1
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Kim KJ, Akhmedova Z, Heo HJ, Kim DO. Red Pine Bark Extract Alleviates Akt/GSK-3β Signaling Disruption in the Hippocampus of Streptozotocin-Induced Diabetic Sprague-Dawley Rats. J Microbiol Biotechnol 2024; 34:1307-1313. [PMID: 38881175 PMCID: PMC11239400 DOI: 10.4014/jmb.2403.03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
This study investigates whether red pine (Pinus densiflora Sieb. et Zucc.) bark extract (PBE) can alleviate diabetes and abnormal apoptosis signaling pathways in the hippocampus of streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats. Two dosages of PBE (15 and 30 mg/kg of body weight/day) were administered orally to STZ-induced diabetic SD rats for 20 days. Blood glucose level and body weight were measured once per week. After 20 days of oral administration of PBE, the rat hippocampus was collected, and the production of Akt, p-Akt, GSK-3β, p-GSK-3β, tau, p-tau, Bax, and Bcl-2 proteins were determined by western blot analysis. A decrease in blood glucose level and recovery of body weight were observed in PBE-treated diabetic rats. In the Akt/GSK-3β/tau signaling pathway, PBE inhibited diabetes-induced Akt inactivation, GSK-3β inactivation, and tau hyperphosphorylation. The protein production ratio of Bax/Bcl-2 was restored to the control group level. These results suggest that PBE, rich in phenolic compounds, can be used as a functional food ingredient to ameliorate neuronal apoptosis in diabetes mellitus.
Collapse
Affiliation(s)
- Kwan Joong Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zukhra Akhmedova
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Abdillah R, Maulina M, Rahmatika A, Suharti N, Armenia A. Roselle Calyx (Hibiscus sabdariffa L.) Ethyl Acetate Fraction Lowering Malondialdehyde and TNF-α and Reducing Hypercoagulability in Diabetic Model. Pharmacology 2024; 109:243-252. [PMID: 38583417 DOI: 10.1159/000538362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Traditionally and empirically, Hibiscus sabdariffa L. has been used in treating diabetes mellitus due to its antioxidant activity. This study aimed to investigate the effect of administering the ethyl acetate fraction of hibiscus calyxes (EAFHCs) on malondialdehyde (MDA) levels, tumor necrosis factor-α (TNF-α) levels, bleeding time, and platelet count in male white rats induced with streptozotocin-induced diabetes. METHOD Thirty-six Wistar Kyoto rats were induced with intraperitoneal streptozotocin at 55 mg/kg BW and stabilized for 5 days to obtain diabetic conditions. Diabetic animals were divided into four groups; the diabetic group was given vehicle, the glibenclamide group was given 0.45 mg/kg BW of glibenclamide, and two groups were administered the EAFHCs at doses of 100 mg/kg BW and 200 mg/kg BW for 5 days. Subsequently, the MDA, TNF-α, bleeding time and platelet count levels were examined on days 1, 3, and 5, respectively. All data were analyzed using two-way ANOVA followed by the Duncan Multiple Range Test (DMRT). RESULTS EAFHC significantly reduced MDA and TNF-α levels (p < 0.05). Additionally, this fraction appeared to shorten bleeding time and decrease platelet count in diabetic rats. Administration of the EAFHC for 5 days effectively lowered MDA and TNF-α levels significantly, decreased platelet counts and prolonged coagulation (p < 0.05) in diabetic rats. CONCLUSION This study demonstrates that EAFHC effectively reduces MDA and TNF-α levels and reduces the risk of hypercoagulability in diabetic model.
Collapse
Affiliation(s)
- Rahmad Abdillah
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang, Indonesia,
| | - Milla Maulina
- Undergraduate Pharmacy Study Program Faculty of Pharmacy Andalas University, Padang, Indonesia
| | - Afni Rahmatika
- Undergraduate Pharmacy Study Program Faculty of Pharmacy Andalas University, Padang, Indonesia
| | - Netty Suharti
- Departement of Pharmaceutical Biology and Natural Product, Faculty of Pharmacy, Andalas University, Padang, Indonesia
| | - Armenia Armenia
- Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Andalas University, Padang, Indonesia
| |
Collapse
|
4
|
Zhang N, Jing P. Red Cabbage Anthocyanins Attenuate Cognitive Impairment By Attenuating Neuroinflammation and Regulating Gut Microbiota in Aging Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15064-15072. [PMID: 37781995 DOI: 10.1021/acs.jafc.3c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Red cabbage anthocyanins may provide health benefits that may be associated with antiaging. The protection of red cabbage anthocyanin-rich extract (ARE) and cyanidin-3-diglucoside-5-glucoside-rich extract (CY3D5G) against age-related cognitive dysfunction was investigated in normal aging mice (male C57BL/6J, 12 months old) administered orally for 12 weeks. Behavioral tests showed that ARE and CY3D5G significantly decreased cognitive impairment (p < 0.05) and had no effect on motor disorder. ARE and CY3D5G increased superoxide dismutase activity by 29.18 and 23.09% and decreased malondialdehyde by 15.74 and 10.05%, respectively, compared to the control. Histological staining showed that ARE and CY3D5G treatment reduced hippocampal neuronal damage and brain-derived neurotrophic factor degeneration. ARE and CY3D5G significantly reduced IL-1β and IL-6 levels in serum and brain (p < 0.05) by promoting the MAPK signaling pathway while enriching the abundance of butyrate-producing bacteria and altering the functional profile of the microbial community. In conclusion, ARE and CY3D5G may attenuate age-related cognitive dysfunction by reducing neuroinflammation and regulating the gut-brain axis.
Collapse
Affiliation(s)
- Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Olasehinde TA, Ekundayo TC, Okaiyeto K, Olaniran AO. Hibiscus sabdariffa (Roselle) calyx: a systematic and meta-analytic review of memory-enhancing, anti-neuroinflammatory and antioxidative activities. Inflammopharmacology 2023; 31:231-240. [PMID: 36436183 DOI: 10.1007/s10787-022-01101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In this study, we summarized the preclinical investigations of the neuroprotective activities of Hibiscus sabdariffa (HSD) extract via its effect on memory function, neuroinflammation and oxidative damage in the central nervous system, which may help to guide future studies. METHODS Preclinical studies that investigated the effect of HSD extract on memory impairment, neuroinflammation and oxidative stress-induced neuronal damage were searched systematically in PubMed, EBSCOhost (including MEDLINE, CINAHL, APA PsycInfo, etc.), Web of Science (WoS) and Scopus. Parameters and indexes included Morris water maze, passive avoidance test, acetylcholinesterase activity, interleukin 1 (IL-1), tumour necrosis factor-alpha (TNF-α), MAPK, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) and mitochondria membrane potential (MMP). RESULTS A total of 285 documents were identified; however, only ten articles were included and used for meta-analysis. The meta-analytic outcome revealed that HSD did not show any significant effect on memory function, neuroinflammatory biomarkers (IL-1, MAPK) and oxidative stress (GSH, MDA, ROS and MMP) in neuronal cells and tissues. CONCLUSIONS Individual study revealed that HSD showed improved memory function, attenuated neuroinflammation and prevented oxidative damage to neurons. However, a conflicting result was observed from the meta-analytic outcomes which showed that HSD has no significant effect on cognitive impairment, neuroinflammation and oxidative stress-induced neuronal damage. However the contradiction in this finding may be associated with small number of studies included. Hence, more studies on the memory-enhacing effects and anti-neuroinflammatory activity of HSD in preclinical and clinical model are required to validate its neuroprotective effect.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, South Africa.
| | - Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Durban, South Africa
- Department of Microbiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, South Africa
| |
Collapse
|
6
|
Hibiscus sabdariffa in Diabetes Prevention and Treatment—Does It Work? An Evidence-Based Review. Foods 2022; 11:foods11142134. [PMID: 35885378 PMCID: PMC9319339 DOI: 10.3390/foods11142134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes is currently a global health problem that is already reported as an epidemic. This metabolic disease, characterized by a disturbance in the carbohydrate, protein, and lipid metabolism, is often accompanied by disorders of several organs. Its treatment is expensive and often difficult to control. Therefore, it seems necessary to search for new drugs and solutions to facilitate therapy and reduce treatment costs. Herbal medicines are becoming more and more popular. Hibiscus sabdariffa (roselle) is a plant that grows wild in a tropical climate. It has been used in folk medicine for thousands of years. Thanks to the numerous active compounds, including polyphenols, polysaccharides, organic acids, or pectins, it is reported to exhibit hypoglycemic, antioxidant, hypotensive, and anti-lipidemic activities and numerous indirect effects that are related to them. The aim of this review was to update the knowledge about the therapeutic effects of roselle in diabetes and its comorbidities based on in vitro, animal, and human studies. After a careful analysis of the scientific literature, it can be stated that roselle is a promising product that can be used either on its own or as an addition to the conventional treatment regimens to prevent or treat diabetes and its accompanying diseases.
Collapse
|
7
|
The Ameliorative Role of Hibiscetin against High-Fat Diets and Streptozotocin-Induced Diabetes in Rodents via Inhibiting Tumor Necrosis Factor-α, Interleukin-1β, and Malondialdehyde Level. Processes (Basel) 2022. [DOI: 10.3390/pr10071396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hibiscetin, as one of the main bioactive constituents of Hibiscus sabdariffa, has many pharmacological activities, but its antihyperglycemic activity has not been fully interpreted yet. The current research was developed from this perspective. The study intended to appraise the antidiabetic capability of hibiscetin in a high-fat diet (HFD) and streptozotocin (STZ; 50 mg/kg, intraperitoneally)-induced diabetes in an experimental animal. The efficiency of hibiscetin at 10 mg/kg in an “HFD/STZ model” remedy in rats with experimentally caused diabetes was explored for 42 days. The efficacy of hibiscetin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, total protein (TP), lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-6, IL-1β, tumor necrosis factor-α (TNF-α), adiponectin, leptin, resistin, malondialdehyde (MDA), catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). The antidiabetic benefits of hibiscetin were proven by a substantial reduction in blood glucose, lipid profile (TC and TG), total protein, IL-6, IL-1β, MDA, TNF-α, leptin, adiponectin, ALT, and AST in the therapy group compared to the diabetic disease standard. Furthermore, hibiscetin therapy also reversed the lowered levels of insulin, resistin, GSH, SOD, and CAT in diabetic rats. It was determined that hibiscetin may be beneficial in terms of reducing diabetes problems due to its effects on both oxidative stress and inflammation and that more research for this design should be conducted.
Collapse
|
8
|
Montalvo-González E, Villagrán Z, González-Torres S, Iñiguez-Muñoz LE, Isiordia-Espinoza MA, Ruvalcaba-Gómez JM, Arteaga-Garibay RI, Acosta JL, González-Silva N, Anaya-Esparza LM. Physiological Effects and Human Health Benefits of Hibiscus sabdariffa: A Review of Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15040464. [PMID: 35455462 PMCID: PMC9033014 DOI: 10.3390/ph15040464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design
Collapse
Affiliation(s)
- Efigenia Montalvo-González
- Integral Food Research Laboratory, National Technological of Mexico/Technological Institute of Tepic, Av. Tecnologico 2595, Tepic 63175, Mexico;
| | - Zuamí Villagrán
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Sughey González-Torres
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Laura Elena Iñiguez-Muñoz
- División of Natural and Technological Exact Sciences, Southern Region University Center, University of Guadalajara, Av. Enrique Arreola Silva 883, Guadalajara 49000, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Department of Clinics, Division of Biomedical Sciences, Institute of Research in Medical Sciences, Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico;
| | - José Martín Ruvalcaba-Gómez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - Ramón Ignacio Arteaga-Garibay
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - José Luis Acosta
- Interdisciplinary Research Centre for Integral Regional Development Sinaloa Unit, National Polytechnic Institute, Boulevard Juan de Dios Bátiz 250, Guasave 81049, Mexico;
| | - Napoleón González-Silva
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| |
Collapse
|
9
|
Geng M, Zhao F, Lu H, Fang L, Wang J, Liu C, Min W. Insights into the hippocampus proteome and phosphorylation modification alterations in C57BL/6 revealed the memory improvement mechanisms of a walnut-derived peptide. Food Res Int 2022; 156:111311. [DOI: 10.1016/j.foodres.2022.111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
|
10
|
He S, Peng WB, Fu XJ, Zhou HL, Wang ZG. Deep Sea Water Alleviates Tau Phosphorylation and Cognitive Impairment via PI3K/Akt/GSK-3β Pathway. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:68-81. [PMID: 34982299 DOI: 10.1007/s10126-021-10087-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Deep sea water (DSW), as a noticeable natural resource, has been demonstrated to contain high levels of beneficial minerals and exert marked anti-diabetes effects. Epidemiological studies show that type 2 diabetes mellitus (T2DM) is closely related to high danger of Alzheimer's disease (AD); moreover, Akt/GSK-3β signaling is the main underlying pathway that connects these two diseases. Besides, it has been demonstrated that minerals in DSW, such as Mg, Se, and Zn, could effectively treat cognitive deficits associated with AD. Herein, we first observed the protection of DSW against cognitive dysfunction in T2DM rats, then furtherly explored the neuroprotective mechanism in SH-SY5Y cell model. In T2DM rats, DSW obviously elevated the concentrations of elements Mg, V, Cr, Zn, and Se in brain and improved learning and memory dysfunction in behavior assays, including Morris water maze (MWM) and new object recognition (NOR). Western blot (WB) results demonstrated that DSW could stimulate PI3K/Akt/GSK-3β signaling, arrest Tau hyperphosphorylation at serine (Ser) 396 and threonine (Thr)231, which was confirmed by immunohistochemistry (IHC). In order to further confirm the mechanism, we employed wortmannin to inhibit PI3K in SH-SY5Y cells; results showed that pretreatment with wortmannin almost abolished DSW-induced decreases in phosphorylated Tau. Taken together, these data elucidated that DSW could improve Tau hyperphosphorylation and cognitive impairment, which were closely related with the stimulation of Akt/GSK-3β signaling, and the neuroprotective effects of DSW should be contributed to the synergistic effects of major and trace elements in it, such as Mg, V, Cr, Zn, and Se. These experimental evidence indicated that DSW may be explored as natural neuroprotective food for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Shan He
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266071, China.
| | - Wei-Bing Peng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xian-Jun Fu
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266071, China
| | - Hong-Lei Zhou
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhen-Guo Wang
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Banwo K, Sanni A, Sarkar D, Ale O, Shetty K. Phenolics-Linked Antioxidant and Anti-hyperglycemic Properties of Edible Roselle (Hibiscus sabdariffa Linn.) Calyces Targeting Type 2 Diabetes Nutraceutical Benefits in vitro. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.660831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phenolics- enriched plant food sources are excellent dietary and therapeutic targets to combat the increasing prevalence of diet and lifestyle-influenced non-communicable chronic diseases (NCDs), such as type 2 diabetes (T2D). Among plant sources, edible flowers rich in health protective phenolic compounds provide novel opportunities as ingredient and nutraceutical sources. Roselle (Hibiscus sabdariffa Linn.) is a popular edible flower and consumed as part of traditional cuisines and processed foods in several countries of Asia and Africa. Red calyces of Roselle are rich in phenolic compounds, which potentially have high antioxidant and anti-hyperglycemic properties. Therefore, there is merit in screening of dried Roselle calyces as sources for functional food ingredients or nutraceuticals to counter chronic oxidative stress and chronic hyperglycemia using in vitro assays. This has led to this study to investigate and compare phenolic compounds associated antioxidant and anti-hyperglycemic functions of different organic solvent-extracted fractions of dried Roselle calyces using rapid in vitro assays-based screening strategy. Total soluble phenolic content, profile of phenolic compounds, free radical scavenging assay-based total antioxidant activity, and anti-hyperglycemic function linked α-amylase and α-glucosidase inhibitory activities of four different organic solvents (chloroform, hexane, ethyl acetate, and initial crude extraction in 100% methanol) extracted fractions of calyces of Roselle were determined using in vitro assays. Studies indicated high phenolic-linked antioxidant and anti-hyperglycemic relevant properties in red Roselle calyces, specifically in ethyl acetate and methanol solvent-based extracted fractions. Major phenolic compounds in extracted fractions of Roselle calyces were chlorogenic acid, caffeic acid, gallic acid, catechin, rutin, benzoic acid, and cinnamic acid. Additionally, moderate α-amylase (30–92%) and very high α-glucosidase (81–98%) inhibitory activities were confirmed in undiluted samples of organic solvent-extracted fractions of Roselle calyces in the in vitro assays. Taken together these in vitro screening results indicated that calyces of Roselle are excellent sources of health protective phenolic compounds with high antioxidant and anti-hyperglycemic functions and organic solvent (ethyl acetate and methanol) extracted fractions of this edible flower can be strategically utilized to design functional food ingredients and nutraceuticals.
Collapse
|
12
|
Oliveira WH, Braga CF, Lós DB, Araújo SMR, França MR, Duarte-Silva E, Rodrigues GB, Rocha SWS, Peixoto CA. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 2021; 239:2821-2839. [PMID: 34283253 DOI: 10.1007/s00221-021-06176-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/12/2021] [Indexed: 01/24/2023]
Abstract
Insulin deficiency or resistance can promote dementia and hallmarks of Alzheimer's disease (AD). The formation of neurofibrillary tangles of p-TAU protein, extracellular Aβ plaques, and neuronal loss is related to the switching off insulin signaling in cognition brain areas. Metformin is a biguanide antihyperglycemic drug used worldwide for the treatment of type 2 diabetes. Some studies have demonstrated that metformin exerts neuroprotective, anti-inflammatory, anti-oxidant, and nootropic effects. This study aimed to evaluate metformin's effects on long-term memory and p-Tau and amyloid β modulation, which are hallmarks of AD in diabetic mice. Swiss Webster mice were distributed in the following experimental groups: control; treated with streptozotocin (STZ) that is an agent toxic to the insulin-producing beta cells; STZ + metformin 200 mg/kg (M200). STZ mice showed significant augmentation of time spent to reach the target box in the Barnes maze, while M200 mice showed a significant time reduction. Moreover, the M200 group showed reduced GFAP immunoreactivity in hippocampal dentate gyrus and CA1 compared with the STZ group. STZ mice showed high p-Tau levels, reduced p-CREB, and accumulation of β-amyloid (Aβ) plaque in hippocampal areas and corpus callosum. In contrast, all these changes were reversed in the M200 group. Protein expressions of p-Tau, p-ERK, pGSK3, iNOS, nNOS, PARP, Cytochrome c, caspase 3, and GluN2A were increased in the parietal cortex of STZ mice and significantly counteracted in M200 mice. Moreover, M200 mice also showed significantly high levels of eNOS, AMPK, and p-AKT expression. In conclusion, metformin improved spatial memory in diabetic mice, which can be associated with reducing p-Tau and β-amyloid (Aβ) plaque load and inhibition of neuronal death.
Collapse
Affiliation(s)
- Wilma Helena Oliveira
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Clarissa Figueiredo Braga
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Shyrlene Meiry Rocha Araújo
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil
| | - MariaEduarda Rocha França
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil.,Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.,Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Gabriel Barros Rodrigues
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Sura Wanessa Santos Rocha
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil. .,Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Neuroprotective effects of Actinidia eriantha cv. Bidan kiwifruit on amyloid beta-induced neuronal damages in PC-12 cells and ICR mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci 2021; 25:1774-1784. [PMID: 33722183 DOI: 10.1080/1028415x.2021.1901047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Literature findings have instituted the role of hyperglycemia-induced oxidative stress and inflammation in the pathogenesis of cognitive derangement in diabetes mellitus (DM). Hyperoside (HYP) is a flavanone glycoside reported to possess diverse pharmacological benefits such as antioxidant and anti-inflammatory properties. The study explored whether HYP could mitigate DM-induced cognitive dysfunction and further elucidate on potential molecular mechanism in rats. METHODS Streptozotocin/high-fat diet-induced diabetic rats were treated orally with HYP (50, 200 and 400 mg/kg/day) for six consecutive weeks. The blood glucose and serum insulin levels, Morris water maze test, intraperitoneal glucose tolerance test, and brain acetylcholinesterase (AChE) activity were determined. The brain expression of inflammatory nuclear factor-kappa B (NF-κB), tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), as well as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total antioxidant capacity (TAC), malondialdehyde (MDA), lipid profile and caspase-3 activity were estimated. RESULTS DM evoked hyperlipidemia, hypoinsulinemia, cognitive dysfunction by markedly increased AChE and reduction in learning and memory capacity. Brain activities of SOD and CAT, and levels of TAC and GSH were considerably depressed, whereas levels of IL-1β, IL-6, TNF-α, NF-κB, caspase-3 and MDA were prominently increased. Interestingly, the HYP treatment dose-dependently abrogated the altered cognitive and biochemical parameters. DISCUSSION The results suggested that hyperoside prevents DM-induced cognitive dysfunction, neuroinflammation and oxidative stress via antioxidant, anti-inflammatory and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Xiao Chen
- Second Department of Encephalopathy, Xi'an Encephalopathy Hospital of Traditional Chinese Medicine, Xi'an, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Anhui, People's Republic of China
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | |
Collapse
|
15
|
Amos A, Khiatah B. Mechanisms of Action of Nutritionally Rich Hibiscus sabdariffa's Therapeutic Uses in Major Common Chronic Diseases: A Literature Review. J Am Coll Nutr 2021; 41:116-124. [PMID: 33507846 DOI: 10.1080/07315724.2020.1848662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hibiscus sabdariffa, this beverage has been used for millennia as both a delicious cultural beverage and an ancient medicinal therapy. In recent years, many studies have investigated the uses and mechanisms of action of Hibiscus sabdariffa to treat common chronic diseases. In this literature review, we place the spotlight on Hibiscus sabdariffa's medical effect on common chronic diseases, the flower commonly used to make hibiscus tea. The databases PubMed, MEDLINE, Clinical Key, and CINAHL were searched for studies related to Hibiscus sabdariffa's compounds, antioxidative and anti-inflammatory features, mechanism of action on common chronic diseases including hypertension, hyperlipidemia, obesity, diabetes, and Alzheimer's disease. Hibiscus sabdariffa antihypertensive potentials originate from the vasodilator activity, diuretic efficacy, functionality as an ACE inhibitor, adipocyte differentiation inhibitor, heart rate reduction ability, and anti-inflammatory mechanistic. The antihyperlipidemic effect is dose-dependent and stems from the antioxidative effect and the activation of AMPK through phosphorylation and the inhibition of regulatory adipogenic transcription factors PPAR-γ, C/EBP-α, and SREBP-1c, which altogether results in lipid-lowering effect. As an antihyperglycemic, Hibiscus sabdariffa serves as anti-insulin resistance by inhibition of the phosphorylation of IRS-1 beside a similar effect to gliptins. Finally, Hibiscus sabdariffa was proven to protect against neuroinflammation in microglial cell culture exposed to LPS by decreasing IL-1, IL-6, TNF-α expression, and the protective effect against glucotoxicity, improve memory function by inhibiting the formation of hyperphosphorylated tau proteins in the mouse brain. Regular consumption of hibiscus tea or extract is beneficial for a reduction in chronic disease risk and diagnosis. Key teaching pointsHibiscus sabdariffa, or hibiscus, has been used for millennia as both a delicious cultural beverage and an ancient medicinal therapy. Recent studies have investigated the uses of Hibiscus sabdariffa to treat common chronic diseases.Its antihypertensive potential originates from the vasodilator activity, diuretic efficacy, functionality as an ACE inhibitor, adipocyte differentiation inhibitor, heart rate reduction ability, and anti-inflammatory mechanistics.The antihyperlipidemic effect is dose-dependent and stems from the antioxidative effect and the activation of AMPK through phosphorylation and also the inhibition of regulatory adipogenic transcription factors PPAR-γ, C/EBP-α and SREBP-1c which all together results in lipid-lowering effect.As an antihyperglycemic, Hibiscus sabdariffa serves as anti-insulin resistance by inhibition of the phosphorylation of IRS-1 beside the similar effect to gliptins.Hibiscus sabdariffa was proven to protect against neuroinflammation in microglial cell culture exposed to LPS by decreasing IL-1, IL-6, TNF-α expression, and the protective effect against glucotoxicity, improve memory function by inhibiting the formation of hyperphosphorylated tau proteins in the mouse brain.
Collapse
Affiliation(s)
- Amylee Amos
- Research Department, Amos Institute, Ventura, California, USA
| | - Bashar Khiatah
- Department of Internal Medicine, Community Memorial Hospital, Ventura, California, USA
| |
Collapse
|
16
|
Khazaei H, Pesce M, Patruno A, Aneva IY, Farzaei MH. Medicinal plants for diabetes associated neurodegenerative diseases: A systematic review of preclinical studies. Phytother Res 2020; 35:1697-1718. [DOI: 10.1002/ptr.6903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hosna Khazaei
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mirko Pesce
- Department of Medicine and Aging Sciences University G. d'Annunzio Chieti Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences University G. d'Annunzio Chieti Italy
| | - Ina Y. Aneva
- Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | - Mohammad H. Farzaei
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
17
|
Olive Leaves and Hibiscus Flowers Extracts-Based Preparation Protect Brain from Oxidative Stress-Induced Injury. Antioxidants (Basel) 2020; 9:antiox9090806. [PMID: 32882797 PMCID: PMC7555463 DOI: 10.3390/antiox9090806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress (OS) arising from tissue redox imbalance, critically contributes to the development of neurodegenerative disorders. Thus, natural compounds, owing to their antioxidant properties, have promising therapeutic potential. Pres phytum (PRES) is a nutraceutical product composed of leaves- and flowers-extracts of Olea europaea L. and Hibiscus sabdariffa L., respectively, the composition of which has been characterized by HPLC coupled to a UV-Vis and QqQ-Ms detector. As PRES possess antioxidant, antiapoptotic and anti-inflammatory properties, the aim of this study was to assess its neuroprotective effects in human neuroblastoma SH-SY5Y cells and in rat brain slices subjected to OS. PRES (1–50 µg/mL) reverted the decrease in viability as well as the increase in sub-diploid-, DAPI-and annexin V-positive-cells, reduced ROS formation, recovered the mitochondrial potential and caspase-3 and 9 activity changes caused by OS. PRES (50–100 µg/mL) neuroprotective effects occurred also in rat brain slices subjected to H2O2 challenge. Finally, as the neuroprotective potential of PRES is strictly related to its penetration into the brain and a relatively good pharmacokinetic profile, an in-silico prediction of its components drug-like properties was carried out. The present results suggest the possibility of PRES as a nutraceutical, which could help in preventing neurodegenerative diseases.
Collapse
|
18
|
Alañón ME, Ivanović M, Pimentel-Mora S, Borrás-Linares I, Arráez-Román D, Segura-Carretero A. A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Res Int 2020; 137:109646. [PMID: 33233225 DOI: 10.1016/j.foodres.2020.109646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Hibiscus sabdariffa L. is widely acknowledged as an important source of value-added compounds as natural pigments and bioactive compounds whose isolation is of great interest in food industry. Due to the incessant demand of green extraction procedures, NADESs have emerged in the last years as new green solvents alternative to the conventional organic ones. The feasibility of NADESs for the extraction of value-added compounds of H. sabdariffa has been assessed in this work for the first time. An extraction technique based on microwave assisted extraction (MAE) and the use of NADESs was proposed testing different deep eutectic solvents based on choline chloride (ChCl). Among them, oxalic acid based NADES exhibited a great selectivity for anthocyanins in particular as well as higher extraction yields of bioactive compounds was also observed, even greater than those observed by methanol. The effect of extraction variables such as liquid-solid ratio, temperature and water percentage were studied by Box-Behnken design and a response surface methodology. The statistical program pointed out the liquid-solid ratio of 1:30 mL mg-1, temperature of 75 °C and a water percentage of 55% as the conditions to maximize extraction within the experimental domain. Hence, NADES composed by oxalic acid and choline chloride resulted to be an effective green alternative tailor-made solvent to carry out selective extractions of value-added compounds from H. sabdariffa.
Collapse
Affiliation(s)
- M Elena Alañón
- Area of Food Science and Technology, Department of Analytical Chemistry and Food Science, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Milena Ivanović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Sandra Pimentel-Mora
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain
| | - Isabel Borrás-Linares
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain
| |
Collapse
|
19
|
Patten T, De Biasi M. History repeats itself: Role of characterizing flavors on nicotine use and abuse. Neuropharmacology 2020; 177:108162. [PMID: 32497589 DOI: 10.1016/j.neuropharm.2020.108162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
The popularity of e-cigarettes has skyrocketed in recent years, and most vapers use flavored e-cigarette products. Consumption of flavored e-cigarettes exceeds that of combustible cigarettes and other tobacco products among adolescents, who are particularly vulnerable to becoming nicotine dependent. Flavorings have been used by the tobacco industry since the 17th century, but the use of flavors by the e-cigarette industry to create products with "characterizing" flavors (i.e. flavors other than tobacco or menthol) has sparked a public health debate. This review addresses the possibility that characterizing flavors make nicotine more appealing, rewarding and addictive. It also discusses ways in which preclinical and clinical studies could improve our understanding of the mechanisms by which flavors may alter nicotine reward and reinforcement. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Theresa Patten
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mariella De Biasi
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
20
|
Mezni A, Mhadhbi L, Khazri A, Sellami B, Dellali M, Mahmoudi E, Beyrem H. The protective effect of Hibiscus sabdariffa calyxes extract against cypermethrin induced oxidative stress in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104463. [PMID: 32359554 DOI: 10.1016/j.pestbp.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 06/11/2023]
Abstract
Cypermethrin (Cyp) is a kind of pyrethroids compound that is broadly used against different species of insects and pests. Cyp can also elicit a range of neurotoxic, immunotoxic, genotoxic and reproductive toxic effects on various experimental organisms. The aim of this study was to evaluate the protective effects of Hibiscus sabdariffa against the toxicity damage induced by Cyp exposure. The Hibiscus sabdariffa calyxes extract was given to mice (200-500 mg/kg bw). The mice, which were treated with Cyp and Hibiscus sabdariffa, were divided into six groups of six mice each. Groups I, IV and VI were used as control and groups II CYP control (20 mg/kg body weight)., groups III and V were treated with Hibiscus sabdariffa extract (200 and 500 mg/kg body weight) plus (20 mg/kg body weight) for 21 days Furthermore, HPLC was used to identify the compound fraction. This result showed Cyp -induced biochemical changes in all organs of mice. Cyp caused decreased CAT activity, inhibition of AChE activity and increased the levels of H2O2 and MDA in brain, heart, liver and kidney. Hibiscus sabdariffa exhibited antioxidant effect and significantly attenuated the neurotoxicity of Cyp. Hibiscus sabdariffa exhibits neuroprotective effects and can be an effective and novel alternative approach to reduce the risk caused by pyrethroid compound.
Collapse
Affiliation(s)
- Ali Mezni
- University of Carthage, Environmental Biomonitoring Laboratory (LBE), Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia; Higher Institute of Biotechnology of Beja, University of Jendouba, PB 382, Habib Bourguiba Avenue, 9000 Beja, Tunisia.
| | - Lazher Mhadhbi
- University of Carthage, Environmental Biomonitoring Laboratory (LBE), Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - Abdelhafidh Khazri
- University of Carthage, Environmental Biomonitoring Laboratory (LBE), Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - Badreddine Sellami
- Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia
| | - Mohamed Dellali
- University of Carthage, Environmental Biomonitoring Laboratory (LBE), Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - Ezzeddine Mahmoudi
- University of Carthage, Environmental Biomonitoring Laboratory (LBE), Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - Hamouda Beyrem
- University of Carthage, Environmental Biomonitoring Laboratory (LBE), Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| |
Collapse
|
21
|
Laskar YB, Mazumder PB. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomed Pharmacother 2020; 127:110153. [PMID: 32344257 DOI: 10.1016/j.biopha.2020.110153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023] Open
Abstract
Hibiscus sabdariffa or roselle tea is popular around the globe for its antioxidant capability along with various other health benefits. Besides, it has uses in Ayurvedic and Chinese herbal medicines for the treatment of several diseases. However, the investigation for the anticancer potential of the plant began roughly in the last decade that emerged with encouraging results. Both crude extracts and pure compounds of the plant were reported to induce chemoprevention, selective cytotoxicity, cell cycle arrest, apoptosis, autophagy and anti-metastasis effects in varied types of human cancer cells. The plant contains a high quantity of polyphenolic compounds and at least two of them were proven to induce potent anticancer effects. Although, the molecular mechanism underlying the anticancer activity was roughly estimated in several studies. The present review aimed to assemble all ambiguous information to report the molecular evidence establishing the potent anticancer activity of Hibiscus sabdariffa and its implication for cancer therapy. This study suggests that Hibiscus sabdariffa is an ideal candidate to investigate its role as a herbal supplement for cancer prevention and treatment. With excellent safety and tolerability record, polyphenolic compounds from the plant need better designed clinical trials.
Collapse
Affiliation(s)
- Yahyea Baktiar Laskar
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Pranab Behari Mazumder
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, 788011, India.
| |
Collapse
|
22
|
Alegbe EO, Teralı K, Olofinsan KA, Surgun S, Ogbaga CC, Ajiboye TO. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J Food Biochem 2019; 43:e12927. [PMID: 31353728 DOI: 10.1111/jfbc.12927] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 12/16/2022]
Abstract
We isolated and identified gallic and protocatechuic acids as the antidiabetic principles in Hibiscus sabdariffa using solvent extraction, column chromatographic fractionation, and nuclear magnetic resonance (NMR) spectroscopy. Ethylacetate fraction of the aqueous extract of H. sabdariffa inhibited α-amylase and α-glucosidase with IC50 of 411.73 and 433.93 μg/ml, respectively. Furthermore, fractions I and II obtained from column chromatography inhibited α-amylase with IC50 of 27.03 and 20.12 μg/ml, and α-glucosidase with IC50 of 24.30 and 22.29 μg/ml, respectively. In addition, the principles reduced the serum glucose and lipid peroxide levels of diabetic rats and with an improvement in the rat lipid profiles and antioxidant defenses. Fractions I and II were identified as protocatechuic acid and gallic acid, respectively, using 1 H and 13 C NMR. Protein-ligand docking showed that these compounds form multiple favorable interactions with the active-site residues of the two glycosidases. Overall, protocatechuic and gallic acids emerge as natural antidiabetic agents. PRACTICAL APPLICATIONS: Hibiscus sabdariffa (Zoborodo) is a refreshment drink for ceremonial gatherings in Nigeria. Also, its pharmacological use includes diabetes, hypertension, hyperlipidemia, metabolic syndrome, and hepatoprotection. The consumption of this food drink could improve diabetes, hypertension, dyslipidemia, metabolic syndrome, and liver disease. Furthermore, the inhibition of α-amylase and α-glucosidase could prevent diabetic complications associated with postprandial glucose. Developing the extract of H. sabdariffa calyx as food supplement could be used in managing diabetes and its associated complications such as dyslipidemia, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Emmanuel Ohifueme Alegbe
- Faculty of Natural and Applied Sciences, Department of Chemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Kerem Teralı
- Faculty of Medicine, Department of Medical Biochemistry, Near East University, Nicosia, Cyprus
| | - Kolawole Ayodapo Olofinsan
- Faculty of Natural and Applied Sciences, Department of Biochemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Serdar Surgun
- Faculty of Natural and Applied Sciences, Department of Chemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Chukwuma Collins Ogbaga
- Faculty of Natural and Applied Sciences, Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria.,Faculty of Natural and Applied Sciences, Department of Microbiology and Biotechnology, Nile University of Nigeria, Abuja, Nigeria
| | - Taofeek Olakunle Ajiboye
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
23
|
Abdel-Rahman EA, Bhattacharya S, Buabeid M, Majrashi M, Bloemer J, Tao YX, Dhanasekaran M, Escobar M, Amin R, Suppiramaniam V. PPAR-δ Activation Ameliorates Diabetes-Induced Cognitive Dysfunction by Modulating Integrin-linked Kinase and AMPA Receptor Function. J Am Coll Nutr 2019; 38:693-702. [PMID: 31008686 DOI: 10.1080/07315724.2019.1598307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An estimated 9% of the American population experiences type II diabetes mellitus (T2DM) due to diet or genetic predisposition. Recent reports indicate that patients with T2DM are at increased risk for cognitive dysfunctions, as observed in conditions like Alzheimer's disease (AD). In addition, AD is the leading cause of dementia, highlighting the urgency of developing novel therapeutic targets for T2DM-induced cognitive deficits. The peroxisome proliferator activated receptor-δ (PPAR-δ) is highly expressed in the brain and has been shown to play an important role in spatial memory and hippocampal neurogenesis. However, the effect of PPAR-δ agonists on T2DM-induced cognitive impairment has not been explored. In this study, the effects of GW0742 (a selective PPAR-δ agonist) on hippocampal synaptic transmission, plasticity, and spatial memory were investigated in the db/db mouse model of T2DM. Oral administration of GW0742 for 2 weeks significantly improved hippocampal long-term potentiation. In addition, GW0742 effectively prevented deficits in hippocampal dependent spatial memory in db/db mice. PPAR-δ-mediated improvements in synaptic plasticity and behavior were accompanied by a significant recovery in hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission. Our findings suggest that activation of PPAR-δ might ameliorate T2DM-induced impairments in hippocampal synaptic plasticity and memory.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA.,Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt**
| | - Subhrajit Bhattacharya
- Department of Pharmacology, Rollins Research Center, Emory University, Atlanta, Georgia, USA**
| | - Manal Buabeid
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA.,College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE**
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA.,Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.,Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA.,Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| | - Martha Escobar
- Department of Psychology, Auburn University, Auburn, Alabama, USA.,Department of Psychology, Oakland University, Rochester, Michigan, USA*
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA.,Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA.,Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
24
|
Koch K, Weldle N, Baier S, Büchter C, Wätjen W. Hibiscus sabdariffa L. extract prolongs lifespan and protects against amyloid-β toxicity in Caenorhabditis elegans: involvement of the FoxO and Nrf2 orthologues DAF-16 and SKN-1. Eur J Nutr 2019; 59:137-150. [PMID: 30710163 DOI: 10.1007/s00394-019-01894-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Hibiscus sabdariffa L. is commonly used as an ingredient for herbal teas and food supplements. Several studies demonstrated the beneficial effects of Hibiscus sabdariffa L. extracts (HSE); however, the bioactive components and their mode of action still remain unclear. Caenorhabditis elegans (C. elegans) was used to study health-related effects and the underlying molecular mechanisms of HSE in this model organism as well as effects of hydroxycitric acid (HCA), a main compound of HSE, and its structural analogue isocitric acid (ICA). METHODS Survival and locomotion were detected by touch-provoked movement. Thermotolerance was analysed using the nucleic acid stain SYTOX green, and intracellular ROS accumulation was measured via oxidation of H2DCF. Localisation of the transcription factors DAF-16 and SKN-1 was analysed in transgenic strains (DAF-16::GFP, SKN-1::GFP). The involvement of DAF-16 and SKN-1 was further investigated using loss-of-function strains as well as gene silencing by feeding RNAi-inducing bacteria. Protection against amyloid-β toxicity was analysed using a transgenic strain with an inducible expression of human amyloid-β peptides in body wall muscle cells (paralysis assay). RESULTS HSE treatment resulted in a prominent extension of lifespan (up to 24%) and a reduction of the age-dependent decline in locomotion. HCA, a main compound of HSE increased lifespan too, but to a lesser extent (6%) while ICA was not effective. HSE and HCA did not modulate resistance against thermal stress conditions and did not exert antioxidative effects: HSE rather increased intracellular ROS levels, suggesting a pro-oxidative effect of the extract in vivo. HSE and HCA increased the nuclear localisation of the pivotal transcription factors DAF-16 and SKN-1 indicating an activation of these factors. Consistent with this result, lifespan prolongation by HSE was dependent on both transcription factors. In addition to the positive effect on lifespan, HSE treatment also elicited a (strong) protection against amyloid-ß induced toxicity in C. elegans in a DAF-16- and SKN-1-dependent manner. CONCLUSION Our results demonstrate that HSE increases lifespan and protects against amyloid-β toxicity in the model organism C. elegans. These effects were mediated, at least in parts via modulation of pathways leading to activation/nuclear localisation of DAF-16 and SKN-1. Since HCA, a main component of HSE causes only minor effects, additional bioactive compounds like flavonoids or anthocyanins as well as synergistic effects of these compounds should be investigated.
Collapse
Affiliation(s)
- Karoline Koch
- Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Nora Weldle
- Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Sabrina Baier
- Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Christian Büchter
- Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Biofunctionality of Secondary Plant Compounds, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
| |
Collapse
|
25
|
You M, Pan Y, Liu Y, Chen Y, Wu Y, Si J, Wang K, Hu F. Royal Jelly Alleviates Cognitive Deficits and β-Amyloid Accumulation in APP/PS1 Mouse Model Via Activation of the cAMP/PKA/CREB/BDNF Pathway and Inhibition of Neuronal Apoptosis. Front Aging Neurosci 2019; 10:428. [PMID: 30687079 PMCID: PMC6338040 DOI: 10.3389/fnagi.2018.00428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 12/06/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized clinically by progressive cognitive decline and pathologically by the accumulation of amyloid-β (Aβ) in the brain. Royal jelly (RJ), a secretion of honeybee hypopharyngeal and mandibular glands, has previously been shown to have anti-aging and neuromodulatory activities. In this study, we discovered that 3 months of RJ treatment substantially ameliorated behavioral deficits of APP/PS1 mice in the Morris Water Maze (MWM) test and step-down passive avoidance test. Our data also showed that RJ significantly diminished amyloid plaque pathology in APP/PS1 mice. Furthermore, RJ alleviated c-Jun N-terminal kinase (JNK) phosphorylation-induced neuronal apoptosis by suppressing oxidative stress. Importantly, hippocampal cyclic adenosine monophosphate (cAMP), p-PKA, p-CREB and BDNF levels were significantly increased in the APP/PS1 mice after RJ treatment, indicating that the cAMP/PKA/CREB/BDNF pathway might be related to the ameliorative effect of RJ on cognitive decline. Collectively, these results provide a scientific basis for using RJ as a functional food for targeting AD pathology.
Collapse
Affiliation(s)
- Mengmeng You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongming Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yichen Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yifan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Juanjuan Si
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Bading Taika B, Bouckandou M, Souza A, Bourobou Bourobou HP, MacKenzie LS, Lione L. An overview of anti-diabetic plants used in Gabon: Pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:203-228. [PMID: 29305175 DOI: 10.1016/j.jep.2017.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. MATERIALS AND METHODS Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including 'Diabetes', 'Gabon', 'Toxicity', 'Constituents', 'hyperglycaemia' were used. RESULTS A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. CONCLUSION An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.
Collapse
Affiliation(s)
- B Bading Taika
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK; IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon.
| | - M Bouckandou
- IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon
| | - A Souza
- Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), Franceville, Gabon
| | - H P Bourobou Bourobou
- IPHAMETRA Institute, Pharmacology and Toxicology Department, CENAREST, Libreville, Gabon
| | - L S MacKenzie
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - L Lione
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, UK
| |
Collapse
|