of Pharmacy Services, Eşme Vocational School, 64600 Uşak, Turkey
| | - Özgür Üstündağ
- Ankara University, Department of Analytical Chemistry, Faculty of Pharmacy, 06560 Yenimahalle, Ankara, Turkey
| |
Collapse
|
43
|
Effects of Tibetan kefir grain fermentation on the physicochemical properties, phenolics, enzyme activity, and antioxidant activity of Lycium barbarum (Goji berry) juice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
44
|
Du Y, Mi S, Wang H, Yang F, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Inactivation mechanism of Alternaria alternata by dielectric barrier discharge plasma and its quality control on fresh wolfberries. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
The effect of in vitro digestion on the chemical and antioxidant properties of Lycium barbarum polysaccharide. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Fan Z, Zhang Y, Jiao L, Zhu T, Feng Z, Liu Z, Yang Y, Wang D. Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion as an adjuvant to enhance immune responses. Int J Pharm 2022; 630:122418. [PMID: 36423709 DOI: 10.1016/j.ijpharm.2022.122418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Pickering emulsion has great potential as a vaccine adjuvant due to its unique advantages such as its high antigen loading efficiency, great stability, etc. Among several adjuvants on the market, aluminum adjuvant (Alum) is the most widely used at present. However, problems such as the inability to effectively induce cellular immunity and the poor effect on subunit vaccines limit the application of Alum. As an immunopotentiator, Lycium barbarum polysaccharides (LBP) have been proven to have the ability to regulate humoral and cellular immunity. To overcome the insufficiency of Alum, we explored a new adjuvant delivery system. The Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion (LBPPE) was prepared by loading Alum on the squalene/water interphase following LBP was adsorbed on the Alum surface (Fig. 10). Similar to squalene, LBPPE possesses a good biosafety profile. LBPPE was spherical with uneven surface, which increased the possibility of efficient antigen adsorption on the surface and crack of LBPPE. And the result shown that the LBPPE had high antigen loading rate at approximately 90 %. In vivo experiments, LBPPE showed an excellent ability to recruit antigen-presenting cells (APCs) at the injection sites, activate dendritic cells in the lymph nodes. Then, in the evaluation of humoral immunity, LBPPE was able to effectively induce the production of IgG, IgG1, and IgG2a. Moreover, LBPPE significantly enhanced the expression and activation of T lymphocytes, and induced a strong immune memory T cells response. All the results above suggested that LBPPE is likely to provide promising insights toward a safe and efficient adjuvant platform for vaccines.
Collapse
Affiliation(s)
- Zexiao Fan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
47
|
Jin H, Li M, Tian F, Yu F, Zhao W. An Overview of Antitumour Activity of Polysaccharides. Molecules 2022; 27:molecules27228083. [PMID: 36432183 PMCID: PMC9692906 DOI: 10.3390/molecules27228083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, and they have become the focus of current antitumour drug research owing to their significant antitumour effects. In addition to the direct antitumour activity of some natural polysaccharides, their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in natural polysaccharides and polysaccharide-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hongzhen Jin
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Maohua Li
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Tian
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| |
Collapse
|
48
|
Fatchurrahman D, Amodio ML, Colelli G. Quality of Goji Berry Fruit ( Lycium barbarum L.) Stored at Different Temperatures. Foods 2022; 11:3700. [PMID: 36429292 PMCID: PMC9689676 DOI: 10.3390/foods11223700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Goji berries are widely known for their outstanding nutritional and medicinal properties; they are usually found in the market as dried fruit or as juice because the fruit has a short shelf-life, and little information is available about its postharvest behavior at low temperatures. This study aimed to determine the storage performance of goji berry fruit by evaluating physicochemical, and sensorial attributes during storage at three different temperatures (0, 5, and 7 °C) for 12 days in a range that has not been extensively studied before. In addition, fruit respiration and ethylene production rates were also measured at the three temperatures. Fruit stored at 0 °C showed the lowest respiration rate and ethylene production (5.8 mg CO2 kg-1h-1 and 0.7 µg C2H4 kg-1h-1, respectively); however, at this temperature, the incidence and severity of pitting and electrolytic leakage were the highest. In contrast, 5 °C was found to be the best storage temperature for goji berry fruit; the fruit appeared fresh and healthy, had the highest scores during sensory analysis with an acceptable general impression, and had the lowest amount of damage attributable to chilling injury, with 17.1% fruit presenting with shriveling, 12.5% pitting, 6.7% mold, and 35% electrolytic leakage on day 9 of storage. Storage of goji berries at 7 °C resulted in the lowest marketability and the highest incidence of decay. Significant differences were also found in the phytochemical attributes, vitamin C content, soluble solid content (SSC), titratable acidity (TA), SSC/TA ratio, total polyphenol content, 2,2-diphenylpicrylhydrazy (DPPH), and anthocyanin content. This study revealed that a storage temperature of 5 °C for 9 days is recommended to maintain the quality of fresh goji berry. Thus, broadening the existing knowledge of the postharvest behavior of fresh goji berries; our results can help improve the commercial life of goji berries and ensure high-quality attributes throughout distribution.
Collapse
Affiliation(s)
- Danial Fatchurrahman
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | | | | |
Collapse
|
49
|
Shi Y, Wang Z, Hou C, Zhang P. Yield estimation of Lycium barbarum L. based on the WOFOST model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Cao C, Wang Z, Gong G, Huang W, Huang L, Song S, Zhu B. Effects of Lycium barbarum Polysaccharides on Immunity and Metabolic Syndrome Associated with the Modulation of Gut Microbiota: A Review. Foods 2022; 11:3177. [PMID: 37430929 PMCID: PMC9602392 DOI: 10.3390/foods11203177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs) have attracted increasing attention due to their multiple pharmacological activities and physiological functions. Recently, both in vitro and in vivo studies have demonstrated that the biological effects of dietary LBPs are related to the regulation of gut microbiota. Supplementation with LBPs could modulate the composition of microbial communities, and simultaneously influence the levels of active metabolites, thus exerting their beneficial effects on host health. Interestingly, LBPs with diverse chemical structures may enrich or reduce certain specific intestinal microbes. The present review summarizes the extraction, purification, and structural types of LBPs and the regulation effects of LBPs on the gut microbiome and their derived metabolites. Furthermore, the health promoting effects of LBPs on host bidirectional immunity (e.g., immune enhancement and immune inflammation suppression) and metabolic syndrome (e.g., obesity, type 2 diabetes, and nonalcoholic fatty liver disease) by targeting gut microbiota are also discussed based on their structural types. The contents presented in this review might help to better understand the health benefits of LBPs targeting gut microbiota and provide a scientific basis to further clarify the structure-function relationship of LBPs.
Collapse
Affiliation(s)
- Cui Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|