1
|
Khanjani MH, Sharifinia M, Akhavan-Bahabadi M, Emerenciano MGC. Probiotics and Phytobiotics as Dietary and Water Supplements in Biofloc Aquaculture Systems. AQUACULTURE NUTRITION 2024; 2024:3089887. [PMID: 39697821 PMCID: PMC11655148 DOI: 10.1155/anu/3089887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Biofloc technology (BFT) is a relatively new microbial-based cultivation system that can be adopted to accomplish more sustainable aquaculture and circularity goals. This review explores aspects of BFT integrating the utilization of probiotics and phytobiotics as dietary and water supplements. This scientific-based snapshot unpacks some physiological pathways and brings a literature review on how these supplements can boost water quality, as well as aquatic species' growth, health, and survival. Probiotics, live microorganisms that confer health benefits on the host when administered in adequate dosage, are noted for their ability to bolster animal defenses and sustain water quality in farming conditions. Recent studies showcased that selected bacteria, yeast, and fungi, once added into biofloc-based systems can enhance animal performance, act as a tool for water quality management and protect fish and crustaceans against diseases. On the other hand, phytobiotics are additives sourced from plants that normally are added into compounded feeds and are known for their health and growth benefits in aquatic animals. These additives contain plant-based substances/extracts that play a key role to suppress inflammation, pathogens, and can also act as antioxidants. These selected ingredients can promote healthy gut microbiota, improve feed efficiency, and turn on genes responsible for immunity improving disease resistance of fish/shrimp. According to this review, the adoption of probiotics and phytobiotics in BFT can greatly increase farm outputs by producing healthier animals, as well as promoting growth and consistent yields. Lastly, this review showcases the importance of proper section of probiotics and phytobiotics in order to achieve a functioning BFT. Despite its numerous advantages, BFT faces several challenges, especially related to microbial management. Probiotics and phytobiotics are practical tools that can play a crucial role to obtain a more stable environment with a desirable microbial population in water and gut. Future directions in the field should focus on optimizing the utilization of these supplements for a more resilient and sustainable BFT aquaculture.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohammad Akhavan-Bahabadi
- National Research Center of Saline-Waters Aquatics, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Yazd, Iran
| | - Maurício Gustavo Coelho Emerenciano
- Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Livestock and Aquaculture Program, Aquaculture Systems Team, Bribie Island Research Centre, Woorim, Australia
| |
Collapse
|
2
|
Waly DA, Abou Zeid AH, Mohammed RS, Moustafa SF, El-Halawany AM, Ahmed KA, Sleem AA, El-Kashoury ESA. UPLC/HR-ESI-MS/MS and GC/MS profiling of Eriobotrya japonica L. fruit in correlation to its antioxidant, anti-inflammatory, and anti-arthritic effects. J Food Sci 2024; 89:9879-9900. [PMID: 39455243 DOI: 10.1111/1750-3841.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Eriobotrya japonica Lindl. (Loquat) fruit is a subtropical edible fruit originally from China. It grows well in Egypt, but it is not widely known. In the current study, the fruit was extracted with 80% ethanol to get the total ethanol extract (TEE). A part of which was fractionated by dichloromethane to yield polar and nonpolar fractions (PF and NPF). The antioxidant and anti-inflammatory activities of the TEE were in vitro evaluated. The complete Freund's adjuvant (CFA) arthritis model was used to explore the in vivo biological assessment of the anti-arthritic properties in vivo of the TEE, PF, and NPF of the fruit. Additionally, the inspected limbs detached from all animals were subjected to histological inspection. Moreover, GC/MS analysis of the unsaponifiable (USF) and saponifiable (SF) fractions of the NPF was performed. Furthermore, 64 metabolites from various chemical classes were identified using UHPLC/HR-MS/MS analysis of the TEE of the fruit in both positive and negative ionization modes. The positive ionization mode of loquat fruit allowed for the first time the detection of two kinds of lyso-glycerophospholipids (Lyso-GPLs): lyso-glycerophosphoethanolamines (Lyso-PtdEtn) and lyso-glycerophosphocholines (Lyso-PtdCho). The fruit extracts exhibited a notable in vivo anti-arthritic activity by decreasing paw thickness in the treated rats and adjusting the inflammatory mediators. The TEE showed the highest anti-arthritic activity, followed by the PF that showed an observed activity, while the NPF exhibited the lowest activity. Histopathological findings showed a marked improvement in the arthritic condition of the excised limbs. Thus, E. japonica fruit may be considered as a promising natural antioxidant and anti-arthritic agent.
Collapse
Affiliation(s)
- Dina Atef Waly
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Aisha Hussein Abou Zeid
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Reda Sayed Mohammed
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | | | | | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amany Ameen Sleem
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | | |
Collapse
|
3
|
Cosgun G, Gungor KK, Balci-Torun F, Sahin S, Torun M. Design of encapsulation method for chlorogenic acid and caffeine in coffee waste by-product. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1720-1735. [PMID: 36694947 DOI: 10.1002/pca.3207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Coffee silver skin (CSS) is a thin covering over green coffee seeds inside coffee cherry. It is a good source of bioactive compounds like chlorogenic acid and caffeine. It is produced as a by-product of the roasting process. OBJECTIVE The goal of this study is to apply spray drying method to encapsulate 5-O-caffeoylquinic acid (chlorogenic acid) and caffeine extracted from CSS. METHODS The main-plots for optimisation were feed solid concentration (2.5, 5, 10°Bx), and the sub-plots of the whole-plot were carrier material type (maltodextrin, modified starch, arabic gum) and inlet air temperature (130, 160, 190°C). Responses included were drying yield, chlorogenic acid concentration, caffeine content, Carr index, and solubility values. RESULTS Suitable conditions were spray drying inlet temperature of 190°C, extract concentration of 10°Bx, and wall material composition [modified starch/arabic gum (MS:AG)] 10.5:9.5. As the feeding CSS extract concentration increased, the amount of chlorogenic acid and caffeine in the final powder increased, while the powder's flow characteristics improved. CONCLUSIONS The concentration stage might be used to produce free-flowing powdered particles with good bioactive retention for use in the food processing industry.
Collapse
Affiliation(s)
- Gulderen Cosgun
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Keziban Kubra Gungor
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Ferhan Balci-Torun
- Faculty of Tourism, Department of Gastronomy and Culinary Art, Akdeniz University, Antalya, Turkey
| | - Selin Sahin
- Faculty of Engineering, Chemical Engineering Department, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Mehmet Torun
- Faculty of Engineering, Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Memudu AE, Olukade BA, Adebayo OS, Raza ML. Coffee and amyotrophic lateral sclerosis (ALS). PROGRESS IN BRAIN RESEARCH 2024; 289:81-105. [PMID: 39168583 DOI: 10.1016/bs.pbr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by progressive loss of motor neurons. The effective treatments for ALS remain elusive, necessitating exploration into novel preventive strategies. ALS pathogenesis is triggered by oxidative stress which results in neuroinflammation, exicitotoxicity and neuronal cell death. Nutritional mechanism for halting progression of neurodegeneration is through dietary compounds with antioxidants, anti-inflammatory or neuromodulating activity. Coffee is a widely consumed beverage made up of polyphenols, caffeine and other compounds with possible antioxidants and neuro-protective roles. It is important to say that various epidemiological studies have documented association between coffee intake and ALS. This chapter is aimed to present a comprehensive review of existing literature on coffee consumption and ALS, involving epidemiological studies, preclinical research, and its mechanism of actions in animal model of ALS. It highlights key findings regarding the potential neuroprotective properties of coffee constituents such as caffeine, polyphenols, and other bioactive compounds. Furthermore, it discusses possible pathways through which coffee may modulate ALS pathogenesis, including suppressing oxidative stress and neuroinflammation while boosting adenosine function via the adenosine receptor two on the motor neuron cells membrane in the spinal cord to enhance motor function via the corticospinal tract. Overall, this chapter underscores the significance of further research to unravel the specific mechanisms by which coffee exerts its neuroprotective effects in ALS, with the ultimate goal of identifying dietary strategies for ALS prevention and management.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer Institute, University of South Florida, Tampa, FL, United States
| | | | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
6
|
Behne S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023; 28:5540. [PMID: 37513412 PMCID: PMC10385244 DOI: 10.3390/molecules28145540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.
Collapse
Affiliation(s)
- Sascha Behne
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
- Fachbereich II (Fachgruppe Chemie), Berliner Hochschule für Technik (BHT), Luxemburger Strasse 10, 13353 Berlin, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
7
|
Taweekayujan S, Somngam S, Pinnarat T. Optimization and kinetics modeling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction. Heliyon 2023; 9:e17942. [PMID: 37449125 PMCID: PMC10336794 DOI: 10.1016/j.heliyon.2023.e17942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
This research investigates the effect of extraction parameters on total phenolic content (TPC) and the antioxidant capacity of coffee silverskin (CS) extract using ultrasound-assisted extraction (UAE) in deep eutectic solvent (DES). The optimization was carried out in two stages: (i) the optimization of the UAE condition with the highest TPC; and (ii) a four-factor Box-Behnken design (BBD) to optimize the UAE condition with the optimal TPC; 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity; and ferric reducing antioxidant power (FRAP). The results showed that the optimal UAE condition with the highest TPC was 150-250 μm CS particle size; 1,6-hexanediol as hydrogen bond donor (HBD); 1:7 HBA:HBD molar ratio; and 30% (w/w) water content, given choline chloride (ChCl) as hydrogen bond acceptor (HBA), 30 min extraction time and 30 ° C extraction temperature. The BBD-based optimal UAE condition was 30% w/w water content, 45 mL/g liquid/solid ratio, 90 min extraction time and 85 ° C extraction temperature, given the CS particle size of 150-250 μm and the HBA:HBD molar ratio of 1 (ChCl): 7 (1,6 hexanediol), achieving 19.19 ± 0.20 mg GAE/g CS for TPC, 24.06 ± 1.77 mg TE/g CS for DPPH radical scavenging capacity, and 59.13 ± 4.55 mg Fe (II)/g CS for FRAP. The experimental results were in good agreement with the BBD-based predicted results (22.40 mg GAE/g CS for TPC, 24.09 mg TE/g CS for DPPH, and 59.43 mg Fe(II)/g CS for FRAP). The two-site kinetics model best fitted the experimental data, with R2 of 0.991-0.999.
Collapse
Affiliation(s)
- Supawat Taweekayujan
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Supitcha Somngam
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Tanawan Pinnarat
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
8
|
Green/Roasted Coffee and Silverskin Extracts Inhibit Sugar Absorption by Human Intestinal Epithelial (Caco-2) Cells by Decreasing GLUT2 Gene Expression. Foods 2022; 11:foods11233902. [PMID: 36496710 PMCID: PMC9737879 DOI: 10.3390/foods11233902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Moderate coffee ingestion has been associated with a decrease in type 2 diabetes risk, mainly due to its richness in chlorogenic acids (CGA). To explore this, extracts of green beans, roasted beans, and silverskin were prepared by aqueous ultrasound-assisted extraction and characterized by a reversed-phase high-performance liquid chromatography-photodiode array detector (RP-HPLC-DAD). The effects on the uptake of glucose and fructose by human intestinal epithelial (Caco-2) cells and the influence on the expression of sugar transporter genes (by RT-qPCR) were investigated and compared. The uptake of 3H-deoxy-D-glucose and 14C-fructose by Caco-2 cells was significantly reduced by all the extracts, with green coffee (which also contained higher amounts of CGA) achieving the highest efficiency. Although silverskin presented the lowest amounts of CGA and caffeine, it promoted an inhibitory effect similar to the effects of green/roasted beans. In the case of glucose uptake, the effect was even higher than for roasted coffee. This activity is explained by the ability of the extracts to markedly decrease GLUT2, but not GLUT5 gene expression. In addition, a decrease in SGLT1 gene expression was also found for all extracts, although not at a statistically significant rate for silverskin. This study also revealed a synergistic inhibitory effect of caffeine and 5-CQA on the uptake of sugars. Thus, silverskin appears as an interesting alternative to coffee, since the valorization of this by-product also contributes to the sustainability of the coffee chain.
Collapse
|
9
|
Cwiková O, Komprda T, Šottníková V, Svoboda Z, Simonová J, Slováček J, Jůzl M. Effects of Different Processing Methods of Coffee Arabica on Colour, Acrylamide, Caffeine, Chlorogenic Acid, and Polyphenol Content. Foods 2022; 11:3295. [PMID: 37431043 PMCID: PMC9602387 DOI: 10.3390/foods11203295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
An effect of a processing method (dry and wet) and a degree of roasting (light, medium, and dark) of 15 coffee (Coffea arabica) samples on the content of caffeine, chlorogenic acid (CQA), total polyphenols (TPP), acrylamide (AA), and on the colour parameters L*, a*, and b* was evaluated. Neither processing nor roasting affected caffeine content (p > 0.05). The degree of roasting accounted for 46% and 72% of explained variability of the CQA content and AA content, respectively (p < 0.05). AA content was in the range from 250 (wet-processed, light-roasted samples) to 305 µg·kg-1 (wet-processed, dark-roasted coffees), but the dark roasting only tended (p > 0.05) to increase AA content. Wet-processed, dry-roasted coffee had higher (p < 0.05) TPP content (48.5 mg·g-1) than its dry-processed, dry-roasted counterpart (42.5 mg·g-1); the method of processing accounted for 70% of explained variability of TPP. Both the method of processing and the degree of roasting affected the L*, a*, and b* values (p < 0.01), but the lower values (p < 0.05) of these parameters in the dark-roasted samples were found only within the wet processing. A negative correlation between the AA content and lightness (L*) was established (r = -0.39, p < 0.05). It was concluded that from the consumers' viewpoint, the results of the present study indicate relatively small differences in quality parameters of coffee irrespective of the method of processing or degree of roasting.
Collapse
Affiliation(s)
- Olga Cwiková
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Tomas Komprda
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Viera Šottníková
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Zdeněk Svoboda
- Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Praha, Czech Republic
| | - Jana Simonová
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Jan Slováček
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Miroslav Jůzl
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| |
Collapse
|
10
|
Giordano M, Bertolino M, Belviso S, Ghirardello D, Zeppa G. Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods 2022; 11:foods11193132. [PMID: 36230210 PMCID: PMC9563964 DOI: 10.3390/foods11193132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Although coffee silverskin (CS) has recently been used as a food ingredient, no knowledge has been reported on the effects of species or different post-harvest treatments on its chemical composition. Therefore, the fibre, volatile compounds, phenolic acid content, and antioxidant capacity of CS samples obtained at three roasting intensities (light, medium, and dark) from the Coffea arabica and C. canephora species, each subjected to a washing or a sun-drying (“natural”) post-harvest treatment, were studied. Obtained results showed that the chemical composition of CS is due to species, roasting, post-harvest treatment, and interaction. In particular, natural Arabica CS showed the highest content of volatile compounds of Maillard and varietal origin, whereas washed Arabica CS showed the highest content of soluble dietary fibre and chlorogenic derivatives. Pyrroles, sulphur compounds, and pyridines contents were higher in Canephora CS than in Arabica CS. The dark-roasted washed Arabica CS showed the highest content of 5-O- and 3-O-caffeoylquinic acids, while the natural Arabica CS highlighted the highest antioxidant capacity. The effect of post-harvest treatments seemed to be emphasised in Arabica CS, independent of roasting, which did not significantly affect the antioxidant capacity of CS from either species.
Collapse
|
11
|
Saleem A, Najda A, Mubeen A, Akhtar MF, Bukhari SA, Zeb A. HPLC-DAD analysis of Quercus leucotrichophora extract and appraisal of its antiasthmatic potential via modulation of aquaporins, inflammatory, and oxidative stress biomarkers in Albino mice. Biomed Pharmacother 2022; 155:113702. [PMID: 36115113 DOI: 10.1016/j.biopha.2022.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Herbal drugs offer an alternative approach for the treatment of diseases like asthma due to low cost and comparatively less adverse effects in contrast to synthetic drugs. Leaves of Quercus leucotrichophora are traditionally used for the treatment of asthma. The study was aimed to assess the anti-asthmatic activity of Quercus leucotrichophora (QL) methanolic (QLME) and aqueous extracts (QLAE) in ovalbumin-(OVA) induced asthma and chemical characterization of QL extract by High Performance Liquid Chromatography-Diode array detector (HPLC-DAD). Animals were inoculated with OVA (i.p) on day 1 and 14 followed by intranasal challenge on 27th and 29th day. Both extracts of QL at 600, 300 and 150 mg/kg and dexamethasone (2 mg/kg) l were administered consecutively from days 15-26 via oral gavage. The QL extracts notably reduced (p < 0.0001-p < 0.05) total and differential leukocyte counts in blood and BALF and serum IgE levels in contrast to disease control. Both extracts and Dex substantially improved activities of superoxide dismutase, catalase, and GSH, while reduced malondialdehyde level in treated mice. Treatment with extracts and Dex caused significant (p < 0.0001-p < 0.05) downregulation of tumor necrosis factor-α, interleukin-4, - 5, - 13, - 6, - 1β, and NF-κB whereas, increased expression of Aquaporin (AQP) 1 and AQP5 in contrast to disease control. It was inferenced from findings that both extract of QL exhibited notable antiasthmatic potential might be due to presence of Daidzein-glucuronic acid, 3-Hydroxyphloretin 6'-hexoside, Catechin, Quercetin, and Kaemferol.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Afza Mubeen
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 38000, Pakistan.
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| |
Collapse
|
12
|
Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants (Basel) 2022; 11:antiox11081587. [PMID: 36009304 PMCID: PMC9405141 DOI: 10.3390/antiox11081587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeine is one of the predominant dietary components and psychostimulants present in coffee, a widely appreciated beverage. Corroborating epidemiological and laboratory evidence have suggested an inverse association between the dietary intakes of coffee and the risk of Parkinson’s Disease (PD). Growing attention has been paid to the impact of coffee consumption and genetic susceptibility to PD pathogenesis. Coffee is believed to play prominent roles in mediating the gene makeup and influencing the onset and progression of PD. The current review documents a current discovery of the coffee × gene interaction for the protective management of PD. The evidence underlying its potent impacts on the adenosine receptors (A2AR), estrogen receptors (ESR), heme oxygenase (HO), toxicant responsive genes, nitric oxide synthase (NOS), cytochrome oxidase (Cox), familial parkinsonism genetic susceptibility loci, bone marrow stromal cell antigen 1 (BST1), glutamate receptor gene and apolipoprotein E (APOE) genotype expressions is outlined. Furthermore, the neuroprotective mechanisms of coffee for the amelioration of PD are elucidated.
Collapse
|
13
|
Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. SUSTAINABILITY 2022. [DOI: 10.3390/su14148435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coffee silverskin (CS) is the only byproduct of the roasting process for coffee beans and is rich in phenolic compounds with various bioactivities. This study proposes a valorization option for bioactive compounds (T-CQA) based on a subcritical water extraction (SWE) technique, which is known for its high efficiency and feasibility for use on an industrial scale. The use of water as a sole solvent requires a minimum number of cleaning steps and renders the extract safe for further applications, such as in either the cosmetic or food industry. Response surface methodology with a Box–Behnken design is effectively used to optimize and explain the individual and interactive process variables (i.e., extraction temperature, extraction time, and solid–liquid ratio) on the T-CQA content obtained from coffee silverskin by the SWE technique. The final model exhibits a precise prediction of the experimental data obtained for the maximum T-CQA content. Under the optimum conditions, the CS extract is found to contain a higher content of T-CQA and TPC than that reported previously. For antioxidant activity, up to 26.12 ± 3.27 mg Trolox equivalent/g CS is obtained.
Collapse
|
14
|
Polystichum braunii ameliorates airway inflammation by attenuation of inflammatory and oxidative stress biomarkers, and pulmonary edema by elevation of aquaporins in ovalbumin-induced allergic asthmatic mice. Inflammopharmacology 2022; 30:639-653. [PMID: 35257281 DOI: 10.1007/s10787-022-00944-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/09/2022] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammation of pulmonary airways associated with bronchial hyper-responsiveness. The study was aimed to validate the folkloric use of Polystichum braunii (PB) against ovalbumin (OVA)-induced asthmatic and chemical characterization OF both extracts. Allergic asthma was developed by intraperitoneal sensitization with an OVA on days 1 and 14 followed by intranasal challenge. Mice were treated with PB methanolic (PBME) and aqueous extract (PBAE) orally at 600, 300, and 150 mg/kg and using dexamethasone (2 mg/kg) as standard from day 15 to 26. High performance liquid chromatography-diode array detector analysis revealed the presence of various bioactive compounds such as catechin, vanillic acid, and quercetin. The PBME and PBAE profoundly (p < 0.0001-0.05) declined immunoglobulin E level, lungs wet/dry weight ratio, and total and differential leukocyte count in blood and bronchial alveolar lavage fluid of treated mice in contrast to disease control. Histopathological examination showed profoundly decreased inflammatory cell infiltration and goblet cell hyperplasia in treated groups. Both extracts caused significant (p < 0.0001-0.05) diminution of IL-4, IL-5, IL-13, IL-6, IL-1β, TNF-α, and NF-κB and upregulation of aquaporins (1 and 5), which have led to the amelioration of pulmonary inflammation and attenuation of lung edema in treated mice. Both extracts profoundly (p < 0.0001-0.05) restored the activities of SOD, CAT, GSH and reduced the level of MDA dose dependently. Both extracts possessed significant anti-asthmatic action mainly PBME 600 mg/kg might be due to phenols and flavonoids and could be used as a potential therapeutic option in the management of allergic asthma.
Collapse
|
15
|
Antioxidant properties and bioaccessibility of coffee beans and their coffee silverskin grown in different countries. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
The wastes of coffee bean processing for utilization in food: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:429-444. [PMID: 35185168 PMCID: PMC8814275 DOI: 10.1007/s13197-021-05032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/03/2023]
Abstract
A few million cubic tons of waste are generated annually as a result of coffee processing. As a beverage, coffee in itself is a rich source of melanoidins, phenolic compounds, and other phytonutrients which confer a wide range of health benefits. These wastes generated every year are usually discarded as landfill mass, mixed with animal fodder, or incinerated. Coffee wastes, due to their high content of tannins and caffeine, can degrade the soil quality and induce carcinogenicity when mixed with animal fodder. This review aims to identify the potential of coffee silver skin and spent coffee grounds, both generated as a result of the roasting process and instantization processes. Coffee husk and coffee flour are also well-known for their excellent bioactive roles. The proximate composition of coffee silverskin indicates a rich dietary fibre source and finds wide applications in bakery and other allied food products. This process could generate a value-added product and alleviate the disposing quality of remnant spent coffee grounds. Companies are exploring novel ideas of producing coffee flour obtained from drying and milling of coffee cherries for applications in day-to-day food products. Coffee and coffee waste combined with its high concentration of fibre, colorant pigments, and antioxidant compounds, has immense potential as a functional ingredient in food systems and needs to be explored further for its better utilization.
Collapse
|
17
|
McDonald K, Langenbahn HJ, Miller JD, McMullin DR. Phytosterol oxidation products from coffee silverskin. J Food Sci 2022; 87:728-737. [DOI: 10.1111/1750-3841.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - J. David Miller
- Department of Chemistry Carleton University Ottawa Ontario Canada
| | | |
Collapse
|
18
|
Pereira JPC, Pereira FAC, Pimenta CJ. Benefits of coffee consumption for human health: an overview. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220111151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Coffee is one of the most consumed beverages worldwide and is popular for its characteristic flavor and rich organoleptic properties.
Aim:
Based on published articles, the aims of this review are i) study the association between
coffee consumption and benefits to human health; ii) the effects of coffee consumption on
some pathologies; and iii) provide a description of coffee’s bioactive compounds.
Discussion:
Coffee presents bioactive compounds, which include phenolic compounds, especially chlorogenic acid (caffeoylquinic acid), trigonelline, and diterpenes, such as cafestol and
kahweol. These compounds are related to the beneficial effects for human health, including
high antioxidant activity, antimutagenic activity, hepatoprotective action, reduced incidence of
type 2 diabetes mellitus, reduced risk of cardiovascular diseases, decreased incidence of inflammatory diseases, reduced menopausal symptoms, and others. Coffee’s bioactive compounds are caffeine, chlorogenic acid, trigonelline, cafestol and kahweol, which are closely related to coffee’s beneficial effects.
Conclusion:
The present review clarified that the benefits of moderate coffee consumption
outweigh the associated risks.
Collapse
Affiliation(s)
| | | | - Carlos José Pimenta
- Department of Food Science, Federal University of Lavras, 37200-000 Lavras, MG, Brazil
| |
Collapse
|
19
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
20
|
Morphological Changes and Component Characterization of Coffee Silverskin. Molecules 2021; 26:molecules26164914. [PMID: 34443501 PMCID: PMC8400691 DOI: 10.3390/molecules26164914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy was used for the qualitative and quantitative analysis of aqueous extracts of unroasted and roasted coffee silverskin (CS). Twenty compounds were identified from 1D and 2D NMR spectra, including caffeine, chlorogenic acid (CGA), trigonelline, fructose, glucose, sucrose, etc. For the first time, the presence of trigonelline was detected in CS. Results of the quantitative analysis showed that the total amount of the main components after roasting was reduced by 45.6% compared with values before roasting. Sugars in the water extracts were the main components in CS, and fructose was the most abundant sugar, its relative content accounting for 38.7% and 38.4% in unroasted and roasted CS, respectively. Moreover, 1D NMR combined with 2D NMR technology shows application prospects in the rapid, non-destructive detection of CS. In addition, it was observed by optical microscopy and scanning electron microscopy (SEM) that the morphology of CS changed obviously before and after roasting.
Collapse
|
21
|
Martuscelli M, Esposito L, Mastrocola D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods 2021; 10:foods10081833. [PMID: 34441610 PMCID: PMC8394139 DOI: 10.3390/foods10081833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Coffee Silver Skin (CSS) is the unique by-product discarded after the roasting of coffee beans. This research aimed to evaluate the effect of two levels of CSS (1.5% and 3%) added as a natural ingredient in new formulations of chicken meat burgers. This is one of the first studies proposing a "formulation approach" to control the emergence of off flavours after meat cooking. Physical, chemical, and sensory analyses were carried out, within the CSS content and the evolution of volatile organic compounds in different samples. Newly formulated chicken burgers could limit food waste, while also becoming a source of fibres, minerals, and bioactive molecules. CSS limited weight losses (after cooking process) to 10.50% (1.5% addition) and 11.05% (3% addition), significantly lower (p < 0.01) than the control (23.85%). In cooked burgers, the occurrence of hexanal was reduced from 55.1% (CTRL T0) to 11.7% (CSS T0 1.5%) to 0 (CSS T0 3%). As for the limitation of off-flavours, CSS also showed good activity, contrasting with the emergence of octanal, alcohols and other markers of lipid oxidation. From the sensory test carried out, the volatile profile of CSS does not seem to impair the flavour of burgers, though at higher percentages hydrocarbons and pyrazines are traceable. The thiobarbituric acid reactive substances (TBARS assay confirmed the protective effect of CSS against oxidation.
Collapse
|
22
|
Gottstein V, Bernhardt M, Dilger E, Keller J, Breitling-Utzmann CM, Schwarz S, Kuballa T, Lachenmeier DW, Bunzel M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021; 10:foods10081705. [PMID: 34441483 PMCID: PMC8392354 DOI: 10.3390/foods10081705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Coffee silver skin is produced in large amounts as a by-product during the coffee roasting process. In this study, coffee silver skin of the species Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as well as silver skin pellets produced in the coffee industry were characterized with respect to both nutritional value and potential heat-induced contaminants. Enzymatic-gravimetric/chromatographic determination of the dietary fiber content showed values ranging from 59 to 67 g/100 g with a comparably high portion of soluble fiber, whereas low molecular weight soluble fiber was not detected. Compositional and methylation analysis indicated the presence of cellulose and xylans in the insoluble dietary fiber fraction, whereas pectic polysaccharides dominate the soluble dietary fiber fraction. The protein content as determined by the Kjeldahl method was in the range of 18 to 22 g/100 g, and all essential amino acids were present in coffee silver skin; whereas fat contents were low, high ash contents were determined. Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) showed the presence of macroelements in large amounts, whereas toxic mineral elements were only detected in trace amounts or being absent. Acrylamide was quantified with levels of 24–161 µg/kg. Although 5-hydroxymethylfurfural was detected, its concentration was below the limit of determination. Furfuryl alcohol was not detected.
Collapse
Affiliation(s)
- Vera Gottstein
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Mara Bernhardt
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Elena Dilger
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | | | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Stasse 20, 68163 Mannheim, Germany;
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (V.G.); (E.D.); (T.K.); (D.W.L.)
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany; (M.B.); (J.K.)
- Correspondence: ; Tel.: +49-721-608-42936
| |
Collapse
|
23
|
Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient. Foods 2021; 10:foods10061367. [PMID: 34199228 PMCID: PMC8231775 DOI: 10.3390/foods10061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
By-products from the coffee industry are produced in large amounts each year. Among other wastes, coffee silver skin (CSS) is highly available and more stable due to its lower content of water. This research aimed to characterize coffee silver skin composition and evidence its potentiality for use as a food-safe ingredient in new formulations. Results showed an average total dietary fiber content of 50% but with a higher ratio for insoluble than soluble fiber. A high content of total phenolic compounds, chlorogenic acid, caffeine, and caffeic acid was found and correlated with the high measured antioxidant capacity. Moreover, minerals (e.g., calcium, magnesium, phosphorous, potassium, copper, iron, manganese) important for human wellbeing were found at a high level in CSS, while toxic minerals (e.g., nickel) were found at low levels. In conclusion, coffee silver skin could have an advantageous role for the recovery of valuable compounds and as a potential food-safe ingredient.
Collapse
|
24
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
25
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
26
|
Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021; 26:495. [PMID: 33477709 PMCID: PMC7831927 DOI: 10.3390/molecules26020495] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Moving toward a more sustainable development, a pivotal role is played by circular economy and a smarter waste management. Industrial wastes from plants offer a wide spectrum of possibilities for their valorization, still being enriched in high added-value molecules, such as secondary metabolites (SMs). The current review provides an overview of the most common SM classes (chemical structures, classification, biological activities) present in different plant waste/by-products and their potential use in various fields. A bibliographic survey was carried out, taking into account 99 research articles (from 2006 to 2020), summarizing all the information about waste type, its plant source, industrial sector of provenience, contained SMs, reported bioactivities, and proposals for its valorization. This survey highlighted that a great deal of the current publications are focused on the exploitation of plant wastes in human healthcare and food (including cosmetic, pharmaceutical, nutraceutical and food additives). However, as summarized in this review, plant SMs also possess an enormous potential for further uses. Accordingly, an increasing number of investigations on neglected plant matrices and their use in areas such as veterinary science or agriculture are expected, considering also the need to implement "greener" practices in the latter sector.
Collapse
Affiliation(s)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (P.T.); (L.M.); (F.P.)
| | | | | | | |
Collapse
|
27
|
Oliveira G, Gonçalves I, Barra A, Nunes C, Ferreira P, Coimbra MA. Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Res Int 2020; 138:109733. [PMID: 33292966 DOI: 10.1016/j.foodres.2020.109733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Food processing wastes together with the perishable foodstuff loss promote environmental and societal concerns. Food byproducts can have value as a source of functional molecules for developing active packaging without food waste, under a circular economy. Nevertheless, the often-associated extraction/chemical processes compromise the sustainability of food byproducts reusability. In this work, coffee silverskin (CS) and starch, recovered from coffee roasting and potato industries, respectively, were together gelatinized to form in-situ films. Targeting to fit with the food application requirements, it is important to understand the influence of crude CS amount (1%, 5%, and 10% w/w of dry starch weight) on potato starch-based film properties. CS conferred a brownish coloration to the films, maintaining their transparency. The films colour intensity, antioxidant activity, and water tolerance were directly related with the CS dosage. Moreover, as high the CS amount, higher the elasticity, stretchability, and UV radiation absorption of the pristine films. These data emphasized that CS molecules extracted during gelatinization prevented the starch-starch hydrogen bonding and conferred functional and barrier properties. Overall, adding crude CS during potato starch gelatinization revealed to be an efficient strategy to tune the performance of potato starch-based films, opening an opportunity for valorising coffee roasting and potato byproducts.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Idalina Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Barra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Application of Thermal Methods to Analyze the Properties of Coffee Silverskin and Oil Extracted from the Studied Roasting By-Product. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to characterize the thermal properties of coffee silverskin and fat extracted from the material by using differential scanning calorimetry, modulated differential scanning calorimetry and thermogravimetry/derivative thermogravimetry. Additionally, the thermokinetic parameters, oxidative stability and fatty acid composition of the extracted oil were defined. Thermal decomposition of the studied coffee roasting by-product under oxygen occurred in three defined stages. The most significant changes in weight were observed in the region of 200–500 °C and correspond to polysaccharide decomposition. These results are in agreement with the data obtained from the differential scanning calorimetry curve. On the curve course of silverskin, two main exothermic peaks can be observed with a maximum at 265 and 340 °C. These exothermic events represent the transitions of hemicellulose and cellulose. Fat extracted from silverskin turned out to be a source of polyunsaturated fatty acids with the recommended n-6 to n-3 ratio reaching the value 4:1. The studied fat was characterized by low oxidative stability. Considering the obtained results, it can be stated that thermal analysis can provide fast and reliable data concerning the composition and properties of coffee silverskin and coffee silverskin oil.
Collapse
|
29
|
|
30
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Zhang Z, Poojary MM, Choudhary A, Rai DK, Lund MN, Tiwari BK. Ultrasound processing of coffee silver skin, brewer's spent grain and potato peel wastes for phenolic compounds and amino acids: a comparative study. Journal of Food Science and Technology 2020; 58:2273-2282. [PMID: 33967324 DOI: 10.1007/s13197-020-04738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Awareness towards utilizing food-processing by-products are increasing in health as well as environmental purview. Coffee silver skin (CSS), potato peel (PP) and brewer's spent grain (BSG) are voluminous by-products in their respective processing industries. The present study compared these three by-products for their prospective utilization in producing polyphenols-rich aqueous extracts by using ultrasound-assisted extractions (UAE). A probe-type sonicator was used for ultrasound treatments. The total phenolic contents in the extracts were assessed by Folin-Ciocalteu assay, while the phenolic profiles of the extract was characterized by LC-Q-TOF mass spectrometry. The microstructure of the samples after UAE was evaluated by scanning electron microscopy (SEM). Ultrasound treatment enhanced the rate of extraction and recovered 2.79, 2.12 and 0.66 mg gallic acid equivalents/g of TPC from CSS, PP and BSG, respectively in 30 min, which correspond to recoveries of 97.6%, 84.5% and 84.6%, respectively, compared to conventional solid-liquid extractions carried out for 24 h. The extraction yield was dependent on the particle size of the raw materials and the highest yield was obtained from the materials with 100-250 µm particle size. The SEM imaging revealed that ultrasound treatment caused prominent tissue damage. Extracts contained mainly hydroxycinnamic acid derivatives of phenolic acids. PP and CSS had the highest amounts of umami free amino acids (0.13 mg/g in each), while BSG contained the highest amount of essential amino acids (92 mg/g). The present work shows that CSS, PP and BSG are good sources of polyphenols and UAE can be employed to enhance the extraction efficiency as means of a green approach.
Collapse
Affiliation(s)
- Zhihang Zhang
- Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Alka Choudhary
- Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| | - Dilip K Rai
- Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, D15 KN3K Ireland
| |
Collapse
|
32
|
Evaluation of the Use of a Coffee Industry By-Product in a Cereal-Based Extruded Food Product. Foods 2020; 9:foods9081008. [PMID: 32727015 PMCID: PMC7466283 DOI: 10.3390/foods9081008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The evaluation of by-products to be added to food products is complex, as the residues must be analyzed to demonstrate their potential use as safe foods, as well as to propose the appropriate process and product for recycling. Since coffee is a very popular beverage worldwide, the coffee industry is responsible for generating large amounts of by-products, which include the coffee silverskin (CS), the only by-product of the roasting process. In this work, its characterization and food safety were evaluated by chemical composition assays, microbiological determinations, aflatoxin measurements and acute toxicity tests. The results showed that CS is safe for use in food, in addition to providing dietary fiber, protein and bioactive compounds. An extruded cereal-based ready-to-eat food product was developed through an extreme vertices mixture design, producing an extruded food product being a source of protein and with a high fiber content. Up to 15% of CS was incorporated in the extruded product. This work contributes to the establishment of routes for the valorization of CS; nevertheless, further research is necessary to demonstrate the sustainability of this food industry by-product.
Collapse
|
33
|
Del Pozo C, Bartrolí J, Alier S, Puy N, Fàbregas E. Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:19-27. [PMID: 32380378 DOI: 10.1016/j.wasman.2020.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The coffee roasting industry produces about 0.4 Mt of coffee silverskin (CSS) per year, the only residue generated from the roasting process that is mostly disposed as industrial waste. The aim of this study is to convert CSS into value-added products by intermediate pyrolysis, transforming the waste into a resource within an integrated biorefinery perspective. To this end, bio-oils and biochars from the intermediate pyrolysis of CSS at 280 °C, 400 °C and 500 °C have been studied. GC-MS analysis showed that bio-oils were composed of value-added products such as caffeine, acetic acid, pyridine and phenolics, the latter being the most interesting due to their antioxidant properties. Total phenolic content and antioxidant capacity of the samples were determined through Folin-Ciocalteu (FC) and DPPH methods, revealing an increase in phenolics in bio-oils compared to CSS extract directly from the feedstock. The bio-oil with the highest phenolic content and antioxidant properties was produced at 280 °C and contained 6.09 and 3.02 mg of gallic acid equivalents /g of bio-oil determined by FC and DPPH methods, respectively. This represents a global potential of up to 487 and 242 tones of gallic acid equivalents per year, considering the FC results and DPPH respectively. The resulting 280 °C biochar presented significant calorific values (22 MJ/kg), indicating its potential use as an energy source. Hence, CSS pyrolysis converts a waste into a by-product and a resource, increasing the environmental benefits and contributing to the circular economy and bioeconomy.
Collapse
Affiliation(s)
- Cristina Del Pozo
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Jordi Bartrolí
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Santi Alier
- Energies Tèrmiques Bàsiques SL, C/Maó 22, 2-1, 08022 Barcelona, Spain
| | - Neus Puy
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Forest Science and Technology Centre of Catalonia (CTFC). Crta. Sant Llorenç de Morunys, km 2. 25280 Solsona, Lleida, Spain
| | - Esteve Fàbregas
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
34
|
Castaldo L, Narváez A, Izzo L, Graziani G, Ritieni A. In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS. Molecules 2020; 25:E2132. [PMID: 32370127 PMCID: PMC7249082 DOI: 10.3390/molecules25092132] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/21/2023] Open
Abstract
Coffee silverskin (CS), the main by-product in the coffee industry, contains a vast number of human health-related compounds, which may justify its exploitation as a functional food ingredient. This study aimed to provide a comprehensive analysis of the polyphenolic and alkaloid profile through UHPLC-Q-Orbitrap HRMS analysis. The bioaccessibility of total phenolic compounds and changes in the antioxidant activity during an in vitro gastrointestinal digestion were also evaluated through spectrophotometric tests (TPC by Folin-Ciocalteu, ABTS, DPPH, and FRAP), to elucidate their efficacy for future applications in the nutraceutical industry. Caffeoylquinic and feruloylquinic acids were the most representative polyphenols, with a mean concentration of 5.93 and 4.25 mg/g, respectively. Results showed a high content of caffeine in the analyzed CS extracts, with a mean value of 31.2 mg/g, meaning a two-fold increase when compared to coffee brews. Our findings highlighted that both the bioaccessibility and antioxidant activity of CS polyphenols significantly increased in each in vitro gastrointestinal digestion stage. In addition, the colon stage might constitute the main biological site of action of these antioxidant compounds. These results suggest that in vivo, the dietary polyphenols from CS might be metabolized by human colonic microflora, generating metabolites with a greater antioxidant activity, increasing their well-known beneficial effects.
Collapse
Affiliation(s)
- Luigi Castaldo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.C.); (A.N.); (L.I.); (G.G.)
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.C.); (A.N.); (L.I.); (G.G.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.C.); (A.N.); (L.I.); (G.G.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.C.); (A.N.); (L.I.); (G.G.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy; (L.C.); (A.N.); (L.I.); (G.G.)
- Staff of UNESCO Chair on Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| |
Collapse
|
35
|
Nzekoue FK, Angeloni S, Navarini L, Angeloni C, Freschi M, Hrelia S, Vitali LA, Sagratini G, Vittori S, Caprioli G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res Int 2020; 133:109128. [PMID: 32466943 DOI: 10.1016/j.foodres.2020.109128] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
The research of value-added applications for coffee silverskin (CSS) requires studies to investigate potential bioactive compounds and biological activities in CSS extracts. In this study, different ultrasound-assisted extraction (UAE) methods have been tested to extract bioactive compounds from CSS. The obtained extracts, were characterized using a new HPLC-MS/MS method to detect and quantify 30 bioactive compounds of 2 classes: alkaloids and polyphenols (including phenolic acids, flavonoids, and secoiridoids). CSS extracts obtained with ethanol/water (70:30) as extraction solvent showed the highest levels (p ≤ 0.05) of bioactive compounds (4.01 ± 0.34% w/w). High content of caffeine was observed with levels varying from 1.00% to 3.59% of dry weight of extract (dw). 18 phenolic compounds were detected in CSS extracts with caffeoylquinic acids (3-CQA, 5-CQA and 3,5-diCQA) as the most abundant polyphenols (3115.6 µg g to -5444.0 µg g-1). This study is also one of the first to characterize in-depth flavonoids in CSS revealing the levels of different flavonoids compounds such as rutin (1.63-8.70 µg g-1), quercetin (1.53-2.46 µg g-1), kaempferol (0.76-1.66 µg g-1) and quercitrin (0.15-0.51 µg g-1). Neuroprotective activity of silverskin extracts against H2O2-induced damage was evaluated for the first time suggesting for methanol and ethanol/water (70:30) extracts a potential role as protective agents against neurodegeneration due to their ability to counteract oxidative stress and maintain cell viability. Silverskin extracts were not inhibiting the growth of anyone of the bacterial species included in this study but data obtained by water extract might deserve a deeper future investigation on biofilm-related activities, such as quorum sensing or virulence factors' expression. From their composition and their evidenced biological activities, CSS extracts could represent valuable ingredients in nutraceutical formulations.
Collapse
Affiliation(s)
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy; International Hub for Coffee Research and Innovation, Belforte del Chienti, MC, Italy
| | | | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini 47921, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini 47921, Italy
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
36
|
Fungal detoxification of coffee pulp by solid-state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Development and validation of a HPLC-DAD method for simultaneous determination of main potential ABE fermentation inhibitors identified in agro-food waste hydrolysates. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants (Basel) 2019; 8:E279. [PMID: 31387271 PMCID: PMC6721099 DOI: 10.3390/antiox8080279] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare the phytochemicals from coffee and cocoa by-products and their relationship with the potential for reducing markers of inflammation, oxidative stress, adipogenesis, and insulin resistance in vitro. We characterized the phytochemical profile of extracts from coffee husk, coffee silverskin, and cocoa shell and evaluated their in vitro biological activity in RAW264.7 macrophages and 3T3-L1 adipocytes. Pearson correlations and principal component regressions were performed to find the contribution of phytochemicals and underlying mechanisms of action. Coffee husk and silverskin extracts were mainly composed of caffeine and chlorogenic acid. Major components in cocoa shell included theobromine and protocatechuic acid. Both coffee and cocoa by-product extracts effectively reduced inflammatory markers in macrophages and adipocytes (NO, PGE2, TNF-α, MCP-1, and IL-6) and the production of reactive oxygen species (21.5-66.4%). Protocatechuic and chlorogenic acids, together with caffeine, were suggested as main contributors against inflammation and oxidative stress. Furthermore, extracts reduced lipid accumulation (4.1-49.1%) in adipocytes by regulating lipolysis and inducing adipocyte browning. Gallic and chlorogenic acids were associated with reduced adipogenesis, and caffeine with adipocyte browning. Extracts from coffee and cocoa by-products also modulated the phosphorylation of insulin receptor signaling pathway and stimulated GLUT-4 translocation (52.4-72.9%), increasing glucose uptake. The insulin-sensitizing potential of the extracts was mainly associated with protocatechuic acid. For the first time, we identified the phytochemicals from coffee and cocoa by-products and offered new insights into their associations with biomarkers of inflammation, oxidative stress, adipogenesis, and insulin resistance in vitro.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiaozhi Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310000, China
| | - Yolanda Aguilera
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martín-Cabrejas
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Wen L, Zhang Z, Rai D, Sun D, Tiwari BK. Ultrasound‐assisted extraction (UAE) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Le Wen
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD)National University of Ireland Dublin Ireland
- Teagasc Food Research Centre Ashtown Ireland
| | | | - Dilip Rai
- Teagasc Food Research Centre Ashtown Ireland
| | - Da‐Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD)National University of Ireland Dublin Ireland
| | | |
Collapse
|
40
|
Aguilera Y, Rebollo-Hernanz M, Cañas S, Taladrid D, Martín-Cabrejas MA. Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food Funct 2019; 10:4739-4750. [PMID: 31309208 DOI: 10.1039/c9fo00544g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Coffee parchment is one of the less studied coffee by-products, being rich in phenolic compounds. The objective of this study was to revalorise coffee parchment, obtaining aqueous extracts rich in phenolic compounds, optimising the extraction conditions using response surface methodology and comprehensively characterising the obtained extracts. A Box-Behnken design was used to maximise the recovery of total phenolic compounds, total flavonoids, total flavanols, total phenolic acids, and total ortho-diphenols, and the antioxidant capacity of coffee parchment extracts. The main factor influencing phenolic compound extraction was temperature, followed by solid-to-solvent ratio and acidity. Optimised heat-assisted extraction conditions were 100 °C, 90 min, 0% citric acid, and 0.02 g mL-1 solid-to-solvent ratio. Under these conditions, the concentrations of phenolic compounds and antioxidant capacity were equivalent to those expected, allowing us to validate the model. The UPLC-ESI-MS/MS phenolic profile exhibited the occurrence of 13 phenolic compounds, with those shown in higher concentrations being chlorogenic acid, vanillic acid, protocatechuic acid, and p-coumaric acid. The findings of this study provide valuable insights into the potential application of a useful, clean, environmentally friendly and cost-effective method to recover phenolic compounds from coffee parchment and, thus, to revalorize the by-product by converting it into high-added value new products to be used in the food and cosmetic industries.
Collapse
Affiliation(s)
- Yolanda Aguilera
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | | | | |
Collapse
|
41
|
Bertolino M, Barbosa-Pereira L, Ghirardello D, Botta C, Rolle L, Guglielmetti A, Borotto Dalla Vecchia S, Zeppa G. Coffee silverskin as nutraceutical ingredient in yogurt: its effect on functional properties and its bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4267-4275. [PMID: 30816557 DOI: 10.1002/jsfa.9659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Silverskin is a by-product obtained from coffee roasting. It is characterized by a high content of dietary fibre, phenolic compounds and caffeine. The aim of this study was to assess the silverskin obtained from two species of Coffea (Arabica and Robusta) at three percentages (2%, 4%, or 6%) into cow whole-milk yogurt to raise the nutraceutical value of the products and to verify the bioaccessibility of bioactive compounds during the shelf-life of 3 weeks. RESULTS The amount and origin of silverskin significantly influenced all the physicochemical parameters. Concerning the bioactive compounds, the highest levels were observed in yogurt supplemented with 6% of silverskin. Between the coffee species, Arabica yielded the highest 5-caffeoylquinic acid content and the strongest antioxidant activity, whereas Robusta gave the highest caffeine content. The digestion increased antioxidant activity in the yogurt, possibly because of greater accessibility of compounds. CONCLUSION The results obtained highlighted that silverskin can be used in yogurt production to increase the nutraceutical value of the products and that the bioactive compounds are bioaccessible during the digestion process. The characteristics and bioaccessibility of the resulting yogurt were strongly correlated with the coffee species and with the percentage added. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marta Bertolino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Letricia Barbosa-Pereira
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Daniela Ghirardello
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Cristian Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Alessandro Guglielmetti
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | | | - Giuseppe Zeppa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| |
Collapse
|
42
|
Gocmen D, Sahan Y, Yildiz E, Coskun M, Aroufai İA. Use of coffee silverskin to improve the functional properties of cookies. Journal of Food Science and Technology 2019; 56:2979-2988. [PMID: 31205353 DOI: 10.1007/s13197-019-03773-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to determine the suitability of coffee silverskin (CSS) supplementation to enhance phenolic content and antioxidant capacity of cookies. Cookie samples were prepared with partial replacement of wheat flour by CSS (2.5, 5.0, and 7.5%). Spread ratios were found lower in all cookies with CSS than in control. Cookies became darker with increasing levels of CSS. This is due to the fact that CSS has a dark color like cocoa. CSS supplementation had improved functional quality of cookies by increasing phenolic contents, antioxidant capacities, and in vitro bioaccessibilities of them. According to the sensory evaluation, all samples with CSS received 6 and above scores (6: like slightly, 7: like moderately) for all attributes from the panelists. The results demonstrated that CSS supplementation have a good potential for developing functional and acceptable cookies and similar bakery products.
Collapse
Affiliation(s)
- Duygu Gocmen
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Yasemin Sahan
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Elif Yildiz
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Meral Coskun
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - İdriss Amit Aroufai
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle, Bursa, Turkey
| |
Collapse
|
43
|
Guglielmetti A, Fernandez-Gomez B, Zeppa G, Del Castillo MD. Nutritional Quality, Potential Health Promoting Properties and Sensory Perception of an Improved Gluten-Free Bread Formulation Containing Inulin, Rice Protein and Bioactive Compounds Extracted from Coffee Byproducts. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns-2019-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Xuan SH, Lee KS, Jeong HJ, Park YM, Ha JH, Park SN. Cosmeceutical activities of ethanol extract and its ethyl acetate fraction from coffee silverskin. Biomater Res 2019; 23:2. [PMID: 30675376 PMCID: PMC6332556 DOI: 10.1186/s40824-018-0151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Coffee silverskin is a thin film that covers the raw coffee bean. In general, coffee silverskin, which detaches during the coffee roasting process, is disposed as firelighters or dispatched to landfills and can cause serious environmental pollution. The aim of this study was to investigate the feasibility of using coffee silverskin as a functional material in cosmetics by evaluating its bioactive ingredients, antioxidative activity, cytoprotective effect, matrix metalloproteinase-1 (MMP-1)-inhibiting effect, and anti-melanogenesis effect. Results To this end, a 50% ethanol (EtOH) extract and its ethyl acetate (EtOAc) fraction were prepared from coffee silverskin; caffeine was found to be the major compound in the extract. Both the 50% EtOH extract and its EtOAc fraction exhibited antioxidant activities. However, the EtOAc fraction showed a greater radical-scavenging activity and reducing power than that shown by the 50% EtOH extract. Furthermore, the EtOAc fraction increased cell viability in a UVB-irradiated human keratinocyte injury model and significantly suppressed UVB-induced MMP-1 expression and α-melanocyte-stimulating hormone (α-MSH)-stimulated melanin production in HaCaT keratinocytes and B16F1 melanocytes, respectively. Interestingly, caffeine, the major component of the EtOAc fraction, did not show an inhibitory effect. Thus, the antioxidant capacity of the coffee silverskin extract may be attributable to some compounds that exhibit a high antioxidant capacity even at low concentrations or the total antioxidant capacity of various constituent phenolic compounds. Conclusion Our findings indicate that coffee silverskin has the potential for application as a natural functional material in multifunctional cosmetics.
Collapse
Affiliation(s)
- Song Hua Xuan
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Keon Soo Lee
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Hyo Jin Jeong
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Young Min Park
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Korea
| |
Collapse
|
46
|
|
47
|
Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9988-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Costa AS, Alves RC, Vinha AF, Costa E, Costa CS, Nunes MA, Almeida AA, Santos-Silva A, Oliveira MBP. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem 2018; 267:28-35. [DOI: 10.1016/j.foodchem.2017.03.106] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
|
49
|
Rodríguez-Gómez R, Vanheuverzwjin J, Souard F, Delporte C, Stevigny C, Stoffelen P, De Braekeleer K, Kauffmann JM. Determination of Three Main Chlorogenic Acids in Water Extracts of Coffee Leaves by Liquid Chromatography Coupled to an Electrochemical Detector. Antioxidants (Basel) 2018; 7:E143. [PMID: 30326634 PMCID: PMC6209918 DOI: 10.3390/antiox7100143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
Coffee is a beverage widely consumed in the world. The coffee species most commercialized worldwide are Arabica (Coffea arabica) and Robusta (Coffea canephora). Roasted coffee beans are the most used, but coffee leaves are also consumed as infusion in several countries for traditional medicinal purposes. They contain several interesting phenolic antioxidant compounds mainly belonging to chlorogenic acids (CGAs). In the present work, a liquid chromatography-electrochemical detection (LC-EC) method was developed for the determination of three main chlorogenic acid isomers, namely 3-, 4-, and 5-caffeoylquinic acids (CQA), in coffee leaves aqueous extracts. Samples from eight coffee species, namely; Coffea arabica, Coffea canephora, Coffea liberica, Coffea humilis, Coffea mannii, Coffea charrieriana, Coffea anthonyi, and Coffea liberica var. liberica, were grown and collected in tropical greenhouses. Linearity of the calibration graphs was observed in the range from the limit of quantification to 1.0 × 10-5 M, with R² equal to 99.9% in all cases. High sensitivity was achieved with a limit of detection of 1.0 × 10-8 M for 3-CQA and 5-CQA (i.e., 3.5 µg/L) and 2.0 × 10-8 M for 4-CQA (i.e., 7.1 µg/L). The chromatographic profile of the samples harvested for each Coffea species was studied comparatively. Obtained raw data were pretreated for baseline variations and shifts in retention times between the chromatographic profiles. Principal Component Analysis (PCA) was applied to the pretreated data. According to the results, three clusters of Coffea species were found. In the water sample extracts, 5-CQA appeared to be the major isomer, and some species contained a very low amount of CQAs. Fluctuations were observed depending on the Coffea species and harvesting period. Significant differences between January and July were noticed regarding CQAs content. The species with the best CQAs/caffeine ratio was identified. The LC-EC data were validated by liquid chromatography-high resolution mass spectrometry (LC-HRMS).
Collapse
Affiliation(s)
- Rocío Rodríguez-Gómez
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
| | - Jérôme Vanheuverzwjin
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
| | - Florence Souard
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
- Department of Molecular Pharmacochemistry, Université de Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.
| | - Cédric Delporte
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
- Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine, CP 205/05, 1050 Brussels, Belgium.
| | - Caroline Stevigny
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
| | - Piet Stoffelen
- Botanic Garden Meise, Domein van Bouchout, Nieuwe laan 38, 1860 Meise, Belgium.
| | - Kris De Braekeleer
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
| | - Jean-Michel Kauffmann
- Bioanalysis and Drug Discovery, RD3-Unit of Pharmacognosy, Faculty of Pharmacy, Université libre de Bruxelles, Campus Plaine CP 205/6, 1050 Brussels, Belgium.
| |
Collapse
|
50
|
Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R. Biobutanol production from coffee silverskin. Microb Cell Fact 2018; 17:154. [PMID: 30261894 PMCID: PMC6158808 DOI: 10.1186/s12934-018-1002-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Coffee silverskin, a by-product from coffee roasting industries, was evaluated as a feedstock for biobutanol production by acetone-butanol-ethanol fermentation. This lignocellulosic biomass contained approximately 30% total carbohydrates and 30% lignin. Coffee silverskin was subjected to autohydrolysis at 170 °C during 20 min, with a biomass-to-solvent ratio of 20%, and a subsequent enzymatic hydrolysis with commercial enzymes in order to release simple sugars. The fermentability of the hydrolysate was assessed with four solventogenic strains from the genus Clostridium. In addition, fermentation conditions were optimised via response surface methodology to improve butanol concentration in the final broth. RESULTS The coffee silverskin hydrolysate contained 34.39 ± 2.61 g/L total sugars, which represents a sugar recovery of 34 ± 3%. It was verified that this hydrolysate was fermentable without the need of any detoxification method and that C. beijerinckii CECT 508 was the most efficient strain for butanol production, attaining final values of 4.14 ± 0.21 g/L acetone, 7.02 ± 0.27 g/L butanol and 0.25 ± 0.01 g/L ethanol, consuming 76.5 ± 0.8% sugars and reaching a butanol yield of 0.269 ± 0.008 gB/gS under optimal conditions. CONCLUSIONS Coffee silverskin could be an adequate feedstock for butanol production in biorefineries. When working with complex matrices like lignocellulosic biomass, it is essential to select an adequate bacterial strain and to optimize its fermentation conditions (such as pH, temperature or CaCO3 concentration).
Collapse
Affiliation(s)
- María Hijosa-Valsero
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, 24358, León, Spain.
| | - Jerson Garita-Cambronero
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, 24358, León, Spain
| | - Ana I Paniagua-García
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, 24358, León, Spain
- Instituto de Recursos Naturales (IRENA), Universidad de León, Avenida de Portugal 42, 24071, León, Spain
| | - Rebeca Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, 24358, León, Spain
- Instituto de Recursos Naturales (IRENA), Universidad de León, Avenida de Portugal 42, 24071, León, Spain
| |
Collapse
|