1
|
Wang X, Hu D, Liao F, Chen S, Meng Y, Dai J, Dong TTX, Lao Z, Yu L, Liang Y, Lai X, Tsim KWK, Li G. Comparative proteomic analysis of edible bird's nest from different origins. Sci Rep 2023; 13:15859. [PMID: 37739981 PMCID: PMC10516954 DOI: 10.1038/s41598-023-41851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
Edible bird's nest (EBN) mainly made of saliva that secreted by a variety of swiftlets is a kind of precious traditional Chinese medicine. EBNs from different biological and geographical origins exhibit varieties in morphology, material composition, nutritive value and commercial value. Here, we collected four different EBN samples from Huaiji, China (Grass EBN), Nha Trang, Vietnam (Imperial EBN) and East Kalimantan, Indonesia (White EBN and Feather EBN) respectively, and applied label-free quantitative MS-based proteomics technique to identify its protein composition. First, phylogenetic analysis was performed based on cytb gene to identify its biological origin. Second, a total of 37 proteins of EBNs were identified, among which there were six common proteins that detected in all samples and exhibited relatively higher content. Gene ontology analysis revealed the possible function of EBN proteins, and principal component analysis and hierarchical clustering analysis based on 37 proteins were performed to compare the difference of various EBNs. In summary, our study deciphered the common and characteristic protein components of EBNs of different origins and described their possible functions by GO enrichment analysis, which helps to establish an objective and reliable quality evaluation system.
Collapse
Affiliation(s)
- Xianyang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingwen Hu
- College of Life Science, Wuhan University, Wuhan, China
| | - Feng Liao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sitai Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Jie Dai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tina Ting Xia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zizhao Lao
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangwen Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Xiaoping Lai
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Geng Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Dobutr T, Jangpromma N, Patramanon R, Daduang J, Klaynongsruang S, Poopornchai S, Yabe T, Daduang S. The effect of edible bird's nests on the expression of MHC-II and costimulatory molecules of C57BL/6 mouse splenocytes. Biochem Biophys Rep 2023; 35:101534. [PMID: 37671389 PMCID: PMC10475475 DOI: 10.1016/j.bbrep.2023.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
The glutinous nest that builds by the saliva secretion of swiftlet is recognizable as an edible bird's nest (EBN). It enriched a medicinal value and was regarded as supplementary food that exerts various beneficial health effects, especially immune boosters. This study's objective was to determine the impact of EBN on the expression of MHC-II and costimulatory molecules (CD86 and CD80) related to the initiation of T-cell activation. Both rEBN and pEBN samples were prepared with simulated gastrointestinal digestion for enhancing the bioaccessibility of bioactive compounds. Our result showed that digested EBN samples slightly influence the upregulation of MHC-II, CD86, and CD80 in gene expression of LPS-stimulated Raw 264.7 cells. The concern of endotoxin contamination in EBN samples, which may cause a false-positive result, was measured by quantitative PCR. We found that the inflammatory genes (IL-1β and TNF-α) were not induced by EBN treatments. Moreover, cell surface protein expression in splenocytes treated with EBN was assessed using flow cytometric analysis. Digested EBN samples demonstrated their capacity to promote the elevation of MHC-II, CD86, and CD80 cell surface protein expression. Finally, the digested-EBN-treated splenocytes only exhibited a specific response in the T-cells population. Thus, EBN is a source of the bioactive compound that has been proposed to exert a role in the stimulation of both MHC-II and costimulatory molecules for TCR/pMHC-II interaction leading to T-cell activation.
Collapse
Affiliation(s)
- Theerawat Dobutr
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Saowanee Poopornchai
- Aiko Edible Bird Nest Pattani, 44 M.3, T. Rhusamilae, Muang, Pattani, 94000, Thailand
| | - Tomio Yabe
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
Li LF, Cheng HY, Lang J, Wong TL, Zhang JX, Wu WJ, Zhang QW, Kong HY, Lai CH, Fung HY, Liu M, Bao WR, Huo CY, Zheng HM, Hou QK, Bai SP, Han QB. An oligosaccharide marker for rapid authentication of edible bird's nest. Food Chem 2023; 409:135334. [PMID: 36586266 DOI: 10.1016/j.foodchem.2022.135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Edible bird's nest (EBN) is a popular and expensive food material. The limited supply and great demand result in the use of adulterants. The authenticity concern is raised due to the lack of appropriate quality markers. Herein, this study aims to provide a specific oligosaccharide marker for rapid EBN authentication. Comparing the benzocaine (ABEE)-labeled saccharide profiles of multiple batches of EBN and adulterants indicates seven unique EBN oligosaccharides. The most abundant one, named BNM001, was selected as a marker and characterized to be Neu5Ac (2-3) Gal by MS and NMR spectra. This new oligosaccharide marker enables a rapid authentication of EBN within 10 min. ABEE labelling of this marker further upgraded the accuracy and sensitivity of the LC-qTOF-MS quantitative analysis. The relative marker content was associated with the quality of EBN products. These results suggest a specific and efficient quality marker for rapid authentication of EBN and related products.
Collapse
Affiliation(s)
- Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Authentication Centre of Valuable Chinese Medicines Limited, Hong Kong, China
| | - Hui-Yuan Cheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Authentication Centre of Valuable Chinese Medicines Limited, Hong Kong, China
| | - Jun Lang
- Hong Kong Authentication Centre of Valuable Chinese Medicines Limited, Hong Kong, China
| | - Tin-Long Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ji-Xia Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-Jie Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hau-Yee Kong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Authentication Centre of Valuable Chinese Medicines Limited, Hong Kong, China
| | - Check-Hei Lai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hau-Yee Fung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Man Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wan-Rong Bao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chu-Ying Huo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hong-Ming Zheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qiu-Ke Hou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Su-Ping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Hong Kong Authentication Centre of Valuable Chinese Medicines Limited, Hong Kong, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis. Foods 2022; 11:foods11162401. [PMID: 36010401 PMCID: PMC9407431 DOI: 10.3390/foods11162401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Edible bird’s nests (EBNs) are vulnerable to adulteration due to their huge demand for traditional medicine and high market price. Presently, there are pressing needs to explore field-deployable rapid screening techniques to detect adulteration of EBNs. The objective of this study is to explore the feasibility of using a handheld near-infrared (VIS/SW-NIR) spectroscopic device for the determination of EBN authenticity against the benchmark performance of a benchtop mid-infrared (MIR) spectrometer. Forty-nine authentic EBNs from the different states in Malaysia and 13 different adulterants (five types) were obtained and used to simulate the adulteration of EBNs at 1, 5 and 10% adulteration by mass (a total of 15 adulterated samples). The VIS/SW-NIR and MIR spectra collated were subsequently processed, modelled and classified using multi-class discriminant analysis. The VIS/SW-NIR results showed 100% correct classification for the collagen and nutrient agar classes in authenticity classification, while for the other classes, the lowest correct classification rate was 96.3%. For MIR analysis, only the karaya gum class had 100% correct classification whilst for the other four classes, the lowest rate of correct classification was at 94.4%. In conclusion, the combination of spectroscopic analysis with chemometrics can be a powerful screening tool to detect EBN adulteration.
Collapse
|
5
|
Loh SP, Cheng SH, Mohamed W. Edible Bird's Nest as a Potential Cognitive Enhancer. Front Neurol 2022; 13:865671. [PMID: 35599726 PMCID: PMC9120600 DOI: 10.3389/fneur.2022.865671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Cognitive enhancement is defined as the augmentation of the mind's core capabilities through the improvement of internal or external information processing systems. Recently, the focus has shifted to the potential therapeutic effects of natural products in improving cognitive function. Edible bird's nest (EBN) is a natural food substance derived from the saliva of swiftlets. Until today, EBN is regarded as a high-priced nutritious food with therapeutic effects. The effectiveness of dietary EBN supplementation to enhance brain development in mammals has been documented. Although the neuroprotection of EBN has been previously reported, however, the impact of EBN on learning and memory control and its potential as a cognitive enhancer drug remains unknown. Thus, this article aims to address the neuroprotective benefits of EBN and its potential effect as a cognitive enhancer. Notably, the current challenges and the future study direction in EBN have been demonstrated.
Collapse
Affiliation(s)
- Su-Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Su-Peng Loh
| | - Shi-Hui Cheng
- Faculty of Science and Engineering, School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El Kom, Egypt
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Selayang, Malaysia
- Wael Mohamed
| |
Collapse
|
6
|
Wu WJ, Li LF, Cheng HY, Fung HY, Kong HY, Wong TL, Zhang QW, Liu M, Bao WR, Huo CY, Han QB. Qualitative and Quantitative Analysis of Edible Bird's Nest Based on Peptide Markers by LC-QTOF-MS/MS. Molecules 2022; 27:molecules27092945. [PMID: 35566296 PMCID: PMC9104280 DOI: 10.3390/molecules27092945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Edible bird's nest (EBN) is an expensive health food. There are many adulterants in the market. It remains challenging to discriminate EBN from its adulterants due to a lack of high-specificity markers. Besides, the current markers are confined to soluble fraction of EBN. Here, both soluble and insoluble fractions were analyzed by LC-QTOF-MS/MS. A total of 26 high-specificity peptides that were specific to EBN were selected as qualitative authentication markers. Among them, 10 markers can discriminate EBN from common adulterants, 13 markers discriminate white EBN from grass EBN/common adulterants, and 3 markers discriminate grass EBN from white EBN/common adulterants. Three of them, which showed high signal abundance (Peak area ≥ 106) and satisfactory linearity (R2 ≥ 0.995) with EBN references, were selected as the assay marker; and their peptide sequences were confidently identified by searching database/de novo sequencing. Based on these markers, a qualitative and quantitative analytical method was successfully developed and well-validated in terms of linearity, precision, repeatability, and accuracy. The method was subsequently applied to detect EBN products on the market. The results indicated that more than half of EBN products were not consistent with what the merchants claimed.
Collapse
Affiliation(s)
- Wen-Jie Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
- Hong Kong Authentication Centre of Valuable Chinese Medicines, Hong Kong 999077, China
| | - Hui-Yuan Cheng
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Hau-Yee Fung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Hau-Yee Kong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Tin-Long Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Man Liu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Wan-Rong Bao
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Chu-Ying Huo
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China; (W.-J.W.); (L.-F.L.); (H.-Y.C.); (H.-Y.F.); (H.-Y.K.); (T.-L.W.); (Q.-W.Z.); (M.L.); (W.-R.B.); (C.-Y.H.)
- Hong Kong Authentication Centre of Valuable Chinese Medicines, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-34112906; Fax: +852-34112461
| |
Collapse
|
7
|
Discrimination and quantification of adulterated edible bird's nest based on their improved cohesion stable isotope ratios. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zeng H, Jian Y, Xie Y, Fan Q, Chang Q, Zheng B, Zhang Y. Edible bird's nest inhibits the inflammation and regulates the immunological balance of lung injury mice by SO
2. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hongliang Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yeye Jian
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yong Xie
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | | | - Qing Chang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Baodong Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yi Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
9
|
Dobutr T, Kantamala W, Phimwapi S, Jangpromma N, Tippayawat P, Boonlue S, Daduang J, Klaynongsruang S, Poopornchai S, Daduang S. The effects of edible bird’s nest on T-lymphocyte proliferation, secondary lymphoid organs, and interleukin-2 production. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
10
|
Cheng HY, Li LF, Wu WJ, Zhang QW, Liu M, Wong TL, Kong HY, Lai CH, Bao WR, Huo CY, Zheng HM, Hou QK, Xu J, Zhou Y, Han QB. Qualitative and quantitative analysis of agar in edible bird's nest and related products based on a daughter oligosaccharide-marker approach using LC-QTOF-MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Yong CH, Muhammad SA, Aziz FA, Ng JS, Nasir FI, Adenan M, Moosa S, Othman Z, Abdullah S, Sharif Z, Ismail F, Kelly SD, Cannavan A, Seow EK. Detection of adulteration activities in edible bird's nest using untargeted 1H-NMR metabolomics with chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Jiang Y, Du S, Xu M, Yu T, Zhou B, Yu F, Jiang H, Yang L, Su M, Liu H. Tracking structural changes of protein residues by two-dimensional correlation surface-enhanced Raman spectroscopy. Food Chem 2022; 382:132237. [PMID: 35144188 DOI: 10.1016/j.foodchem.2022.132237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
In-situ tracking structural changes of protein residues was developed by two-dimensional correlation surface-enhanced Raman spectroscopy (2DC-SERS). The change order of SERS fingerprints during artificial nitrification of edible bird's nest (EBN) was interpreted as the structural changes of amino acid residues. It inherently realizes reliable recognition of natural EBN and artificially dyed fakes. Both this direct structural tracking of protein residues and the indirect azo dye testing of nitrites/nitrosamines could be used as indicators for discriminating different EBN before and after the artificial dyeing. Limit of detection (LOD) for nitrite and NDMA is about 40.6 ppb and 88.1 ppb, respectively. A conceptual logical circuit of the OR gate was constructed by considering the protein structural indicator (INPUT1) and the nitrite indicator (INPUT2) as two independent inputs for automatic recognition of different EBN samples. A data-driven analog soft independent modeling (DD-SIMCA) model could quickly distinguish normal EBN from A-EBN with 98% specificity.
Collapse
Affiliation(s)
- Yifan Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Du
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ting Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baomei Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fanfan Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lina Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
13
|
Benjakul S, Chantakun K. Sustainability challenges in edible bird’s nest: Full exploitation and health benefit. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
El Sheikha AF. Why the importance of geo-origin tracing of edible bird nests is arising? Food Res Int 2021; 150:110806. [PMID: 34863497 DOI: 10.1016/j.foodres.2021.110806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Edible bird's nest (EBN) swiftlet existed naturally 48,000 years ago in caves as their natural dwellings. Nowadays, edible bird's nest has become a very important industry due to its high nutritional, medicinal and economic value. Additionally, edible bird's nest has a long quality guarantee period. Obviously, the nutritional components and medicinal functions vary depending on geographical origins. Recently, the global demand for edible bird's nest has markedly increased, accompanied by the increasing attention of all key players of the global food trade system, i.e., producers, consumers, traders and the authorities to obtain safe and high-quality edible bird's nest. Hence, this target can be accomplished via the enforcement of an efficient and universal geo-tracing technique. Current methods of the geo-tracking of edible bird's nest, i.e., automation, physical and analytical techniques have several limitations and all of them fail to discriminate different quality grades of edible bird's nest. Meanwhile, in many studies and applications, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) has proven to be a "cutting edge" technique for greatly enhance food traceability from field to fork through its ability in distinguishing the food products in terms of their quality and safety. This article provides an overview of (1) edible bird's nest as a multiuse strategic food product, (2) quality issues associated with edible bird's nest including implications that the site of acquisition of the edible bird's nest has food safety implications, (3) current regulations and geo-tracking approaches to ensure the safety and quality of edible bird's nest with the special focus on polymerase chain reaction-denaturing gradient gel electrophoresis technique as a vigorous and universal geo-tracing tool to be suggested for edible bird's nest geo-traceability.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private Ottawa, ON K1N 6N5, Canada; Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Minufiya Government, Egypt.
| |
Collapse
|
15
|
Immunological Analytical Techniques for Cosmetics Quality Control and Process Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits.
Collapse
|
16
|
Kawanishi K, Coker JK, Grunddal KV, Dhar C, Hsiao J, Zengler K, Varki N, Varki A, Gordts PL. Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:2730-2739. [PMID: 34587757 PMCID: PMC8551057 DOI: 10.1161/atvbaha.120.315280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Objective Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Joanna K Coker
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Kaare V. Grunddal
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| | - Chirag Dhar
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
| | - Jason Hsiao
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| | - Karsten Zengler
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Pediatrics, University of California, San Diego, La Jolla
- Department of Bioengineering, University of California, San Diego, La Jolla
- Center for Microbiome Innovation, University of California, San Diego, La Jolla
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Bioengineering, University of California, San Diego, La Jolla
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla
| | - Philip L.S.M. Gordts
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| |
Collapse
|
17
|
Mohamad Ibrahim R, Mohamad Nasir NN, Abu Bakar MZ, Mahmud R, Ab Razak NA. The Authentication and Grading of Edible Bird's Nest by Metabolite, Nutritional, and Mineral Profiling. Foods 2021; 10:1574. [PMID: 34359444 PMCID: PMC8303490 DOI: 10.3390/foods10071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Edible bird's nest (EBN) produced by Aerodramus fuciphagus has a high demand for nutritional and medicinal application throughout the world. The present study was to evaluate the authentication of a man-made house EBN, which are half cup and stripe-shaped by FTIR. Next, both samples were compared according to their metabolite, nutritional, and mineral composition. The results indicated that the FTIR spectra of both EBN samples were identical and similar to the reference, suggesting the authenticity of the EBN used. The metabolites that contribute to the possible medicinal properties of EBN were found by using GC-MS. The results of the proximate analysis, followed by the standard AOAC method, inferred that both EBN shapes to be rich in crude protein and carbohydrate contents. However, the proximate composition between the half cup and stripe-shaped EBN showed significant differences. Major mineral elements detected were calcium and sodium, and magnesium contents were significantly different between both EBN. Additionally, the half cup and stripe-shaped EBN had a low level of heavy metal content than the maximum regulatory limit as set by the Malaysian Food Act 1983. This study concludes that the nutritional composition varied between the samples and thus suggests that nutrient content should be considered as criteria for the grading requirement of commercialized EBN.
Collapse
Affiliation(s)
- Ramlah Mohamad Ibrahim
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.M.I.); (N.N.M.N.); (M.Z.A.B.)
| | - Nurul Nadiah Mohamad Nasir
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.M.I.); (N.N.M.N.); (M.Z.A.B.)
| | - Md Zuki Abu Bakar
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.M.I.); (N.N.M.N.); (M.Z.A.B.)
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Rozi Mahmud
- Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nor Asma Ab Razak
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.M.I.); (N.N.M.N.); (M.Z.A.B.)
| |
Collapse
|
18
|
Lee TH, Wani WA, Lee CH, Cheng KK, Shreaz S, Wong S, Hamdan N, Azmi NA. Edible Bird's Nest: The Functional Values of the Prized Animal-Based Bioproduct From Southeast Asia-A Review. Front Pharmacol 2021; 12:626233. [PMID: 33953670 PMCID: PMC8089372 DOI: 10.3389/fphar.2021.626233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Edible Bird's Nest (EBN) is the most prized health delicacy among the Chinese population in the world. Although some scientific characterization and its bioactivities have been studied and researched, no lights have been shed on its actual composition or mechanism. The aim of this review paper is to address the advances of EBN as a therapeutic animal bioproduct, challenges and future perspectives of research involving EBN. The methodology of this review primarily involved a thorough search from the literature undertaken on Web of Science (WoS) using the keyword "edible bird nest". Other information were obtained from the field/market in Malaysia, one of the largest EBN-producing countries. This article collects and describes the publications related to EBN and its therapeutic with diverse functional values. EBN extracts display anti-aging effects, inhibition of influenza virus infection, alternative traditional medicine in athletes and cancer patients, corneal wound healing effects, stimulation of proliferation of human adipose-derived stem cells, potentiate of mitogenic response, epidermal growth factor-like activities, enhancement of bone strength and dermal thickness, eye care, neuroprotective and antioxidant effects. In-depth literature study based on scientific findings were carried out on EBN and its properties. More importantly, the future direction of EBN in research and development as health-promoting ingredients in food and the potential treatment of certain diseases have been outlined.
Collapse
Affiliation(s)
- Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.,Innovation Centre in Agritechnology for Advanced Bioprocessing, Universiti Teknologi Malaysia, Pagoh Research Center, Johor Darul Takzim, Malaysia
| | - Waseem A Wani
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Kian Kai Cheng
- Innovation Centre in Agritechnology for Advanced Bioprocessing, Universiti Teknologi Malaysia, Pagoh Research Center, Johor Darul Takzim, Malaysia
| | - Sheikh Shreaz
- Oral Microbiology General Facility Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, Safat, Kuwait
| | - Syieluing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Nurul Alia Azmi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
19
|
Lv D, Fan Y, Zhong W, Lonan P, Liu K, Wu M, Wu Y, Liang Y, Lai X, Li G, Yu L. Genetic Identification of Edible Bird's Nest in Thailand Based on ARMS-PCR. Front Genet 2021; 12:632232. [PMID: 33763113 PMCID: PMC7983251 DOI: 10.3389/fgene.2021.632232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Edible bird’s nest (EBN) is a popular delicacy in the Asian Pacific region originating from Indonesia, Malaysia, Thailand and Vietnam, which consist of various potential medicine value in Traditional Chinese Medicine (TCM). Thailand is one of the main exporters of EBN. However, the genetic information of EBN, a key part of molecular biology, has yet to be reported in Thailand. It is necessary to explore the genetic information of EBN in Thailand based on a quick and simple method to help protect the rights and interests of consumers. This research aimed to systematically evaluate different methods of extracting EBN DNA to improve the efficiency of the analysis of cytochrome b (Cytb) and NADH dehydrogenase subunit 2 (ND2) gene sequences, the establishment of phylogenetic trees, and the genetic information of EBN in Thailand. Additionally, we aimed to develop a quick and simple method for identifying EBN from different species based on the genetic information and amplification-refractory mutation system PCR (ARMS-PCR). By comparing the four methods [cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), kit and guanidinium isothiocyanate methods] for EBN extraction, we found that the guanidinium isothiocyanate method was the optimal extraction method. Phylogenetic trees generated on the basis of Cytb and ND2 gene analyses showed that 26 samples of house EBN and 4 samples of cave EBN came from Aerodramus fuciphagus and Aerodramus maximus, respectively. In addition, to distinguish different samples from different species of Apodiformes, we designed 4 polymerase chain reaction (PCR) amplification primers based on the ND2 gene sequences of A. fuciphagus and A. maximus. The ARMS-PCR results showed band lengths for A. fuciphagus EBN of 533, 402, and 201 bp, while those for A. maximus EBN were 463, 317, and 201 bp. Collectively, the results showed that ARMS-PCR is a fast and simple method for the genetic identification of EBN based on designing specific original identification primers.
Collapse
Affiliation(s)
- Dongyong Lv
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wanhua Zhong
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Piyanuch Lonan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunfeng Liu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maoyong Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yina Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueliang Liang
- Guangzhou Tongkang Pharmaceutical Co., Ltd., Guangzhou, China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangwen Yu
- Guangdong Yunfu Vocational College of Chinese Medicine, Yunfu, China
| |
Collapse
|
20
|
Ling JWA, Chang LS, Babji AS, Lim SJ. Recovery of value-added glycopeptides from edible bird's nest (EBN) co-products: enzymatic hydrolysis, physicochemical characteristics and bioactivity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4714-4722. [PMID: 32468613 DOI: 10.1002/jsfa.10530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Processing of edible bird's nest (EBN) requires extensive washing to remove impurities and produces huge amounts of EBN co-products, which contain mainly feathers with glycoproteins attached, which are usually discarded. This study was conducted to recover the valuable EBN glycoproteins from the waste material. Enzymatic hydrolysis was applied to recover EBN glycopeptides from EBN co-products (EBNcoP ) and processed cleaned EBN (EBNclean ) was used as control, which were then freeze-dried into EBN hydrolysates (EBNhcoP and EBNhclean , respectively). RESULTS The recovery yield for EBNhclean and EBNhcoP were 89.09 ± 0.01% and 47.64 ± 0.26%, respectively, indicating nearly 50% of glycopeptide can be recovered from the waste material. Meanwhile, N-acetylneuraminic acid, a major acid sugar in EBN glycoproteins, of EBNhcoP increased by 229% from 58.6 ± 3.9 to 192.9 ± 3.1 g kg-1 , indicating the enzymatic hydrolysis removed impurities and thus enhanced the N-acetylneuraminic acid content. Total soluble protein was more than 330 g kg-1 for all the samples. Colour parameter showed that hydrolysate samples have greater L* (lightness) values. Chroma result indicates the intensity of all the samples were low (< 11). Fourier-transform infrared (FTIR) spectrum displayed that the EBNhcoP exhibited similar functional groups with EBNhclean , indicating that the EBNcoP has similar functionality as EBNclean . Significantly higher (P ≤ 0.05) 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) activities were reported in EBNhcoP after the enzymatic reaction. CONCLUSION EBNhcoP were successfully recovered from low value EBNcoP with enhanced antioxidant activities. The findings of this work are beneficial for the EBN industry to reduce wastage and enhance economic values of EBN co-products, both economically and nutritionally. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Wei Alvin Ling
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Lee Sin Chang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Abdul Salam Babji
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
21
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
22
|
Hun Lee T, Hau Lee C, Alia Azmi N, Kavita S, Wong S, Znati M, Ben Jannet H. Characterization of Polar and Non-Polar Compounds of House Edible Bird's Nest (EBN) from Johor, Malaysia. Chem Biodivers 2020; 17:e1900419. [PMID: 31721431 DOI: 10.1002/cbdv.201900419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
This work investigated the polar (PC: protein, amino acid and metabolite) and non-polar (NPC: fatty acid) compounds and bioactivity characteristics of the EBN harvested from the state of Johor in Malaysia. The electrophoretic gels exhibited 15 protein bands (16-173 kD) with unique protein profile. Amino acids analysis by AccQ⋅Tag method revealed 18 types of amino acids in EBN. Metabolite profiling was performed using High-Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometer (HPLC-QTOF/MS) technique and a total of 54 compounds belonging to different groups were detected and identified. These findings help to uncover the relation of therapeutic activity of EBN. The EBN was further extracted with AcOEt and BuOH. The AcOEt extract was fractionated into three fractions (F1 -F3 ), and the high triglyceride content in F2 was verified by gC-FID. The three groups of fatty acids discovered in EBN are 48.43 % of poly-unsaturated (PUFA), 25.35 % of saturated fatty acids (SFA) and 24.74 % of mono-unsaturated fat (MUFA). This is the first time to report results ofEBN, BuOH, and AcOEt extracts and of fraction F2 (TEBN) on their analysis for their antioxidant activities by DPPH, ABTS and catalase assay and for their paraoxonase and anti-tyrosinase activities. The results showed that TEBN exhibited the significant bioactivity in all assays. These findings suggest that TEBN is a good source for natural bioactive compounds in promoting body vigor. Current work widened the content of EBN especially on the triglyceride and also marked the content of specific location (Johor, Malaysia) of EBN origin.
Collapse
Affiliation(s)
- Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nurul Alia Azmi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Supparmaniam Kavita
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Syieluing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mansour Znati
- Faculty of Science of Monastir, University of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| | - Hichem Ben Jannet
- Faculty of Science of Monastir, University of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
23
|
Jamalluddin NH, Tukiran NA, Ahmad Fadzillah N, Fathi S. Overview of edible bird's nests and their contemporary issues. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Huang X, Li Z, Zou X, Shi J, Elrasheid Tahir H, Xu Y, Zhai X, Hu X. A low cost smart system to analyze different types of edible Bird's nest adulteration based on colorimetric sensor array. J Food Drug Anal 2019; 27:876-886. [PMID: 31590759 PMCID: PMC9306987 DOI: 10.1016/j.jfda.2019.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/02/2022] Open
Abstract
This study was performed to develop a low-cost smart system for identification and quantification of adulterated edible bird’s nest (EBN). The smart system was constructed with a colorimetric sensor array (CSA), a smartphone and a multi-layered network model. The CSA were used to collect the odor character of EBN and the response signals of CSA were captured by the smartphone systems. The principal component analysis (PCA) and hierarchical cluster analysis (HAC) were used to inquiry the similarity among authentic and adulterated EBNs. The multi-layered network model was constructed to analyze EBN adulteration. In this model, discrimination of authentic EBN and adulterated EBN was realized using back-propagation neural networks (BPNN) algorithm. Then, another BPNN-based model was developed to identify the type of adulterant in the mixed EBN. Finally, adulterated percentage prediction model for each kind of adulterate EBN was built using partial least square (PLS) method. Results showed that recognition rates of the authentic EBN and adulterated EBN was as high as 90%. The correlation coefficient of percentage prediction model for calibration set was 0.886, and 0.869 for prediction set. The low-cost smart system provides a real-time, nondestructive tool to authenticate EBN for customers and retailers.
Collapse
|
25
|
Geographical origin discrimination of edible bird’s nests using smart handheld device based on colorimetric sensor array. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Ma X, Zhang J, Liang J, Ma X, Xing R, Han J, Guo L, Chen Y. Authentication of Edible Bird's Nest (EBN) and its adulterants by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry. Food Res Int 2019; 125:108639. [PMID: 31554136 DOI: 10.1016/j.foodres.2019.108639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022]
Abstract
Edible bird's nest (EBN) has been traditionally regarded as a kind of medicinal and healthy food in Asia. However, economically motivated adulteration (EMA) has been an issue in the EBN supply chain. To develop an accurate high-throughput approach for detecting EBN and its adulterants (exemplified by porcine skin, swim bladder, white fungus, and egg white), shotgun proteomics was applied for discovery of specific peptides that were subsequently converted into scheduled multiple reaction monitoring (MRM) transitions. Totally, 28 specific peptides were verified as unique to EBN and its adulterants by tandem mass spectrometry. Subsequently, 9 quantitative MRM-transitions of peptides from adulterants and 2 internal standard references from EBN were screened for the quantitative analysis of the adulterants, which allowed detection of adulterants in EBN matrix in the range of 1-80%. These results suggested that integration of shotgun proteomics and scheduled MRM had potential for the authentication of EBN and its adulterants.
Collapse
Affiliation(s)
- Xueting Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jinzhong Liang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Xiuli Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jianxun Han
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Lihai Guo
- AB Sciex (China) Co., Ltd., Beijing 100015, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
27
|
Identification and determination of glycoprotein of edible brid's nest by nanocomposites based lateral flow immunoassay. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Guo L, Wu Y, Liu M, Ge Y, Chen Y. Rapid authentication of edible bird's nest by FTIR spectroscopy combined with chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3057-3065. [PMID: 29194631 DOI: 10.1002/jsfa.8805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/23/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Edible bird's nests (EBNs) have been traditionally regarded as a kind of medicinal and healthy food in China. For economic reasons, they are frequently subjected to adulteration with some cheaper substitutes, such as Tremella fungus, agar, fried pigskin, and egg white. As a kind of precious and functional product, it is necessary to establish a robust method for the rapid authentication of EBNs with small amounts of samples by simple processes. In this study, the Fourier transform infrared spectroscopy (FTIR) system was utilized and its feasibility for identification of EBNs was verified. RESULTS FTIR spectra data of authentic and adulterated EBNs were analyzed by chemometrics analyses including principal component analysis, linear discriminant analysis (LDA), support vector machine (SVM) and one-class partial least squares (OCPLS). The results showed that the established LDA and SVM models performed well and had satisfactory classification ability, with the former 94.12% and the latter 100%. The OCPLS model was developed with prediction sensitivity of 0.937 and specificity of 0.886. Further detection of commercial EBN samples confirmed these results. CONCLUSION FTIR is applicable in the scene of rapid authentication of EBNs, especially for quality supervision departments, entry-exit inspection and quarantine, and customs administration. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lili Guo
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, People's Republic of China
| | - Yajun Wu
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Mingchang Liu
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Yiqiang Ge
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
- China Rural Technology Development Center, Beijing, People's Republic of China
| | - Ying Chen
- Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| |
Collapse
|
29
|
Abbas O, Zadravec M, Baeten V, Mikuš T, Lešić T, Vulić A, Prpić J, Jemeršić L, Pleadin J. Analytical methods used for the authentication of food of animal origin. Food Chem 2018; 246:6-17. [DOI: 10.1016/j.foodchem.2017.11.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022]
|