1
|
Elkelish A, Abu-Elsaoud AM, Alqahtani AM, El-Nablaway M, Al Harthi N, Al Harthi N, Lakoh S, Saied EM, Labib M. Unlocking the pharmacological potential of Brennnesselwurzel (Urtica dioica L.): an in-depth study on multifaceted biological activities. BMC Complement Med Ther 2024; 24:413. [PMID: 39696148 DOI: 10.1186/s12906-024-04709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Brennnesselwurzel (Urtica dioica L.) is recognized for its diverse pharmacological properties. With a range of chemical constituents, such as vitamins, minerals, phenolic compounds, fibers, and amino acids, Brennnesselwurzel (BWE) has a long history of traditional medicinal use in Europe and Asia. The correlation between a plant's metabolite composition and its activity can vary depending on considerations such as geographic location, environmental conditions, and genetic variations. In the present study, we explore the phytochemical profile and biological activity of the 70% acetone extract of the BWE plant. The chemical profile of the BWE extract was explored using several techniques, including amino acid analyzer, HPLC, GC-MS, and other colorimetric analysis. The antioxidant activity of the BWE extract was assessed by evaluating the total antioxidant, free radical scavenging activity (DPPH, ABTS, H2O2), and metal chelating scavenging activity (FRAP, CUPRAC, metal chelating). Furthermore, we assessed the antimicrobial and antiproliferation activities of the BWE extract against 29 microbial strains and 15 cell lines, respectively. Our phytochemical analyzes revealed that the BWE extract has a unique profile of metabolites including amino acids, flavonoids, phenolics, volatile oils, lipids, and vitamins. The BWE extract showed a total antioxidant capacity of 30.94 ± 1.58 mg GAE/g, together with potential free radical scavenging activity towards ABTS (IC50 = 153.51 ± 3.97 µg/ml), DPPH (IC50 = 195.75 ± 5.91 µg/ml), and H2O2 (IC50 = 230.67 ± 5.98 µg/ml). Although the BWE extract showed no significant antifungal activity, our findings revealed that the BWE extract possesses substantial antibacterial activity against Staphylococcus epidermidi, Streptococcus mutants, Enterococcus faecalis, Micrococcus sp., Klebsiella pneumonia and Porphyromonas gingivalis. Furthermore, the BWE extract demonstrated potential antiproliferative activity toward a panel of cancer cell lines with a high selectivity index. Among the cells examined, the BWE extract exhibited significant cytotoxic activity toward HCT-116, A-549, MDA-MB-231 cells with IC50 of 15.11, 15.32, 15.79 µg/mL, respectively, while it possessed no significant cytotoxic activity towards WI-38 cells (IC50 119.62 µg/mL). Taken together, our findings reveal that BWE extract possesses a wide spectrum of biological activities, including antioxidant, antibacterial, and antitumor activities, and could be considered for further research to explore its potential as a natural plant-based supplement for human diseases.
Collapse
Affiliation(s)
- Amr Elkelish
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 1690950, 11623, Riyadh, Saudi Arabia
| | - Abdelghafar M Abu-Elsaoud
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 1690950, 11623, Riyadh, Saudi Arabia
| | - Alaa M Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, DiriyahRiyadh, Saudi Arabia
| | - Norah Al Harthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Najwa Al Harthi
- Department of General Nursing, College of Nursing, Taif University, Taif, Saudi Arabia
| | - Sulaiman Lakoh
- Department of Internal Medicine, Faculty of Clinical Sciences & Dentistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone.
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Institute for Chemistry, Humboldt Universität Zu Berlin, 12489, Berlin, Germany
| | - Mai Labib
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, 3725005, Egypt
| |
Collapse
|
2
|
Wójciak M, Paduch R, Drozdowski P, Wójciak W, Żuk M, Płachno BJ, Sowa I. Antioxidant and Anti-Inflammatory Effects of Nettle Polyphenolic Extract: Impact on Human Colon Cells and Cytotoxicity Against Colorectal Adenocarcinoma. Molecules 2024; 29:5000. [PMID: 39519642 PMCID: PMC11547774 DOI: 10.3390/molecules29215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Urtica dioica L. is one of the most widely utilized medicinal plants commonly applied in the form of tea, juice, and dietary supplements. This study aimed to assess the effect of the U. dioica ethanol-water extract (UdE) and polyphenolic fraction isolated from the extract (UdF) on normal human colon epithelial cells and to evaluate their protective activity against induced oxidative stress. The cytotoxic potential against human colorectal adenocarcinoma (HT29) and the anti-inflammatory effects were also investigated. UPLC-MS-DAD analysis revealed that both extracts were abundant in caffeic acid derivatives, specifically chlorogenic and caffeoylmalic acids, and therefore, they showed significant protective and ROS scavenging effects in normal human colon epithelial cells. Moreover, they had no negative impact on cell viability and morphology in normal cells and the extracts, particularly UdF, moderately suppressed adenocarcinoma cells. Furthermore, UdF significantly decreased IL-1β levels in HT29 cells. Our research indicates that U. dioica may provide significant health advantages because of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland;
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (W.W.); (M.Ż.); (I.S.)
| |
Collapse
|
3
|
Febriyanti RM, Levita J, Diantini A. Immunomodulatory Role of Plants and Their Constituents on the Management of Metabolic Disorders: An Evidence-Based Review. Drug Des Devel Ther 2024; 18:513-534. [PMID: 38415194 PMCID: PMC10898480 DOI: 10.2147/dddt.s442566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
The relationship between the immune system and metabolic diseases is complex and increasingly recognized as critical to understanding conditions like obesity, diabetes, and cardiovascular diseases. Modulation of the immune system in patients with metabolic disorders can offer several potential benefits. While the salutary impact of plant-derived bioactive compounds on metabolic and immune functions is acknowledged, there is a paucity of comprehensive reviews on the multifaceted and synergistic mechanisms through which these effects are mediated. This review elucidates the therapeutic potential of phytochemical formulations in ameliorating metabolic disorders and delineates their mechanistic implications on relevant biomarkers and immune modulation. Our analysis reveals a predominance of plant species, including Boswellia serrata, Cinnamomum cassia, Citrus bergamia, Coffea arabica, Ficus racemosa, Momordica charantia, Morus Alba, and Trigonella foenum-graecum, that have undergone clinical evaluation and have been substantiated to confer both metabolic and immunological benefits. The phytoconstituents contained in these plants exert their effects through a range of mechanisms, such as improving glucose regulation, reducing inflammatory responses, and modulating immune system. As such, these findings hold considerable promise for clinical and therapeutic translation and necessitate further empirical validation through randomized controlled trials and mechanistic elucidations to affirm the safety and efficacy of herbal formulations.
Collapse
Affiliation(s)
- Raden Maya Febriyanti
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| |
Collapse
|
4
|
Nilofar N, Zengin G, Acar M, Bouyayha A, Youssra A, Eldahshan O, Fayez S, Fahmy N. Assessing the Chemical Composition, Antioxidant and enzyme Inhibitory Effects of Pentapleura subulifera and Cyclotrichium glabrescens Extracts. Chem Biodivers 2024; 21:e202301651. [PMID: 38016080 DOI: 10.1002/cbdv.202301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The Lamiaceae family, encompassing diverse plant species, holds significant value in food, medicine, and cosmetics. Within this family, Pentapleura subulifera and Cyclotrichium glabrescens, relatively unexplored species, were investigated for their chemical composition, antioxidant capacity, and enzyme-inhibiting effects. The chemical composition of hexane, methanolic, and aqueous extracts from P. subulifera and C. glabrescens were analyzed using LC-ESI-MS/MS and the non-polar hexane fraction was investigated via GC-MS. The antioxidant potential of the extracts was determined through radical scavenging, reducing power and metal chelating assays. Additionally, inhibitory activity against six enzymes - acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase - was examined. The aqueous extract of P. subulifera and the methanolic extract of C. glabrescens exhibited elevated phenolic content at 129.47 mg gallic acid equivalent (GAE)/g and 55.97 mg GAE/g, respectively. Chemical profiling of the constituents of the two plant species resulted in the identification of a total of twenty compounds. The majority of which belonged to flavonoids and quinic acid derivatives, primarily concentrated in the methanol and aqueous extracts. Among all antioxidant assays, the aqueous extracts of P. subulifera demonstrated superior antioxidant activity, with the highest recorded activity of 404.93 mg trolox equivalent (TE)/g in the cupric reducing antioxidant capacity (CUPRAC) test. Meanwhile, the hexane extract of C. glabrescens exhibited the highest AChE inhibitory activity at 2.71 mg galanthamine equivalent (GALAE)/g, followed by the methanol extract of P. subulifera at 2.41 mg GALAE/g. These findings unequivocally establish the notable antioxidant and enzyme inhibitory activity of P. subulifera and C. glabrescens extracts, underscoring their potential as a source of valuable natural antioxidants.
Collapse
Affiliation(s)
- Nilofar Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mikail Acar
- Munzur University, Department of Plant and Animal Production, Tunceli Vocational School of Higher Education, Tunceli, 62000, Turkey
| | - Abdelhakim Bouyayha
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Aalilou Youssra
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nouran Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
5
|
Flórez M, Cazón P, Vázquez M. Characterization of active films of chitosan containing nettle Urtica dioica L. extract: Spectral and water properties, microstructure, and antioxidant activity. Int J Biol Macromol 2023; 253:127318. [PMID: 37813218 DOI: 10.1016/j.ijbiomac.2023.127318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Chitosan films enriched with aqueous nettle extract (Urtica dioica L.) were evaluated by measuring their solubility, equilibrium moisture, water vapor permeability, spectral and antioxidant properties, and microstructure. Nettle extract showed a significant effect on the analyzed film properties. The addition of nettle extract manifested a sharp decrease in water vapor permeability, decreasing from 5.64 · 10-11 to 2.22 · 10-11 g/m·s·Pa. The chitosan- nettle extract films exhibited a high free-radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Incorporation of nettle extract into the chitosan matrix was successfully carried out to obtain antioxidant films. The results obtained showed that the incorporation of nettle extract allowed obtaining chitosan films with antioxidant properties, including a total phenolic content up to 1.57 mg GAE/g film. Furthermore, the films with nettle extract boast an UV shielding ability with transmittance values close to zero in the UV region and a water solubility up to 1 %. The inherent biodegradability is also a strong advantage of the developed active films.
Collapse
Affiliation(s)
- María Flórez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
6
|
Fayez S, Fahmy NM, Zengin G, Yagi S, Uba AI, Eldahshan OA, Koyuncu I, Temiz E, Dall'Acqua S, Sut S, Selvi S. LC-MS/MS and GC-MS profiling, antioxidant, enzyme inhibition, and antiproliferative activities of Thymus leucostomus H ausskn. & V elen. extracts. Arch Pharm (Weinheim) 2023; 356:e2300444. [PMID: 37754205 DOI: 10.1002/ardp.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that ɣ-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.
Collapse
Affiliation(s)
- Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Abbassia, Egypt
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
7
|
Teixeira J, Nunes P, Outor-Monteiro D, Mourão JL, Alves A, Pinheiro V. Effects of Urtica urens in the Feed of Broilers on Performances, Digestibility, Carcass Characteristics and Blood Parameters. Animals (Basel) 2023; 13:2092. [PMID: 37443890 DOI: 10.3390/ani13132092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
With the aim of improving animal health and productivity, plants or plant extracts that have antimicrobial, antifungal and antioxidant properties are often used in studies with broilers. The aim of this work was to investigate the effect of Urtica urens in broilers. Ninety male Ross chicks were used, randomly placed in 30 pens (three broilers per pen). The broilers were assigned to three treatment groups: group CT (control) received a basal diet; group UU1 received a basal diet with 1% dried Urtica urens; and group UU2 received a basal diet with 2% dried Urtica urens. Each treatment consisted of two feeds, distributed from day 1 to 15 (starter) and from day 15 to 36 (grower). As a result of this study, broilers in the UU1 treatment group had higher weight on day 15 (p = 0.029) and day 36 (p = 0.014) than those in treatments CT and UU2 and a higher daily weight gain between days 1 and 15 (p = 0.028) and days 1 and 36 (p = 0.014). Broilers in the UU1 and UU2 groups had lower serum HDL cholesterol (88.8 and 88.9 mg/dL, respectively) than the CT (96.1 mg/dL). In conclusion, the use of dried Urtica urens at 1% as an additive in broiler diets may affect growth performance and blood HDL cholesterol.
Collapse
Affiliation(s)
- José Teixeira
- Department Animal Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
| | - Pedro Nunes
- Department Animal Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
| | - Divanildo Outor-Monteiro
- Department Animal Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
- Al4Animals, Department of Animal Science, University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
| | - José Luís Mourão
- Department Animal Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
- Al4Animals, Department of Animal Science, University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
| | - Anabela Alves
- Department Animal Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
- Department Veterinary Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
| | - Victor Pinheiro
- Department Animal Science, University of Trás-os-Montes e Alto Douro, 5000 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
- Al4Animals, Department of Animal Science, University of Trás-os-Montes and Alto Douro, 5000 Vila Real, Portugal
| |
Collapse
|
8
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Ivanova T, Marchev A, Chervenkov M, Bosseva Y, Georgiev M, Kozuharova E, Dimitrova D. Catching the Green—Diversity of Ruderal Spring Plants Traditionally Consumed in Bulgaria and Their Potential Benefit for Human Health. DIVERSITY 2023; 15:435. [DOI: 10.3390/d15030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The global climate and societal challenges in the recent years urge us to strengthen food security; thus, the rediscovery of wild foods and foraging practices is also part of the sustainability agenda. Utilization of underappreciated sources such as ruderal plants could be a valuable option, especially for vulnerable parts of the society. We present data on traditional knowledge on spring edible ruderal plant taxa preserved in rural regions of Bulgaria, combining field studies in the period 2017–2022 that were compared to the available recent and historical ethnographic and (ethno)botanical literature. Semi-structured interviews were performed with representatives of 94 households in North and South Bulgaria, focusing on collection practices, used parts, and preparation methods. We list 65 edible ruderals, belonging to 22 plant families, of which 19 appeared only in the literature sources. Unlike in the Mediterranean tradition, edible ruderal plants in Bulgaria were regarded unfavorably, as poverty food. Amaranthaceae and Asteraceae were the most represented families, with 10 taxa each. About half of the taxa were collected for their leaves or whole young herbage that is used as pastry fillings, in stewed, and in cooked dishes. Taxa used in raw salads were mostly from the literature sources. The most diverse utilization was recorded in the southern-most regions of Bulgaria, where immediate tasting of the gathered plants was reported by the participants as the way to collect food plants. The bitter ones or those with an unappealing smell were considered non-edible and were avoided. References about biologically active compounds and potential benefits were collected, classified, and discussed in regard to their potential benefits for human health.
Collapse
Affiliation(s)
- Teodora Ivanova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Mihail Chervenkov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Yulia Bosseva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milen Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Dessislava Dimitrova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Mannila E, Marti-Quijal FJ, Selma-Royo M, Calatayud M, Falcó I, de la Fuente B, Barba FJ, Collado MC, Linderborg KM. In Vitro Bioactivities of Food Grade Extracts from Yarrow (Achillea millefolium L.) and Stinging Nettle (Urtica dioica L.) Leaves. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:132-138. [PMID: 36370293 PMCID: PMC9947014 DOI: 10.1007/s11130-022-01020-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 05/26/2023]
Abstract
Yarrow (Achillea millefolium L., AM) and nettle (Urtica dioica L., UD) are bioactive plants used commercially in functional food and supplement applications and traditionally to alleviate gastric disorders. In this work, the effects of food-grade optimized extracts of Finnish early-season AM and UD were tested on bacterial growth including potential beneficial and foodborne pathogens, as well as murine norovirus (MNV). The anti-inflammatory properties of the extracts were also tested in vitro by NF-κB reporter cells. The food-grade extraction was optimized with the response surface modelling in terms of total carotenoid, chlorophyll, and phenolic compounds contents and antioxidant capacities. The optimal food-grade extraction parameters were a 1-h extraction in 70% ethanol at 45 °C for AM, and at 49 °C for UD. There were no significant effects on the beneficial bacteria (Lacticaseibacillus and Bifidobacterium strains), and the extracts were more effective against gram-positive than gram-negative foodborne bacteria and potential pathogens. Listeria innocua was the most susceptible strain in the optimized extracts with a growth rate of 0.059 ± 0.004 for AM and 0.067 ± 0.006 for UD, p < 0.05 compared to control. The optimized extracts showed a logarithmic growth reduction of 0.67 compared to MNV. The hydroethanolic extracts were cytotoxic to both cell lines, whereas aqueous AM and UD extracts induced and reduced TLR4 signalling in a reporter cell line, respectively. The results provide novel food-grade extraction parameters and support the bioactive effects of AM and UD in functional food applications, but more research is needed to elucidate the precise biological activity in vivo for gastric health.
Collapse
Affiliation(s)
- Enni Mannila
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Francisco J Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100, Burjassot, València, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Marta Calatayud
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Beatriz de la Fuente
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100, Burjassot, València, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100, Burjassot, València, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
11
|
Antioxidant Activity of Urtica dioica: An Important Property Contributing to Multiple Biological Activities. Antioxidants (Basel) 2022; 11:antiox11122494. [PMID: 36552702 PMCID: PMC9774934 DOI: 10.3390/antiox11122494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Urtica dioica (UD) is a multi-functional plant known to be used as both food and medicine from ancient times. The plant has the potential to be used as a fertilizer and for biological pest control. It is also used in textile and related industries for its quality fibers. In the recent past, the plant has received great attention for its numerous important biological activities and food applications. The antioxidant activity of UD is the crucial factor supporting its important biological activities, such as anticancer, antidiabetic and anti-inflammatory properties. The antioxidant activity of UD is also found to be protective in different organs, including the brain, liver, lungs, kidney, ovary, and uterus, and may also be protective against diseases associated with these organs. Few clinical studies have endorsed the antioxidant potential of UD in patients. The current work is an attempt to comprehensively compile and discuss the antioxidant activity of UD from in vitro, in vivo and human studies. The insights of the current study would be helpful in getting a panoramic view of the antioxidant potential of UD, and provide direction for optimizing and developing it for therapeutic applications against important diseases and conditions in the near future.
Collapse
|
12
|
Hydroethanolic Extract of Urtica dioica L. (Stinging Nettle) Leaves as Disaccharidase Inhibitor and Glucose Transport in Caco-2 Hinderer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248872. [PMID: 36558005 PMCID: PMC9784853 DOI: 10.3390/molecules27248872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Herbal treatment for diabetes mellitus is widely used. The pharmacological activity is thought to be due to the phenolic compounds found in the plant leaves. The present study aims to investigate the phytochemical composition of Urtica dioica (UD) hydroethanolic extract and to screen its antidiabetic activity by disaccharidase hindering and glucose transport in Caco-2 cells. The results have shown that a total of 13 phenolic compounds in this work, viz. caffeic and coumaric acid esters (1, 2, 4-7, 10), ferulic derivative (3), and flavonoid glycosides (8, 9, 11-13), were identified using HPLC-DAD-ESI/MS2. The most abundant phenolic compounds were 8 (rutin) followed by 6 (caffeoylquinic acid III). Less predominant compounds were 4 (caffeoylquinic acid II) and 11 (kaempferol-O-rutinoside). The UD hydroethanolic extract showed 56%, 45%, and 28% (1.0 mg/mL) inhibition level for maltase, sucrase, and lactase, respectively. On the other hand, glucose transport was 1.48 times less at 1.0 mg/mL UD extract compared with the control containing no UD extract. The results confirmed that U. dioica is a potential antidiabetic herb having both anti-disaccharidase and glucose transport inhibitory properties, which explained the use of UD in traditional medicine.
Collapse
|
13
|
Montoya-Arroyo A, Toro-González C, Sus N, Warner J, Esquivel P, Jiménez VM, Frank J. Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6340-6348. [PMID: 35527679 DOI: 10.1002/jsfa.11985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Local leafy vegetables are gaining attention as affordable sources of micronutrients, including vitamins, pro-vitamin carotenoids and other bioactive compounds. Stinging nettles (Urtica spp.) are used as source of fibers, herbal medicine and food. However, despite the relatively wide geographical spread of Urtica leptophylla on the American continent, little is known about its content of vitamin E congeners and carotenoids. We therefore investigated the particular nutritional potential of different plant structures of wild Costa Rican U. leptophylla by focusing on their vitamin E and carotenoid profiles. RESULTS Young, mature and herbivore-damaged leaves, flowers, stems and petioles were collected and freeze-dried. Vitamin E and carotenoids were determined by high-performance liquid chromatography after liquid/liquid extraction with hexane. α-Tocopherol was the major vitamin E congener in all structures. Flowers had a high content of γ-tocopherol. Herbivore-damaged leaves had higher contents of vitamin E than undamaged leaves. Lutein was the major and β-carotene the second most abundant carotenoid in U. leptophylla. No differences in carotenoid profiles were observed between damaged and undamaged leaves. CONCLUSION The leaves of U. leptophylla had the highest nutritional value of all analyzed structures; therefore, they might represent a potential source of α-tocopherol, lutein and β-carotene. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Jorge Warner
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | - Patricia Esquivel
- School of Food Technology, Universidad de Costa Rica, San Pedro, Costa Rica
| | | | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Cegledi E, Garofulić IE, Zorić Z, Roje M, Dragović-Uzelac V. Effect of Spray Drying Encapsulation on Nettle Leaf Extract Powder Properties, Polyphenols and Their Bioavailability. Foods 2022; 11:foods11182852. [PMID: 36140980 PMCID: PMC9498331 DOI: 10.3390/foods11182852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nettle (Urtica dioica L.) is a plant rich in a health-promoting compounds such as polyphenols, which are sensitive and unstable compounds with low bioavailability, that need to be stabilized and protected from external influences. Therefore, the aim of this study was to examine how the temperature, type of carrier and sample to carrier ratio influence the physicochemical properties and encapsulation and loading capacity of the nettle leaf extract powder and examine the effect of encapsulation on the antioxidant capacity and bioavailability of polyphenols. The process yield ranged from 64.63–87.23%, moisture content from 1.4–7.29%, solubility from 94.76–98.53% and hygroscopicity from 13.35–32.92 g 100 g−1. The highest encapsulation (98.67%) and loading (20.28%) capacities were achieved at 160 °C, β-CD:GA (3:1) and sample:carrier ratio of 1:3. Extracts encapsulated at selected conditions showed high antioxidant capacity and distinct polyphenolic profile comprised of 40 different compounds among which cinnamic acids were the most abundant. Moreover, the encapsulation increased the bioavailability of nettle leaf polyphenols, with the highest amount released in the intestinal phase. Thus, the obtained encapsulated extract represents a valuable source of polyphenols and may therefore be an excellent material for application in value-added and health-promoting products.
Collapse
Affiliation(s)
- Ena Cegledi
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marin Roje
- Ruđer Bošković Institute, Biljenička Cesta 54, 10000 Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Lu X, Zhao Y, Li B, Feng W, Qi J, Feng B. Phytochemical, Chemotaxonomic and Bioinformatics Study on Laportea bulbifera (Urticaceae). Chem Biodivers 2022; 19:e202200070. [PMID: 35620918 DOI: 10.1002/cbdv.202200070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/27/2022] [Indexed: 11/07/2022]
Abstract
Phytochemical investigation of the aerial part of Laportea bulbifera (Siebold & Zucc.) Wedd. (L. bulbifera) showed the isolation of seventeen compounds, including five flavonoids (1-4 and 6), one terpenoid (5), five phenolic acids (7-11), one coumarin (12), two steroids (13-14), and three alkaloids (15-17). Structure elucidations of these compounds were performed on the basis of extensive NMR experiments and compared with the published data in the references. It is remarkable that compounds (3-5) were firstly isolated from the Urticaceae family, compounds (3-8, 11 and 15-17) were firstly obtained from genus Laportea. Furthermore, the result of the chemotaxonomic significance discussion showed that compounds (2-4) may can be served as compound fingerprints to distinguish between species of L. bulbifera and genus Urtica, and what' more, we proposed a bold conjecture that isoflavones can distinguish between species of L. bulbifera and genus Urtica. At the same time, the molecular docking method was used to evaluate the inhibitory effect of these compounds on human steroid 5α-reductase 2 (SRD5α2). The results showed that compounds (1-4 and 6) had better expected effects than the positive drug finasteride can by effectively binding to the active sites of SRD5α2. This study assisted in the future phytochemical and chemotaxonomic research on genus Laportea. Simultaneously, this research provided the theoretical evidence for the application of L. bulbifera in treating benign prostatic hyperplasia (BPH).
Collapse
Affiliation(s)
- Xuan Lu
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Yuxuan Zhao
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Bo Li
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Weixing Feng
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Junkai Qi
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Baomin Feng
- College of Life and Health, Dalian University, Dalian, 116622, China
| |
Collapse
|
16
|
Farrukh M, Saleem U, Ahmad B, Chauhdary Z, Alsharif I, Manan M, Qasim M, Alhasani RH, Shah GM, Shah MA. Sarcococca saligna Hydroalcoholic Extract Ameliorates Arthritis in Complete Freund's Adjuvant-Induced Arthritic Rats via Modulation of Inflammatory Biomarkers and Suppression of Oxidative Stress Markers. ACS OMEGA 2022; 7:13164-13177. [PMID: 35474846 PMCID: PMC9026066 DOI: 10.1021/acsomega.2c00619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
Traditionally, Sarcococca saligna has been used for the treatment of arthritis and many other inflammatory disorders. The current study was planned to give scientific evidence to this traditional use of S. saligna. Phytochemical profiling of SSME was carried out by using electrospray ionization mass spectrometry (ESI-MS/MS). Complete Freund's adjuvant (CFA), 150 μL was injected in the subplantar region of the left hind paw to induce arthritis in rats. Aqueous methanolic extract of S. saligna (SSME) was administered orally at 250, 500, or 1000 mg/kg dose from the 7th day to the 28th day of the study to explore its anti-arthritic potential. Histopathological and radiographic assessment of joints and enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) analyses were performed. Determination of oxidative stress biomarkers in the serum was also carried out. ESI-MS/MS identified ten such phytoconstituents which have reported strong anti-inflammatory and anti-arthritic activity. The SSME extract considerably reduced paw inflammation and arthritic index, subdued cachexia, and significantly improved biochemical and hematological changes. Oxidative stress decreased in SSME administered rats dose-dependently. Histopathological and radiographic evaluations also showed the anti-arthritic activity of SSME, which was associated with the downregulation of tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB, COX-2, interleukin (IL)-6, and IL-1β and upregulation of I-kB, IL-4, and IL-10, in contrast to disease group rats. The outcomes of the study proposed that S. saligna have anti-arthritic potential, supporting its traditional use for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Maryam Farrukh
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 45320, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ifat Alsharif
- Department
of Biology, Jamoum University College, Umm
Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Maria Manan
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Qasim
- Department
of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Reem Hasaballah Alhasani
- Department
of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| | - Ghulam Mujtaba Shah
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21120, Pakistan
- Department
of Pharmacy, Hazara University, Mansehra, Khyber Pakhtunkhwa 21120, Pakistan
| | - Muhammad Ajmal Shah
- Department
of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
- Department
of Pharmacy, Hazara University, Mansehra, Khyber Pakhtunkhwa 21120, Pakistan
| |
Collapse
|
17
|
Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, Kılıç M, Sen S, Acharya K, Nasiri A, Cruz-Martins N, Tsouh Fokou PV, Ydyrys A, Bassygarayev Z, Daştan SD, Alshehri MM, Calina D, Cho WC. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4024331. [PMID: 35251206 PMCID: PMC8894011 DOI: 10.1155/2022/4024331] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12451, Egypt
| | - Rana M. Merghany
- Department of Pharmacognosy, National Research Centre, Giza, Egypt
| | | | - Lubna Azmi
- Hygia Institute of Pharmaceutical Education & Research, Lucknow, U. P. 226001, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, Free State, South Africa
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Mehtap Kılıç
- Department of Pharmacognosy, Lokman Hekim University Faculty of Pharmacy, Ankara 06510, Turkey
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra PRD 4585-116, Portugal
- TOXRUN-oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra 4585-116, Portugal
| | | | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan
| | - Zhandos Bassygarayev
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Opačić N, Radman S, Fabek Uher S, Benko B, Voća S, Šic Žlabur J. Nettle Cultivation Practices-From Open Field to Modern Hydroponics: A Case Study of Specialized Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040483. [PMID: 35214816 PMCID: PMC8878654 DOI: 10.3390/plants11040483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 05/14/2023]
Abstract
Conventional agricultural production faces numerous challenges due to the pronounced effects of climate change, particularly global warming, and drought more than ever before in history, with the primary concern being to produce adequate yields and high-quality, nutritious plant material. Likewise, people are increasingly looking for new sources of food and are becoming aware of the importance of a varied diet and its connection to health. In this sense, stinging nettle (Urtica dioica L.) stands out as a valuable species that is neglected as a food source, as it has a significant content of specialized metabolites, and thus has an extremely high potential for use both nutritionally and pharmacologically, but is still traditionally collected from natural habitats, so it can be of questionable quality and undefined chemical composition. Therefore, sustainable agricultural practices are increasingly shifting to modern hydroponic cultivation methods in greenhouses. The advantage lies in the easier management and control of a number of factors during cultivation (air temperature and relative humidity, balanced and rational fertilization, minimization of nitrate uptake, etc.), ensuring better conditions for the growth and development of nettle according to its needs. The aim of this review is to give an overview of the technology of stinging nettle cultivation in the field and to show the possibilities of cultivation with modern hydroponic techniques to obtain a final product of consistent and uniform quality, high content of specialized metabolites and significant nutritional value. Research on this topic is still sparse but will certainly increase in the future. Therefore, this review provides all the necessary data for such future studies.
Collapse
Affiliation(s)
- Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (N.O.); (S.F.U.); (B.B.)
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (N.O.); (S.F.U.); (B.B.)
- Correspondence:
| | - Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (N.O.); (S.F.U.); (B.B.)
| | - Božidar Benko
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (N.O.); (S.F.U.); (B.B.)
| | - Sandra Voća
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (S.V.); (J.Š.Ž.)
| | - Jana Šic Žlabur
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (S.V.); (J.Š.Ž.)
| |
Collapse
|
19
|
Ao X, Yan J, Liu S, Chen S, Zou L, Yang Y, He L, Li S, Liu A, Zhao K. Extraction, isolation and identification of four phenolic compounds from Pleioblastus amarus shoots and their antioxidant and anti-inflammatory properties in vitro. Food Chem 2021; 374:131743. [PMID: 34915365 DOI: 10.1016/j.foodchem.2021.131743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
Pleioblastus amarus (P. amarus) shoots, belong to the grass family Gramineae, a traditional green vegetable in China, are rich in nutritional properties, and can provide various health benefits. This study isolated four compounds, namely (1-4), 3-O-coumaroylquinic acid (1), 3-O-feruloylquinic acid (2), 4-O-feruloylquinic acid (3), and 5-O-feruloylquinic acid (4) from Pleioblastus amarus shoots for the first time. The structures of the extracted compounds were determined using detailed spectroscopic (1D/2D NMR), high resolution electrospray ionization mass spectrometry (HR-ESI-MS), and infrared (IR) spectroscopy. The antioxidant capacity of 3-O-feruloylquinic acid (2) was stronger than that of the other compounds, while it also exhibited anti-inflammatory activity, significantly restricting the release of nitric oxide (NO) by lipopolysaccharide (LPS)-induced RAW 264.7 cells, displaying an inhibitory rate of 60.92 percent at a concentration of 400 μg/mL. Furthermore, 3-O-feruloylquinic acid (2) inhibited interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-κB (NF-κB) expression and may be useful for developing novel antioxidant and anti-inflammatory substances.
Collapse
Affiliation(s)
- Xiaolin Ao
- Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| | - Junling Yan
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shuliang Liu
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shujuan Chen
- Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| | - Likou Zou
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yong Yang
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Li He
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Aiping Liu
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Ke Zhao
- Sichuan Agricultural University, Yaan, Sichuan 625014, China
| |
Collapse
|
20
|
Dhouibi R, Affes H, Ben Salem M, Charfi S, Marekchi R, Hammami S, Zeghal K, Ksouda K. Protective effect of Urtica dioica in induced neurobehavioral changes, nephrotoxicity and hepatotoxicity after chronic exposure to potassium bromate in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117657. [PMID: 34435563 DOI: 10.1016/j.envpol.2021.117657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Chronic exposure to potassium bromate (KBrO3), a toxic halogen in the environment, has become a global problem of public health. The current study aims to elucidate for the first time the effect of Urtica dioica (UD) on behavioural changes, oxidative stress, and histopathological changes induced by KBrO3 in the cerebellum, kidney, liver and other organs of adult rats. STUDY DESIGN AND METHODS The rats were divided into four groups: group 1 served as a control received physiological serum, Group 2 received KBrO3 (2 g/L of drinking water), group 3 received KBrO3 and Urtica dioica (100 mg/kg), and group 4 received KBrO3 and Urtica dioica (400 mg/kg). We then measured behavioural changes, oxidative stress, and biochemical and histological changes in the cerebellum, liver, kidney and others organs in these rats. After 30 days of treatment, the animals were sacrificed. RESULTS We observed significant behavioural changes in KBrO3-exposed rats. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. In addition, it inhibits hepatic and lipid peroxidation (malondialdehyde), advanced oxidation protein product (AOPP), attenuates KBrO3-mediated enzyme depletion, catalase, superoxide dismutase, glutathione peroxidase enzymatic and antioxidant activities in the liver and kidney. Rats that were co-managed with Urtica dioica at the high portion of 400 mg/kg indicated a higher effect than that treated with the low dose of 100 mg/kg practically in all the tests carried out. CONCLUSION Our results demonstrate that Urtica dioica is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Raouia Dhouibi
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia.
| | - Hanen Affes
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| | - Maryem Ben Salem
- Department of Anatomopathology, CHU Habib Bourguiba of Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomopathology, CHU Habib Bourguiba of Sfax, Tunisia
| | - Rim Marekchi
- Laboratory of Biochemistry, CHU Hedi Cheker of Sfax, Tunisia
| | - Serria Hammami
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| | - Khaled Zeghal
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| | - Kamilia Ksouda
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| |
Collapse
|
21
|
Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules 2021; 26:molecules26206153. [PMID: 34684733 PMCID: PMC8538125 DOI: 10.3390/molecules26206153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/27/2023] Open
Abstract
Nettle is a widely known plant whose high biological activity and beneficial medicinal effects are attributed to various bioactive compounds, among which polyphenols play an important role. In order to isolate polyphenols and preserve their properties, advanced extraction techniques have been applied to overcome the drawbacks of conventional ones. Therefore, microwave-assisted extraction (MAE) has been optimized for the isolation of nettle leaves polyphenols and it was compared to pressurized liquid extraction (PLE) and conventional heat-reflux extraction (CE). The obtained extracts were analyzed for their individual phenolic profile by UPLC MS2 and for their antioxidant capacity by ORAC assay. MAE proved to be the more specific technique for the isolation of individual phenolic compounds, while PLE produced extracts with higher amount of total phenols and higher antioxidant capacity. Both techniques were more effective compared to CE. PLE nettle extract showed antimicrobial activity against bacteria, especially against Gram-negative Pseudomonas fragi ATCC 4973 and Campylobacter jejuni NCTC 11168 strains. This suggests that PLE is suitable for obtaining a nettle extract with antioxidant and antimicrobial potential, which as such has great potential for use as a value-added ingredient in the food and pharmaceutical industry.
Collapse
|
22
|
Tabrizi R, Sekhavati E, Nowrouzi-Sohrabi P, Rezaei S, Tabari P, Ghoran SH, Jamali N, Jalali M, Moosavi M, Kolahi AA, Bettampadi D, Sahebkar A, Safiri S. Effects of Urtica dioica on Metabolic Profiles in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Clinical Trials. Mini Rev Med Chem 2021; 22:550-563. [PMID: 34587883 DOI: 10.2174/1389557521666210929143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/25/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several studies have investigated the effect of Urtica dioica (UD) consumption on metabolic profiles in patients with type 2 diabetes mellitus (T2DM); however, the findings are inconsistent. This systematic review and meta-analysis of clinical trials was performed to summarize the evidence of the effects of UD consumption on metabolic profiles in patients with T2DM. METHODS Eligible studies were retrieved from searches of PubMed, Embase, Scopus, Web of Science, Cochrane Library and Google Scholar databases until December 2019. Cochran (Q) and I-square statistics were used to examine heterogeneity across included clinical trials. Data were pooled by using fixed-effect or random-effects model and expressed as weighted mean difference (WMD) and 95% confidence interval (CI). RESULTS Among 1485 citations, thirteen clinical trials were found to be eligible for the current meta-analysis. UD consumption significantly decreased levels of fasting blood glucose (FBG) (WMD= -17.17 mg/dl, 95% CI: -26.60, -7.73, I2= 93.2%), hemoglobin A1c (HbA1c) (WMD= -0.93, 95% CI: -1.66, -0.17, I2= 75.0%), C-reactive protein (CRP) (WMD= -1.09 mg/dl, 95% CI: -1.64, -0.53, I2= 0.0%), triglycerides (WMD = -26.94 mg/dl, 95 % CI = [-52.07, -1.82], P = 0.03, I2 = 90.0%), systolic blood pressure (SBP) (WMD= -5.03 mmHg, 95% CI = -8.15, -1.91, I2= 0.0%) in comparison to the control groups. UD consumption did not significantly change serum levels of insulin (WMD= 1.07 μU/ml, 95% CI: -1.59, 3.73, I2= 63.5%), total-cholesterol (WMD= -6.39 mg/dl, 95% CI: -13.84, 1.05, I2= 0.0%), LDL-cholesterol (LDL-C) (WMD= -1.30 mg/dl, 95% CI: -9.95, 7.35, I2= 66.1%), HDL-cholesterol (HDL-C) (WMD= 6.95 mg/dl, 95% CI: -0.14, 14.03, I2= 95.4%), body max index (BMI) (WMD= -0.16 kg/m2, 95% CI: -1.77, 1.44, I2= 0.0%), and diastolic blood pressure (DBP) (WMD= -1.35 mmHg, 95% CI: -2.86, 0.17, I2= 0.0%) among patients with T2DM. CONCLUSION UD consumption may result in an improvement in levels of FBS, HbA1c, CRP, triglycerides and SBP, but did not affect on levels of insulin, total-, LDL-, and HDL-cholesterol, BMI, and DBP in patients with T2DM.
Collapse
Affiliation(s)
- Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa. Iran
| | | | | | - Shahla Rezaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Parinaz Tabari
- Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Salar Hafez Ghoran
- Department of Chemistry, Faculty of Basic Sciences, Golestan University, Gorgan. Iran
| | - Navid Jamali
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Mohammad Jalali
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Mahsa Moosavi
- Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Deepti Bettampadi
- Center for Immunization and Infection Research in Cancer (CIIRC), H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL. United States
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Saeid Safiri
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
23
|
Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Kardan M, Rafiei A, Golpour M, Ebrahimzadeh MA, Akhavan-Niaki H, Fattahi S. Urtica dioica Extract Inhibits Cell Proliferation and Induces Apoptosis in HepG2 and HTC116 as Gastrointestinal Cancer Cell Lines. Anticancer Agents Med Chem 2021; 20:963-969. [PMID: 32160852 DOI: 10.2174/1871520620666200311095836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/14/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Nowadays the use of plant-derived products has been extensively examined in the treatment of many types of gastrointestinal cancers such as hepatocarcinoma and colon cancer. Urtica dioica is a traditional herb that has many pharmacological effects and wildly used as a therapeutic agent in cancer. Herein, we have evaluated the effects of the different concentrations of Methanolic Extract of Urtica dioica (MEUD) on viability, death pattern, and expression of the apoptosis-related gene in normal Human Dermal Fibroblast (HDF), hepatocarcinoma cell lines (HepG2) and colon-cancer cell line (HCT116). METHODS A high-performance liquid chromatography method was developed to simultaneously separate 3 phenolic acids in MEUD. HepG2 and HCT116 cell lines as well as HDF normal cell line were cultured in suitable media. After 24 and 48h, in the cultured cell with different concentrations of MEUD, cells viability was assessed by MTT assay, and apoptosis was also evaluated at the cellular level by Annexin V/PI flow cytometry analyzing and AO/EB staining. BCL2 and BAX gene expressions were assessed by TaqMan real-time PCR assay. RESULTS MEUD showed antiproliferative effects on HepG2 and HTC116 cells after 48h with an IC50 value of about 410 and 420μg/ml, respectively (P < 0.001). Apoptotic cells were observed in HepG2 and HTC116 cells but not in HDF. Furthermore, the increased level of BAX/BCL-2 ratio was observed in HepG2 and HTC116 cells under the treatment of different concentrations of MEUD. CONCLUSION The MEUD may influence hepatocarcinoma and colon-cancer cell lines at specific doses and change their proliferation rate by changing the expression of BAX and BCL2.
Collapse
Affiliation(s)
- Mostafa Kardan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Golpour
- Molecular & Cell Biology Research Center, Student Research Committee, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
25
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
26
|
Paulauskienė A, Tarasevičienė Ž, Laukagalis V. Influence of Harvesting Time on the Chemical Composition of Wild Stinging Nettle ( Urtica dioica L.). PLANTS 2021; 10:plants10040686. [PMID: 33918181 PMCID: PMC8065540 DOI: 10.3390/plants10040686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
This research aimed to determine the effect of different harvesting times on the chemical composition of stinging nettle (Urtica dioica L.). The leaves of nettle were harvested at the same place once a month in the period of April–September 2019. The analysis focused on the contents of dry matter, soluble solids, ascorbic acid, titratable acidity, chlorophyll a and chlorophyll b, total carotenoids, total phenolic compounds, antioxidant activity, ash content, and macro- and microelements. The nettles harvested in April were characterized by the highest levels of soluble solids and some macro-and microelements (P, K, Fe, Zn). The plants harvested in May were distinguished for titratable acidity, chlorophyll a, chlorophyll b, and carotenoid contents. In this month, the plants were determined to have the highest antioxidant activity during the entire vegetation period. The plants collected in July contained the highest amount of Mn, but the antioxidant activity of these plants was the lowest during the vegetation period. In August, the plants had the highest levels of ascorbic acid, phenolic compounds, and ash, while the plants collected in September were characterized by having the highest amounts of Ca, Mg, and B as compared to those established in other months of vegetation.
Collapse
|
27
|
Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stinging nettle (Urtica dioica) is a plant well known in traditional medicine for its many beneficial properties, but the lack of standardization regarding the product to offer to consumers limits its diffusion. To this end, drying appears to be a useful technique to offer a low-cost product that can be stored for long time, but the different drying procedures may give rise to end-products of very different quality as nutraceutical and antioxidant compounds. Nettle leaves have been dehydrated employing freeze-drying (FD), oven-drying (OD) or heat pump drying (HPD) and compared with fresh leaves following water extraction to emulate the use by final consumers. Results indicate that the best dehydration technique is HPD, which apparently gives rise to more than a doubling of total phenols and antioxidant activity in the extract compared to the water extract obtained from fresh leaves but a reduction in the level of ascorbic acid of about 39%. In addition, the content of some phenolic compounds is 10 to over a hundred times higher in the extract after HPD than that obtained from fresh samples. This confirms that the dehydration technique should be tuned in relation to the compounds of greatest interest or value.
Collapse
|
28
|
Repajić M, Cegledi E, Zorić Z, Pedisić S, Elez Garofulić I, Radman S, Palčić I, Dragović-Uzelac V. Bioactive Compounds in Wild Nettle ( Urtica dioica L.) Leaves and Stalks: Polyphenols and Pigments upon Seasonal and Habitat Variations. Foods 2021; 10:190. [PMID: 33477689 PMCID: PMC7831946 DOI: 10.3390/foods10010190] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the presence of bioactives in wild nettle leaves and stalks during the phenological stage and in the context of natural habitat diversity. Thus, wild nettle samples collected before flowering, during flowering and after flowering from 14 habitats situated in three different regions (continental, mountain and seaside) were analyzed for low molecular weight polyphenols, carotenoids and chlorophylls using UPLC-MS/MS and HPLC analysis, while the ORAC method was performed for the antioxidant capacity measurement. Statistical analysis showed that, when compared to the stalks, nettle leaves contained significantly higher amounts of analyzed compounds which accumulated in the highest yields before flowering (polyphenols) and at the flowering stage (pigments). Moreover, nettle habitat variations greatly influenced the amounts of analyzed bioactives, where samples from the continental area contained higher levels of polyphenols, while seaside region samples were more abundant with pigments. The levels of ORAC followed the same pattern, being higher in leaves samples collected before and during flowering from the continental habitats. Hence, in order to provide the product's maximum value for consumers' benefit, a multidisciplinary approach is important for the selection of a plant part as well as its phenological stage with the highest accumulation of bioactive compounds.
Collapse
Affiliation(s)
- Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Ena Cegledi
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Sanja Radman
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| |
Collapse
|
29
|
Brahmi-Chendouh N, Piccolella S, Nigro E, Hamri-Zeghichi S, Madani K, Daniele A, Pacifico S. Urtica dioica L. leaf chemical composition: A never-ending disclosure by means of HR-MS/MS techniques. J Pharm Biomed Anal 2021; 195:113892. [PMID: 33445000 DOI: 10.1016/j.jpba.2021.113892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/20/2022]
Abstract
The metabolite profiling of plant extracts always represents an exciting challenge, as the chemical diversity of natural products is still far beyond the researchers' imagination, even focusing on a plant that is thought to have already been broadly investigated. Herein UHPLC-HRMS/MS techniques were applied to an alcoholic crude extract from nettle leaves and proved to be a precious tool for the disclosure of secondary metabolites never found before. Hydroxycinnamic acid derivatives were the most representative constituents, with a 2-caffeoilisocitric acid cyclodimer described for the first time, besides four C-glycosylated flavones, bearing a 3-hydroxy-3-methylglutaryl function. This deep investigation paves the way for the isolation and full characterization of these molecules by means of spectroscopic techniques. Moreover, based on preliminary cytotoxicity evaluation, further research on the use of this nettle extract as a valuable nutraceutical product is encouraged.
Collapse
Affiliation(s)
- Nabila Brahmi-Chendouh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I, 81100, Caserta, Italy; 3BS Laboratory, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I, 81100, Caserta, Italy.
| | - Ersilia Nigro
- CEINGE-Advanced Biotechnologies, Scarl, 80131, Napoli, Italy
| | - Sabrina Hamri-Zeghichi
- 3BS Laboratory, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Khodir Madani
- 3BS Laboratory, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Aurora Daniele
- CEINGE-Advanced Biotechnologies, Scarl, 80131, Napoli, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I, 81100, Caserta, Italy
| |
Collapse
|
30
|
Bioactive Phenolics and Antioxidant Capacity of Some Wild Edible Greens as Affected by Different Cooking Treatments. Foods 2020; 9:foods9091320. [PMID: 32962154 PMCID: PMC7554971 DOI: 10.3390/foods9091320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The study aimed to assess the influence of three cooking methods (boiling, steaming, and microwave-cooking) on (i) composition in individual phenolic compounds, (ii) total phenolic content (TPC), and (iii) total antioxidant activity (TAA) of eight Mediterranean wild edible species (Asparagus acutifolius, Asphodeline lutea, Beta vulgaris, Helminthotheca echioides, Sonchus oleraceus, Taraxacum officinale, Urospermum picroides, Urtica dioica). In raw greens, several caffeic acid derivatives (chicoric, caftaric, chlorogenic, neochlorogenic, 1,5-and 3,5-dicaffeoylquinic acids) and flavonoids (glycosides of apigenin, luteolin, quercetin, isorhamnetin, kaempferol) were identified. Cooking treatments did not affect qualitative phenolic composition, while quantitative changes were recorded in some phenolic compounds and in TPC. Generally, boiling decreased TPC and TAA, while chicoric, caftaric, chlorogenic acids and quercetin-3-rutinoside increased in some species after steaming and microwave-cooking, showing positive correlation with TAA. Results confirmed steaming and microwave-cooking as mild procedures able to increase antioxidant capacity of some species, producing beneficial effects on their nutraceutical properties.
Collapse
|
31
|
Durhan A, Koşmaz K, Süleyman M, Tez M, Şenlikci A, Ersak C, Ünal Y, Pekcici R, Karaahmet F, Şeneş M, Alkan Kuşabbi I, Eser EP, Hücümenoğlu S. Assessment of Ankaferd Blood Stopper in experimental liver ischemia reperfusion injury. Turk J Med Sci 2020; 50:1421-1427. [PMID: 32490644 PMCID: PMC7491290 DOI: 10.3906/sag-2004-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim To investigate possible protective effects of Ankaferd Blood Stopper® (ABS) in an experimental liver ischemia reperfusion injury (IRI) model. Materials and methods The study was carried out on 30 female rats separated into 3 groups as sham, control (IRI), and treatment (IRI + ABS) groups. In the IRI + ABS group, 0.5 mL/day ABS was given for 7 days before surgery. In the IRI and IRI + ABS groups, the hepatic pedicle was clamped for 30 min to apply ischemia. Then, after opening the clamp, 90-min reperfusion of the liver was provided. Blood and liver tissue samples were taken for biochemical and histopathological analyses. Results Compared to the sham group, the IRI group had significantly higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total oxidant status (TOS), malondialdehyde (MDA), fluorescent oxidant products (FOP) and lower expression of albumin and total antioxidant status (TAS) (P < 0.05). Compared to the IRI group, the IRI+ABS group showed lower expression of AST, ALT, TOS, MDA and FOP and higher expression of albumin and TAS (P < 0.05). In the histopathological analysis, congestion scores were statistically significantly lower in the IRI + ABS group than in the IRI group. Conclusions ABS has a strong hepatoprotective effect due to its antioxidant and antiinflammatory effects and could therefore be used as a potential therapeutic agent for IRI.
Collapse
Affiliation(s)
- Abdullah Durhan
- Department of Surgical Oncology, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Koray Koşmaz
- Department of Gastrointestinal Surgery, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Marlen Süleyman
- Department of Surgical Oncology, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Mesut Tez
- Department of Surgical Oncology, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Abdullah Şenlikci
- Department of Gastrointestinal Surgery, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Can Ersak
- Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Yilmaz Ünal
- Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Recep Pekcici
- Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Fatih Karaahmet
- Department of Gastroenterology and Hepatology, Department of Internal Medicine, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Mehmet Şeneş
- Department of Biochemistry, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Ilknur Alkan Kuşabbi
- Department of Biochemistry, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Eylem Pinar Eser
- Department of Pathology, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Sema Hücümenoğlu
- Department of Pathology, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
32
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
33
|
Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes (Basel) 2020. [DOI: 10.3390/pr8070803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the performance of accelerated solvent extraction (ASE) as a green approach for the recovery of polyphenols and pigments from wild nettle leaves (NL). ASE was operated at different temperatures (20, 50, 80 and 110 °C), static times (5 and 10 min) and cycle numbers (1–4) using ethanol (96%) as an extraction solvent. In order to compare the efficiency of ASE, ultrasound assisted extraction (UAE) at 80 °C for 30 min was performed as a referent. Polyphenol and pigment analyses were carried out by HPLC and antioxidant capacity was assessed by ORAC. Seven polyphenols from subclasses of hydroxycinnamic acids and flavonoids, along with chlorophylls a and b and their derivatives and six carotenoids and their derivatives were identified and quantified. Chlorogenic acid was the most abundant polyphenol and chlorophyll a represented the dominant pigment. ASE conditions at 110 °C/10 min/3 or 4 cycles proved to be the optimal for achieving the highest yields of analyzed compounds. In comparison with UAE, ASE showed better performance in terms of yields and antioxidants recovery, hence delivering extract with 60% higher antioxidant capacity. Finally, the potential of NL as a functional ingredient from natural sources can be successfully accessed by ASE.
Collapse
|
34
|
Zhuang Y, Sun X, Liu B, Hou H, Sun Y. Effects of Rambutan Peel ( Nepheliumlappaceum) PhenolicExtract on RANKL-Induced Differentiation of RAW264.7 Cells into Osteoclasts and Retinoic Acid-Induced Osteoporosis in Rats. Nutrients 2020; 12:nu12040883. [PMID: 32218116 PMCID: PMC7230481 DOI: 10.3390/nu12040883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that rambutan peel phenolic (RPP) extract has excellent biological activities due to its abundant phenolic content and profile. In this study, the potential anti-osteoporosis (OP) effects of RPP were evaluated by suppressing receptor activator nuclear factor-kappa B ligand (RANKL)-induced differentiation of RAW264.7 cells into osteoclasts and amelioratingretinoic acid-induced OP in rats. Our results showed that RPP efficiently decreased the formation of tartrate-resistant acid phosphatase (TRAP)-positive cells and reduced total TRAP activity in RAW264.7 cells under RANKL stimulation. RPP treatment significantlyameliorated retinoid acid-induced calcium loss in rats (p < 0.05). The serum phosphorus level of osteoporotic rats was increased by RPP treatment, and the serum levels of total alkaline phosphatase and osteocalcin in osteoporotic rats were further reduced. RPP treatment improved the qualities of the femur and tibia, such asbone mineral density, bone length, bone maximum load, cortical bone area ratio, and trabecularelative bone density in osteoporotic rats to some extent. Furthermore, histological analysis showed that RPP effectively improved the bone microstructure of osteoporotic rats by regulating the cortical bone thickness and trabecular bone separation. These results indicate that RPP could have potential applications as a newnutraceutical and functional food in the prevention of OP.
Collapse
Affiliation(s)
- Yongliang Zhuang
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China; (Y.Z.); (X.S.); (B.L.)
| | - Xiaodong Sun
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China; (Y.Z.); (X.S.); (B.L.)
| | - Bingtong Liu
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China; (Y.Z.); (X.S.); (B.L.)
| | - Hu Hou
- Food Science and Technology, Ocean University of China, No 5, Yushan Road, Qingdao, Shandong 266005, China;
| | - Yun Sun
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China; (Y.Z.); (X.S.); (B.L.)
- Correspondence: ; Tel./Fax: +86-871-6592-0216
| |
Collapse
|
35
|
Recent Trends in the Application of Chromatographic Techniques in the Analysis of Luteolin and Its Derivatives. Biomolecules 2019; 9:biom9110731. [PMID: 31726801 PMCID: PMC6921003 DOI: 10.3390/biom9110731] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Luteolin is a flavonoid often found in various medicinal plants that exhibits multiple biological effects such as antioxidant, anti-inflammatory and immunomodulatory activity. Commercially available medicinal plants and their preparations containing luteolin are often used in the treatment of hypertension, inflammatory diseases, and even cancer. However, to establish the quality of such preparations, appropriate analytical methods should be used. Therefore, the present paper provides the first comprehensive review of the current analytical methods that were developed and validated for the quantitative determination of luteolin and its C- and O-derivatives including orientin, isoorientin, luteolin 7-O-glucoside and others. It provides a systematic overview of chromatographic analytical techniques including thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), liquid chromatography (LC), high performance liquid chromatography (HPLC), gas chromatography (GC) and counter-current chromatography (CCC), as well as the conditions used in the determination of luteolin and its derivatives in plant material.
Collapse
|
36
|
Esposito S, Bianco A, Russo R, Di Maro A, Isernia C, Pedone PV. Therapeutic Perspectives of Molecules from Urtica dioica Extracts for Cancer Treatment. Molecules 2019; 24:molecules24152753. [PMID: 31362429 PMCID: PMC6695697 DOI: 10.3390/molecules24152753] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.
Collapse
Affiliation(s)
- Sabrina Esposito
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Alessandro Bianco
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
37
|
Zhao D, Jiang Y, Sun J, Li H, Huang M, Sun X, Zhao M. Elucidation of The Anti-Inflammatory Effect of Vanillin In Lps-Activated THP-1 Cells. J Food Sci 2019; 84:1920-1928. [PMID: 31264720 DOI: 10.1111/1750-3841.14693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Vanillin, a kind of phenolic compound, is naturally found in food and beverage and widely used as a flavoring agent. In view of the safety and universality of vanillin, exploring the functions of vanillin on human is of great value. Thus, lipopolysaccharide (LPS)-activated THP-1 cells were selected as the cell model to evaluate the anti-inflammatory effect of vanillin in this study. On the basis of the results, vanillin markedly suppressed the expression of inflammatory cytokines (that is, TNF-α, IL-1β, IL-6, and IL-8), mediators (NO, iNOS, PGE2, and COX-2), and NLRP3 inflammasome (that is, NLRP3, ASC, and caspase-1), blocked the LPS-induced activation of the NF-κB/IκBα/AP-1 signaling pathway, and activated the gene expression of the Nrf2/HO-1 signaling pathway. In addition, it was confirmed that vanillin was unable to react with LPS due to the results of quantification by HS-SPME-GC-MS. Hence, vanillin could effectively attenuate LPS-induced inflammatory response by regulating the expression of intracellular signaling pathways in THP-1 cells. It is a potent anti-inflammatory component found in food and beverage. These findings might contribute to the overall understanding of the potential health benefits of vanillin for food application. PRACTICAL APPLICATION: In this study, the anti-inflammatory effect of vanillin (VA) was evaluated by ELISA, real-time PCR, and western blot in LPS-induced THP-1 cells. The hypothesis that VA could react with LPS was excluded due to the results of quantification by HS-SPME-GC-MS. On the basis of the result, vanillin could effectively attenuate LPS-induced inflammatory response in THP-1 cells and was a potent anti-inflammatory component natural in food and beverage. These findings might contribute to the overall understanding of the potential health benefits of vanillin for food application.
Collapse
Affiliation(s)
- Dongrui Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,School of Food Science and Engineering, South China Univ. of Technology, 510640, Guangzhou, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Yunsong Jiang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Jinyuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Hehe Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Mingquan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Xiaotao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Mouming Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,School of Food Science and Engineering, South China Univ. of Technology, 510640, Guangzhou, China
| |
Collapse
|
38
|
In Silico and In Vitro Analysis of the 4,4',4''-((1,3,5-Triazine-2,4,6-triyl)tris(azanediyl))triphenol), an Antioxidant Agent with a Possible Anti-Inflammatory Function. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9165648. [PMID: 31240229 PMCID: PMC6556288 DOI: 10.1155/2019/9165648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 12/21/2022]
Abstract
Inflammation is a consequence of an array of biological reactions that occur in response to pain sensation, local injury, and cell damage. A large number of studies have demonstrated that quercetin and other flavonoids show anti-inflammatory effects; thus, in the present work, we evaluated a triazine-phenol derivative (TP derivative) compound as a possible drug candidate with anti-inflammatory activity. This compound was studied as a possible anti-inflammatory drug using synthesis and characterization by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and mass spectrometry (MS). The derivative of melamine was evaluated for its antioxidant activity and exhibited good DPPH and FRAP antioxidant activity. Additionally, we evaluated the putative effect of the molecule on the COX-2 enzyme through molecular dynamic simulation (MDS), and the result suggested that the TP derivative is a potential anti-inflammatory agent that can interact with the COX-2 enzyme because of the high number of protein-ligand interactions observed with MDS. Finally, the study of theoretical physicochemical properties, the observation of low toxicity (hemolysis assay), and the evaluation of oral bioavailability of the TP derivative showed that it is a possible anti-inflammatory drug candidate.
Collapse
|
39
|
Amelioration of 4-methylguaiacol on LPS-induced inflammation in THP-1 cells through NF-κB/IκBα/AP-1 and Nrf2/HO-1 signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
40
|
Metal Chelating, Inhibitory DNA Damage, and Anti-Inflammatory Activities of Phenolics from Rambutan ( Nephelium lappaceum) Peel and the Quantifications of Geraniin and Corilagin. Molecules 2018; 23:molecules23092263. [PMID: 30189625 PMCID: PMC6225213 DOI: 10.3390/molecules23092263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Whereas the preparation and biological properties of rambutan peel phenolics (RPP) were explored in our previous studies, the metal chelating, inhibitory DNA damage, and anti-inflammatory activities of RPP were evaluated and the important phenolics of RPP quantified in this study. Results showed that RPP had high Fe2+ and Cu2+-chelating activities with EC50 of 0.80 mg/mL and 0.13 mg/mL, respectively. RPP effectively decreased the production of hydroxyl radical with IC50 of 62.4 μg/mL. The protective effects of RPP against AAPH-induced DNA damage were also explored. RPP efficiently inhibited peroxyl radical-induced plasmid DNA strand breakage. The anti-inflammatory effects of RPP were determined using a lipopolysaccharide (LPS)-induced RAW 264.7 cell model. RPP significantly inhibited the production of nitric oxide (NO) and controlled the levels of inducible NO synthase mRNA in LPS-induced RAW 264.7 cells. The inhibitory activity increased in a dose-dependent manner. The above bioactivity of RPP was associated with its phenolic content and phenolic profiles. Furthermore, the contents of geraniin and corilagin in RPP were determined by an ultra-high performance liquid chromatography coupled with triple quadruple mass spectrometry (UPLC-QQQ-MS), showing 140.02 and 7.87 mg/g extract dry weight. Thus, RPP has potential applications as a novel nutraceutical and functional food in health promotion.
Collapse
|
41
|
Kregiel D, Pawlikowska E, Antolak H. Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules 2018; 23:E1664. [PMID: 29987208 PMCID: PMC6100552 DOI: 10.3390/molecules23071664] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Nettles (genus Urtica, family Urticaceae) are of considerable interest as preservatives in foods for both human and animal consumption. They have also been used for centuries in traditional medicine. This paper reviews the properties of nettles that make them suitable for wider applications in the food and pharmaceutical industries. Nettles contain a significant number of biologically-active compounds. For example, the leaves are rich sources of terpenoids, carotenoids and fatty acids, as well as of various essential amino acids, chlorophyll, vitamins, tannins, carbohydrates, sterols, polysaccharides, isolectins and minerals. Extracts from the aerial parts of nettles are rich sources of polyphenols, while the roots contain oleanol acid, sterols and steryl glycosides. Due to the variety of phytochemicals and their proportions they contain, nettles show noticeable activity against both Gram-positive and Gram-negative bacteria. These properties make nettles suitable for a range of possible applications, including functional food, dietary supplements and pharmacological formulations. Despite these benefits, the nettle is still an underestimated plant source. This paper provides a unique overview of the latest research on nettle plants focusing on the possibilities for transforming a common weed into a commercial plant with a wide range of applications. Special attention is paid to the antimicrobial activity of the active compounds in nettles and to possible uses of these valuable plants in food and feed formulations.
Collapse
Affiliation(s)
- Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 171/173 Wolczanska, 90-924 Lodz, Poland.
| | - Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 171/173 Wolczanska, 90-924 Lodz, Poland.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 171/173 Wolczanska, 90-924 Lodz, Poland.
| |
Collapse
|
42
|
Production of caffeoylmalic acid from glucose in engineered Escherichia coli. Biotechnol Lett 2018; 40:1057-1065. [DOI: 10.1007/s10529-018-2580-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
|
43
|
Streptomyces urticae sp. nov., isolated from rhizosphere soil of Urtica urens L. Antonie van Leeuwenhoek 2018; 111:1835-1843. [DOI: 10.1007/s10482-018-1072-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|