1
|
Palafox-Rivera P, Tapia-Rodriguez MR, Lopez-Romero JC, Lugo-Flores MA, Quintero-Cabello KP, Silva-Espinoza BA, Cruz-Valenzuela MR, Nazzaro F, Ayala-Zavala JF. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. BIOFOULING 2025:1-13. [PMID: 39757560 DOI: 10.1080/08927014.2024.2435018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies. Conventional antibacterial agents often are less effective against biofilm-protected cells compared to their efficacy against planktonic (non-attached) bacteria. Integrating hydrolytic enzymes, such as cellulases, proteases, and DNases, into disinfection protocols offers a promising approach by breaking down the biofilm matrix to expose the bacteria. However, the follow-up use of antibacterial agents is important, as enzymes alone do not possess bactericidal properties. Unlike traditional disinfectants, natural antibacterial agents work synergistically with enzymes, enhancing biofilm disruption without compromising the enzymatic activity through oxidation. This review offers a comprehensive analysis of the current knowledge and potential of combining hydrolytic enzymes with disinfectants to disrupt biofilms and eradicate the released bacterial cells, emphasizing applications for clinical and foodborne pathogens.
Collapse
Affiliation(s)
- Patricia Palafox-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Melvin R Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Col. Centro, Ciudad Obregón, Sonora, México
| | - Julio Cesar Lopez-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Eleazar Ortiz Caborca, Sonora, México
| | - Marco A Lugo-Flores
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Karen P Quintero-Cabello
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Brenda A Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - M Reynaldo Cruz-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | | | - J Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| |
Collapse
|
2
|
Monsef AS, Nemattalab M, Parvinroo S, Hesari Z. Antibacterial effects of thyme oil loaded solid lipid and chitosan nano-carriers against Salmonella Typhimurium and Escherichia coli as food preservatives. PLoS One 2024; 19:e0315543. [PMID: 39739777 DOI: 10.1371/journal.pone.0315543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVES Escherichia coli and Salmonella Typhimurium are frequent causes of foodborne illness affecting many people annually. In order to develop natural antimicrobial agents against these microorganisms, thyme oil (TO) was considered as active antibacterial ingredient. TO contains various bioactive compounds that exhibit antimicrobial properties. To increase the antibacterial effects and stability of thyme oil, two promising carrier systems, solid lipid nanoparticles (SLN) and chitosan nanoparticles have been fabricated in this study. METHODS Nanoparticles were made using natural-based lipids and polymers by a probe sonication method. They were characterized using infrared spectrometry (FTIR), transmission electron microscopy (TEM), particle size, cytotoxicity, etc. Antibacterial effects of TO, thyme oil loaded in SLN (TO-SLN) and thyme oil loaded in chitosan nanoparticle (TO-CH) was evaluated against E. coli and S. typhimurium using Minimum inhibitory/bactericidal concentrations (MIC/MBC) determination. Encapsulation efficiency (EE%) and drug release profile were also studied in vitro. RESULTS TEM analysis revealed spherical/ovoid-shaped particles with clear edges. TO-SLN had an average size of 42.47nm, while TO-CH had an average size of 144.8nm. The Encapsulation efficiency of TO-CH and TO-SLN nanoparticles were about 81.6±1% and 73.4±1%, respectively. Results indicated 92% cumulative release in TO-CH in comparison with 88% in TO-SLN in 72 h. MIC against E. coli and S. typhimurium for TO-CH, TO-SLN, and pure TO were 4 and 1.5 μg/mL, 60 and 40 μg/mL, and 180-150 μg/mL, respectively. CONCLUSION Nanoencapsulation of thyme oil significantly potentiated its antimicrobial effects. TO-CH exhibited a significantly higher antibacterial effect compared to TO-SLN (6-fold) and pure thyme oil (more than 10-fold).
Collapse
Affiliation(s)
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shirin Parvinroo
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Her E, Han S, Ha SD. Development of poly(lactic acid)-based natural antimicrobial film incorporated with caprylic acid against Salmonella biofilm contamination in the meat industry. Int J Food Microbiol 2024; 425:110871. [PMID: 39178662 DOI: 10.1016/j.ijfoodmicro.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Using a solvent-casting method, a poly(lactic acid) (PLA) film incorporated with caprylic acid (CA) was developed as an active packaging against Salmonella enterica ser. Typhimurium and S. enteritidis to reduce the risk of microbial contamination during distribution and storage of meat. According to the minimum inhibitory concentration (MIC) test results of the natural antimicrobial, CA was introduced at 0.6, 1.2, 2.4, and 4.8 % (v/v) into neat PLA. The biofilm inhibitory effect and antimicrobial efficacy of CA-PLA film against both Salmonella strains, as well as the intermolecular interactions and barrier properties of CA-PLA film, were evaluated. Biofilm formation was reduced to below the detection limit (<1.0 log CFU/cm2) for both S. typhimurium and S. enteritidis when co-cultured overnight with 4.8 % CA-PLA film. The 4.8 % CA-PLA film achieved maximum log reductions of 2.58 and 1.65 CFU/g for S. typhimurium and 2.59 and 1.76 CFU/g for S. enteritidis on inoculated chicken breast and beef stored at 25 °C overnight, respectively, without any quality (color and texture) losses. CA maintained its typical chemical structure in the film, as confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. Furthermore, film surface morphology observations by field emission scanning electron microscopy (FESEM) showed that CA-PLA film was smoother than neat PLA film. No significant (P > 0.05) changes were observed for water vapor permeability and oxygen permeability by the addition of CA into PLA film, suggesting that CA-PLA film is a promising strategy for active packaging to control Salmonella contamination in the meat industry.
Collapse
Affiliation(s)
- Eun Her
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sangha Han
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
4
|
Weston WC, Hales KH, Hales DB. Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Curr Issues Mol Biol 2024; 46:12322-12342. [PMID: 39590326 PMCID: PMC11592616 DOI: 10.3390/cimb46110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This review provides an integrative framework for understanding flaxseed (Linum utassitissimum) as an antimicrobial alternative for poultry production. We begin by familiarizing the reader with the global legislation of antibiotics in animal husbandry; highlighting gaps and current issues for Salmonella enterica (S. enterica) and Eimeria (coccidiosis-inducing). We then discuss the natural, symbiotic characteristics of the Galliformes order (chicken-like birds) and Linum (the flaxes). The key immunological themes in this review include: (i) flaxseed's regulation of innate and adaptive immunity in chickens, (ii) flaxseed's ability to accelerate chicken recovery from infection with S. enterica and Eimeria, and (iii) flaxseed's strengthening of immunity via vitamin B6 antagonism. Research indicates that whole flaxseed increases adaptive immune capacity by augmenting cecal Bacteroides and short-chain fatty acids while also attenuating the heterophil to lymphocyte ratio in chickens. Moreover, flaxseed accelerates chicken recovery from infection with Salmonella Enteritidis or Eimeria tenella; however, future work is needed to better understand (i) defatted flaxseed's superior performance against Eimeria species and (ii) Eimeria maxima's resilience against whole flaxseed. In the context of vitamin B6 antagonism, we propose that 15% whole flaxseed overcomes S. enterica's insult to estrogen synthesis by sustaining the activity of phosphatidylethanolamine methyltransferase (PEMT) in liver. We also propose that 10% defatted flaxseed (as a metformin homologue) strengthens chicken immunity by safeguarding gonadal physiology and by increasing plasma thymidine bioavailability. The concepts in this review can be used as a template for conducting advanced immunological studies in poultry science.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
5
|
Mishra A, Tabassum N, Aggarwal A, Kim YM, Khan F. Artificial Intelligence-Driven Analysis of Antimicrobial-Resistant and Biofilm-Forming Pathogens on Biotic and Abiotic Surfaces. Antibiotics (Basel) 2024; 13:788. [PMID: 39200087 PMCID: PMC11351874 DOI: 10.3390/antibiotics13080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
The growing threat of antimicrobial-resistant (AMR) pathogens to human health worldwide emphasizes the need for more effective infection control strategies. Bacterial and fungal biofilms pose a major challenge in treating AMR pathogen infections. Biofilms are formed by pathogenic microbes encased in extracellular polymeric substances to confer protection from antimicrobials and the host immune system. Biofilms also promote the growth of antibiotic-resistant mutants and latent persister cells and thus complicate therapeutic approaches. Biofilms are ubiquitous and cause serious health risks due to their ability to colonize various surfaces, including human tissues, medical devices, and food-processing equipment. Detection and characterization of biofilms are crucial for prompt intervention and infection control. To this end, traditional approaches are often effective, yet they fail to identify the microbial species inside biofilms. Recent advances in artificial intelligence (AI) have provided new avenues to improve biofilm identification. Machine-learning algorithms and image-processing techniques have shown promise for the accurate and efficient detection of biofilm-forming microorganisms on biotic and abiotic surfaces. These advancements have the potential to transform biofilm research and clinical practice by allowing faster diagnosis and more tailored therapy. This comprehensive review focuses on the application of AI techniques for the identification of biofilm-forming pathogens in various industries, including healthcare, food safety, and agriculture. The review discusses the existing approaches, challenges, and potential applications of AI in biofilm research, with a particular focus on the role of AI in improving diagnostic capacities and guiding preventative actions. The synthesis of the current knowledge and future directions, as described in this review, will guide future research and development efforts in combating biofilm-associated infections.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Chaves AC, Boa Ventura PDV, Pereira MS, da Silva BF, de Carvalho FJN, Costa RA, Lima BP, Maciel WC, Carneiro VA. Preliminary snapshot reveals a relationship between multidrug-resistance and biofilm production among enterobacteriaceae isolated from fecal samples of farm-raised poultry in ceará, Brazil. Microb Pathog 2024; 193:106778. [PMID: 38972366 DOI: 10.1016/j.micpath.2024.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Antimicrobial resistance and biofilm formation by microbial pathogens pose a significant challenge to poultry production systems due to the persistent risk of dissemination and compromise of bird health and productivity. In this context, the study aimed to investigate the occurrence of different multiresistance phenotypes and the biofilm-forming ability of Enterobacteriaceae isolated from broiler chicken excreta in poultry production units in Ceará, Brazil. Samples were collected from three distinct broiler breeding facilities and subjected to isolation, identification, antibiotic susceptibility testing, phenotypic screening for β-lactamases enzymes, and biofilm formation evaluation. Seventy-one strains were identified, being Escherichia coli (37 %) and Proteus mirabilis (32 %), followed by Klebsiella pneumoniae (11 %), Providencia stuartii (9 %), Klebsiella aerogenes (6 %), Alcaligenes faecalis (4 %), and Salmonella sp. (1 %). A significant proportion (87 %) of multiresistant strains were detected. For the phenotypic evaluation of β-lactamases production, strains with resistance to second and third-generation cephalosporins and carbapenems were tested. About 4 of 6 and 10 of 26 were positive for inducible chromosomal AmpC β-lactamase and extended-spectrum β-lactamase (ESBL), respectively. Regarding biofilm formation, it was observed that all MDR strains were capable of forming biofilm. In this sense the potential of these MDR bacteria to develop biofilms becomes a significant concern, representing a real threat to both human and animal health, as biofilms offer stability, antimicrobial protection, and facilitate genetic transfer.
Collapse
Affiliation(s)
- Andrey Carvalho Chaves
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil; Laboratory for Avian Pathological Studies (LABEO), Faculty of Veterinary Medicine, State University of Ceará - UECE, Fortaleza, 60.714.903, Brazil
| | - Priscila de Vasconcelos Boa Ventura
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil; Laboratory for Avian Pathological Studies (LABEO), Faculty of Veterinary Medicine, State University of Ceará - UECE, Fortaleza, 60.714.903, Brazil
| | - Mainara Saraiva Pereira
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil
| | - Benise Ferreira da Silva
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil; Northeast Network of Biotechnology Program (RENORBIO), State University of Ceará, Campus Itaperi, Fortaleza, 60714-903, Brazil
| | - Felipe José Negreiros de Carvalho
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil
| | - Renata Albuquerque Costa
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil
| | - Bruno Pessoa Lima
- Laboratory for Avian Pathological Studies (LABEO), Faculty of Veterinary Medicine, State University of Ceará - UECE, Fortaleza, 60.714.903, Brazil
| | - William Cardoso Maciel
- Laboratory for Avian Pathological Studies (LABEO), Faculty of Veterinary Medicine, State University of Ceará - UECE, Fortaleza, 60.714.903, Brazil
| | - Victor Alves Carneiro
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA - UNINTA, Sobral, 62.050-100, Brazil.
| |
Collapse
|
7
|
Alexakis K, Baliou S, Ioannou P. Predatory Bacteria in the Treatment of Infectious Diseases and Beyond. Infect Dis Rep 2024; 16:684-698. [PMID: 39195003 DOI: 10.3390/idr16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR. Predatory bacteria already have well-known applications beyond medicine, such as in the food industry, biocontrol, and wastewater treatment. Regarding their potential for use in treating infections, several in vitro studies have shown their potential in eliminating various pathogens, including those resistant to multiple antibiotics, and they also suggest minimal immune stimulation and cytotoxicity by predatory bacteria. In vivo animal studies have demonstrated safety and efficacy in reducing bacterial burden in various infection models. However, results can be inconsistent, suggesting dependence on factors like the animal model and the infecting bacteria. Until now, no clinical study in humans exists, but as experience with predatory bacteria grows, future studies including clinical studies in humans could be designed to evaluate their efficacy and safety in humans, thus leading to the potential for approval of a novel method for treating infectious diseases by bacteria.
Collapse
Affiliation(s)
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Xu Y, Yu Z, Wu S, Song M, Cui L, Sun S, Wu J. Pathogenicity of Multidrug-Resistant Salmonella typhimurium Isolated from Ducks. Microorganisms 2024; 12:1359. [PMID: 39065127 PMCID: PMC11279134 DOI: 10.3390/microorganisms12071359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella typhimurium (S. typhimurium) is one of the most common Salmonella serotypes in epidemiological surveys of poultry farms in recent years. It causes growth retardation, mortality, and significant economic losses. The extensive use of antibiotics has led to the emergence of multi-drug resistance (MDR) in Salmonella, which has become a significant global problem and long-term challenge. In this study, we investigated the prevalence and features of S. typhimurium strains in duck embryos and cloacal swabs from large-scale duck farms in Shandong, China, including drug resistance and virulence genes and the pathogenicity of an S. typhimurium strain by animal experiment. The results demonstrated that a total of 8 S. typhimurium strains were isolated from 13,621 samples. The drug resistance results showed that three of the eight S. typhimurium strains were MDR with the dominant resistance profile of CTX-DX-CTR-TE-AMX-AMP-CAZ. In particular, the virulence genes invA, hilA, pefA, rck, and sefA showed high positive rates. Based on the analysis of the biological characteristics of bacterial biofilm formation and mobility, a strain of S. typhimurium with the strongest biofilm formation ability, designated 22SD07, was selected for animal infection experiments with broiler ducklings. The results of animal experiments demonstrated that infection with 22SD07 reduced body weight and bursa index but increased heart and liver indexes compared to the control group. Histological examination revealed desquamation of the intestinal villous epithelium, the presence of large aggregates of lymphocytes, and a decrease in goblet cells following infection. Furthermore, the expression of IL-10 was significantly increased in the liver at 3 dpi, while TNF-α was significantly increased in the spleen at 7 dpi. The above results indicate that S. typhimurium may pose a potential threat to human health through the food chain. This helps us to understand the frequency and characteristics of S. typhimurium in duck farms and emphasizes the urgent need to strengthen and implement effective continuous monitoring to control its infection and transmission.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Zhitong Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Lulu Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
9
|
Liu X, Xia X, Liu Y, Li Z, Shi T, Zhang H, Dong Q. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Res Int 2024; 180:114067. [PMID: 38395584 DOI: 10.1016/j.foodres.2024.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Listeria monocytogenes is an important foodborne pathogen that causes listeriosis, a severe and fatal condition. Biofilms are communities of microorganisms nested within a self-secreted extracellular polymeric substance, and they protect L. monocytogenes from environmental stresses. Biofilms, once formed, can lead to the persistence of L. monocytogenes in processing equipment and are therefore considered to be a major concern for the food industry. This paper briefly introduces the recent advancements on biofilm formation characteristics and detection methods, and focuses on analysis of the mechanism of L. monocytogenes biofilm resistance; Moreover, this paper also summarizes and discusses the existing different techniques of L. monocytogenes biofilm control according to the physical, chemical, biological, and combined strategies, to provide a theoretical reference to aid the choice of effective control technology in the food industry.
Collapse
Affiliation(s)
- Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Maghrawy HH, El Kareem HA, Gomaa OM. Enhanced exopolysaccharide production in gamma irradiated Bacillus subtilis: A biofilm-mediated strategy for ZnO nanoparticles removal. Int J Biol Macromol 2024; 258:128884. [PMID: 38141708 DOI: 10.1016/j.ijbiomac.2023.128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Biofilm-mediated strategy was studied for ZnO nanoparticle removal from aqueous media. Bacillus subtilis isolated from the soil rhizosphere was selected based on its high viscosity (133 Pa/s) of the cultivated culture and biofilm formation. The bacterium was exposed to gamma-irradiation to enhance EPS production along with its cultivation in EPS-producing media. The results show an increase in viscosity that reached 160 Pa/s at 2 kGy. EPS production increased from 4.45 to 7.95 mg/mL and the protein/carbohydrate ratio increased from 3 to 4.4 which reflects the stickiness of EPS. Thermal Gravimetric Analysis (TGA) showed 2 phase weight loss for gamma irradiated EPS and defined protein peaks when characterized using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Native and gamma-irradiated Bacillus subtilis cells with their enhanced EPS were grown as a biofilm on sterile waste gauze fabric, Scanning Electron Microscopy (SEM) showed an increased biofilm attachment in gamma-irradiated samples. The latter was used for the removal of ZnO NP from aqueous media. Energy dispersive X-ray (EDX) mapping confirms that ZnO NPs were entrapped within the carbon and oxygen elements forming the biofilm with net intensities of 14.04, 1713, and 1190, respectively. The results confirm that biofilm-mediated strategy is effective in nanoparticles removal.
Collapse
Affiliation(s)
- Heba Hamed Maghrawy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hussein Abd El Kareem
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
11
|
Salem M, Younis G, Sadat A, Nouh NAT, Binjawhar DN, Abdel-Daim MM, Elbadawy M, Awad A. Dissemination of mcr-1 and β-lactamase genes among Pseudomonas aeruginosa: molecular characterization of MDR strains in broiler chicks and dead-in-shell chicks infections. Ann Clin Microbiol Antimicrob 2024; 23:9. [PMID: 38281970 PMCID: PMC10823725 DOI: 10.1186/s12941-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) is one of the most serious pathogens implicated in antimicrobial resistance, and it has been identified as an ESKAPE along with other extremely significant multidrug resistance pathogens. The present study was carried out to explore prevalence, antibiotic susceptibility phenotypes, virulence-associated genes, integron (int1), colistin (mcr-1), and β-lactamase resistance' genes (ESBls), as well as biofilm profiling of P. aeruginosa isolated from broiler chicks and dead in-shell chicks. DESIGN A total of 300 samples from broiler chicks (n = 200) and dead in-shell chicks (n = 100) collected from different farms and hatcheries located at Mansoura, Dakahlia Governorate, Egypt were included in this study. Bacteriological examination was performed by cultivation of the samples on the surface of both Cetrimide and MacConkey's agar. Presumptive colonies were then subjected to biochemical tests and Polymerase Chain Reaction (PCR) targeting 16S rRNA. The recovered isolates were tested for the presence of three selected virulence-associated genes (lasB, toxA, and exoS). Furthermore, the retrieved isolates were subjected to phenotypic antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method as well as phenotypic detection of ESBLs by both Double Disc Synergy Test (DDST) and the Phenotypic Confirmatory Disc Diffusion Test (PCDDT). P. aeruginosa isolates were then tested for the presence of antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, OXA-2, VEB-1, SHV, TEM, and CTX-M). Additionally, biofilm production was examined by the Tube Adherent method (TA) and Microtiter Plate assay (MTP). RESULTS Fifty -five isolates were confirmed to be P. aeruginosa, including 35 isolates from broiler chicks and 20 isolates from dead in-shell chicks. The three tested virulence genes (lasB, toxA, and exoS) were detected in all isolates. Antibiogram results showed complete resistance against penicillin, amoxicillin, ceftriaxone, ceftazidime, streptomycin, erythromycin, spectinomycin, and doxycycline, while a higher sensitivity was observed against meropenem, imipenem, colistin sulfate, ciprofloxacin, and gentamicin. ESBL production was confirmed in 12 (21.8%) and 15 (27.3%) isolates by DDST and PCDDT, respectively. Antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, SHV, TEM, and CTX-M), were detected in 87.3%, 18.2%, 16.4%, 69.1%, 72.7%, and 54.5% of the examined isolates respectively, whereas no isolate harbored the OXA-2 or VEB-1 genes. Based on the results of both methods used for detection of biofilm formation, Kappa statistics [kappa 0.324] revealed a poor agreement between both methods. CONCLUSIONS the emergence of mcr-1 and its coexistence with other resistance genes such as β-lactamase genes, particularly blaOXA-10, for the first time in P. aeruginosa from young broiler chicks and dead in-shell chicks in Egypt pose a risk not only to the poultry industry but also to public health.
Collapse
Affiliation(s)
- Mona Salem
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Younis
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Sadat
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nehal Ahmed Talaat Nouh
- Program Medicine, Department of Microbiology, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
12
|
Carneiro DG, Pereira Aguilar A, Mantovani HC, Mendes TADO, Vanetti MCD. The quorum sensing molecule C12-HSL promotes biofilm formation and increases adrA expression in Salmonella Enteritidis under anaerobic conditions. BIOFOULING 2024; 40:14-25. [PMID: 38254292 DOI: 10.1080/08927014.2024.2305385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.
Collapse
Affiliation(s)
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Hilário Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Department of Animal and Dairy Sciences, University of WI, Madison, USA
| | | | | |
Collapse
|
13
|
Jordá J, Lorenzo-Rebenaque L, Montoro-Dasi L, Marco-Fuertes A, Vega S, Marin C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals (Basel) 2023; 13:3826. [PMID: 38136863 PMCID: PMC10740442 DOI: 10.3390/ani13243826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
Collapse
Affiliation(s)
- Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| |
Collapse
|
14
|
Galán-Relaño Á, Valero Díaz A, Huerta Lorenzo B, Gómez-Gascón L, Mena Rodríguez MÁ, Carrasco Jiménez E, Pérez Rodríguez F, Astorga Márquez RJ. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals (Basel) 2023; 13:3666. [PMID: 38067017 PMCID: PMC10705591 DOI: 10.3390/ani13233666] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 11/19/2024] Open
Abstract
Salmonellosis is globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products, particularly those derived from the poultry and pig industry. Salmonella spp. is generally associated with self-limiting gastrointestinal symptoms, lasting between 2 and 7 days, which can vary from mild to severe. The bacteria can also spread in the bloodstream, causing sepsis and requiring effective antimicrobial therapy; however, sepsis rarely occurs. Salmonellosis control strategies are based on two fundamental aspects: (a) the reduction of prevalence levels in animals by means of health, biosecurity, or food strategies and (b) protection against infection in humans. At the food chain level, the prevention of salmonellosis requires a comprehensive approach at farm, manufacturing, distribution, and consumer levels. Proper handling of food, avoiding cross-contamination, and thorough cooking can reduce the risk and ensure the safety of food. Efforts to reduce transmission of Salmonella by food and other routes must be implemented using a One Health approach. Therefore, in this review we provide an update on Salmonella, one of the main zoonotic pathogens, emphasizing its relationship with animal and public health. We carry out a review on different topics about Salmonella and salmonellosis, with a special emphasis on epidemiology and public health, microbial behavior along the food chain, predictive microbiology principles, antimicrobial resistance, and control strategies.
Collapse
Affiliation(s)
- Ángela Galán-Relaño
- Animal Health Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (Á.G.-R.); (B.H.L.); (L.G.-G.); (M.Á.M.R.); (R.J.A.M.)
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
| | - Antonio Valero Díaz
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
- Food Science and Technology Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain
| | - Belén Huerta Lorenzo
- Animal Health Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (Á.G.-R.); (B.H.L.); (L.G.-G.); (M.Á.M.R.); (R.J.A.M.)
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
| | - Lidia Gómez-Gascón
- Animal Health Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (Á.G.-R.); (B.H.L.); (L.G.-G.); (M.Á.M.R.); (R.J.A.M.)
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
| | - M.ª Ángeles Mena Rodríguez
- Animal Health Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (Á.G.-R.); (B.H.L.); (L.G.-G.); (M.Á.M.R.); (R.J.A.M.)
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
| | - Elena Carrasco Jiménez
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
- Food Science and Technology Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain
| | - Fernando Pérez Rodríguez
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
- Food Science and Technology Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain
| | - Rafael J. Astorga Márquez
- Animal Health Department, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (Á.G.-R.); (B.H.L.); (L.G.-G.); (M.Á.M.R.); (R.J.A.M.)
- Zoonotic and Emerging Diseases (ENZOEM), University of Cordoba, 14014 Cordoba, Spain; (E.C.J.); (F.P.R.)
| |
Collapse
|
15
|
Yuan L, Fan L, Dai H, He G, Zheng X, Rao S, Yang Z, Jiao XA. Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165695. [PMID: 37487904 DOI: 10.1016/j.scitotenv.2023.165695] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Exposure to sub-inhibitory concentrations (sub-MICs) of antibiotics could induce the biofilm formation of microorganisms, but its underlying mechanisms still remain elusive. In the present work, biofilm formation by Salmonella Typhimurium M3 was increased when in the presence of tetracycline at sub-MIC, and the highest induction was observed with tetracycline at 1/8 MIC. The integration of RNA-sequencing and untargeted metabolomics was applied in order to further decipher the potential mechanisms for this observation. In total, 439 genes and 144 metabolites of S. Typhimurium M3 were significantly expressed after its exposure to 1/8 MIC of tetracycline. In addition, the co-expression analysis revealed that 6 genes and 8 metabolites play a key role in response to 1/8 MIC of tetracycline. The differential genes and metabolites were represented in 12 KEGG pathways, including five pathways of amino acid metabolism (beta-alanine metabolism, tryptophan metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glutathione metabolism), three lipid metabolism pathways (biosynthesis of unsaturated fatty acids, fatty acid degradation, and fatty acid biosynthesis), two nucleotide metabolism pathways (purine metabolism, and pyrimidine metabolism), pantothenate and CoA biosynthesis, and ABC transporters. Metabolites (anthranilate, indole, and putrescine) from amino acid metabolism may act as signaling molecules to promote the biofilm formation of S. Typhimurium M3. The results of this work highlight the importance of low antimicrobial concentrations on foodborne pathogens of environmental origin.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Luyao Fan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Shengqi Rao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
16
|
Liu T, Zhai Y, Jeong KC. Advancing understanding of microbial biofilms through machine learning-powered studies. Food Sci Biotechnol 2023; 32:1653-1664. [PMID: 37780593 PMCID: PMC10533454 DOI: 10.1007/s10068-023-01415-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Microbial biofilms are prevalent in various environments and pose significant challenges to food safety and public health. The biofilms formed by pathogens can cause food spoilage, foodborne illness, and infectious diseases, which are difficult to treat due to their enhanced antimicrobial resistance. While the composition and development of biofilms have been widely studied, their profound impact on food, the food industry, and public health has not been sufficiently recapitulated. This review aims to provide a comprehensive overview of microbial biofilms in the food industry and their implication on public health. It highlights the existence of biofilms along the food-producing chains and the underlying mechanisms of biofilm-associated diseases. Furthermore, this review thoroughly summarizes the enhanced understanding of microbial biofilms achieved through machine learning approaches in biofilm research. By consolidating existing knowledge, this review intends to facilitate developing effective strategies to combat biofilm-associated infections in both the food industry and public health.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| |
Collapse
|
17
|
Mun W, Choi SY, Upatissa S, Mitchell RJ. Predatory bacteria as potential biofilm control and eradication agents in the food industry. Food Sci Biotechnol 2023; 32:1729-1743. [PMID: 37780591 PMCID: PMC10533476 DOI: 10.1007/s10068-023-01310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Yeol Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
18
|
Pang X, Hu X, Du X, Lv C, Yuk HG. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp. Food Sci Biotechnol 2023; 32:1703-1718. [PMID: 37780596 PMCID: PMC10533767 DOI: 10.1007/s10068-023-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xin Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xueying Du
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Chenglong Lv
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea
| |
Collapse
|
19
|
Wilsmann DE, Furian TQ, Carvalho D, Chitolina GZ, Lucca V, Emery BD, Borges KA, Martins AC, Pontin KP, Salle CTP, de Souza Moraes HL, do Nascimento VP. Antibiofilm activity of electrochemically activated water (ECAW) in the control of Salmonella Heidelberg biofilms on industrial surfaces. Braz J Microbiol 2023; 54:2035-2045. [PMID: 37184738 PMCID: PMC10485189 DOI: 10.1007/s42770-023-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Owing to its antimicrobial activity, electrochemically activated water (ECAW) is a potential alternative to chemical disinfectants for eliminating foodborne pathogens, including Salmonella Heidelberg, from food processing facilities. However, their antibiofilm activity remains unclear. This study aimed to evaluate the antibiofilm activity of ECAW against S. Heidelberg biofilms formed on stainless steel and polyethylene and to determine its corrosive capacity. ECAW (200 ppm) and a broad-spectrum disinfectant (0.2%) were tested for their antibiofilm activity against S. Heidelberg at 25 °C and 37 °C after 10 and 20 min of contact with stainless steel and polyethylene. Potentiostatic polarization tests were performed to compare the corrosive capacity of both compounds. Both compounds were effective in removing S. Heidelberg biofilms. Bacterial counts were significantly lower with ECAW than with disinfectant in polyethylene, regardless the time of contact. The time of contact and the surface significantly influenced the bacterial counts of S. Heidelberg. Temperature was not an important factor affecting the antibiofilm activities of the compounds. ECAW was less corrosive than the disinfectant. ECAW demonstrated a similar or even superior effect in the control of S. Heidelberg biofilms, when compared to disinfectants, reducing bacterial counts by up to 5 log10 CFU cm-2. The corrosion of stainless steel with ECAW was similar to that of commercial disinfectants. This technology is a possible alternative for controlling S. Heidelberg in the food production chain.
Collapse
Affiliation(s)
- Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vivian Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Brunna Dias Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Abrahão Carvalho Martins
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karine Patrin Pontin
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| |
Collapse
|
20
|
Ribeiro JM, Pereira GN, Durli Junior I, Teixeira GM, Bertozzi MM, Verri WA, Kobayashi RKT, Nakazato G. Comparative analysis of effectiveness for phage cocktail development against multiple Salmonella serovars and its biofilm control activity. Sci Rep 2023; 13:13054. [PMID: 37567926 PMCID: PMC10421930 DOI: 10.1038/s41598-023-40228-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Foodborne diseases are a major challenge in the global food industry, especially those caused by multidrug-resistant (MDR) bacteria. Bacteria capable of biofilm formation, in addition to MDR strains, reduce the treatment efficacy, posing a significant threat to bacterial control. Bacteriophages, which are viruses that infect and kill bacteria, are considered a promising alternative in combating MDR bacteria, both in human medicine and animal production. Phage cocktails, comprising multiple phages, are commonly employed to broaden the host range and prevent or delay the development of phage resistance. There are numerous techniques and protocols available to evaluate the lytic activity of bacteriophages, with the most commonly used methods being Spot Test Assays, Efficiency of Plating (EOP), and infection assays in liquid culture. However, there is currently no standardization for which analyses should be employed and the possible differences among them in order to precisely determine the host range of phages and the composition of a cocktail. A preliminary selection using the Spot Test Assay resulted in four phages for subsequent evaluation against a panel of 36 Salmonella isolates of numerous serovars. Comparing EOP and infection assays in liquid culture revealed that EOP could underestimate the lytic activity of phages, directly influencing phage cocktail development. Moreover, the phage cocktail containing the four selected phages was able to control or remove biofilms formed by 66% (23/35) of the isolates, including those exhibiting low susceptibility to phages, according to EOP. Phages were characterized genomically, revealing the absence of genes associated with antibiotic resistance, virulence factors, or integrases. According to confocal laser scanning microscopy analysis, the biofilm maturation of one Salmonella isolate, which exhibited high susceptibility to phages in liquid culture and 96-well plates biofilm viability assays but had low values for EOP, was found to be inhibited and controlled by the phage cocktail. These observations indicate that phages could control and remove Salmonella biofilms throughout their growth and maturation process, despite their low EOP values. Moreover, using infection assays in liquid culture enables a more precise study of phage interactions for cocktail design timelessly and effortlessly. Hence, integrating strategies and techniques to comprehensively assess the host range and lytic activity of bacteriophages under different conditions can demonstrate more accurately the antibacterial potential of phage cocktails.
Collapse
Affiliation(s)
- Jhonatan Macedo Ribeiro
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, PR, Brazil
| | - Giovana Nicolete Pereira
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, PR, Brazil
| | - Itamar Durli Junior
- Laboratory of Bioinformatics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, State University of Londrina, Londrina, PR, Brazil
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
21
|
Kolypetri S, Kostoglou D, Nikolaou A, Kourkoutas Y, Giaouris E. Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano ( Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes. Foods 2023; 12:2893. [PMID: 37569162 PMCID: PMC10418746 DOI: 10.3390/foods12152893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Essential oils (EOs) are plant mixtures that are known to present strong bioactivities, including a wide antimicrobial action. Biofilms are microbial sessile structures that represent the default mode of growth of microorganisms in most environments. This study focused on the antimicrobial action of the EO extracted from one of the most representative oregano species, that is, Origanum vulgare (subsp. hirtum), against two important foodborne pathogens, Salmonella enterica (serovar Typhimurium) and Listeria monocytogenes. For this, the minimum inhibitory concentrations of the EO against the planktonic and biofilm growth of each bacterium were determined (MICs, MBICs), together with the minimum bactericidal and biofilm eradication concentrations (MBCs, MBECs). The EO was also analyzed for its chemical composition by gas chromatography-mass spectrometry analysis (GC-MS). The influence of EO exposure on the expression of some important virulence genes (hly, inlA, inlB and prfA) was also studied in L. monocytogenes. Results revealed a strong antibacterial and antibiofilm action with MICs and MBICs ranging from 0.03% to 0.06% (v/v) and from 0.06% to 0.13% (v/v), respectively. The application of the EO at 6.25% (v/v) for 15 min resulted in the total eradication of the biofilm cells of both pathogens. The EO was mainly composed of thymol, p-cymene, γ-terpinene and carvacrol. The 3 h exposure of L. monocytogenes planktonic cells to the EO at its MBIC (0.06% v/v) resulted in the significant downregulation of all the studied genes (p < 0.05). To sum, the results obtained advocate for the further exploitation of the antimicrobial action of oregano EO in food and health applications.
Collapse
Affiliation(s)
- Sonia Kolypetri
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Dimitra Kostoglou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
22
|
Almuzaini AM. Phytochemicals: potential alternative strategy to fight Salmonella enterica serovar Typhimurium. Front Vet Sci 2023; 10:1188752. [PMID: 37261108 PMCID: PMC10228746 DOI: 10.3389/fvets.2023.1188752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 06/02/2023] Open
Abstract
The rise of multidrug resistant (MDR) microorganisms is a great hazard worldwide and has made it difficult to treat many infectious diseases adequately. One of the most prevalent causes of outbreaks of foodborne illness worldwide is Salmonella. The ability of this and other harmful bacteria to withstand antibiotics has recently proven crucial to their effective control. Since the beginning of time, herbal medicines and phytochemicals have been employed for their potent antibacterial action and there is a growing trend toward the production of plant based natural products for the prevention and treatment of pathogenic infections. Numerous phytochemicals have been proven effective against the molecular determinants responsible for attaining drug resistance in pathogens like efflux pumps, membrane proteins, bacterial cell communications and biofilms. The medicinal plants having antibacterial activity and antibiotics combination with phytochemicals have shown synergetic activity against Salmonella enterica serovar Typhimurium. The inhibitory effects of tannins on rumen proteolytic bacteria can be exploited in ruminant nutrition. Improved control of the rumen ecology and practical use of this feed additive technology in livestock production will be made possible by a better knowledge of the modulatory effects of phytochemicals on the rumen microbial populations in combination with fermentation. This review focuses on the development of antibacterial resistance in Salmonella, the mechanism of action of phytochemicals and the use of phytochemicals against S. enterica serovar Typhimurium. The advances and potential future applications of phytochemicals in the fight against resistant are also discussed.
Collapse
|
23
|
Thames HT, Pokhrel D, Willis E, Rivers O, Dinh TTN, Zhang L, Schilling MW, Ramachandran R, White S, Sukumaran AT. Salmonella Biofilm Formation under Fluidic Shear Stress on Different Surface Materials. Foods 2023; 12:foods12091918. [PMID: 37174455 PMCID: PMC10178852 DOI: 10.3390/foods12091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
This study characterized biofilm formation of various Salmonella strains on common processing plant surface materials (stainless steel, concrete, rubber, polyethylene) under static and fluidic shear stress conditions. Surface-coupons were immersed in well-plates containing 1 mL of Salmonella (6 log CFU/mL) and incubated aerobically for 48 h at 37 °C in static or shear stress conditions. Biofilm density was determined using crystal violet assay, and biofilm cells were enumerated by plating on tryptic soy agar plates. Biofilms were visualized using scanning electron microscopy. Data were analyzed by SAS 9.4 at a significance level of 0.05. A surface-incubation condition interaction was observed for biofilm density (p < 0.001). On stainless steel, the OD600 was higher under shear stress than static incubation; whereas, on polyethylene, the OD600 was higher under static condition. Enumeration revealed surface-incubation condition (p = 0.024) and surface-strain (p < 0.001) interactions. Among all surface-incubation condition combinations, the biofilm cells were highest on polyethylene under fluidic shear stress (6.4 log/coupon; p < 0.001). Biofilms of S. Kentucky on polyethylene had the highest number of cells (7.80 log/coupon) compared to all other strain-surface combinations (p < 0.001). Electron microscopy revealed morphological and extracellular matrix differences between surfaces. Results indicate that Salmonella biofilm formation is influenced by serotype, surface, and fluidic shear stress.
Collapse
Affiliation(s)
- Hudson T Thames
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Emma Willis
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Orion Rivers
- Institute for Imaging & Analytical Technologies, Mississippi State University, Starkville, MS 39762, USA
| | - Thu T N Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Mark W Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Shecoya White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Anuraj T Sukumaran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
24
|
Tomé AR, Carvalho FM, Teixeira-Santos R, Burmølle M, Mergulhão FJM, Gomes LC. Use of Probiotics to Control Biofilm Formation in Food Industries. Antibiotics (Basel) 2023; 12:antibiotics12040754. [PMID: 37107116 PMCID: PMC10135146 DOI: 10.3390/antibiotics12040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Microorganisms tend to adhere to food contact surfaces and form biofilms, which serve as reservoirs for bacteria that can contaminate food. As part of a biofilm, bacteria are protected from the stressful conditions found during food processing and become tolerant to antimicrobials, including traditional chemical sanitisers and disinfectants. Several studies in the food industry have shown that probiotics can prevent attachment and the consequent biofilm formation by spoilage and pathogenic microorganisms. This review discusses the most recent and relevant studies on the effects of probiotics and their metabolites on pre-established biofilms in the food industry. It shows that the use of probiotics is a promising approach to disrupt biofilms formed by a large spectrum of foodborne microorganisms, with Lactiplantibacillus and Lacticaseibacillus being the most tested genera, both in the form of probiotic cells and as sources of cell-free supernatant. The standardisation of anti-biofilm assays for evaluating the potential of probiotics in biofilm control is of extreme importance, enabling more reliable, comparable, and predictable results, thus promoting significant advances in this field.
Collapse
Affiliation(s)
- Andreia R Tomé
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fábio M Carvalho
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Filipe J M Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
25
|
Prasad A, Roopesh MS. Bacterial biofilm reduction by 275 and 455 nm light pulses emitted from light emitting diodes. J Food Saf 2023. [DOI: 10.1111/jfs.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amritha Prasad
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| | - M. S. Roopesh
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
26
|
Salam F, Lekshmi M, Prabhakar P, Kumar SH, Nayak BB. Physiological characteristics and virulence gene composition of selected serovars of seafood-borne Salmonella enterica. Vet World 2023; 16:431-438. [PMID: 37041837 PMCID: PMC10082740 DOI: 10.14202/vetworld.2023.431-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/29/2023] [Indexed: 03/17/2023] Open
Abstract
Background and Aim: All serotypes of Salmonella enterica are considered potentially pathogenic. However, the non-typhoidal Salmonella (NTS) serotypes vary considerably in terms of pathogenicity and the severity of infections. Although diverse serotypes of NTS have been reported from tropical seafood, their sources, physiological characteristics, and virulence potentials are not well understood. This study aimed to compare the physiological characteristics of selected serovars of Salmonella from seafood and investigate possible variations in the distribution of known genes within the pathogenicity islands.
Materials and Methods: A series of biochemical tests, including carbohydrate fermentation and amino acid decarboxylation tests were performed to physiologically compare the isolates. The genetic characterization with respect to putative virulence genes was done by screening for genes associated with Salmonella pathogenicity island (SPI) I– V, as well as the toxin- and prophage-associated genes by polymerase chain reaction.
Results: Irrespective of serotypes, all the isolates uniformly harbored the five SPIs screened in this study. However, some virulence genes, such as the avrA, sodC, and gogB were not detected in all Salmonella isolates. The biochemical profiles of Salmonella serotypes were highly conserved except for variations in inositol fermentation and citrate utilization. All the isolates of this study were weak biofilm formers on polystyrene surfaces.
Conclusion: The pathogenicity profiles of environmental NTS isolates observed in this study suggest that they possess the virulence machinery necessary to cause human infections and therefore, urgent measures to contain Salmonella contamination of seafood are required to ensure the safety of consumers.
Keywords: biofilm, invasion, non-typhoidal Salmonella, Salmonella pathogenicity islands, seafood, virulence.
Collapse
Affiliation(s)
- Fathima Salam
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manjusha Lekshmi
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Parmanand Prabhakar
- Fish Processing Technology, College of Fisheries, Bihar Animal Sciences University, Patna, Bihar, India
| | - Sanath H. Kumar
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Binaya Bhusan Nayak
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
27
|
Dias de Emery B, Zottis Chitolina G, Qadir MI, Quedi Furian T, Apellanis Borges K, de Souza Moraes HL, Pippi Salle CT, Pinheiro do Nascimento V. Antimicrobial and antibiofilm activity of silver nanoparticles against Salmonella Enteritidis. Braz J Microbiol 2023; 54:285-292. [PMID: 36348257 PMCID: PMC9944331 DOI: 10.1007/s42770-022-00868-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Salmonella enterica serotype Enteritidis is one of the main pathogens associated with foodborne illnesses worldwide. Biofilm formation plays a significant role in the persistence of pathogens in food production environments. Owing to an increase in antimicrobial resistance, there is a growing need to identify alternative methods to control pathogenic microorganisms in poultry environments. Thus, this study aimed to synthesize silver nanoparticles (AgNPs) and evaluate their antibiofilm activity against poultry-origin Salmonella Enteritidis in comparison to a chemical disinfectant. AgNPs were synthesized, characterized, and tested for their minimum inhibitory concentration, minimum bactericidal concentration, and antibiofilm activity against S. Enteritidis strains on polyethylene surfaces. The synthesized AgNPs, dispersed in a liquid medium, were spherical in shape with a mean diameter of 6.2 nm. AgNPs exhibited concentration-dependent bactericidal action. The bacterial reduction was significantly higher with AgNPs (3.91 log10 CFU [Formula: see text] cm-2) than that with sanitizer (2.57 log10 CFU ∙ cm-2). Regarding the time of contact, the bacterial count after a contact time of 30 min was significantly lower than that after 10 min. The AgNPs exhibited antimicrobial and antibiofilm activity for the removal of biofilms produced by S. Enteritidis, demonstrating its potential as an alternative antimicrobial agent. The bactericidal mechanisms of AgNPs are complex; hence, the risk of bacterial resistance is minimal, making nanoparticles a potential alternative for microbial control in the poultry chain.
Collapse
Affiliation(s)
- Brunna Dias de Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Muhammad Irfan Qadir
- Laboratório de Catálise Molcular, Instituto de Química, Universidade Federal do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande Do Sul, 91501-570, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil.
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| |
Collapse
|
28
|
Chowdhury MAH, Ashrafudoulla M, Mevo SIU, Mizan MFR, Park SH, Ha SD. Current and future interventions for improving poultry health and poultry food safety and security: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1555-1596. [PMID: 36815737 DOI: 10.1111/1541-4337.13121] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
Poultry is thriving across the globe. Chicken meat is the most preferred poultry worldwide, and its popularity is increasing. However, poultry also threatens human hygiene, especially as a fomite of infectious diseases caused by the major foodborne pathogens (Campylobacter, Salmonella, and Listeria). Preventing pathogenic bacterial biofilm is crucial in the chicken industry due to increasing food safety hazards caused by recurring contamination and the rapid degradation of meat, as well as the increased resistance of bacteria to cleaning and disinfection procedures commonly used in chicken processing plants. To address this, various innovative and promising strategies to combat bacterial resistance and biofilm are emerging to improve food safety and quality and extend shelf-life. In particular, natural compounds are attractive because of their potential antimicrobial activities. Natural compounds can also boost the immune system and improve poultry health and performance. In addition to phytochemicals, bacteriophages, nanoparticles, coatings, enzymes, and probiotics represent unique and environmentally friendly strategies in the poultry processing industry to prevent foodborne pathogens from reaching the consumer. Lactoferrin, bacteriocin, antimicrobial peptides, cell-free supernatants, and biosurfactants are also of considerable interest for their prospective application as natural antimicrobials for improving the safety of raw poultry meat. This review aims to describe the feasibility of these proposed strategies and provide an overview of recent published evidences to control microorganisms in the poultry industry, considering the human health, food safety, and economic aspects of poultry production.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
29
|
Antimicrobial and Antibiofilm Effect of Commonly Used Disinfectants on Salmonella Infantis Isolates. Microorganisms 2023; 11:microorganisms11020301. [PMID: 36838265 PMCID: PMC9958858 DOI: 10.3390/microorganisms11020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar in broilers and broiler meat in the European Union. The aim of our study was to test the biofilm formation and antimicrobial effect of disinfectants on genetically characterized S. Infantis isolates from poultry, food, and humans. For the biofilm formation under various temperature conditions (8 °C, 20 °C, and 28 °C) and incubation times (72 h and 168 h), the crystal violet staining method was used. The evaluation of the in vitro antimicrobial effect of Ecocid® S, ethanol, and hydrogen peroxide was determined using the broth microdilution method. The antibiofilm effect of subinhibitory concentration (1/8 MIC) of disinfectants was then tested on S. Infantis 323/19 strain that had the highest biofilm formation potential. Our results showed that the biofilm formation was strain-specific; however, it was higher at 20 °C and prolonged incubation time. Moreover, strains carrying a pESI plasmid showed higher biofilm formation potential. The antibiofilm potential of disinfectants on S. Infantis 323/19 strain at 20 °C was effective after a shorter incubation time. As shown in our study, more effective precautionary measures should be implemented to ensure biofilm prevention and removal in order to control the S. Infantis occurrence.
Collapse
|
30
|
Guo L, Xiao T, Wu L, Li Y, Duan X, Liu W, Liu K, Jin W, Ren H, Sun J, Liu Y, Liao X, Zhao Y. Comprehensive profiling of serotypes, antimicrobial resistance and virulence of Salmonella isolates from food animals in China, 2015-2021. Front Microbiol 2023; 14:1133241. [PMID: 37082181 PMCID: PMC10110913 DOI: 10.3389/fmicb.2023.1133241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction Salmonella is a ubiquitous foodborne pathogen and mainly transmitted to human farm-to-fork chain through contaminated foods of animal origin. Methods In this study, we investigated the serotypes, antimicrobial resistance and virulence of Salmonella from China. Results A total of 617 Salmonella isolates were collected from 4 major food animal species across 23 provi nces in China from 2015-2021. Highest Salmonella prevalence were observed in Guangdong (44.4%) and Sandong (23.7%). Chickens (43.0%) was shown to be the major source of Salmonella contamination, followed by pigs (34.5%) and ducks (18.5%). The number of Salmonella increased significantly from 5.51% to 27.23% during 2015-2020. S. Derby (17.3%), S. Enteritidis (13.1%) and S. Typhimurium (11.4%) were the most common serotypes among 41 serotypes identifiedin this study. Antibiotic susceptibility testing showing that the majority of the Salmonella isolates were resistant to neomycin (99.7%), tetracycline (98.1%), ampicillin (97.4%), sulfadiazine/trimethoprim (97.1%), nalidixic acid (89.1%), doxycycline (83.1%), ceftria xone (70.3%), spectinomycin (67.7%), florfenicol (60.0%), cefotaxime (52.0%) and lomefloxacin (59.8%). The rates of resistance to multiple antibiotics in S. Derby and S.Typhimurium were higher than that in S. Enteritidis. However, the rate of resistance to fosfomycin were observed from higher to lower by S. Derby, S. Enteritidis, and S. Typhimurium. Biofilm formation ability analysis found that 88.49%of the Salmonella were able to produce biofilms, of which 236 Salmonella isolates were strong biofilm producer. Among the 26 types of antibiotics resistance genes (ARGs) were identified in this study, 4 ARGs (tetB,sul2,aadA2, and aph(3')-IIa) were highly prevalent. In addition, 5 β-lactam resistance genes (bla TEM, bla SHV, bla CMY-2, bla CTX-M, and bla OXA) and 7 quinolone resistance genes (oqxA, oqxB, qnrB, qnrC, qnrD, qnrS, and qeqA) were detected among these isolates. 12 out of 17 virulence genes selected in this study were commonly presented in the chromosomes of tested isolate, with a detection rate of over 80%, including misL, spiA, stn, pagC, iroN, fim, msgA, sopB, prgH, sitC, ttrC, spaN. Discussion This study provided a systematical updating on surveillance on prevalence of Salmonella from food animals in China, shedding the light on continued vigilance for Salmonella in food animals.
Collapse
Affiliation(s)
- Lili Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Bolin Biotechnology Co., Qingdao, China
| | - Tianan Xiao
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Liqin Wu
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Yan Li
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Kaidi Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjie Jin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Xiaoping Liao,
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Yongda Zhao,
| |
Collapse
|
31
|
Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens 2022; 12:pathogens12010035. [PMID: 36678383 PMCID: PMC9864247 DOI: 10.3390/pathogens12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella can form biofilms that contribute to its resistance in food processing environments. Biofilms are a dense population of cells that adhere to the surface, creating a matrix composed of extracellular polymeric substances (EPS) consisting mainly of polysaccharides, proteins, and eDNA. Remarkably, the secreted substances, including cellulose, curli, and colanic acid, act as protective barriers for Salmonella and contribute to its resistance and persistence when exposed to disinfectants. Conventional treatments are mostly ineffective in controlling this problem; therefore, exploring anti-biofilm molecules that minimize and eradicate Salmonella biofilms is required. The evidence indicated that terpenes effectively reduce biofilms and affect their three-dimensional structure due to the decrease in the content of EPS. Specifically, in the case of Salmonella, cellulose is an essential component in their biofilms, and its control could be through the inhibition of glycosyltransferase, the enzyme that synthesizes this polymer. The inhibition of polymeric substances secreted by Salmonella during biofilm development could be considered a target to reduce its resistance to disinfectants, and terpenes can be regarded as inhibitors of this process. However, more studies are needed to evaluate the effectiveness of these compounds against Salmonella enzymes that produce extracellular polymeric substances.
Collapse
|
32
|
Phage Therapy vs. the Use of Antibiotics in the Treatment of Salmonella-Infected Chickens: Comparison of Effects on Hematological Parameters and Selected Biochemical Markers. Antibiotics (Basel) 2022; 11:antibiotics11121787. [PMID: 36551444 PMCID: PMC9774583 DOI: 10.3390/antibiotics11121787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Previous studies indicated that the use of a phage cocktail, composed of bacteriophages vB_SenM-2 and vB_Sen-TO17, is effective in killing cells of Salmonella enterica serovars Typhimurium and Enteritidis in vitro and in the Galleria mellonella animal model as efficiently as antibiotics (enrofloxacin or colistin) and induced fewer deleterious changes in immune responses. Here, we investigated the effects of this phage cocktail on the hematological parameters and selected biochemical markers in chickens infected with S. enterica serovar Typhimurium, in comparison to those caused by enrofloxacin or colistin. We found that treatment with antibiotics (especially with enrofloxacin) caused nonbeneficial effects on red blood cell parameters, including hematocrit, MCV, MCH, and MCHC. However, Salmonella-induced changes in the aforementioned parameters were normalized by the use of the phage cocktail. Importantly, hepatotoxicity was suggested to be induced by both antibiotics on the basis of increased alanine transaminase (ALT) and aspartate aminotransferase (AST) activities, in contrast to the phage cocktail, which did not influence these enzymes. We conclude that phage therapy with the cocktail of vB_SenM-2 and vB_Sen-TO17 in Salmonella-infected chickens is not only as effective as antibiotics but also significantly safer for the birds than enrofloxacin and colistin.
Collapse
|
33
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
34
|
Simoni C, de Campos Ausani T, Laviniki V, Lopes GV, de Itapema Cardoso MR. Salmonella Derby from pig production chain over a 10-year period: antimicrobial resistance, biofilm formation, and genetic relatedness. Braz J Microbiol 2022; 53:2185-2194. [PMID: 36279095 PMCID: PMC9679096 DOI: 10.1007/s42770-022-00846-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate 140 Salmonella Derby isolates collected over a 10-year period from porcine origins (environment, pig carcass, lymph nodes, intestinal content, and pork) for their phenotypic and genotypic antimicrobial resistance, their ability to produce biofilm, and their genetic relatedness. The minimum inhibitory concentration (MIC) was determined using microdilution broth method and antimicrobial resistance genes were investigated by PCR. The quantification of biofilm formation was performed in sterile polystyrene microtiter plates. Genetic relatedness was determined by Xba-I macrorestriction analysis. The highest frequencies of non-wildtype (nWT) populations were observed against tetracycline (75.7%), streptomycin (70%), and colistin (11.4%), whereas wildtype populations were observed against ciprofloxacin, ceftazidime, and gentamicin. The resistance genes found were blaTEM (ampicillin), aadA variant (streptomycin/spectinomycin), tetA (tetracycline), and floR (florfenicol). On 96-well polystyrene microtiter plate, 68.6% of the isolates proved to be biofilm producers. Among 36 S. Derby isolates selected to PFGE analysis, 22 were clustered with 83.6% of similarity. Additionally, 27 isolates were clustered in 11 pulsotypes, which presented more than one strain with 100% of similarity. Most of S. Derby isolates were able to form biofilm and were classified as nWT or resistant to tetracycline, streptomycin, and colistin. PFGE allowed the identification of closely related S. Derby isolates that circulated in pig slaughterhouses and pork derived products along a decade.
Collapse
Affiliation(s)
- Cintia Simoni
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil
| | - Thais de Campos Ausani
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil
| | - Vanessa Laviniki
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil
| | - Graciela Volz Lopes
- Agroindustrial Science and Technology Department, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas (UFPel), Rio Grande do Sul, Brazil
| | - Marisa Ribeiro de Itapema Cardoso
- Preventive Veterinary Medicine Department, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul, 9090, 91540-000, Brazil.
| |
Collapse
|
35
|
Chin NA, Salihah NT, Shivanand P, Ahmed MU. Recent trends and developments of PCR-based methods for the detection of food-borne Salmonella bacteria and Norovirus. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4570-4582. [PMID: 36276542 PMCID: PMC9579247 DOI: 10.1007/s13197-021-05280-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
In recent years, rapid detection methods such as polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) have been continuously developed to improve the detection of food-borne pathogens in food samples. The recent developments of PCR and qPCR in the detection and identification of these food-borne pathogens are described and elaborated throughout this review. Specifically, further developments and improvements of qPCR are discussed in detecting Salmonella and norovirus. Promising advances in these molecular detection methods have been widely used to prevent human food-borne illnesses and death caused by the food-borne pathogens. In addition, this review presents the limitations and challenges of the detection methods which include conventional culture method and conventional PCR method in detecting Salmonella and norovirus. Furthermore, several advances of qPCR such as viability PCR (vPCR) and digital PCR (dPCR) have been discussed in the detection of Salmonella and norovirus. Good practice of analysis of the food-borne pathogens and other contaminants in the food industry as well as the advancement of molecular detection methods will help improve and ensure food safety and food quality.
Collapse
Affiliation(s)
- Nur Areena Chin
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| | - Nur Thaqifah Salihah
- Universiti Islam Sultan Sharif Ali, Jalan Pasar Baharu, Gadong, BE1310 Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| |
Collapse
|
36
|
Toushik SH, Roy A, Alam M, Rahman UH, Nath NK, Nahar S, Matubber B, Uddin MJ, Roy PK. Pernicious Attitude of Microbial Biofilms in Agri-Farm Industries: Acquisitions and Challenges of Existing Antibiofilm Approaches. Microorganisms 2022; 10:microorganisms10122348. [PMID: 36557600 PMCID: PMC9781080 DOI: 10.3390/microorganisms10122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm is a complex matrix made up of extracellular polysaccharides, DNA, and proteins that protect bacteria against physical, chemical, and biological stresses and allow them to survive in harsh environments. Safe and healthy foods are mandatory for saving lives. However, foods can be contaminated by pathogenic microorganisms at any stage from farm to fork. The contaminated foods allow pathogenic microorganisms to form biofilms and convert the foods into stigmatized poison for consumers. Biofilm formation by pathogenic microorganisms in agri-farm industries is still poorly understood and intricate to control. In biofilms, pathogenic bacteria are dwelling in a complex manner and share their genetic and physicochemical properties making them resistant to common antimicrobial agents. Therefore, finding the appropriate antibiofilm approaches is necessary to inhibit and eradicate the mature biofilms from foods and food processing surfaces. Advanced studies have already established several emerging antibiofilm approaches including plant- and microbe-derived biological agents, and they proved their efficacy against a broad-spectrum of foodborne pathogens. This review investigates the pathogenic biofilm-associated problems in agri-farm industries, potential remedies, and finding the solution to overcome the current challenges of antibiofilm approaches.
Collapse
Affiliation(s)
- Sazzad Hossen Toushik
- Institute for Smart Farm, Department of Food Hygiene and Safety, Gyeongsang National University, Jinju 52828, Republic of Korea
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Anamika Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Mohaimanul Alam
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Umma Habiba Rahman
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nikash Kanti Nath
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhasani Science and Technology University, Tangail 1902, Bangladesh
| | - Shamsun Nahar
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Bidyut Matubber
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Pantu Kumar Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Correspondence: ; Tel.: +82-10-4649-9816; Fax: +82-0504-449-9816
| |
Collapse
|
37
|
Antibiofilm activity of a lytic Salmonella phage on different Salmonella enterica serovars isolated from broiler farms. Int Microbiol 2022; 26:205-217. [PMID: 36334144 PMCID: PMC10148789 DOI: 10.1007/s10123-022-00294-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AbstractBacteriophages have been mainly used in treating infections caused by planktonic bacterial cells in the veterinary sector. However, their applications as antibiofilm agents have received little attention. Accordingly, a previously isolated Salmonella infecting Siphoviridae phage was investigated for host range against 15 Salmonella enterica isolates (S. Cape, S. Gallinarum, 4 S. Enteritidis, 3 S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, S. Agona, S. Daula, and S. Aba) recovered from the litters of commercial broiler farms. All S. enterica isolates were examined for their biofilm activity using a microtiter plate assay and for adrA, csgD, and gcpA genes using conventional PCR. The phage efficacy against established biofilms produced by the selected seven S. enterica isolates (S. Gallinarum, S. Enteritidis, S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, and S. Agona) was assessed using microtiter plate assay and reverse transcriptase real-time PCR over different incubation times of 5 and 24 h. All S. enterica isolates were strong biofilm formers. Moreover, the phage effectively reduced the biofilm activity of the established S. enterica biofilms in the microtiter plate assay using the independent sample t-test (P < 0.050). Furthermore, the relative expression levels of csgD, gcpA, and adrA genes in the biofilm cells of S. enterica isolate after phage treatment were significantly up-regulated to variable degrees using the independent sample t-test (P < 0.050). In conclusion, the present study revealed the potential use of Salmonella phage in reducing established biofilms produced by S. enterica serovars isolated from broiler farms.
Collapse
|
38
|
Liu J, Zhu W, Qin N, Ren X, Xia X. Propionate and Butyrate Inhibit Biofilm Formation of Salmonella Typhimurium Grown in Laboratory Media and Food Models. Foods 2022; 11:3493. [PMID: 36360105 PMCID: PMC9654251 DOI: 10.3390/foods11213493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Salmonella is among the most frequently isolated foodborne pathogens, and biofilm formed by Salmonella poses a potential threat to food safety. Short-chain fatty acids (SCFAs), especially propionate and butyrate, have been demonstrated to exhibit a beneficial effect on promoting intestinal health and regulating the host immune system, but their anti-biofilm property has not been well studied. This study aims to investigate the effects of propionate or butyrate on the biofilm formation and certain virulence traits of Salmonella. We investigated the effect of propionate or butyrate on the biofilm formation of Salmonella enterica serovar Typhimurium (S. Typhimurium) SL1344 grown in LB broth or food models (milk or chicken juice) by crystal violet staining methods. Biofilm formation was significantly reduced in LB broth and food models and the reduction was visualized using a scanning electron microscope (SEM). Biofilm metabolic activity was attenuated in the presence of propionate or butyrate. Meanwhile, both SCFAs decreased AI-2 quorum sensing based on reporter strain assay. Butyrate, not propionate, could effectively reduce bacterial motility. Bacterial adhesion to and invasion of Caco-2 cells were also significantly inhibited in the presence of both SCFAs. Finally, two SCFAs downregulated virulence genes related to biofilm formation and invasion through real-time polymerase chain reaction (RT-PCR). These findings demonstrate the potential application of SCFAs in the mitigation of Salmonella biofilm in food systems, but future research mimicking food environments encountered during the food chain is necessitated.
Collapse
Affiliation(s)
- Jiaxiu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wenxiu Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
39
|
Choi J, Marshall B, Ko H, Shi H, Singh AK, Thippareddi H, Holladay S, Gogal RM, Kim WK. Antimicrobial and immunomodulatory effects of tannic acid supplementation in broilers infected with Salmonella Typhimurium. Poult Sci 2022; 101:102111. [PMID: 36081234 PMCID: PMC9465346 DOI: 10.1016/j.psj.2022.102111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Infection by Salmonella Typhimurium, a food-borne pathogen, can reduce the poultry production efficiency. The objective of this study was to investigate the effects of tannic acid (TA) supplementation on growth performance, Salmonella colonization, gut barrier integrity, serum endotoxin levels, antioxidant capacity, gut health, and immune function in broilers infected with the Salmonella enterica serovar Typhimurium nalidixic acid resistant strain (STNR). A total of 546 one-day-old broilers were arbitrarily allocated into 6 treatments including 1) Sham-challenged control (SCC; birds fed a basal diet and administrated peptone water); 2) Challenged control (CC; birds fed a basal diet and inoculated with 108 STNR); 3) Tannic acid 0.25 (TA0.25; CC + 0.25 g/kg TA); 4) TA0.5 (CC + 0.5 g/kg TA); 5) TA1 (CC + 1 g/kg TA); and 6) TA2 (CC + 2 g/kg TA). On D 7, supplemental TA linearly reduced STNR colonization in the ceca (P < 0.01), and TA1 and TA2 group had significantly lower reduced STNR colonization in the ceca (P < 0.01). On D 7 to 21, average daily gain tended to be linearly increased by supplemental TA (P = 0.097). The serum endotoxin levels were quadratically decreased by supplemental TA on D 21 (P < 0.05). Supplemental TA quadratically increased ileal villus height (VH; P < 0.05), and the TA0.25 group had higher ileal VH compared to the CC group (P < 0.05). Supplemental TA linearly increased percentage of peripheral blood CD8+ T cells on D 18 (P < 0.01). The TA0.5 group had significantly lower lymphocyte numbers compared to the CC groups (P < 0.05). The abundance of monocytes linearly increased with TA supplementation (P < 0.01). Therefore, broilers fed TA had reduced STNR colonization, increased growth performance, decreased serum endotoxin levels, enhanced gut health in the broilers, and stimulated the immune system in broilers infected with STNR. Supplementation of TA (1-2 g/kg) enhanced growth performance and gut health via antimicrobial and immunostimulatory effects in broilers infected with STNR.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Brett Marshall
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Steven Holladay
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
40
|
Lu M, Liu B, Xiong W, Liu X. The Combination of Salmonella Phage ST-3 and Antibiotics to Prevent Salmonella Typhimurium In Vitro. Curr Microbiol 2022; 79:371. [PMID: 36269452 DOI: 10.1007/s00284-022-03073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
The novel phage ST-3, capable of infecting the foodborne pathogen Salmonella Typhimurium, was isolated from wastewater. The Biological characters and genome information of ST-3 were analyzed. In the in vitro assay, the phage ST-3 with a MOI of 10 effectively inhibited the growth of Salmonella Typhimurium CGMCC 1.1174 in 6 h. The inhibitory effect of combination phage ST-3 and antibiotics was also studied, the removal rate of planktonic host exposed to ST-3 and levofloxacin hydrochloride at the same time, or to ciprofloxacin followed by ST-3, is higher than that exposed to antibiotic dosing group alone and antibiotic + phage dosing group. The phage ST-3 combined with 0.5 µg/mL levofloxacin hydrochloride resulted in the largest decrease in biofilm biomass at 54%. The phage ST-3 could be a potential agent to control Salmonella Typhimurium growth and provide instruction for use it and antibiotics together.
Collapse
Affiliation(s)
- Min Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenbin Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
41
|
Yan C, Li X, Zhang G, Bi J, Hao H, Hou H. Quorum Sensing (QS)-regulated target predictions of Hafnia alvei H4 based on the joint application of genome and STRING database. Food Res Int 2022; 157:111356. [DOI: 10.1016/j.foodres.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
|
42
|
Lin Z, Chen T, Zhou L, Yang H. Effect of chlorine sanitizer on metabolic responses of Escherichia coli biofilms "big six" during cross-contamination from abiotic surface to sponge cake. Food Res Int 2022; 157:111361. [PMID: 35761623 DOI: 10.1016/j.foodres.2022.111361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
The effect of chlorine on Escherichia coli biofilm O157:H7 are well established; however, the effect on biofilm adhesion to food as well as the six emerging E. coli serotypes ("big six") have not been fully understood. Chlorine sanitization with 1-min 100 mg/L was applied against seven pathogenic E. coli (O111, O121:H19, O45:H2, O26:H11, O103:H11, O145, and O157:H7) biofilms on high-density polyethylene (HDPE) and stainless steel (SS) coupons, respectively. Using sponge cake as a food model, the adhesion behavior was evaluated by comparison of bacteria transfer rate before and after treatment. Besides, the metabolic profiles of biofilms were analyzed by nuclear magnetic resonance (NMR) spectrometer. A significant decrease in transfer rate (79% decline on SS and 33% decline on HDPE) was recorded as well as the distinctive pattern between SS and HDPE coupons was also noticed, with a low population (6-7 log CFU/coupon) attached and low survivals (0-3 log CFU/coupon) upon chlorine on SS, while high population (7-8 log CFU/coupon) attached and high survivals (5-7 log CFU/coupon) on HDPE. Moreover, O121:H19 and O26:H11 demonstrated the highest resistance to chlorine with the least metabolic status and pathways affected. O103:H11, O145, and O111 followed similar metabolic patterns on both surfaces. Distinct metabolic patterns were found in O45:H2 and O157:H7, where the former had more affected metabolic status and pathways on SS but less on HDPE, whereas the latter showed an opposite trend. Overall, a potential contamination source of STEC infection in flour products was demonstrated and metabolic changes induced by chlorine were revealed by NMR-based metabolomics, which provides insights to avoid "big six" biofilms contamination in food.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Tong Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lehao Zhou
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
43
|
Carvalho D, Menezes R, Chitolina GZ, Kunert-Filho HC, Wilsmann DE, Borges KA, Furian TQ, Salle CTP, Moraes HLDS, do Nascimento VP. Antibiofilm activity of the biosurfactant and organic acids against foodborne pathogens at different temperatures, times of contact, and concentrations. Braz J Microbiol 2022; 53:1051-1064. [PMID: 35260995 PMCID: PMC9151985 DOI: 10.1007/s42770-022-00714-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilm formation has been suggested to play a significant role in the survival of pathogens in food production. Interest in evaluating alternative products of natural origin for disinfectant use has increased. However, there is a lack of information regarding the effects of biosurfactants and organic acids on Salmonella enterica serotype Enteritidis, Escherichia coli, and Campylobacter jejuni biofilms, mainly considering temperatures found in environments of poultry processing, as well as simulating the contact times used for disinfection. The aim of this study was to evaluate the antibiofilm activity of rhamnolipid, malic acid, and citric acid on the adhesion of S. Enteritidis, E. coli, and C. jejuni on polystyrene surfaces at different temperatures (4, 12, and 25 °C), compound concentrations, and times of contact (5 and 10 min), and to analyze the potential use of these compounds to disrupt formed biofilms. All three compounds exhibited antibiofilm activity under all analyzed conditions, both in the prevention and removal of formed biofilms. Contact time was less important than temperature and concentration. The antibiofilm activity of the compounds also varied according to the pathogens involved. In the food industry, compound selection must consider the temperature found in each stage of product processing and the target pathogens to be controlled.
Collapse
Affiliation(s)
- Daiane Carvalho
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Rafaela Menezes
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Hiran Castagnino Kunert-Filho
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Daiane Elisa Wilsmann
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| |
Collapse
|
44
|
Guard J. Through the Looking Glass: Genome, Phenome, and Interactome of Salmonella enterica. Pathogens 2022; 11:pathogens11050581. [PMID: 35631102 PMCID: PMC9144603 DOI: 10.3390/pathogens11050581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review revisits previous concepts on biological phenomenon contributing to the success of the Salmonella enterica subspecies I as a pathogen and expands upon them to include progress in epidemiology based on whole genome sequencing (WGS). Discussion goes beyond epidemiological uses of WGS to consider how phenotype, which is the biological character of an organism, can be correlated with its genotype to develop a knowledge of the interactome. Deciphering genome interactions with proteins, the impact of metabolic flux, epigenetic modifications, and other complex biochemical processes will lead to new therapeutics, control measures, environmental remediations, and improved design of vaccines.
Collapse
Affiliation(s)
- Jean Guard
- U. S. Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
45
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
46
|
Marmion M, Macori G, Whyte P, Scannell AGM. Stress response modulation: the key to survival of pathogenic and spoilage bacteria during poultry processing. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35451951 DOI: 10.1099/mic.0.001184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The control of bacterial contaminants on meat is a key area of interest in the food industry. Bacteria are exposed to a variety of stresses during broiler processing which challenge bacterial structures and metabolic pathways causing death or sublethal injury. To counter these stresses, bacteria possess robust response systems that can induce shifts in the transcriptome and proteome to enable survival. Effective adaptive responses, such as biofilm formation, shock protein production and metabolic flexibility, require rapid induction and implementation at a cellular and community level to facilitate bacterial survival in adverse conditions. This review aims to provide an overview of the scientific literature pertaining to the regulation of complex adaptive processes used by bacteria to survive the processing environment, with particular focus on species that impact the quality and safety of poultry products like Campylobacter spp., Salmonella enterica and Pseudomonas spp.
Collapse
Affiliation(s)
- Maitiú Marmion
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Guerrino Macori
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, Belfield, Dublin 4, D04V4W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.,UCD Institute of Food and Health, Belfield, Dublin 4, D04V4W8, Ireland
| |
Collapse
|
47
|
Marmion M, Macori G, Ferone M, Whyte P, Scannell A. Survive and thrive: Control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. Int J Food Microbiol 2022; 368:109612. [DOI: 10.1016/j.ijfoodmicro.2022.109612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
48
|
von Hertwig AM, Prestes FS, Nascimento MS. Biofilm formation and resistance to sanitizers by Salmonella spp. Isolated from the peanut supply chain. Food Res Int 2022; 152:110882. [DOI: 10.1016/j.foodres.2021.110882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/04/2022]
|
49
|
Enhanced inactivation of Salmonella enterica Enteritidis biofilms on the stainless steel surface by proteinase K in the combination with chlorine. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|