1
|
Bertolucci V, Ninomiya AF, Longato GB, Kaneko LO, Nonose N, Scariot PPM, Messias LHD. Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review. Antioxidants (Basel) 2025; 14:81. [PMID: 39857415 PMCID: PMC11762496 DOI: 10.3390/antiox14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways. Key mechanisms include reducing inflammatory cytokines, protecting against oxidative stress, and upregulating growth factor essential for bone formation. While compounds such as Caffeic Acid Phenethyl Ester, Apigenin, Quercetin, and Ferulic Acid have been well-documented, emerging evidence points to the significant roles of less-studied compounds like Pinocembrin, Kaempferol, p-Coumaric acid, and Galangin. This review synthesizes the current literature, focusing on the mechanisms by which these bioactive compounds influence osteogenesis. Firstly, it explores the techniques for characterizing bioactive compounds presented in propolis, the chemogeographic variations in its composition, and the effects of both crude extracts and isolated compounds on bone tissue, offering a comprehensive analysis of recent findings across different experimental models. Further, it discusses the effects of Propolis compounds on bone health. In summary, these compounds modulate signaling pathways, including nuclear factor kappa beta, wingless-related integration site, mitogen-activated protein kinase, vascular endothelial growth factor, and reactive oxygen species. These pathways influence the receptor activator of nuclear factor kappa-β/receptor activator of nuclear factor kappa-β ligand/osteoprotegerin system, fostering bone cell differentiation. This regulation mitigates excessive osteoclast formation, stimulates osteoblast activity, and ultimately contributes to the restoration of bone homeostasis by maintaining a balanced bone remodeling process.
Collapse
Affiliation(s)
- Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - André Felipe Ninomiya
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Giovanna Barbarini Longato
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil;
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Nilson Nonose
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| |
Collapse
|
2
|
Zhang R, Wang X, Xue J, Li X, Li Y, Ding Y, Feng Y, Zhang X, Su J, Chu X. Optimization of Liquid Fermentation of Acanthopanax senticosus Leaves and Its Non-Targeted Metabolomics Analysis. Molecules 2024; 29:4749. [PMID: 39407675 PMCID: PMC11478309 DOI: 10.3390/molecules29194749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
To enhance the nutritional value of Acanthopanax senticosus leaves (AL), a fermentation process was conducted using a probiotic Bacillus mixture, and the changes in chemical constituents and biological activities before and after fermentation were compared. A response surface methodology was employed to optimize the liquid fermentation conditions of AL based on their influence on polyphenol content. Non-targeted metabolomics analysis was performed using LC-MS/MS to reveal the differing profiles of compounds before and after fermentation. The results indicated that Bacillus subtilis LK and Bacillus amyloliquefaciens M2 significantly influenced polyphenol content during fermentation. The optimal fermentation conditions were determined to be a fermentation time of 54 h, a temperature of 39.6 °C, and an inoculum size of 2.5% (v/v). In comparison to unfermented AL, the total polyphenol and flavonoid contents, as well as the free radical scavenging capacities measured by DPPH and ABTS assays, and the activities of β-glucosidase and endo-glucanase, were significantly increased. The non-targeted metabolomics analysis identified 1348 metabolites, of which 829 were classified as differential metabolites. A correlation analysis between the differential metabolites of polyphenols, flavonoids, and antioxidant activity revealed that 13 differential metabolites were positively correlated with antioxidant activity. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the differential metabolites identified 82 pathways, with two of the top 25 metabolic pathways related to flavonoids. This study explores the potential for enhancing the active ingredients and biological effects of AL through probiotic fermentation using Bacillus strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqing Su
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China; (R.Z.); (X.W.); (J.X.); (X.L.); (Y.L.); (Y.D.); (Y.F.); (X.Z.)
| | - Xiuling Chu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China; (R.Z.); (X.W.); (J.X.); (X.L.); (Y.L.); (Y.D.); (Y.F.); (X.Z.)
| |
Collapse
|
3
|
Primaguna MR, Rasyid H, Aman M, Bakri S, Kasim H, Iskandar H, Dwiyanti R, Junita AR, Ridwan R, Noviyanthi RA, Purnamasar NI, Hatta M. The Strong Effect of Propolis in Suppressing NF-κB, CysC, and ACE2 on a High-fat Diet. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2024; 17:1539-1554. [DOI: 10.13005/bpj/2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: A high fat diet (HFD)is one of the main causes of obesity and is closely linked to metabolic disorders brought on by stress and malfunctioning tissues. Propolis (Trigona Honey) is considered to be helpful in treating inflammatory diseases because it has also been demonstrated to have anti-inflammatory and anti-free radical properties. This study to demonstrate how much propolis supplementation affects BW, NF-κB, CysC, and ACE2 levels in Wistar rats (Rattus norvegicus) fed a HFD. Methods: Post-test and control group designs in an experimental setup. A total of twenty-four rats were randomly assigned to four groups of six. Group I received a normal diet for sixteen weeks (ND), Group II received a high fat diet (HFD) for sixteen weeks (HFD), Group III received an HFD for sixteen weeks plus propolis for eight weeks (HFD-8), and Group IV received an HFD and propolis for sixteen weeks (HFD-16). Using the Enzyme-Linked Immunosorbent Assay (ELISA), body weight (BW), serum NF-κB, Cys C, and ACE2 levels were measured before treatment (week 0), after 8 weeks of HFD (HFD-8) (week 8), and after 16 weeks of HFD (HFD-16). Results: The mean starting weight in the ND, HFD, HFD-8, and HFD-16 groups did not differ significantly (p > 0.001). By week eight, the HFD group's body weight had increased considerably (254.83 grams vs. 202.0 grams) in comparison to the ND group (p<0.001). The HFD and HFD-8 groups' body weight increased significantly at week 16 in comparison to the ND group (334.83 grams and 269.50 grams vs. 208.67 grams) (p<0.001). At week 16, there was no discernible difference in mean BW between ND and HFD-16 (p > 0.001). There was no significant difference found in the mean initial NF-κB levels between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). At week 8, NF-κB levels in the HFD group were significantly higher (5,038 ng/ml vs. 3,655 ng/ml) (p<0.001) than in the ND group. At week 16, NF-κB levels in the HFD and HFD-8 groups were notably higher than those in the ND group (p<0.001), at 6,136 ng/ml and 4,378 ng/ml, respectively, compared to 3,775 ng/ml. Between ND and HFD-16, there was no significant distinction in the mean NF-κB levels at week 16 (p>0.001). There was no significant difference observed in the mean CysC and ACE2 between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). CysC and ACE2 levels in the HFD group were significantly higher than those in the ND group at week 8, and in the HFD and HFD-8 groups, they were significantly higher than those in the ND group at week 16. When propolis is administered for eight weeks, the rise in BW, NF-κB, CysC, and ACE2 is suppressed until the eighth week, at which point it increases once more until the sixteenth week. Propolis administration, however, will halt the rise in BW, NF-κB, CysC, and ACE2 until the sixteenth week. Conclusion: Propolis administration for 16 weeks can suppress the increase in BW, LI, RI, NF-κB, CysC and ACE2 levels in rats given a high fat diet (HFD).
Collapse
Affiliation(s)
- Muhammad Reza Primaguna
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Haerani Rasyid
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Makbul Aman
- 3Endocrine and Metabolic Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syakib Bakri
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hasyim Kasim
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Harun Iskandar
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ressy Dwiyanti
- 4Department of Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ade Rifka Junita
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ridwan Ridwan
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rizki Amelia Noviyanthi
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nur Indah Purnamasar
- 7Department of Obstetrics and Gynecology, Faculty of Medicine, Haluoleo University, Kendari, Indonesia
| | - Mochammad Hatta
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Wang S, Yang C, Luo Y, Chen Q, Xu M, Ji Y, Jiang X, Qu C. Poplar Bud ( Populus) Extraction and Chinese Propolis Counteract Oxidative Stress in Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway. Antioxidants (Basel) 2024; 13:860. [PMID: 39061928 PMCID: PMC11274317 DOI: 10.3390/antiox13070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate the antioxidant properties of poplar bud (Populus) extract (PBE) and Chinese propolis (CP) and to elucidate the mechanisms behind their activity. High-performance liquid chromatography (HPLC) analysis revealed that both PBE and CP contain a significant amount of phenolic acids and flavonoids. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays demonstrated that PBE and CP possess excellent antioxidant activity. Furthermore, administration of PBE and CP improved the survival rate of C. elegans under oxidative stress. They also decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of antioxidant enzymes (SOD, CAT). PBE and CP intervention upregulated the expression of key genes daf-16, sod-3, hsp-16.2, and skn-1 in nematodes. This suggests that the antioxidant activity of PBE and CP is dependent on daf-16 and skn-1 signaling pathways. In conclusion, poplar bud extracts ha have the potential to become a substitute for propolis and a potential therapeutic agent for treating diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Shuo Wang
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Chengchao Yang
- Liaoning Provincial Institute of Poplar, Gaizhou 115200, China
| | - Yaling Luo
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Qingyi Chen
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Mengyang Xu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Yuntao Ji
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Xiasen Jiang
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| |
Collapse
|
5
|
Gomes KO, Messias da Silva LCF, dos Santos RD, Prado BA, da Silva Montes P, Silva Rodrigues LF, de Araújo MO, Bilac CA, Freire DO, Gris EF, Rodrigues da Silva IC, de Sá Barreto LCL, Orsi DC. Chemical characterization and antibacterial activities of Brazilian propolis extracts from Apis mellifera bees and stingless bees (Meliponini). PLoS One 2024; 19:e0307289. [PMID: 39012879 PMCID: PMC11251613 DOI: 10.1371/journal.pone.0307289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
The aim of this study was to evaluate the physicochemical composition and antibacterial activity of Brazilian propolis extracts from different types, concentrations, and extraction solvents and from different regions in Brazil. A total of 21 samples were analyzed, comprising 14 samples from Apis mellifera (12 green, 1 brown, and 1 red) and 7 samples from stingless bees (3 mandaçaia, 2 jataí, 1 hebora, and 1 tubuna). The analyses performed were dry extract, total phenolic content (TPC) and antioxidant activity (DPPH and ABTS). The antibacterial activity was performed by Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC). The results showed that very low levels of phenolic compounds and antioxidant activity decreased the antimicrobial activity of the propolis extracts from tubuna and jataí. However, there was no correlation between the increase in propolis concentration in the extract, and the increase in antimicrobial activity. The highest TPC and antioxidant activity was obtained for green propolis extract made with 70% raw propolis that presented similar antibacterial activity to the samples formulated with 30% or less raw propolis. The aqueous propolis extract showed lower antimicrobial activity compared to the alcoholic extracts, indicating that ethanol is a better solvent for extracting the active compounds from propolis. It was observed that the MIC (0.06 to 0.2 mg/mL) and MBC (0.2 to 0.5 mg/mL) values for Gram-negative bacteria were higher compared to Gram-positive bacteria (MIC 0.001-0.2 mg/mL, and the MBC 0.02-0.5 mg/mL). The propolis extracts that exhibited the highest antimicrobial activities were from stingless bees hebora from the Distrito Federal (DF) and mandaçaia from Santa Catarina, showing comparable efficacy to samples 5, 6, and 7, which were the green propolis from the DF. Hence, these products can be considered an excellent source of bioactive compounds with the potential for utilization in both the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Karolina Oliveira Gomes
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Rebeca Dias dos Santos
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Bruno Alcântara Prado
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Letícia Fernandes Silva Rodrigues
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Marta Oliveira de Araújo
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Carla Azevedo Bilac
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Eliana Fortes Gris
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Izabel Cristina Rodrigues da Silva
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Daniela Castilho Orsi
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
6
|
Jenny JC, Kuś PM, Szweda P. Investigation of antifungal and antibacterial potential of green extracts of propolis. Sci Rep 2024; 14:13613. [PMID: 38871855 DOI: 10.1038/s41598-024-64111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Propolis extracts have been used in traditional medicines since ages due to its advantageous complex chemical composition. However, the antibacterial and antifungal activity of poplar propolis extracts prepared in Natural Deep Eutectic Solvent (NADES) are seldom studied. This study investigates suitable alternate for ethanol as a solvent for extraction for Polish poplar propolis. It also attempts to identify suitable extraction condition for the efficient transfer of compounds from propolis to the solvents. The extraction efficiency of NADES extracts was assessed in terms of total phenolic content, antioxidant activity and antimicrobial activity. The chemical composition of the extracts was analysed using UHPLC-DAD-QqTOF-MS. Four extracts, prepared in Propylene Glycol, Choline Chloride:Propylene Glycol (1:3), Choline Chloride:Propylene Glycol (1:4) and Choline Chloride:Glycerol (1:2), demonstrated activity and properties similar to ethanolic extract and extraction at 50 °C was found the most suitable for propolis. HPLC analysis confirmed that the chemical cocktail extracted by these solvents from propolis were identical with minor variations in their concentration as compared to its ethanolic extract. Thus, extracts of propolis at 50 °C in Propylene Glycol, Choline Chloride:Propylene Glycol (1:3) and Choline Chloride:Propylene Glycol (1:4) can be alternates for ethanolic extracts.
Collapse
Affiliation(s)
- Jeslin Cheruvathoor Jenny
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Ul. Borowska 211a, 50-556, Wrocław, Poland
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
7
|
Mladenova RB, Solakov NY, Loginovska KK. Evaluation of gamma irradiation effects on antioxidant capacity of propolis. Appl Radiat Isot 2024; 207:111254. [PMID: 38430826 DOI: 10.1016/j.apradiso.2024.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The irradiation effects on antioxidant potential and on content of phenolic compounds of propolis ethanoic extracts were studied. It was found out that gamma treatment of samples with 2 and 10 kGy had a weak decreasing effect on the total phenolic content (TPC), while no change was observed in the propolis irradiated with 5 kGy. The antiradical activity of extracts was assessed by the DPPH free radical scavenging activity evaluated by Electron Paramagnetic Resonance (EPR) spectroscopy. The EPR results were in agreement with TPC. Some main phenolic compounds of the studied non-irradiated and irradiated samples were identified and compared by ultra-high performance liquid chromatography (UHPLC).
Collapse
Affiliation(s)
- Ralitsa B Mladenova
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 11, 1113, Sofia, Bulgaria.
| | - Nikolay Y Solakov
- Institute of Cryobiology and Food Technologies, Agricultural Academy, 1407, Sofia, Bulgaria
| | - Kamelia K Loginovska
- Institute of Cryobiology and Food Technologies, Agricultural Academy, 1407, Sofia, Bulgaria
| |
Collapse
|
8
|
Mergen Duymaz G, Duz G, Ozkan K, Karadag A, Yilmaz O, Karakus A, Cengiz O, Akyildiz IE, Basdogan G, Damarlı E, Sagdic O. The evaluation of L-arginine solution as a solvent for propolis extraction: The phenolic profile, antioxidant, antibacterial activity, and in vitro bioaccessibility. Food Sci Nutr 2024; 12:2724-2735. [PMID: 38628177 PMCID: PMC11016385 DOI: 10.1002/fsn3.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 04/19/2024] Open
Abstract
Ethanol has been widely used for the extraction of propolis. Due to its certain disadvantages, there has been an ongoing search to find alternative non-ethanolic extraction solvents. This study aimed to compare the phenolics, antioxidant, and antibacterial activity of propolis extracts prepared with 70% ethanol (EWE), propylene glycol (PGE), and L-arginine solution (BE). All extracts were subjected to an in vitro simulated digestion procedure, and the phenolic profile of non-digested and digested samples was determined by using LC-MS/MS. Additionally, the change in total phenolic (TPC), total flavonoid content (TFC), and antioxidant capacities were determined at each digestion phase. TPC and TFC of non-digested propolis extracts had similar values, although BE showed higher antioxidant capacity (p < .05). The amount of TPC reached or transformed at the intestinal stage was higher for BE and PG compared to EWE. BE also provided the highest antioxidant capacity assay in digested samples. The most common phenolics were pinocembrin, pinobanskin, galangin, and CAPE in non-digested extracts. However, their concentration was drastically reduced by digestion, and their recovery (R%) ranged from 0% to 9.38% of the initial amount detected in the non-digested extracts. Chrysin was the most bioaccessible flavonoid in all extracts. Among phenolic acids, the highest R% was determined for trans-cinnamic acid (22.14%) from BE. All extracts showed in vitro inhibitory activity against Escherichia coli and Staphylococcus aureus. This study suggests that an L-arginine solution could be used as an alternative solvent to ethanol and propylene glycol for propolis extraction.
Collapse
Affiliation(s)
- Gizem Mergen Duymaz
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Gamze Duz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
- Department of ChemistryIstanbul Technical UniversityIstanbulTurkey
| | - Kubra Ozkan
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| | - Ayse Karadag
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| | - Ozlem Yilmaz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ayca Karakus
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ozlem Cengiz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ismail Emir Akyildiz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
- Chemistry DepartmentMarmara UniversityIstanbulTurkey
| | - Gunay Basdogan
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Emel Damarlı
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Osman Sagdic
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
9
|
Ören E, Tuncay S, Toprak YE, Fırat M, Toptancı İ, Karasakal ÖF, Işık M, Karahan M. Antioxidant, antidiabetic effects and polyphenolic contents of propolis from Siirt, Turkey. Food Sci Nutr 2024; 12:2772-2782. [PMID: 38628175 PMCID: PMC11016413 DOI: 10.1002/fsn3.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024] Open
Abstract
Propolis, a natural product collected by honeybees from various plant sources, has gained significant attention due to its diverse bioactive compounds and potential therapeutic properties. To further explore its contents and biological activities, this study aimed to analyze the phenolic compounds in Siirt propolis extracts obtained using different solvents, namely ethanol, water, and ethanol-water mixtures. The primary objective of this research was to investigate the phenolic profile, as well as the antidiabetic and antioxidant activities of the propolis extracts. Chemical profiling of extracts was performed using LC-MS/MS. The antioxidant potential of the propolis extracts was evaluated through free radical scavenging methods, including DPPH and ABTS assays. As a result of these analyses, propolis extracts showed moderate radical scavenging potential with 13.86%-35.72% for DPPH and 33.62%-62.50% for ABTS at a concentration of 30 μg mL-1, respectively. This radical scavenging potential of the extracts sheds light on its ability to combat oxidative stress, which is implicated in the development of diabetes, and its potential effects on cellular health. Additionally, the study assessed the antidiabetic properties of the propolis extracts by examining their inhibition effects on α-amylase and α-glycosidase enzymes. Extracts with high phenolic content showed a high inhibitory effect against α-glucosidase with an IC50 of 5.72 ± 0.83 μg mL-1. This research provided significant findings regarding the potential use of propolis in the treatment of diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Eda Ören
- Department of Food Technology, Vocational School of Health ServicesUskudar UniversityIstanbulTurkey
| | - Salih Tuncay
- Department of Food Technology, Vocational School of Health ServicesUskudar UniversityIstanbulTurkey
| | - Yunus Emre Toprak
- Department of Food Technology, Vocational School of Health ServicesUskudar UniversityIstanbulTurkey
| | - Muhammet Fırat
- Department of BiotechnologyGraduate Institute, Bilecik Şeyh Edebali UniversityBilecikTurkey
| | | | - Ömer Faruk Karasakal
- Department of Medical Laboratory, Vocational School of Health ServicesUskudar UniversityTurkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of EngineeringBilecik Şeyh Edebali UniversityBilecikTurkey
| | - Mesut Karahan
- Department of Medical Laboratory, Vocational School of Health ServicesUskudar UniversityTurkey
| |
Collapse
|
10
|
Chua LS, Abd Wahab NS, Soo J. Water soluble phenolics, flavonoids and anthocyanins extracted from jaboticaba berries using maceration with ultrasonic pretreatment. FOOD CHEMISTRY ADVANCES 2023; 3:100387. [DOI: 10.1016/j.focha.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Vallejo-Pascual ME, Adanero-Jorge F, García-Fernández C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023; 12:4337. [PMID: 38231851 DOI: 10.3390/foods12234337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The antioxidant, anti-inflammatory, and antimicrobial characteristics of propolis, a bioactive compound collected from hives, have prompted its use in the food sector in recent times. This study investigated the physicochemical characteristics, phenolic profile, and antioxidant capacity of 31 propolis extracts collected from Northern Spain. The physicochemical composition (resins, waxes, ashes mineral content, and heavy metals) was within the allowable regulatory limits. The analysis of bioactive compounds enabled the identification of 51 constituents: flavonoids (apigenin, catechin, chrysin, quercetin, and pinocembrin) and phenolic acids (caffeic, ferulic, and coumaric). The mean value of total polyphenols was 42.72 ± 13.19 Pinocembrin-Galangin Equivalents/100 g, whereas a range between 1.64 ± 0.04 and 4.95 ± 0.36 Quercetin Equivalents (QE) g/100 g was found for total flavonoids content. The determination of bioactivities revealed significant antioxidant capacity using DPPH (1114.28 ± 10.39 µM Trolox Equivalents and 3487.61 ± 318.66 µM Vitamin C Equivalents). Resin content in propolis samples was positively and significantly correlated with both polyphenols (rho = 0.365; p = 0.043) and flavonoid composition (rho = 0.615; p = 0.000) as well as the antioxidant capacity TEAC DPPH (rho = 0.415; p = 0.020). A multiple regression analysis modeled the correlation between resin composition, flavonoids, and TEAC DPPH values, yielding a significant regression equation (R2 = 0.618; F (2,28) = 22.629; p < 0.000; d = 2.299). Therefore, evaluating physicochemical parameters and biological activities provides a promising framework for predicting propolis' quality and antioxidant properties, thus suggesting its potential as a functional and bioactive compound for the food industry.
Collapse
Affiliation(s)
- Eugenia Rendueles
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Elba Mauriz
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Ana M González-Paramás
- GIP-USAL, Polyphenol Investigation Group, Universidad de Salamanca, 37007 Salamanca, Spain
| | - María-E Vallejo-Pascual
- Quantitative Methods Area, Economical and Statistical Department, Universidad de León, 24007 León, Spain
| | - Félix Adanero-Jorge
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| | - Camino García-Fernández
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| |
Collapse
|
12
|
Vieira ALS, Correia VTDV, Ramos ALCC, da Silva NHA, Jaymes LAC, Melo JOF, de Paula ACCFF, Garcia MAVT, de Araújo RLB. Evaluation of the Chemical Profile and Antioxidant Capacity of Green, Brown, and Dark Propolis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3204. [PMID: 37765368 PMCID: PMC10537587 DOI: 10.3390/plants12183204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
The chemical composition of propolis varies between different types, due to the specific vegetation found near the hives and the climatic and soil conditions worldwide. Green propolis is exclusive to Brazil, produced by bees, with the resin of the plant Baccharis dracunculifolia. Brown propolis is a specific variety produced mainly in Northeast Brazil from the plant Hyptis divaricata, also known as "maria miraculosa". Dark propolis is a variety of propolis produced by bees from the resin of the plant known as Jurema Preta (Mimosa hostilis benth). In this study, the aqueous extracts of green, brown, and dark propolis were analyzed for their antioxidant capacity using ABTS, FRAP, and DPPH, and their chemical profiles were determined using paper spray mass spectrometry. Among the three extracts, green propolis had the highest content of total phenolic compounds (2741.71 ± 49.53 mg GAE. 100 g-1), followed by brown propolis (1191.55 ± 36.79 mg GAE. 100 g-1), and dark propolis had the lowest content (901.79 ± 27.80 mg GAE. 100 g-1). The three types of propolis showed high antioxidant capacity, with green showing the highest antioxidant capacity for the three methods used. Using paper spray mass spectrometry, it was possible to suggest the presence of 116 substances, including flavonoids (56), phenylpropanoids (30), terpenes (25), carboxylic acids (1), benzoic acid derivatives (1), fatty acids (1), amino acids (1) and alkaloids (1). The compounds in the green, brown, and dark propolis extracts reinforce the bioactive potential for application in these tree extracts' food and pharmaceutical products.
Collapse
Affiliation(s)
- Ana Luiza Santos Vieira
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Vinícius Tadeu da Veiga Correia
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Ana Luiza Coeli Cruz Ramos
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Nayana Hayss Araújo da Silva
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Leonardo Assis Campos Jaymes
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Julio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Campus Sete Lagoas, Federal University of São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | | | - Maria Aparecida Vieira Teixeira Garcia
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Raquel Linhares Bello de Araújo
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| |
Collapse
|
13
|
Cora M, Buruk CK, Ünsal S, Kaklikkaya N, Kolayli S. Chemical Analysis and in Vitro Antiviral Effects of Northeast Türkiye Propolis Samples against HSV-1. Chem Biodivers 2023; 20:e202300669. [PMID: 37340993 DOI: 10.1002/cbdv.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Propolis is one of the mixtures with the widest biological activity among natural products used in complementary medicine. HSV-1 is a highly contagious and endemic virus. Available drugs are insufficient for recurrent HSV-1 infections. Therefore, new approaches to treat HSV-1 infections are still being developed. In this study, it was aimed to investigate the inhibition effect of ethanolic Anatolian propolis extracts obtained from the Eastern Black Sea Region (Pazar, Ardahan, and Uzungöl) on HSV-1. In addition to the total phenolic (TPC) and the total flavonoid content (TFC), the phenolic profiles of the extracts were analyzed by HPLC-UV. The antiviral activity of the extracts were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), quantitative Real Time Polymerase Chain Reaction (qRT-PCR), and plaque reduction tests, and the results were evaluated statistically. It was determined that the total amount of phenolic substances varied between 44.12 and 166.91 mg GAE/g, and the total flavonoid content of the samples varied between 12.50 and 41.58 (mg QUE/g). It was shown that all propolis samples used in the current study were effective against HSV-1, but the higher phenolic compounds contained in the samples showed the higher activity. The results show that ethanolic propolis extracts are promising candidates for HSV-1 treatment.
Collapse
Affiliation(s)
- Merve Cora
- Faculty of Medicine, Department of Medical Microbiology, Karadeniz Technical University, Türkiye
| | - C Kurtuluş Buruk
- Faculty of Medicine, Department of Medical Microbiology, Karadeniz Technical University, Türkiye
| | - Serbülent Ünsal
- Faculty of Medicine, Department of Medical Informatics, Karadeniz Technical University, Türkiye
| | - Neşe Kaklikkaya
- Faculty of Medicine, Department of Medical Microbiology, Karadeniz Technical University, Türkiye
| | - Sevgi Kolayli
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Türkiye
| |
Collapse
|
14
|
Stefanowska K, Woźniak M, Sip A, Mrówczyńska L, Majka J, Kozak W, Dobrucka R, Ratajczak I. Characteristics of Chitosan Films with the Bioactive Substances-Caffeine and Propolis. J Funct Biomater 2023; 14:358. [PMID: 37504853 PMCID: PMC10381157 DOI: 10.3390/jfb14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances-caffeine and ethanolic propolis extract (EEP)-were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 48, 60627 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61614 Poznań, Poland
| | - Jerzy Majka
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60637 Poznań, Poland
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
15
|
Paula VB, Estevinho LM, Cardoso SM, Dias LG. Comparative Methods to Evaluate the Antioxidant Capacity of Propolis: An Attempt to Explain the Differences. Molecules 2023; 28:4847. [PMID: 37375400 DOI: 10.3390/molecules28124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Propolis is a natural product produced by bees that contains a complex mixture of compounds, including phenolic compounds and flavonoids. These compounds contribute to its biological activities, such as antioxidant capacity. This study analysed the pollen profile, total phenolic content (TPC), antioxidant properties, and phenolic compound profile of four propolis samples from Portugal. The total phenolic compounds in the samples were determined by six different techniques: four different Folin-Ciocalteu (F-C) methods, spectrophotometry (SPECT), and voltammetry (SWV). Of the six methods, SPECT allowed the highest quantification, while SWV achieved the lowest. The mean TPC values for these methods were 422 ± 98 and 47 ± 11 mg GAE/g sample, respectively. Antioxidant capacity was determined by four different methods: DPPH, FRAP, original ferrocyanide (OFec), and modified ferrocyanide (MFec). The MFec method gave the highest antioxidant capacity for all samples, followed by the DPPH method. The study also investigated the correlation between TPC and antioxidant capacity with the presence of hydroxybenzoic acid (HBA), hydroxycinnamic acid (HCA), and flavonoids (FLAV) in propolis samples. The results showed that the concentrations of specific compounds in propolis samples can significantly impact their antioxidant capacity and TPC quantification. Analysis of the profile of phenolic compounds by the UHPLC-DAD-ESI-MS technique identified chrysin, caffeic acid isoprenyl ester, pinocembrin, galangin, pinobanksin-3-O-acetate, and caffeic acid phenyl ester as the major compounds in the four propolis samples. In conclusion, this study shows the importance of the choice of method for determining TPC and antioxidant activity in samples and the contribution of HBA and HCA content to their quantification.
Collapse
Affiliation(s)
- Vanessa B Paula
- Doctoral School, University of León (ULE), Campus de Vegazana, 24007 León, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Letícia M Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Susana M Cardoso
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís G Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
16
|
Chen J, Li M, Huo X, Li Z, Qu D, Sha J, Sun Y. A Novel Process for One-Step Separation and Cyclodextrin Inclusion of Ginsenoside Rg5 from Ginseng Stem-Leaf Saponins (GSLS): Preparation, Characterization, and Evaluation of Storage Stability and Bioactivity. Foods 2023; 12:2349. [PMID: 37372560 DOI: 10.3390/foods12122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ginsenoside Rg5 has been proven to possess numerous health benefits. However, Rg5 is difficult to prepare using the current methods, and the poor stability and solubility of Rg5 are intractable properties that limit its application. We try to establish and optimize a new method for preparing Rg5. METHODS Different amino acids acted as catalysts, and reaction conditions were investigated to transform Rg5 in GSLS. Different CDs and reaction conditions were investigated for the preparation of CD-Rg5 based on yield and purity; ESI-MS, FT-IR, XRD and SEM analyses were used to prove the formation of the CD-Rg5 inclusion complex. Both the stability and bioactivity of β-CD-Rg5 were investigated. RESULTS The content of Rg5 reached 140.8 mg/g after transformation of GSLS using Asp as a catalyst. The yield of β-CD-Rg5 reached a maximum of 12% and a purity of 92.5%. The results showed that the β-CD-Rg5 inclusion complex can improve its stability of Rg5 against light and temperature. Antioxidant activity analyses against DPPH, ABTS+, and Fe2+ chelation showed enhanced antioxidant activity of the β-CD-Rg5 inclusion complex. CONCLUSIONS A novel and effective strategy for the separation of Rg5 from ginseng stem-leaf saponins (GSLS) was developed to improve the stability, solubility, and bioactivity of Rg5.
Collapse
Affiliation(s)
- Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| | - Meijia Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| | - Xiaohui Huo
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| | - Zhiman Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| | - Jiyue Sha
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
| |
Collapse
|
17
|
Moreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, Paucar C, Lopera A, Garcia C. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers (Basel) 2023; 15:2629. [PMID: 37376275 DOI: 10.3390/polym15122629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023] Open
Abstract
Several diseases and injuries cause irreversible damage to bone tissues, which may require partial or total regeneration or replacement. Tissue engineering suggests developing substitutes that may contribute to the repair or regeneration process by using three-dimensional lattices (scaffolds) to create functional bone tissues. Herein, scaffolds comprising polylactic acid and wollastonite particles enriched with propolis extracts from the Arauca region of Colombia were developed as gyroid triply periodic minimal surfaces using fused deposition modeling. The propolis extracts exhibited antibacterial activity against Staphylococcus aureus (ATCC 25175) and Staphylococcus epidermidis (ATCC 12228), which cause osteomyelitis. The scaffolds were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, contact angle, swelling, and degradation. Their mechanical properties were assessed using static and dynamic tests. Cell viability/proliferation assay was conducted using hDP-MSC cultures, while their bactericidal properties against monospecies cultures (S. aureus and S. epidermidis) and cocultures were evaluated. The wollastonite particles did not affect the physical, mechanical, or thermal properties of the scaffolds. The contact angle results showed that there were no substantial differences in the hydrophobicity between scaffolds with and without particles. Scaffolds containing wollastonite particles suffered less degradation than those produced using PLA alone. A representative result of the cyclic tests at Fmax = 450 N showed that the maximum strain reached after 8000 cycles is well below the yield strain (i.e., <7.5%), thereby indicating that even under these stringent conditions, these scaffolds will be able to work properly. The scaffolds impregnated with propolis showed a lower % of cell viability using hDP-MSCs on the 3rd day, but these values increased on the 7th day. These scaffolds exhibited antibacterial activity against the monospecies cultures of S. aureus and S. epidermidis and their cocultures. The samples without propolis loads did not show inhibition halos, whereas those loaded with EEP exhibited halos of 17.42 ± 0.2 mm against S. aureus and 12.9 ± 0.5 mm against S. epidermidis. These results made the scaffolds possible bone substitutes that exert control over species with a proliferative capacity for the biofilm-formation processes required for typical severe infectious processes.
Collapse
Affiliation(s)
- Ana Isabel Moreno
- Grupo de Cerámicos y Vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
| | - Yeison Orozco
- Grupo de Cerámicos y Vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
| | - Sebastián Ocampo
- Grupo de Cerámicos y Vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
| | - Sarita Malagón
- Faculty of Dentistry, Universidad Cooperativa de Colombia sede Medellín, Medellín 055422, Colombia
| | - Alex Ossa
- School of Applied Sciences and Engineering, Universidad Eafit, Medellín 050022, Colombia
| | - Alejandro Peláez-Vargas
- Faculty of Dentistry, Universidad Cooperativa de Colombia sede Medellín, Medellín 055422, Colombia
| | - Carlos Paucar
- Grupo de Cerámicos y Vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
| | - Alex Lopera
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia, La Paz 202017, Colombia
| | - Claudia Garcia
- Grupo de Cerámicos y Vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
| |
Collapse
|
18
|
Lim JR, Chua LS, Dawood DAS. Evaluating Biological Properties of Stingless Bee Propolis. Foods 2023; 12:2290. [PMID: 37372501 DOI: 10.3390/foods12122290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the present study was to determine the content of phenolics, flavonoids and tannins, as well as the biological functions of propolis extracts from the stingless bee (Heterotrigona itama). The raw propolis was extracted via maceration with ultrasonic pretreatment in 100% water and 20% ethanol. The yield of ethanolic propolis extracts was about 1% higher than its aqueous counterpart. The colorimetric assays showed that the ethanolic propolis extract had about two times higher phenolics (17.043 mg GAE/g) and tannins (5.411 mg GAE/g), and four times higher flavonoids (0.83 mg QE/g). The higher phenolic content had enhanced the antiradical and antibacterial capacities of the ethanolic extract. The propolis extracts significantly exhibited higher antibacterial activity against gram-positive bacteria (Staphylococcus aureus) than gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). However, aqueous extract was found to have a higher anticancer property based on the viability of lung cancer cells. No cytotoxic effect was observed on normal lung cells as the cell viability was maintained >50%, even the concentration of propolis extracts were increased up to 800 µg/mL. Different chemical compositions of propolis extract would show different bioactivities depending upon the individual applications. The high content of phenolics suggests that the propolis extract could be a natural source of bioactive ingredients for the development of innovative and functional foods.
Collapse
Affiliation(s)
- Jin Ru Lim
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Dawood Ali Salim Dawood
- Department of Pathology and Forensic Medicine, Collage of Medicine, Wasit University, Kut 52001, Iraq
| |
Collapse
|
19
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
20
|
Zhang B, Wang Y, Lu R. Pickering emulsion stabilized by casein-caffeic acid covalent nanoparticles to enhance the bioavailability of curcumin in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3579-3591. [PMID: 36637046 DOI: 10.1002/jsfa.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, the design of food-grade Pickering emulsion delivery systems has become an effective strategy for improving the low bioavailability of bioactive substances. Protein-based Pickering emulsions have received extensive attention because of a high biocompatibility and loading capacity. The bioavailability of active substances is mainly evaluated by simulating in vitro gastrointestinal digestion. As a model organism for antioxidation and anti-aging, Caenorhabditis elegans can provide additional biological information for the in vivo utilization of active substances. RESULTS After the introduction of caffeic acid, the average particle size and Zeta potential of the casein-caffeic acid covalent complex nanoparticles (CCP) were 171.11 nm and - 37.73 mV, respectively. The three-phase contact angle was also increased to 89.8°. By using CCP to stabilize Pickering emulsion (CCE), the retention quantity of the embedded curcumin increased by 2.19-fold after 28 days. In the simulated gastric digestion, curcumin degradation in CCE was reduced by 61.84%, released slowly in the intestinal environment, and the final bioaccessibility was increased by 1.90-fold. In C. elegans, CCE significantly reduced ROS accumulation, increased SOD activity by 2.01-fold and CAT activity by 2.30-fold, decreased MDA content by 36.76%, prolonging the lifespan of nematodes by 13.33% under H2 O2 stimulation and improving bioavailability in vivo. CONCLUSION The results indictae that CCP-stabilized Pickering emulsion can efficiently implement the physiological activities of bioactive compounds in vitro digestion and C. elegans, and thus it can be regarded as a reliable delivery system for food and medicine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingyan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Contieri LS, de Souza Mesquita LM, Sanches VL, Viganó J, Kamikawachi RC, Vilegas W, Rostagno MA. Ultra-high-performance liquid chromatography using a fused-core particle column for fast analysis of propolis phenolic compounds. J Sep Sci 2023; 46:e2200440. [PMID: 36449264 DOI: 10.1002/jssc.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Propolis is a bee product with a complex chemical composition formed by several species from different geographical origins. The complex propolis composition requires an accurate and reproducible characterization of samples to standardize the quality of the material sold to consumers. This work developed an ultra-high-performance liquid chromatography with a photodiode array detector method to analyze propolis phenolic compounds based on the two key propolis biomarkers, Artepillin C and p-Coumaric acid. This choice was made due to the complexity of the sample with the presence of several compounds. The optimized method was hyphenated with mass spectrometry detection allowing the detection of 23 different compounds. A step-by-step strategy was used to optimize temperature, flow rate, mobile phase composition, and re-equilibration time. Reverse-phase separation was achieved with a C18 fused-core column packed with the commercially available smallest particles (1.3 nm). Using a fused-core column with ultra-high-performance liquid chromatography allows highly efficient, sensitive, accurate, and reproducible determination of compounds extracted from propolis with an outstanding sample throughput and resolution. Optimized conditions permitted the separation of the compounds in 5.50 min with a total analysis time (sample-to-sample) of 6.50 min.
Collapse
Affiliation(s)
- Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Juliane Viganó
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, Buri, Brazil
| | | | - Wagner Vilegas
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
22
|
Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia. Molecules 2023; 28:molecules28031121. [PMID: 36770788 PMCID: PMC9920892 DOI: 10.3390/molecules28031121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
This study aimed to evaluate the biochemical composition and biological activity of propolis samples from different regions of Türkiye to characterize and classify 24 Anatolian propolis samples according to their geographical origin. Chemometric techniques, namely, principal component analysis (PCA) and a hierarchical clustering algorithm (HCA), were applied for the first time to all data, including antioxidant capacity, individual phenolic constituents, and the antimicrobial activity of propolis to reveal the possible clustering of Anatolian propolis samples according to their geographical origin. As a result, the total phenolic content (TPC) of the propolis samples varied from 16.73 to 125.83 mg gallic acid equivalent per gram (GAE/g) sample, while the number of total flavonoids varied from 57.98 to 327.38 mg quercetin equivalent per gram (QE/g) sample. The identified constituents of propolis were phenolic/aromatic acids (chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, and trans-cinnamic acid), phenolic aldehyde (vanillin), and flavonoids (pinocembrin, kaempferol, pinobanksin, and apigenin). This study has shown that the application of the PCA chemometric method to the biochemical composition and biological activity of propolis allows for the successful clustering of Anatolian propolis samples from different regions of Türkiye, except for samples from the Black Sea region.
Collapse
|
23
|
Barrientos‐Lezcano JC, Gallo‐Machado J, Marin‐Palacio LD, Builes S. Extraction kinetics and physicochemical characteristics of Colombian propolis. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | - Santiago Builes
- Escuela de Ciencias Aplicadas e Ingeniería Universidad EAFIT Medellín Colombia
| |
Collapse
|
24
|
Sangboonruang S, Semakul N, Suriyaprom S, Kitidee K, Khantipongse J, Intorasoot S, Tharinjaroen CS, Wattananandkul U, Butr-Indr B, Phunpae P, Tragoolpua K. Nano-Delivery System of Ethanolic Extract of Propolis Targeting Mycobacterium tuberculosis via Aptamer-Modified-Niosomes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020269. [PMID: 36678022 PMCID: PMC9861461 DOI: 10.3390/nano13020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
Tuberculosis (TB) therapy requires long-course multidrug regimens leading to the emergence of drug-resistant TB and increased public health burden worldwide. As the treatment strategy is more challenging, seeking a potent non-antibiotic agent has been raised. Propolis serve as a natural source of bioactive molecules. It has been evidenced to eliminate various microbial pathogens including Mycobacterium tuberculosis (Mtb). In this study, we fabricated the niosome-based drug delivery platform for ethanolic extract of propolis (EEP) using thin film hydration method with Ag85A aptamer surface modification (Apt-PEGNio/EEP) to target Mtb. Physicochemical characterization of PEGNio/EEP indicated approximately -20 mV of zeta potential, 180 nm of spherical nanoparticles, 80% of entrapment efficiency, and the sustained release profile. The Apt-PEGNio/EEP and PEGNio/EEP showed no difference in these characteristics. The chemical composition in the nanostructure was confirmed by Fourier transform infrared spectrometry. Apt-PEGNio/EEP showed specific binding to Mycobacterium expressing Ag85 membrane-bound protein by confocal laser scanning microscope. It strongly inhibited Mtb in vitro and exhibited non-toxicity on alveolar macrophages. These findings indicate that the Apt-PEGNio/EEP acts as an antimycobacterial nanoparticle and might be a promising innovative targeted treatment. Further application of this smart nano-delivery system will lead to effective TB management.
Collapse
Affiliation(s)
- Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | | | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayada Sitthidet Tharinjaroen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
25
|
Zhang Y, Cao C, Yang Z, Jia G, Liu X, Li X, Cui Z, Li A. Simultaneous determination of 20 phenolic compounds in propolis by HPLC-UV and HPLC-MS/MS. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
FONTES RF, ANDRADE JKS, RAJAN M, NARAIN N. Chemical characterization of different parts of noni (Morinda citrifolia) fruit and its freeze-dried pulp powder with emphasis on its bioactive compounds and antioxidant activities. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010141. [PMID: 36615334 PMCID: PMC9822435 DOI: 10.3390/molecules28010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Propolis is one of the bee products, with multiple biological properties used in numerous applications. The research objective was to determine the chemical composition and biological properties (antibacterial, antifungal, antiviral, antioxidant, and cytoprotective activity) of propolis extracts collected from various regions of Poland. The results indicated that the total content of phenols (116.16-219.41 mg GAE/g EEP) and flavonoids (29.63-106.07 mg QE/g EEP) in propolis extracts depended on their geographic origin. The high content of epicatechin, catechin, pinobanksin, myricetin, and acids: vanillic and syringic in propolis samples was confirmed by chromatographic analysis. Moreover, the presence of caffeic acid phenethyl ester was confirmed in all samples. The origin of propolis also influenced the biological properties of its extracts. The propolis extracts were characterized by moderate DPPH free radical scavenging activity (29.22-35.14%), and relatively low ferrous iron chelating activity (9.33-32.32%). The results indicated also that the propolis extracts showed high activity in the protection of human red blood cells against free radicals generated from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The extracts exhibited diversified activity against the tested pathogenic bacteria and limited activity against fungal strains. The research of selected propolis extracts showed that only 2 of 5 examined samples showed moderate activity against HPV (human papillomaviruses) and the activity depended on its geographical distribution.
Collapse
|
28
|
Chua LS, Abd Wahab NS. Drying Kinetic of Jaboticaba Berries and Natural Fermentation for Anthocyanin-Rich Fruit Vinegar. Foods 2022; 12:foods12010065. [PMID: 36613281 PMCID: PMC9818337 DOI: 10.3390/foods12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
This study aimed to determine the drying kinetic of jaboticaba berries that were then used for the fermentation of natural fruit vinegar. The drying behavior was fitted well to the thin-layer kinetic model of Midilli et al. in a vacuum oven at 40 °C. Moisture diffusion was the dominant mechanism because two falling rate periods were observed. The effective moisture diffusivity was decreased (2.52 × 10−10 m2/s) after being pretreated with 70% sugar (1.84 × 10−10 m2/s) and 10% salt (6.73 × 10−11 m2/s) solutions. Fresh berry vinegar was found to have higher flavonoids, including anthocyanins, to exhibit higher antiradical and anti-pathogenic microorganism activities. However, the phenolic content in dried berries vinegar was higher, mainly from the bond breaking of tannins and lignins from fruit peel. Some extent of oxidation occurred because of the change in the color index of vinegar samples. The acidity of both vinegars was 3% acetic acid. Headspace GC-MS also detected acetic acid as the major compound (>60%) in the vapor of vinegar samples. A wide range of non-volatile compounds composed of alkaloids, terpenoids, flavonoids, organic acids, and sugar derivatives was detected by UHPLC-TWIMS-QTOFMS. The peak intensity of anthocyanins was reduced by 28−77% in dried berry vinegar. Therefore, it is better to prepare natural fruit vinegar using fresh berries, preserving anthocyanins for high antioxidant capacity.
Collapse
Affiliation(s)
- Lee Suan Chua
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru 81310, Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru 81310, Malaysia
- Correspondence: ; Tel.: +60-1-972-14378
| | - Nurul Syafiqah Abd Wahab
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru 81310, Malaysia
| |
Collapse
|
29
|
Stanciauskaite M, Marksa M, Rimkiene L, Ramanauskiene K. Evaluation of Chemical Composition, Sun Protection Factor and Antioxidant Activity of Lithuanian Propolis and Its Plant Precursors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3558. [PMID: 36559670 PMCID: PMC9781500 DOI: 10.3390/plants11243558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The growing interest in polyphenols of natural origin and their plant sources encourages the study of their chemical composition and biological activity. Propolis is widely used as a source of phenolic compounds. The aim of this study is to evaluate and compare the chemical composition, antioxidant activity and sun protection factor (SPF) of the ethanolic extracts of the poplar buds, birch buds and pine buds of propolis plant precursors collected in Lithuania. The IC50 concentration of the extracts was evaluated using DPPH and ABTS methods. Extracts of poplar buds, birch buds and propolis showed a lower IC50 concentration by ABTS and DPPH methods compared with pine buds extracts. Poplar buds and propolis extracts showed the highest SPF value, while birch and pine buds extracts showed a lower SPF value. High-performance liquid chromatography (HPLC) analysis results showed that phenolic acids, such as p-coumaric acid and cinnamic acid, and flavonoids, such as pinobanksin and pinocembrin, were identified in all the tested extracts. Salicin has been identified only in poplar buds extracts. The results of antioxidant activity showed that propolis poplar and birch buds are a promising source of biologically active polyphenols.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Laura Rimkiene
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
30
|
Rajan M, Santana Andrade JK, Chagas Barros RG, Farias Lima Guedes TJ, Narain N. Enhancement of polyphenolics and antioxidant activities of jambolan (Syzygium cumini) fruit pulp using solid state fermentation by Aspergillus niger and A. flavus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Sevgi Kolaylı, Ureyen Esertas UZ, Kara Y. The Antimicrobial, Anti-Quorum Sensing, and Anti-Biofilm Activities of Ethanolic Propolis Extracts Used as Food Supplements. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022150134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
32
|
Cuesta-Rubio O, Hernández IM, Fernández MC, Rodríguez-Delgado I, De Oca Porto RM, Piccinelli AL, Celano R, Rastrelli L. Chemical characterization and antioxidant potential of ecuadorian propolis. PHYTOCHEMISTRY 2022; 203:113415. [PMID: 36049527 DOI: 10.1016/j.phytochem.2022.113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The chemical composition and the antioxidant potential of Ecuadorian propolis samples (n = 19) collected in different provinces were investigated. HPLC-DAD-ESI/MSn and GC-EI-MS analysis of the methanol extracts enabled us to define six types of Ecuadorian propolis based on their secondary metabolite composition. 68 compounds were identified, 59 of which are reported for the first time in Ecuadorian propolis. The detected compounds include flavonoids, diterpenes, triterpenes, organic acid derivatives, alkylresorcinol derivatives and nemorosone. Plants belonging to genera Populus, Mangifera and Clusia seemed to be vegetable sources employed by bees to produce Ecuadorian propolis. Total phenolic content and antioxidant activity of propolis extracts were determined by the Folin-Ciocalteu assay and 2,2-diphenyl-1-picrylhydrazyl and ferric reducing/antioxidant potential assays, respectively. As expected, the variable chemical composition affected the differences in terms of antioxidant potential.
Collapse
Affiliation(s)
- Osmany Cuesta-Rubio
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Ingrid Márquez Hernández
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Mercedes Campo Fernández
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de La Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Irán Rodríguez-Delgado
- Universidad Técnica de Machala, Facultad de Ciencias Agropecurarias, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Rodny Montes De Oca Porto
- Instituto de Medicina del Deporte, Laboratorio Antidoping, Calle 100 y Aldabó, 1210800, La Habana, Cuba.
| | - Anna Lisa Piccinelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| | - Rita Celano
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| | - Luca Rastrelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy.
| |
Collapse
|
33
|
da Costa Silva V, do Nascimento TG, Mergulhão NLON, Freitas JD, Duarte IFB, de Bulhões LCG, Dornelas CB, de Araújo JX, dos Santos J, Silva ACA, Basílio ID, Goulart MOF. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022; 27:6959. [PMID: 36296550 PMCID: PMC9609202 DOI: 10.3390/molecules27206959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
The main objectives of this study were to develop and characterize hydrophilic polymeric membranes impregnated with poly-lactic acid (PLA) nanoparticles (NPs) combined with red propolis (RP). Ultrasonic-assisted extraction was used to obtain 30% (w/v) red propolis hydroalcoholic extract (RPE). The NPs (75,000 g mol-1) alone and incorporated with RP (NPRP) were obtained using the solvent emulsification and diffusion technique. Biopolymeric hydrogel membranes (MNPRP) were obtained using carboxymethylcellulose (CMC) and NPRP. Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenols (TPC) and flavonoids contents (TFC), and antioxidant activity through the radical scavenging assay with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric reducing antioxidant power (FRAP). The identification and quantification of significant RP markers were performed through UPLC-DAD. The NPs were evaluated for particle size, polydispersity index, and zeta potential. The TPC for RPE, NPRP, and MNPRP was 240.3 ± 3.4, 191.7 ± 0.3, and 183.4 ± 2.1 mg EGA g-1, while for TFC, the value was 37.8 ± 0.9, 35 ± 3.9, and 26.8 ± 1.9 mg EQ g-1, respectively. Relevant antioxidant activity was also observed by FRAP, with 1400.2 (RPE), 1294.2 (NPRP), and 696.2 µmol Fe2+ g-1 (MNPRP). The primary markers of RP were liquiritigenin, isoliquiritigenin, and formononetin. The particle sizes were 194.1 (NPs) and 361.2 nm (NPRP), with an encapsulation efficiency of 85.4%. Thermal analysis revealed high thermal stability for the PLA, nanoparticles, and membranes. The DSC revealed no interaction between the components. FTIR allowed for characterizing the RPE encapsulation in NPRP and CMC for the MNPRP. The membrane loaded with NPRP, fully characterized, has antioxidant capacity and may have application in the treatment of skin wounds.
Collapse
Affiliation(s)
- Valdemir da Costa Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Ticiano G. do Nascimento
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Naianny L. O. N. Mergulhão
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Johnnatan D. Freitas
- Department of Chemistry, Federal Institute of Education, Science and Technology, Alagoas, Maceio 57035-660, AL, Brazil
| | - Ilza Fernanda B. Duarte
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | | | - Camila B. Dornelas
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - João Xavier de Araújo
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| | - Jucenir dos Santos
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Anielle C. A. Silva
- Physics Institute, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Irinaldo D. Basílio
- Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceio 57072-970, AL, Brazil
| | - Marilia O. F. Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, AL, Brazil
| |
Collapse
|
34
|
ALaerjani WMA, Khan KA, Al-Shehri BM, Ghramh HA, Hussain A, Mohammed MEA, Imran M, Ahmad I, Ahmad S, Al-Awadi AS. Chemical Profiling, Antioxidant, and Antimicrobial Activity of Saudi Propolis Collected by Arabian Honey Bee ( Apis mellifera jemenitica) Colonies. Antioxidants (Basel) 2022; 11:1413. [PMID: 35883906 PMCID: PMC9311549 DOI: 10.3390/antiox11071413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Propolis (bee glue) is a complex, phyto-based resinous material obtained from beehives. Its chemical and biological properties vary with respect to bee species, type of plants, geographical location, and climate of a particular area. This study was planned with the aim of determining the chemical composition and to investigate various properties (against oxidants and microbes) of different extracts of Saudi propolis collected from Arabian honey bee (Apis mellifera jemenitica) colonies headed by young queens. Chemical analysis of propolis extracts with different solvents, i.e., ethyl acetate (Eac), methanol (Met), butanol (BuT), and hexane (Hex) was done through colorimetry for the total phenolic content (TPC) and total flavonoid content (TFC) evaluation. For separation and extensive characterization of the Met extract, chromatography and 1H NMR were deployed. Six different microorganisms were selected to analyze the Saudi-propolis-based extract's antimicrobial nature by measuring zones of inhibition (ZOI) and minimum inhibitory concentration (MIC). Molecular docking was done by utilizing AutodDock, and sketching of ligands was performed through Marvin Chem Sketch (MCS), and the resultant data after 2D and 3D clean were stored in .mol format. The highest TFC (96.65 mg quercetin equivalents (QE)/g of propolis) and TPC (325 mg gallic acid equivalents (GAE)/g of propolis) were noted for Met. Six familiar compounds were isolated, and recognition was done with NMR. Met extract showed the greatest 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP). Met showed max microbial activity against Staphylococcus aureus (ZOI = 18.67 mm, MIC = 0.625 mg/mL), whereas the minimum was observed in Hex against E. coli (ZOI = 6.33 mm, MIC = 2.50 mg/mL). Furthermore, the molecular docking process established the biological activity of separated compounds against HCK (Hematopoietic cell kinase) and Gyrase B of S. aureus. Moreover, the stability of protein-ligand complexes was further established through molecular dynamic simulation studies, which showed that the receptor-ligand complexes were quite stable. Results of this research will pave the way for further consolidated analysis of propolis obtained from Arabian honey bees (A. m. jemenitica).
Collapse
Affiliation(s)
- Wed Mohammed Ali ALaerjani
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Badria M. Al-Shehri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mohammed Elimam Ahamed Mohammed
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61421, Abha 62529, Saudi Arabia;
| | - Saboor Ahmad
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Abdulrhman S. Al-Awadi
- K.A. CARE Energy Research and Innovation Canter in Riyadh, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
35
|
Mafra JF, de Santana TS, Cruz AIC, Ferreira MA, Miranda FM, Araújo FM, Ribeiro PR, Evangelista-Barreto NS. Influence of red propolis on the physicochemical, microbiological and sensory characteristics of tilapia (Oreochromis niloticus) salami. Food Chem 2022; 394:133502. [PMID: 35728465 DOI: 10.1016/j.foodchem.2022.133502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
To reduce the number of preservatives in foods, this study evaluated the oxidative, microbiological, and sensory stability of fish salami containing a red propolis hydroalcoholic extract (RPHE) in place of the butyl hydroxytoluene (BHT) antioxidant. Initially, the RPHE was characterized chemically and biologically. Subsequently, the antimicrobial and physicochemical activity of the most accepted salami formulation in sensory analysis (F3 = 0.4% RPHE) and of the control formulations (F1 = 0.01% BHT and F5 = without antioxidant) were evaluated during the maturation. RPHE showed promising biological activity. 16 chemical compounds were identified in the RPHE, including the chemical marker formononetin. Salami with 0.4% RPHE showed high sensory acceptance and effectively delayed deterioration (19.67 mg TVB-N 100/g) and lipid oxidation of salami (0.7 mg MDA eq/kg). The use of RPHE as a natural preservative is promising to produce fish salami.
Collapse
Affiliation(s)
- Jéssica Ferreira Mafra
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Tiago Sampaio de Santana
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Alexsandra Iarlen Cabral Cruz
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Mariza Alves Ferreira
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil
| | - Fabrício Mendes Miranda
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Laboratório de Química, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil
| | - Floricéa Magalhães Araújo
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Norma Suely Evangelista-Barreto
- Centro de Ciências Agrárias, Ambiental e Biológicas - CCAAB, Núcleo de Estudos em Pesca e Aquicultura - NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas 44380 000, Bahia, Brazil.
| |
Collapse
|
36
|
Hodel KVS, Machado BAS, Sacramento GDC, Maciel CADO, Oliveira-Junior GS, Matos BN, Gelfuso GM, Nunes SB, Barbosa JDV, Godoy ALPC. Active Potential of Bacterial Cellulose-Based Wound Dressing: Analysis of Its Potential for Dermal Lesion Treatment. Pharmaceutics 2022; 14:pharmaceutics14061222. [PMID: 35745794 PMCID: PMC9228207 DOI: 10.3390/pharmaceutics14061222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The use of innate products for the fast and efficient promotion of healing process has been one of the biomedical sector's main bets for lesion treatment modernization process. The aim of this study was to develop and characterize bacterial cellulose-based (BC) wound dressings incorporated with green and red propolis extract (2 to 4%) and the active compounds p-coumaric acid and biochanin A (8 to 16 mg). The characterization of the nine developed samples (one control and eight active wound dressings) evidenced that the mechanics, physics, morphological, and barrier properties depended not only on the type of active principle incorporated onto the cellulosic matrix, but also on its concentration. Of note were the results found for transparency (28.59-110.62T600 mm-1), thickness (0.023-0.046 mm), swelling index (48.93-405.55%), water vapor permeability rate (7.86-38.11 g m2 day-1), elongation (99.13-262.39%), and antioxidant capacity (21.23-86.76 μg mL-1). The wound dressing based on BC and red propolis was the only one that presented antimicrobial activity. The permeation and retention test revealed that the wound dressing containing propolis extract presented the most corneal stratum when compared with viable skin. Overall, the developed wound dressing showed potential to be used for treatment against different types of dermal lesions, according to its determined proprieties.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Bruna Aparecida Souza Machado
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| | - Giulia da Costa Sacramento
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Carine Assunção de Oliveira Maciel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Gessualdo Seixas Oliveira-Junior
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Breno Noronha Matos
- Laboratory of Medicines, Food and Cosmetics (LTMAC), University of Brasília, Brasilia 70910-900, Brazil; (B.N.M.); (G.M.G.)
| | - Guilherme Martins Gelfuso
- Laboratory of Medicines, Food and Cosmetics (LTMAC), University of Brasília, Brasilia 70910-900, Brazil; (B.N.M.); (G.M.G.)
| | - Silmar Baptista Nunes
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Josiane Dantas Viana Barbosa
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Ana Leonor Pardo Campos Godoy
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| |
Collapse
|
37
|
Mei L, Ji Q, Jin Z, Guo T, Yu K, Ding W, Liu C, Wu Y, Zhang N. Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Abdulsallam A, Thanoon IA, Dawood RS, Abduljabbar AI. Propolis Mitigates Rifampicin/Isoniazid-induced Lipid-redox and Metabolic Profile in an Experimental Animal Model of Oxidative Stress. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective: Adverse drug reactions are the most common cause of drug withdrawal in chronic treatment settings. Tuberculosis (TB) has been considered a recurrent and relapsing disease that needs long-term therapy. Most patients suffer from the adverse effects of TB therapy. Hence, various remedies were used to tackle these adverse effects including antioxidant vitamins, herbal remedies, and others. Aims: The present intervention study aims to investigate the role of propolis in protecting the animal model against oxidant/antioxidant induced by TB therapy together with the propolis role in modulation of metabolic profile as part of lipid peroxidation context. Methods: Serum was collected from rats exposed to rifampicin/isoniazid with or without propolis therapy alongside the control placebo group for comparison. Results: The results have shown a significant (p<0.05) reduction of malondialdehyde and significant (p<0.05) elevation of total antioxidant status. Lipid profile positively improved indicated by significantly reduced total cholesterol, triglyceride, and elevated high-density lipoprotein. Conclusion: our study confirmed that propolis provides protection against redox and metabolic derangement induced by rifampicin/isoniazid medications which are in current TB therapy, therefore, we do advise the use of propolis as an adjunct therapy for patients on such medications.
Collapse
|
39
|
Polumackanycz M, Konieczynski P, Orhan IE, Abaci N, Viapiana A. Chemical Composition, Antioxidant and Anti-Enzymatic Activity of Golden Root (Rhodiola rosea L.) Commercial Samples. Antioxidants (Basel) 2022; 11:antiox11050919. [PMID: 35624783 PMCID: PMC9137987 DOI: 10.3390/antiox11050919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to compare the chemical composition of the water and hydromethanolic extracts of R. rosea commercial samples in relation to their biological activity. For this purpose, the HPLC method was used for the determination of eleven phenolic compounds and AAS/AES was used for determination of five essential elements. Moreover, the contents of total phenolic, total flavonoid, total phenolic acids, and L(+)-ascorbic acid were determined. The antioxidant activity was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS radical scavenging activity, ferric-reducing/antioxidant power (FRAP), and cupric-reducing antioxidant capacity (CUPRAC) assays, while the inhibitory activity against AChE and BChE enzymes was determined using Ellman’s method. The results showed that the hydromethanolic extracts of R. rosea were richer in phenolic compounds and showed higher antioxidant and neurobiological activity than the water extracts. However, the water extracts gave higher contents of determined elements. Among the individual phenolic compounds gallic acid (2.33 mg/g DW) and sinapic acid (386.44 µg/g DW) had the highest concentrations in the hydromethanolic and water extracts, respectively. Moreover, the most extracts were observed to be more efficient on BChE. Moreover, the correlation analysis indicated a high positive relationship between chemical composition and biological activity in both extracts of R. rosea.
Collapse
Affiliation(s)
- Milena Polumackanycz
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.P.); (P.K.)
| | - Pawel Konieczynski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.P.); (P.K.)
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey; (I.E.O.); (N.A.)
- Principal Member of Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, Ankara 06670, Turkey
| | - Nurten Abaci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey; (I.E.O.); (N.A.)
| | - Agnieszka Viapiana
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland; (M.P.); (P.K.)
- Correspondence:
| |
Collapse
|
40
|
Zhang X, Su J, Wang X, Wang X, Liu R, Fu X, Li Y, Xue J, Li X, Zhang R, Chu X. Preparation and Properties of Cyclodextrin Inclusion Complexes of Hyperoside. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092761. [PMID: 35566111 PMCID: PMC9100073 DOI: 10.3390/molecules27092761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
In order to improve the aqueous solubility and enhance the bioavailability of Hyperoside (Hyp), three inclusion complexes (ICs) of Hyp with 2-hydroxypropyl-β-cyclodextrin (2H-β-CD), β-cyclodextrin (β-CD), and methyl-β-cyclodextrin (M-β-CD) were prepared using the ultrasonic method. The characterization of the inclusion complexes (ICs) was achieved using Fourier-transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), thin-layer chromatography (TLC), and 1H nuclear magnetic resonance (1H NMR). The effects of the ICs on the solubility and antioxidant activity of Hyp were investigated. A Job’s plot revealed that the Hyp formed ICs with three kinds of cyclodextrin (CD), all at a 1:1 stoichiometric ratio. The FTIR, SEM, XRPD, TLC, and 1H NMR results confirmed the formation of inclusion complexes. The water solubility of the IC of Hyp with 2-hydroxypropyl-β-cyclodextrin was enhanced 9-fold compared to the solubility of the original Hyp. The antioxidant activity tests showed that the inclusion complexes had higher antioxidant activities compared to free Hyp in vitro and the H2O2–RAW264.7 cell model. Therefore, encapsulation with CDs can not only improve Hyp’s water solubility but can also enhance its biological activity, which provides useful information for the potential application of complexation with Hyp in a clinical context.
Collapse
Affiliation(s)
| | - Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | | | | | | | | | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|
41
|
Sangboonruang S, Semakul N, Sookkree S, Kantapan J, Ngo-Giang-Huong N, Khamduang W, Kongyai N, Tragoolpua K. Activity of Propolis Nanoparticles against HSV-2: Promising Approach to Inhibiting Infection and Replication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082560. [PMID: 35458758 PMCID: PMC9032435 DOI: 10.3390/molecules27082560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Herpes simplex type 2 (HSV-2) infection causes a significant life-long disease. Long-term side effects of antiviral drugs can lead to the emergence of drug resistance. Thus, propolis, a natural product derived from beehives, has been proposed to prevent or treat HSV-2 infections. Unfortunately, therapeutic applications of propolis are still limited due its poor solubility. To overcome this, a nanoparticle-based drug delivery system was employed. An ethanolic extract of propolis (EEP) was encapsulated in nanoparticles composed of poly(lactic-co-glycolic acid) and chitosan using a modified oil-in-water single emulsion by using the solvent evaporation method. The produced nanoparticles (EEP-NPs) had a spherical shape with a size of ~450 nm and presented satisfactory physicochemical properties, including positively charged surface (38.05 ± 7.65 mV), high entrapment efficiency (79.89 ± 13.92%), and sustained release profile. Moreover, EEP-NPs were less cytotoxic on Vero cells and exhibited anti-HSV-2 activity. EEP-NPs had a direct effect on the inactivation of viral particles, and also disrupted the virion entry and release from the host cells. A significant decrease in the expression levels of the HSV-2 replication-related genes (ICP4, ICP27, and gB) was also observed. Our study suggests that EEP-NPs provide a strong anti-HSV-2 activity and serve as a promising platform for the treatment of HSV-2 infections.
Collapse
Affiliation(s)
- Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nicole Ngo-Giang-Huong
- Associated Medical Sciences (AMS)-CMU IRD Research Collaboration, Chiang Mai 50200, Thailand;
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France
| | - Woottichai Khamduang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natedao Kongyai
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (K.T.)
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (K.T.)
| |
Collapse
|
42
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
43
|
Jaízia dos Santos Alves M, Rodrigues Monteiro A, Ayala Valencia G. Antioxidant nanoparticles based on starch and the phenolic compounds from propolis extract: Production and physicochemical properties. STARCH-STARKE 2022. [DOI: 10.1002/star.202100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC Brazil
| |
Collapse
|
44
|
Bouchelaghem S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J Biol Sci 2022; 29:1936-1946. [PMID: 35531223 PMCID: PMC9072893 DOI: 10.1016/j.sjbs.2021.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023] Open
Abstract
Propolis is a plant-based sticky substance that is produced by honeybees. It has been used traditionally by ancient civilizations as a folk medicine, and is known to have many pharmaceutical properties including antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and antitumour effects. Worldwide, researchers are still studying the complex composition of propolis to unveil its biological potential, and especially its antimicrobial activity against a variety of multidrug-resistant microorganisms. This review explores scientific reports published during the last decade on the characterization of different types of propolis, and evaluates their antimicrobial activities against Staphylococcus aureus and Candida albicans. Propolis can be divided into different types depending on their chemical composition and physical properties associated with geographic origin and plant sources. Flavonoids, phenols, diterpenes, and aliphatic compounds are the main chemicals that characterize the different types of propolis (Poplar, Brazilian, and Mediterranean), and are responsible for their antimicrobial activity. The extracts of most types of propolis showed greater antibacterial activity against Gram-positive bacteria: particularly on S. aureus, as well as on C. albicans, as compared to Gram-negative pathogens. Propolis acts either by directly interacting with the microbial cells or by stimulating the immune system of the host cells. Some studies have suggested that structural damage to the microorganisms is a possible mechanism by which propolis exhibits its antimicrobial activity. However, the mechanism of action of propolis is still unclear, due to the synergistic interaction of the ingredients of propolis, and this natural substance has multi-target activity in the cell. The broad-spectrum biological potentials of propolis present it as an ideal candidate for the development of new, potent, and cost-effective antimicrobial agents.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|
45
|
Suárez GAP, Galindo NJP, Pardo Cuervo OH. Obtaining Colombian propolis extracts using modern methods: A determination of its antioxidant capacity and the identification of its bioactive compounds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
SILVA TOM, NOGUEIRA JP, REZENDE YRRS, OLIVEIRA CSD, NARAIN N. Bioactive compounds and antioxidants activities in the agro-industrial residues of berries by solvent and enzyme assisted extraction. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.61022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
OLIVEIRA CSD, ANDRADE JKS, RAJAN M, NARAIN N. Influence of the phytochemical profile on the peel, seed and pulp of margarida, breda and geada varieties of avocado (Persea Americana Mill) associated with their antioxidant potential. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
LOPES GA, FIDELIS PC, ALMEIDA BMD, ALMEIDA JJ, IENTZ GDAS, BINDA NS, TEIXEIRA AF, VIEIRA-FILHO SA, CALIGIORNE RB, SAÚDE-GUIMARÃES DA, BRUMANO MHN, FIGUEIREDO SMD. Antioxidant activity, sensory analysis and acceptability of red fruit juice supplemented with Brazilian green propolis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.13521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sônia Maria de FIGUEIREDO
- Universidade Federal de Ouro Preto, Brasil; Hospital Santa Casa de Belo Horizonte, Ensino e Pesquisa, Brasil
| |
Collapse
|
49
|
Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease. Antioxidants (Basel) 2021; 11:antiox11010015. [PMID: 35052518 PMCID: PMC8772744 DOI: 10.3390/antiox11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE). This review presented an updated overview of the potential benefits of these antioxidants and new strategies to treat or reduce CKD progression, although the limitations related to the traditional formulation, lack of standardization, side effects, and safety.
Collapse
|
50
|
Oliveira JMDS, Cavalcanti TFS, Leite IF, Dos Santos DMRC, Porto ICCDM, de Aquino FLT, Sonsin AF, Lins RML, Vitti RP, de Freitas JD, Barreto EDO, de Souza ST, Kamiya RU, do Nascimento TG, Tonholo J. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front Pharmacol 2021; 12:787633. [PMID: 34912230 PMCID: PMC8667603 DOI: 10.3389/fphar.2021.787633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 μg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 μg/mm3, Wsl from 3.66 to 4.20 μg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448–455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.
Collapse
Affiliation(s)
- José Marcos Dos Santos Oliveira
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
| | - Théo Fortes Silveira Cavalcanti
- Postgraduate Program in Materials, Center of Technology, Federal University of Alagoas, Maceió, Brazil.,Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Isabel Cristina Celerino de Moraes Porto
- Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Lima Torres de Aquino
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Artur Falqueto Sonsin
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Emiliano de Oliveira Barreto
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Samuel Teixeira de Souza
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | - Regianne Umeko Kamiya
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ticiano Gomes do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Josealdo Tonholo
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|