1
|
Arcia P, Curutchet A, Pérez-Pirotto C, Hernando I. Upcycling fruit pomaces (orange, apple, and grape-wine): The impact of particle size on phenolic compounds' bioaccessibility. Heliyon 2024; 10:e38737. [PMID: 39398048 PMCID: PMC11471267 DOI: 10.1016/j.heliyon.2024.e38737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
This work aimed to analyse the effect of particle size on bioactive compounds of different by-products. Orange, apple, and grape-wine by-products obtained from industrial production were dried and ground at two sizes: 1 mm and 0.5 mm. Pomaces were analysed in composition (protein, fat, carbohydrates, moisture, and ash contents) and bioactive compounds (total phenol content by Folin- Ciocalteu method and antioxidant capacity by FRAP assay) and submitted to an in-vitro digestion. FESEM was used to observe the microstructure of samples. All pomaces showed high fibre content (21.7, 31.2, and 58.9 g/100 g, in apple, orange, and grape pomace respectively). Total phenol content in raw material was higher in grape > orange > apple, with no differences (apple) or slight differences (grape and orange) between 1 mm and 0.5 mm particle size. Grape pomace was observed as a porous, more accessible structure, where extracting polyphenols was easier. Orange pomace', was compact and apple pomace structure was even more compact hindering the raw materials polyphenol extraction. After digestion, total phenol content increased in orange and apple pomace for both particle size. In apple, bioaccessibility of phenolic compounds showed a 5 fold increase for 1 mm sample size and a 4 fold increase for 0.5 mm sample size. In orange, for both sizes bioaccessibility increased but to a lesser extent (2.4 fold). In the case of grape pomace, although polyphenol content decreased after digestion (0.7 fold for both sizes), they showed the highest antioxidant capacity. Regarding the effect of particle size on total polyphenol content and antioxidant capacity, no trend was found in this work for the fruit pomaces studied. In the case of grape and apple, grinding at 1 mm should be adequate regarding antioxidant capacity while in the case of orange, it may be better to use a pomace ground at 0.5 mm.
Collapse
Affiliation(s)
- Patricia Arcia
- Latitud – Fundación LATU, Montevideo, Uruguay
- Departamento de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Ana Curutchet
- Latitud – Fundación LATU, Montevideo, Uruguay
- Departamento de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | | | - Isabel Hernando
- Grupo de Investigación Microestructura y Química de Alimentos, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Wanyo P, Chamsai T, Toontom N, Nghiep LK, Tudpor K. Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts. Molecules 2024; 29:2994. [PMID: 38998946 PMCID: PMC11243717 DOI: 10.3390/molecules29132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Pigmented rice varieties are abundant in phenolic compounds. Antioxidant activity and bioaccessibility of phenolic compounds are modified in the gastrointestinal tract. After in vitro simulated digestion, changes in antioxidant activity and bioaccessibility of phenolic compounds (phenolic acids, flavonoids, and anthocyanins) in purple rice brans (Hom Nil and Riceberry) were compared with undigested crude extracts. The digestion method was conducted following the INFOGEST protocol. Antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assays. The bioaccessibility index (BI) was calculated from the ratio of digested to undigested soluble phenolic content. Overall results showed that the in vitro simulated digested rice brans had lower antioxidant activity and lower total phenolic, flavonoid, and anthocyanin contents. However, the concentration of sinapic acid was stable, while other phenolic acids (gallic, protocatechuic, vanillic, ρ-coumaric, and ferulic acids) degraded after the oral, gastric, and intestinal phases. The BI of sinapic, gallic, vanillic, and ferulic acids remained stable, and the BI of quercetin was resistant to digestion. Conversely, anthocyanins degraded during the intestinal phase. In conclusion, selective phenolic compounds are lost along the gastrointestinal tract, suggesting that controlled food delivery is of further interest.
Collapse
Affiliation(s)
- Pitchaporn Wanyo
- Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46230, Thailand
| | - Tossaporn Chamsai
- Department of Mechanical Engineering, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Surin 32000, Thailand
| | - Nitchara Toontom
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Le Ke Nghiep
- Vinh Long Department of Health, Vĩnh Long 85000, Vietnam
| | - Kukiat Tudpor
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
3
|
Elejalde E, Villarán MC, Esquivel A, Alonso RM. Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:432-439. [PMID: 38504008 PMCID: PMC11178585 DOI: 10.1007/s11130-024-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Grapes present recognized beneficial effects on human health due to their polyphenolic composition. The grape overproduction together with the wine sales down and the world socioeconomic situation makes the wine grape valorization a promising strategy to give an added-value to this natural product. The objective of the present work was to study the influence of in vitro gastrointestinal digestion on antioxidant capacity and polyphenolic profile of skin and seed extracts of different grape varieties (Tempranillo, Graciano, Maturana tinta and Hondarrabi zuri). After in vitro gastrointestinal digestion, total phenolic content (TPC) of seed polyphenolic extracts decreased significantly for all the varieties. The highest decrease was for Tempranillo going from 108 ± 9 to 50 ± 3 mg / g dry matter (dm). This variety also showed the highest decrease of 90% in antioxidant capacity. However, for all the skin polyphenolic extracts there was an increase in TPC. The highest variation was also for Tempranillo. It varied from 10.1 ± 0.8 to 55.1 ± 0.9 mg / g dm. Among red varieties Tempranillo skin polyphenolic extract showed the lowest undigested anthocyanin content but the highest bioaccessibility index (BI) of 77%. For flavanols, flavonols and procyanidins the seed polyphenolic extracts showed a BI at the intestinal phase between 11% for (+)-epicatechin gallate to 130% procyanidin A2. The results of this study suggest that grape skin extracts and grape seed extracts are a reliable source of bioaccessible antioxidant polyphenols, to be used for the development of antioxidant supplements with specific functionalities depending on the grape variety.
Collapse
Affiliation(s)
- Edurne Elejalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510, Miñano, Álava, Spain.
| | - María Carmen Villarán
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510, Miñano, Álava, Spain
| | - Argitxu Esquivel
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510, Miñano, Álava, Spain
| | - Rosa María Alonso
- FARMARTEM Group. Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio de Sarriena, S/N, 48940, Leioa, Bizkaia, Spain
| |
Collapse
|
4
|
Demaman Arend G, Verruck S, Zanchett Schneider NF, Oliveira Simões CM, Tres MV, Prudêncio ES, Cunha Petrus JC, Rezzadori K. Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? MEMBRANES 2024; 14:113. [PMID: 38786947 PMCID: PMC11123244 DOI: 10.3390/membranes14050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The influence of storage stability and simulated gastrointestinal behavior of different extracts of guava leaves extracts (NC: not concentrated, and C10 and C20: concentrated by nanofiltration) was evaluated based on their total phenolic compound (TPC) contents and antioxidant activity as well as on their cytotoxic effects on A549 and Vero cells. The results showed that C10 and C20 presented high stability for 125 days probably due to their high TPC contents and antioxidant activity. The simulated gastrointestinal behavior modified their TPC contents; however, after all digestion steps, the TPC values were higher than 70%, which means that they were still available to exert their bioactivities. Additionally, the cytotoxic effects of these extracts were evaluated before and after the simulated gastrointestinal behavior or under different storage conditions. C10 presented the best selectivity indices (SI) values (IC50 Vero cells/IC50 A549 cells) at both conditions suggesting that it can be considered a potential extract to be developed as a functional food due to its resistance to the gastrointestinal digestion and storage conditions tested.
Collapse
Affiliation(s)
- Giordana Demaman Arend
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - Naira Fernanda Zanchett Schneider
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering—LAPE, Federal University of Santa Maria, Cachoeira do Sul 96503-205, RS, Brazil
| | - Elane Schwinden Prudêncio
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - José Carlos Cunha Petrus
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Katia Rezzadori
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| |
Collapse
|
5
|
Sampaio KB, de Brito Alves JL, do Nascimento YM, Tavares JF, da Silva MS, Dos Santos Nascimento D, de Araújo Rodrigues NP, Monteiro MC, Garcia EF, de Souza EL. Effects of Simulated Gastrointestinal Conditions on Combined Potentially Probiotic Limosilactobacillus fermentum 296, Quercetin, and/or Resveratrol as Bioactive Components of Novel Nutraceuticals. Probiotics Antimicrob Proteins 2024; 16:308-319. [PMID: 36708461 DOI: 10.1007/s12602-023-10046-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
This study evaluated the effects of simulated gastrointestinal conditions (SGIC) on combined potentially probiotic Limosilactobacillus fermentum 296 (~ 10 log CFU/mL), quercetin (QUE, 160 mg), and/or resveratrol (RES, 150 mg) as the bioactive components of novel nutraceuticals. Four different nutraceuticals were evaluated during exposure to SGIC and analyzed the plate counts and physiological status of L. fermentum 296, contents and bioaccessibility of QUE and RES, and antioxidant capacity. Nutraceuticals with QUE and RES had the highest plate counts (4.94 ± 0.32 log CFU/mL) and sizes of live cell subpopulations (28.40 ± 0.28%) of L. fermentum 296 after SGIC exposure. An index of injured cells (Gmean index, arbitrary unit defined as above 0.5) indicated that part of L. fermentum 296 cells could be entered the viable but nonculturable state when the nutraceuticals were exposed to gastric and intestinal conditions while maintaining vitality. The nutraceuticals maintained high contents (QUE ~ 29.17 ± 0.62 and RES ~ 23.05 mg/100 g) and bioaccessibility (QUE ~ 41.0 ± 0.09% and RES ~ 67.4 ± 0.17%) of QUE and RES, as well as high antioxidant capacity (ABTS assay ~ 88.18 ± 1.16% and DPPH assay 75.54 ± 0.65%) during SGIC exposure, which could be linked to the protective effects on L. fermentum 296 cells. The developed nutraceuticals could cross along the gastrointestinal tract with high concentrations of functioning potentially probiotic cells and bioavailable phenolic compounds to exert their beneficial impacts on consumer health, being an innovative strategy for the co-ingestion of these bioactive components.
Collapse
Affiliation(s)
- Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil
| | | | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Davi Dos Santos Nascimento
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil
| | | | - Mariana Costa Monteiro
- Laboratory of Functional Foods, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Cidade Universitária, CEP, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
6
|
Pistol GC, Pertea AM, Taranu I. The Use of Fruit and Vegetable by-Products as Enhancers of Health Status of Piglets after Weaning: The Role of Bioactive Compounds from Apple and Carrot Industrial Wastes. Vet Sci 2023; 11:15. [PMID: 38250921 PMCID: PMC10820549 DOI: 10.3390/vetsci11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
At weaning, piglets are exposed to a large variety of stressors, from environmental/behavioral factors to nutritional stress. Weaning transition affects the gastrointestinal tract especially, resulting in specific disturbances at the level of intestinal morphology, barrier function and integrity, mucosal immunity and gut microbiota. All these alterations are associated with intestinal inflammation, oxidative stress and perturbation of intracellular signaling pathways. The nutritional management of the weaning period aims to achieve the reinforcement of intestinal integrity and functioning to positively modulate the intestinal immunity and that of the gut microbiota and to enhance the health status of piglets. That is why the current research is focused on the raw materials rich in phytochemicals which could positively modulate animal health. The composition analysis of fruit, vegetable and their by-products showed that identified phytochemicals could act as bioactive compounds, which can be used as modulators of weaning-induced disturbances in piglets. This review describes nutritional studies which investigated the effects of bioactive compounds derived from fruit (apple) and vegetables (carrot) or their by-products on the intestinal architecture and function, inflammatory processes and oxidative stress at the intestinal level. Data on the associated signaling pathways and on the microbiota modulation by bioactive compounds from these by-products are also presented.
Collapse
Affiliation(s)
- Gina Cecilia Pistol
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research—Development Institute for Animal Biology and Nutrition, 077015 Balotesti, Ilfov, Romania; (A.-M.P.); (I.T.)
| | | | | |
Collapse
|
7
|
Cañas S, Rebollo-Hernanz M, Martín-Trueba M, Braojos C, Gil-Ramírez A, Benítez V, Martín-Cabrejas MA, Aguilera Y. Exploring the potential of phenolic compounds from the coffee pulp in preventing cellular oxidative stress after in vitro digestion. Food Res Int 2023; 172:113116. [PMID: 37689881 DOI: 10.1016/j.foodres.2023.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The coffee pulp, a by-product of the coffee industry, contains a high concentration of phenolic compounds and caffeine. Simulated gastrointestinal digestion may influence these active compounds' bioaccessibility, bioavailability, and bioactivity. Understanding the impact of the digestive metabolism on the coffee pulp's phenolic composition and its effect on cellular oxidative stress biomarkers is essential. In this study, we evaluated the influence of in vitro gastrointestinal digestion of the coffee pulp flour (CPF) and extract (CPE) on their phenolic profile, radical scavenging capacity, cellular antioxidant activity, and cytoprotective properties in intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CPF and the CPE contained a high amount of caffeine and phenolic compounds, predominantly phenolic acids (3',4'-dihydroxycinnamoylquinic and 3,4-dihydroxybenzoic acids) and flavonoids (3,3',4',5,7-pentahydroxyflavone derivatives). Simulated digestion resulted in increased antioxidant capacity, and both the CPF and the CPE demonstrated free radical scavenging abilities even after in vitro digestion. The CPF and the CPE did not induce cytotoxicity in intestinal and hepatic cells, and both matrices exhibited the ability to scavenge intracellular reactive oxygen species. The coffee pulp treatments prevented the decrease of glutathione, thiol groups, and superoxide dismutase and catalase enzymatic activities evoked by tert-butyl hydroperoxide elicitation in IEC-6 and HepG2 cells. Our findings suggest that the coffee pulp could be used as a potent food ingredient for preventing cellular oxidative stress due to its high content of antioxidant compounds.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Martín-Trueba
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Sinrod AJG, Shah IM, Surek E, Barile D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023; 9:e20499. [PMID: 37867799 PMCID: PMC10589784 DOI: 10.1016/j.heliyon.2023.e20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Grape pomace is the primary wine coproduct consisting primarily of grape seeds and skins. Grape pomace holds immense potential as a functional ingredient to improve human health while its valorization can be beneficial for industrial sustainability. Pomace contains bioactive compounds, including phenols and oligosaccharides, most of which reach the colon intact, enabling interaction with the gut microbiome. Microbial analysis found that grape pomace selectively promotes the growth of many commensal bacteria strains, while other types of bacteria, including various pathogens, are highly sensitive to the pomace and its components and are inactivated. In vitro studies showed that grape pomace and its extracts inhibit the growth of pathogenic bacteria in Enterobacteriaceae family while increasing the growth and survival of some beneficial bacteria, including Bifidobacterium spp. and Lactobacillus spp. Grape pomace supplementation in mice and rats improves their gut microbiome complexity and decreases diet-induced obesity as well as related illnesses, including insulin resistance, indicating grape pomace could improve human health. A human clinical trial found that pomace, regardless of its phenolic content, had cardioprotective effects, suggesting that dietary fiber induced those health benefits. To shed light on the active components, this review explores the potential prebiotic capacity of select bioactive compounds in grape pomace.
Collapse
Affiliation(s)
- Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ece Surek
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Istinye University, 34396, Istanbul, Turkey
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| |
Collapse
|
9
|
Ferreyra S, Bottini R, Fontana A. Background and Perspectives on the Utilization of Canes' and Bunch Stems' Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267502 DOI: 10.1021/acs.jafc.3c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viticulture activity produces a significant amount of grapevine woody byproducts, such as bunch stems and canes, which constitute potential sources of a wide range of phenolic compounds (PCs) with purported applications. Recently, the study of these byproducts has been increased as a source of health-promoting phytochemicals. Antioxidant, antimicrobial, antifungal, and antiaging properties have been reported, with most of these effects being linked to the high content of PCs with antioxidant properties. This Review summarizes the data related to the qualitative and quantitative composition of PCs recovered from canes and bunch stems side streams of the wine industry, the influence that the different environmental and storage conditions have on the final concentration of PCs, and the current reported applications in specific technological fields. The objective is to give a complete valuation of the key factors to consider, starting from the field to the final extracts, to attain the most suitable and stable characterized product.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| |
Collapse
|
10
|
Hamdi M, Mostafa H, Aldhaheri M, Mudgil P, Kamal H, Alamri AS, Galanakis CM, Maqsood S. Valorization of different low-grade date (Phoenix dactylifera L.) fruit varieties: A study on the bioactive properties of polyphenolic extracts and their stability upon in vitro simulated gastrointestinal digestion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107764. [PMID: 37245494 DOI: 10.1016/j.plaphy.2023.107764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Nowadays, the development of suitable strategies for the management and valorization of agri-food products is one of the most important challenges worldwide. In this context, the current research study aimed to explore a valorization strategy for different varieties (Khalas, Jabri, Lulu, Booman, and Sayer) of low-grade date fruit by extracting polyphenolic compounds and investigating their health-promoting bioactive properties. The generated extracts were comparatively analyzed for their phenolic contents, antioxidant, anti-inflammatory, anti-hemolytic, and enzyme inhibitory activities upon in vitro simulated gastrointestinal digestion (SGID). The total phenolic contents (TPC) ranged from 217.3 to 1846.9 mg GAE/100 g fresh weight. After complete SGID, the TPC remarkably increased from 570.8 mg GAE/100 g fresh weight (undigested), reaching the highest value of 1606.3 mg GAE/100 g fresh weight with the Khalas cultivar. Overall, gastric and complete-SGID-treated extracts exhibited higher antioxidant activities, compared to the undigested extracts for the five selected date varieties. Similarly, the gastric and complete SGID promoted the release of bioactive components endowed with significantly higher inhibition levels towards digestive enzymes related to diabetes. Moreover, extracts from all varieties revealed an increase in the inhibition of lipidemic-related enzymatic markers and anti-inflammatory activities when subjected to the gastric digestion phase, which decreased after complete SGID. Principal component analysis (PCA) suggested that higher bioactive properties were influenced by the TPC present in the samples. Overall, low-quality dates could be considered as a potential source of bioactive polyphenols with interesting nutraceutical properties, released upon their transit through the gastrointestinal tract.
Collapse
Affiliation(s)
- Marwa Hamdi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Mouza Aldhaheri
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Hina Kamal
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (C.B.S.R.), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Charis M Galanakis
- Research & Innovation Department, Galanakis Laboratories, 73131, Chania, Greece; Food Waste Recovery Group, I.S.E.K.I. Food Association, 1190, Vienna, Austria; Department of Biology, College of Science, Taif University, 26571, Taif, Saudi Arabia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
11
|
Xie C, Li J, Fang Y, Ma R, Dang Z, Yang F. Proanthocyanins and anthocyanins in chestnut (Castanea mollissima) shell extracts: biotransformation in the simulated gastrointestinal model and interaction with gut microbiota in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3659-3673. [PMID: 36754602 DOI: 10.1002/jsfa.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chestnut (Castanea mollissima) shell is rich in flavonoids and our previous studies showed that proanthocyanins and anthocyanins were the two markedly varied flavonoids in chestnut shell extracts (CSE) during digestion. Here, the biotransformation of proanthocyanins and anthocyanins in a simulated gastrointestinal model, and the interactions between non-absorption CSE (NACSE) and gut microbiota in vitro, were investigated by ultra-high-performance liquid chromatography combined with triple-quadrupole mass spectrometry and 16S rRNA sequencing. RESULTS Chestnut shell was richer in proanthocyanins and anthocyanins, while the loss of proanthocyanins was greater after digestion. Additionally, the content of anthocyanin decreased after gastric digestion but increased after intestinal digestion and remained stable after fermentation. After fermentation, delphinidin-3-O-sambubioside and pelargonidin-3-O-galactoside were newly formed. Furthermore, microbiome profiling indicated that NACSE promoted the proliferation of beneficial bacteria, while inhibiting pathogenic bacteria. CONCLUSION All these data suggest that CSE may be a promising candidate to protect gut health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyang Xie
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jie Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yihe Fang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Renyi Ma
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhixiong Dang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Yang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
12
|
Cavia MM, Arlanzón N, Busto N, Carrillo C, Alonso-Torre SR. The Impact of In Vitro Digestion on the Polyphenol Content and Antioxidant Activity of Spanish Ciders. Foods 2023; 12:foods12091861. [PMID: 37174399 PMCID: PMC10178113 DOI: 10.3390/foods12091861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Various factors can influence the polyphenol content and the antioxidant capacity of ciders, such as the apple variety, its degree of maturity, apple farming and storage conditions, and the cider-fermentation method, all of which explains why ciders of different origin present different values. In addition, digestive processes could have some effects on the properties of cider. Hence, the objective of this study is to characterize Spanish ciders in terms of their polyphenol content and antioxidant capacity and to ascertain whether those same properties differ in digested ciders. In total, 19 ciders were studied from three different zones within Spain: Asturias (A) (10), the Basque Country (BC) (6), and Castile-and-Leon (CL) (3). A range of assays was used to determine the total polyphenol content and the antioxidant capacity of the ciders. In addition, a digestive process was simulated in vitro, assessing whether the use of amylase might influence the recovery of bioactive compounds after digestion. The Basque Country ciders presented higher total polyphenol contents (830 ± 179 GAE/L) and higher antioxidant capacities (DPPH: 5.4 ± 1.6 mmol TE/L; ABTS: 6.5 ± 2.0 mmol TE/L; FRAP: 6.9 ± 1.6 mmol TE/L) than the other ciders that were studied. The in vitro digestion process, regardless of the use of amylase, implied a loss of phenolic compounds (598 ± 239 mg GAE/L undigested samples; 466 ± 146 mg GAE/L digested without amylase samples; 420 ± 115 mg GAE/L digested with amylase samples), although the variation in antioxidant activity depended on the assay chosen for its determination.
Collapse
Affiliation(s)
- Mari Mar Cavia
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Nerea Arlanzón
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Celia Carrillo
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Sara R Alonso-Torre
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
13
|
Odriozola-Serrano I, Nogueira DP, Esparza I, Vaz AA, Jiménez-Moreno N, Martín-Belloso O, Ancín-Azpilicueta C. Stability and Bioaccessibility of Phenolic Compounds in Rosehip Extracts during In Vitro Digestion. Antioxidants (Basel) 2023; 12:antiox12051035. [PMID: 37237901 DOI: 10.3390/antiox12051035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Rosehips, particularly dog rose fruits (Rosa canina L.), are a great source of antioxidant compounds, mainly phenolics. However, their health benefits directly depend on the bioaccessibility of these compounds affected by gastrointestinal digestion. Thus, the purpose of this research was to study the impact of gastrointestinal and colonic in vitro digestions on the concentration of total and individual bioaccessible phenolic compounds from a hydroalcoholic extract of rosehips (Rosa canina) and also their antioxidant capacity. A total of 34 phenolic compounds were detected in the extracts using UPLC-MS/MS. Ellagic acid, taxifolin, and catechin were the most abundant compounds in the free fraction, while gallic and p-coumaric acids were the main compounds in the bound phenolic fraction. Gastric digestion negatively affected the content of free phenolic compounds and the antioxidant activity measured using the DPPH radical method. However, there was an enhancement of antioxidant properties in terms of phenolic content and antioxidant activity (DPPH (2,2-diphenyl-1-picrylhydrazyl): 18.01 ± 4.22 mmol Trolox Equivalent (TE)/g; FRAP (Ferric Reducing Antioxidant Power): 7.84 ± 1.83 mmol TE/g) after the intestinal stage. The most bioaccessible phenolic compounds were flavonols (73.3%) and flavan-3-ols (71.4%). However, the bioaccessibility of phenolic acids was 3%, probably indicating that most of the phenolic acids were still bound to other components of the extract. Ellagic acid is an exception since it presented a high bioaccessibility (93%) as it was mainly found in the free fraction of the extract. Total phenolic content decreased after in vitro colonic digestion, probably due to chemical transformations of the phenolic compounds by gut microbiota. These results demonstrated that rosehip extracts have a great potential to be used as a functional ingredient.
Collapse
Affiliation(s)
- Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Danielle P Nogueira
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Ana A Vaz
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| |
Collapse
|
14
|
Cheng J, Tang D, Yang H, Wang X, Lin Y, Liu X. The effects of mulberry polyphenols on the digestibility and absorption properties of pork myofibrillar protein in vitro. Meat Sci 2023; 202:109205. [PMID: 37172549 DOI: 10.1016/j.meatsci.2023.109205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The objective of the present study was to explore the effect of mulberry polyphenols on the digestibility and absorption properties of myofibrillar protein (MP) in vitro. MP was extracted from the Longissimus et thoracis muscle of 18 different pig carcasses and the MP-mulberry polyphenols complex was prepared. The antioxidant activity of digestive juice, degradation of both MP and polyphenols, and the metabolism of MP and the MP-polyphenols complex by intestinal microbial activity during digestion and fermentation in vitro were compared. The results showed that mulberry polyphenols significantly affect the digestibility of MP and the antioxidant activity of digestive juices during digestion (P < 0.05). After the modification of the polyphenols, the hydrolysis of MP increased from 55.4% to 64.0%, and the molecular weight of protein digestion product significantly decreased (P < 0.05). The scavenging rates of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl in the final digestive juice were 350.1 μmol Trolox/mg protein and 34.0%, respectively, which were 0.34 and 0.47-fold higher than those of the control (P < 0.05). Furthermore, the release and degradation of phenolic compounds mainly occurred during intestinal digestion, and polyphenols that reached the colon after digestion, through the fermentation of intestinal microorganisms in vitro, enriched Lactobacillus and promoted the production of short-chain fatty acids which has obvious potential to improve intestinal health.
Collapse
Affiliation(s)
- Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
15
|
Changes of Bioactive Components and Antioxidant Capacity of Pear Ferment in Simulated Gastrointestinal Digestion In Vitro. Foods 2023; 12:foods12061211. [PMID: 36981138 PMCID: PMC10048753 DOI: 10.3390/foods12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Fruit ferment is rich in polyphenols, organic acids, enzymes, and other bioactive components, which contribute to their antioxidant ability. In this study, we investigated the effect of the simulated gastric and intestinal digestion in vitro on the total phenolic content (TPC), total flavonoid content (TFC), phenolic components content, organic acid content, protease activity, superoxide dismutase (SOD) activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (DPPH-RSA), hydroxyl (·OH) radical scavenging activity (·OH-RSA), and total reducing capacity in ‘Xuehua’ pear (Pyrus bretschneideri Rehd) ferment. The result showed that the TPC, TFC, protease activity, and phenolic components such as arbutin, protocatechuic acid, malic acid, and acetic acid showed a rising trend during the simulated gastric digestion in ‘Xuehua’ pear ferment, and these components might contribute to the increasing of ·OH-RSA and total reducing capacity. The SOD activity and epicatechin content showed an increasing trend at first and then a decreasing trend, which was likely associated with DPPH-RSA. During in vitro-simulated intestinal digestion, the majority of evaluated items reduced, except for protease activity, quercetin, and tartaric acid. The reason for the decreasing of bio-accessibility resulted from the inhibition of the digestive environment, and the transformation between substances, such as the conversion of hyperoside to quercetin. The correlation analysis indicated that the antioxidant capacity of ‘Xuehua’ pear ferment was mainly affected by its bioactive compounds and enzymes activity as well as the food matrices and digestive environment. The comparison between the digestive group with and without enzymes suggested that the simulated gastrointestinal digestion could boost the release and delay the degradation of phenolic components, flavonoids, and organic acid, protect protease and SOD activity, and stabilize DPPH-RSA, ·OH-RSA, and total reducing capacity in ‘Xuehua’ pear ferment; thus, the ‘Xuehua’ pear ferment could be considered as an easily digestible food.
Collapse
|
16
|
Nieto JA, Fernández-Jalao I, Siles-Sánchez MDLN, Santoyo S, Jaime L. Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts. Molecules 2023; 28:molecules28062461. [PMID: 36985434 PMCID: PMC10051231 DOI: 10.3390/molecules28062461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, soluble sugars, and individual phenolic compounds content. Corresponding to its higher total phenolics content, HPE possesses a higher antioxidant activity (TEAC value). The digestion process reduced the antioxidant activity of the HPE up to 69%, due to the decrease of TPC (75%) with a significant loss of polymeric compounds. LPE antioxidant activity was stable, and TPC decreased by only 13% during the digestion process. Moreover, a higher antioxidant phenolic compounds bioavailability was shown in LPE in contrast to HPE. This behaviour was ascribed mainly to the negative interaction of polymeric fractions and the positive interaction of lipids with phenolic compounds. Therefore, this study highlights the convenience of carrying out previous studies to identify the better extraction conditions of individual bioavailable phenolic compounds with antioxidant activity, along with those constituents that could increase their bioaccessibility and bioavailability, such as lipids, although the role played by other components, such as hemicelluloses, cannot be ruled out.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Irene Fernández-Jalao
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - María de Las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| |
Collapse
|
17
|
Bonifácio-Lopes T, M G Castro L, Vilas-Boas A, Campos D, Teixeira JA, Pintado M. Impact of gastrointestinal digestion simulation on brewer's spent grain green extracts and their prebiotic activity. Food Res Int 2023; 165:112515. [PMID: 36869512 DOI: 10.1016/j.foodres.2023.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Brewer's spent grain (BSG) is a by-product of the beer industry and a potential source of bioactive compounds. In this study, two methods of extracting bioactive compounds from brewer's spent grain were used - solid-to-liquid conventional extraction (SLE) and solid-to-liquid ohmic heating extraction (OHE) coupled with two ratio combinations of solvents: 60 % and 80 % ethanol:water (v/v). The bioactive potential of the BSG extracts was assessed during the gastrointestinal tract digestion (GID) and the differences in their antioxidant activity, total phenolic content and characterization of the polyphenol profile was measured. The SLE extraction using 60 % ethanol:water (v/v) was the extraction method with higher antioxidant activity (33.88 mg ascorbic acid/g BSG - initial; 16.61 mg ascorbic acid/g BSG - mouth; 15.58 mg ascorbic acid/g BSG - stomach; 17.26 mg ascorbic acid/g BSG - duodenum) and higher content in total phenolics (13.26 mg gallic acid/g BSG - initial; 4.80 mg gallic acid/g BSG - mouth; 4.88 mg gallic acid/g BSG - stomach; 5.00 mg gallic acid/g BSG - duodenum). However, the OHE extraction using 80 % ethanol:water (v/v), had a higher bioaccessibility index (99.77 % for ferulic acid, 72.68 % for 4-hydroxybenzoic acid, 65.37 % for vanillin, 28.99 % for p-coumaric, 22.54 % for catechin) values of polyphenols. All the extracts enhanced (except for SLE for 60 % ethanol:water (v/v) at 2 and 1.5 %, and for 80 % ethanol:water (v/v) at 2 % with Bifidobacterium animalis spp. lactis BB12, where no growth was observed) the growth of the probiotic microorganisms tested (Bifidobacterium animalis B0 - O.D.'s between 0.8240 and 1.7727; Bifidobacterium animalis spp. lactis BB12 - O.D.'s between 0.7219 and 0.8798; Lacticaseibacillus casei 01 - O.D.'s between 0.9121 and 1.0249; and Lactobacillus acidophilus LA-5 - O.D.'s between 0.8595 and 0.9677), demonstrating a potential prebiotic activity of BSG extracts.
Collapse
Affiliation(s)
- Teresa Bonifácio-Lopes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís M G Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Vilas-Boas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Débora Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
18
|
Evaluation of viability to simulated gastrointestinal tract passage of probiotic strains and pioneer bioaccessibility analyses of antioxidants in chocolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Li K, Duan X, Zhou L, Hill DRA, Martin GJO, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from microalgae during in vitro digestion and colonic fermentation. Food Funct 2023; 14:899-910. [PMID: 36537586 DOI: 10.1039/d2fo02980d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are a developing novel source of carbohydrates, phenolic compounds, carotenoids and proteins. In this study, in vitro digestion and colonic fermentation were conducted to examine the total phenolic content and potential antioxidant activity of four microalgal species (Chlorella sp., Spirulina sp., Dunaliella sp., and Isochrysis sp.). The bioaccessibility of targeted phenolic compounds and the short-chain fatty acid (SCFA) production were also estimated. Particularly, Spirulina sp. exhibited the highest total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl, DPPH) capacity after gastrointestinal digestion of 7.93 mg gallic acid equivalents (GAE) per g and 2.35 mg Trolox equivalents (TE) per g. Meanwhile, it had the highest total flavonoid content (TFC) of 1.07 quercetin equivalents (QE) per g after 8 h of colonic fermentation. Dunaliella sp. and Isochrysis sp. showed comparable ferric reducing antioxidant power (FRAP) of 4.96 and 4.45 mg QE per g after 4 h of faecal reaction, respectively. p-hydroxybenzoic and caffeic acid almost completely decomposed after the intestine and fermented in the colon with the gut microflora. In Dunaliella sp. and Isochrysis sp., these phenolic acids were found in the colonic fermented residual, probably due to the presence of dietary fibre and the interactions with other components. All four species reached the highest values of SCFA production after 16 h, except Spirulina sp., which displayed the most increased total SCFA production after 8 h of fermentation. It is proposed that Spirulina sp. could be more beneficial to gut health.
Collapse
Affiliation(s)
- Kunning Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Xinyu Duan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Linhui Zhou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
20
|
FAN Y, PEI Y, CHEN J, ZHA X, WU Y. Structural characterization and stability of microencapsulated flavonoids from Lycium barbarum L. leaves. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Cañas S, Rebollo-Hernanz M, Braojos C, Benítez V, Ferreras-Charro R, Dueñas M, Aguilera Y, Martín-Cabrejas MA. Gastrointestinal fate of phenolic compounds and amino derivatives from the cocoa shell: An in vitro and in silico approach. Food Res Int 2022; 162:112117. [DOI: 10.1016/j.foodres.2022.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
22
|
Exploring the effect of in vitro digestion on the phenolics and antioxidant activity of Lycium barbarum fruit extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Milinčić DD, Stanisavljević NS, Kostić AŽ, Gašić UM, Stanojević SP, Tešić ŽL, Pešić MB. Bioaccessibility of Phenolic Compounds and Antioxidant Properties of Goat-Milk Powder Fortified with Grape-Pomace-Seed Extract after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2022; 11:2164. [PMID: 36358535 PMCID: PMC9686738 DOI: 10.3390/antiox11112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/27/2023] Open
Abstract
This study deals with the evaluation of the bioaccessibility and antioxidant properties of phenolic compounds from heat-treated skim goat-milk powder fortified with grape-pomace-seed extract, after in vitro gastrointestinal digestion. Ultra-high performance liquid chromatography coupled to diode array detection and mass spectrometry (UHPLC-DAD MS/MS) analysis confirmed the abundant presence of phenolic acids and flavan-3-ols in the grape-pomace-seed extract (SE) and heat-treated skim goat-milk/seed-extract powder (TME). After in vitro digestion of TME powder and recovery of total quantified phenolics, flavan-3-ols and phenolic acids were 18.11%, 24.54%, and 1.17%, respectively. Low recovery of grape-pomace-seed phenolics indicated strong milk protein-phenolic interactions. Electrophoretic analysis of a soluble fraction of digested heat-treated skim goat milk (TM) and TME samples showed the absence of bands originating from milk proteins, indicating their hydrolysis during in vitro gastrointestinal digestion. The digested TME sample had better antioxidant properties in comparison to the digested TM sample (except for the ferrous ion-chelating capacity, FCC), due to the presence of bioaccessible phenolics. Taking into account the contribution of the digestive cocktail, digested TME sample had lower values of total phenolic content (TPC), in vitro phosphomolybdenum reducing capacity (TAC) and ferric reducing power (FRP), compared to the undigested TME sample. These results could be attributed to low recovery of phenolic compounds. TME powder could be a good carrier of phenolics to the colon; thus, TME powder could be a promising ingredient in the formulation of functional food.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nemanja S. Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, 11010 Belgrade, Serbia
| | - Aleksandar Ž. Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Živoslav Lj. Tešić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
24
|
Cañas S, Rebollo-Hernanz M, Braojos C, Benítez V, Ferreras-Charro R, Dueñas M, Aguilera Y, Martín-Cabrejas MA. Understanding the Gastrointestinal Behavior of the Coffee Pulp Phenolic Compounds under Simulated Conditions. Antioxidants (Basel) 2022; 11:antiox11091818. [PMID: 36139892 PMCID: PMC9495553 DOI: 10.3390/antiox11091818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous residues, such as the coffee pulp, are generated throughout coffee processing. This by-product is a source of antioxidant phytochemicals, including phenolic compounds and caffeine. However, the antioxidant properties of the phenolic compounds from the coffee pulp are physiologically limited to their bioaccessibility, bioavailability, and biotransformation occurring during gastrointestinal digestion. Hence, this study explored the phenolic and caffeine profile in the coffee pulp flour (CPF) and extract (CPE), their intestinal bioaccessibility through in vitro digestion, and their potential bioavailability and colonic metabolism using in silico models. The CPE exhibited a higher concentration of phenolic compounds than the CPF, mainly phenolic acids (protocatechuic, chlorogenic, and gallic acids), followed by flavonoids, particularly quercetin derivatives. Caffeine was found in higher concentrations than phenolic compounds. The antioxidant capacity was increased throughout the digestive process. The coffee pulp matrix influenced phytochemicals’ behavior during gastrointestinal digestion. Whereas individual phenolic compounds generally decreased during digestion, caffeine remained stable. Then, phenolic acids and caffeine were highly bioaccessible, while flavonoids were mainly degraded. As a result, caffeine and protocatechuic acid were the main compounds absorbed in the intestine after digestion. Non-absorbed phenolic compounds might undergo colonic biotransformation yielding small and potentially more adsorbable phenolic metabolites. These results contribute to establishing the coffee pulp as an antioxidant food ingredient since it contains bioaccessible and potentially bioavailable phytochemicals with potential health-promoting properties.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Rebeca Ferreras-Charro
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Montserrat Dueñas
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
In vitro digestion of binary mixture of α-tocopherol and γ-oryzanol in oil-in-water emulsion: Changes in stability and antioxidant potential. Food Res Int 2022; 159:111606. [DOI: 10.1016/j.foodres.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
|
26
|
A. Vaz A, Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods 2022; 11:2578. [PMID: 36076764 PMCID: PMC9455628 DOI: 10.3390/foods11172578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The agro-food industry generates a large volume of by-products, whose revaluation is essential for the circular economy. From these by-products, dietary fibre concentrates (DFCs) can be obtained. Therefore, the objective of this study was to characterise (a) the proximal composition by analysing soluble, insoluble and total Dietary Fibre (DF), (b) the physicochemical properties, and (c) the phenolic profile of artichoke, red pepper, carrot, and cucumber DFCs. In addition, the bioaccessibility of phenolic compounds was also evaluated after in vitro gastrointestinal and colonic digestions. The results showed that the DFCs had more than 30 g/100 g dw. The water holding and retention capacity of the DFCs ranges from 9.4 to 18.7 g of water/g. Artichoke DFC presented high concentration of phenolic compounds (8340.7 mg/kg) compared to the red pepper (304.4 mg/kg), carrot (217.4 mg/kg) and cucumber DFCs (195.7 mg/kg). During in vitro gastrointestinal digestion, soluble phenolic compounds were released from the food matrix, chlorogenic acid, the principal compound in artichoke and carrot DFCs, and hesperetin-7-rutinoside in red pepper cucumber DFCs. Total phenolic content decreased after in vitro colonic digestion hence the chemical transformation of the phenolic compounds by gut microbiota. Based on the results, DFCs could be good functional ingredients to develop DF-enriched food, reducing food waste.
Collapse
Affiliation(s)
| | | | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio CERCA Center, Av. Alcalde Rovira Roure191, 25198 Lleida, Spain
| |
Collapse
|
27
|
Bae HG, Kim MJ. Antioxidant and anti-obesity effects of in vitro digesta of germinated buckwheat. Food Sci Biotechnol 2022; 31:879-892. [PMID: 35720456 PMCID: PMC9203653 DOI: 10.1007/s10068-022-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Buckwheat germinated on days of 3, 5, and 7 was digested in vitro, and the antioxidant and anti-obesity effects of the digesta were evaluated. In vitro digesta of 5 days germinated buckwheat (GBD5) showed significantly higher antioxidant activity in DPPH, ABTS, total phenolic content, total flavonoid content, and ferric reducing antioxidant power by 5.3, 1.3, 2.0, 3.2, and 2.8-fold, respectively than in vitro digesta of non-germinated buckwheat. GBD5 exerted inhibitory effect on total lipid accumulation in 3T3-L1 adipocyte in a dose-dependent manner, with over 25% reduction at 400 µg/mL. Additionally, GBD5 significantly downregulated genes related to adipocyte differentiation and fat accumulation. GBD5 possessed different metabolite profiles compared to others such as higher content of γ-aminobutyric acid and succinic acid. Therefore, GBD5 has potent antioxidant effects and suppresses fat accumulation-related genes and proteins expression, which could act as a new functional substance.
Collapse
Affiliation(s)
- Hyun-Gyeong Bae
- Department of Food and Nutrition, Kangwon National University, Samcheok, Gangwon 25949 Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Gangwon 25949 Republic of Korea
| |
Collapse
|
28
|
Sangsukiam T, Duangmal K. Changes in bioactive compounds and health-promoting activities in adzuki bean: Effect of cooking conditions and in vitro simulated gastrointestinal digestion. Food Res Int 2022; 157:111371. [DOI: 10.1016/j.foodres.2022.111371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
|
29
|
Zannou O, Pashazadeh H, Ibrahim SA, Koca I, Galanakis CM. Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Comparison of Flavonoid O-Glycoside, C-Glycosideand Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo. Foods 2022; 11:foods11060882. [PMID: 35327304 PMCID: PMC8949116 DOI: 10.3390/foods11060882] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
Abstract
Flavonoids are well known for their extensive health benefits. However, few studies compared the differences between flavonoid O-glycoside and C-glycoside. In this work, flavonoid O-glycoside (isoquercitrin), C-glycoside (orientin), and their aglycones (quercetin and luteolin) were chosen to compare their differences on antioxidant activities and metabolism during in vitro digestion and in vivo. In vitro digestion, the initial antioxidant activity of the two aglycones was very high; however, they both decreased more sharply than their glycosides in the intestinal phase. The glycosidic bond of flavonoid O-glycoside was broken in the gastric and intestinal stage, while the C-glycoside remained unchanged. In vivo, flavonoid O-glycoside in plasma was more elevated than C-glycoside on the antioxidant activity; however, flavonoid C-glycoside in urine was higher than O-glycoside. These results indicate that differences of flavonoid glycosides and their aglycones on antioxidant activity are closely related to their structural characteristics and metabolism in different samples. Aglycones possessed higher activity but unstable structures. On the contrary, the sugar substituents reduced the activity of flavonoids while improving their stability and helping to maintain antioxidant activities after digestion. Especially the C-glycoside was more stable because the stability of the C–C bond is higher than that of the C–O bond, which contributes to the difference between flavonoid O-glycoside and C-glycoside on the absorption and metabolism in vivo. This study provided a new perspective for comparing flavonoid O-glycoside, flavonoid C-glycoside, and their aglycones on their structure–activity relationship and metabolism.
Collapse
|
31
|
Caponio GR, Noviello M, Calabrese FM, Gambacorta G, Giannelli G, De Angelis M. Effects of Grape Pomace Polyphenols and In Vitro Gastrointestinal Digestion on Antimicrobial Activity: Recovery of Bioactive Compounds. Antioxidants (Basel) 2022; 11:567. [PMID: 35326217 PMCID: PMC8944823 DOI: 10.3390/antiox11030567] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Grape pomace (GP), a major byproduct obtained from the winemaking process, is characterized by a high amount of phenolic compounds and secondary plant metabolites, with potential beneficial effects on human health. Therefore, GP is a source of bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activity. As people are paying more attention to sustainability, in this work, we evaluate two different extractions (aqueous and hydroalcoholic) of GP bioactive compounds. In vitro simulated gastrointestinal digestion of the GP extracts was performed to improve the bioavailability and bioaccessibility of polyphenols. The antioxidant activity (ABTS and DPPH assays) and the phenolic characterization of the extracts by UHPLC-DAD were evaluated. The antimicrobial effects of GP antioxidants in combination with a probiotic (Lactiplantibacillus plantarum) on the growth of pathogenic microorganisms (Escherichia coli, Bacillus megaterium, and Listeria monocytogenes) were evaluated. As a result, an increase of antioxidant activity of aqueous GP extracts during the gastrointestinal digestion, and a contextual decrease of hydroalcoholic extracts, were detected. The main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, flavonoids, and stilbenes. Despite lower antioxidant activity, due to the presence of antimicrobial active compounds, the aqueous extracts inhibited the growth of pathogens.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (G.G.)
| | - Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (G.G.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (M.N.); (F.M.C.); (G.G.)
| |
Collapse
|
32
|
Diep TT, Yoo MJY, Rush E. Tamarillo Polyphenols Encapsulated-Cubosome: Formation, Characterization, Stability during Digestion and Application in Yoghurt. Antioxidants (Basel) 2022; 11:520. [PMID: 35326171 PMCID: PMC8944466 DOI: 10.3390/antiox11030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022] Open
Abstract
Tamarillo extract is a good source of phenolic and anthocyanin compounds which are well-known for beneficial antioxidant activity, but their bioactivity maybe lost during digestion. In this study, promising prospects of tamarillo polyphenols encapsulated in cubosome nanoparticles prepared via a top-down method were explored. The prepared nanocarriers were examined for their morphology, entrapment efficiency, particle size and stability during in vitro digestion as well as potential fortification of yoghurt. Tamarillo polyphenol-loaded cubosomes showed cubic shape with a mean particle size of 322.4 ± 7.27 nm and the entrapment efficiency for most polyphenols was over 50%. The encapsulated polyphenols showed high stability during the gastric phase of in vitro digestion and were almost completely, but slowly released in the intestinal phase. Addition of encapsulated tamarillo polyphenols to yoghurt (5, 10 and 15 wt% through pre- and post-fermentation) improved the physicochemical and potential nutritional properties (polyphenols concentration, TPC) as well as antioxidant activity. The encapsulation of tamarillo polyphenols protected against pH changes and enzymatic digestion and facilitated a targeted delivery and slow release of the encapsulated compounds to the intestine. Overall, the cubosomal delivery system demonstrated the potential for encapsulation of polyphenols from tamarillo for value-added food product development with yoghurt as the vehicle.
Collapse
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Elaine Rush
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- School of Sport and Recreation, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
33
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
34
|
Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria. Food Chem 2022; 368:130871. [PMID: 34438174 DOI: 10.1016/j.foodchem.2021.130871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
This study is the first dynamic simulation of gastrointestinal digestion of cranberry polyphenols [1 g cranberry extract per day (206.2 mg polyphenols) for 18 days]. Samples from the simulated ascending, transverse, and descending colon of the dynamic gastrointestinal simulator simgi® were analyzed. Results showed that 67% of the total cranberry polyphenols were recovered after simulated gastrointestinal digestion. Specifically, benzoic acids, hydroxycinnamic acids, phenylpropionic acids, phenylacetic acids, and simple phenols were identified. Cranberry feeding modified colonic microbiota composition of Enterococcaceae population significantly. However, increments in microbial-derived short-chain fatty acids, particularly in butyric acid, were observed. Finally, the simgi® effluent during cranberry feeding showed significant antiadhesive activity against uropathogenic Escherichia coli (13.7 ± 1.59 % of inhibition). Understanding the role that gut microbiota plays in cranberry metabolism could help to elucidate its interaction with the human body and explain cranberry protective effects against urinary tract infections.
Collapse
|
35
|
Seke F, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Extraction optimisation, hydrolysis, antioxidant properties and bioaccessibility of phenolic compounds in Natal plum fruit (Carissa Macrocarpa). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Trujillo-Mayol I, Viegas O, Sobral MMC, Casas-Forero N, Fiallos N, Pastene-Navarrete E, Faria MA, Alarcón-Enos J, Pinho O, Ferreira IMPLVO. In vitro gastric bioaccessibility of avocado peel extract in beef and soy-based burgers and its impact on Helicobacter pylori risk factors. Food Chem 2021; 373:131505. [PMID: 34772570 DOI: 10.1016/j.foodchem.2021.131505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
The objective of the present study was to investigate the impact of phenolic-rich avocado peel extract (APE) as an ingredient in beef and soy-based burgers to increase their antioxidant activity, reduce lipid and protein oxidation during gastric digestion, and inhibit urease and anhydrase carbonic activity, which are considered as key factors in the main steps of Helicobacter pylori adhesion in the stomach. The gastric bioaccessible fraction of soy and beef burgers with added 0.5% APE obtained by in vitro digestion exhibited a higher content of phenolic compounds, including monomeric and oligomeric (epi)catechin forms and quercetin, and reduced levels of thiobarbituric acid-reactive substances (TBARS) and carbonyls (49% to 73% and 57% to 60%, respectively) when compared with control burgers. Moreover, the burgers with APE inhibited urease and carbonic anhydrase activity. Results generally showed that including APE reduces the primary risk factors associated with H. pylori infection.
Collapse
Affiliation(s)
- Igor Trujillo-Mayol
- Agriculture and Food Research Center, Food Science and Technology Program, Universidad del Valle de Guatemala, 18 Av. 11-95 Zona 15, Guatemala City, Guatemala.
| | - Olga Viegas
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Universidade do Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, Universidade do Porto, Porto, Portugal
| | - M Madalena C Sobral
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Universidade do Porto, Porto, Portugal
| | - Nidia Casas-Forero
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Nandis Fiallos
- Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Edgar Pastene-Navarrete
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Universidade do Porto, Porto, Portugal
| | - Julio Alarcón-Enos
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile
| | - Olívia Pinho
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Universidade do Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, Universidade do Porto, Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Mashitoa FM, Manhivi VE, Akinola SA, Garcia C, Remize F, Shoko T, Sivakumar D. Changes in phenolics and antioxidant capacity during fermentation and simulated in vitro digestion of mango puree fermented with different lactic acid bacteria. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florence M. Mashitoa
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Stephen A. Akinola
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Cyrielle Garcia
- Qualisud Univ MontpellierCIRAD, Institut AgroAvignon UniversitéUniv de La RéunionESIROI Montpellier France
| | - Fabienne Remize
- Qualisud Univ MontpellierCIRAD, Institut AgroAvignon UniversitéUniv de La RéunionESIROI Montpellier France
| | - Tinotenda Shoko
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Dharini Sivakumar
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| |
Collapse
|
38
|
Franco Ribeiro E, Carregari Polachini T, Dutra Alvim I, Quiles A, Hernando I, Nicoletti VR. Microencapsulation of roasted coffee oil Pickering emulsions using spray‐ and freeze‐drying: physical, structural and
in vitro
bioaccessibility studies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisa Franco Ribeiro
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Tiago Carregari Polachini
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center Food Technology Institute (ITAL) Campinas São Paulo 13070‐178 Brazil
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Vania Regina Nicoletti
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| |
Collapse
|
39
|
Seke F, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Effect of Freeze Drying and Simulated Gastrointestinal Digestion on Phenolic Metabolites and Antioxidant Property of the Natal Plum ( Carissa macrocarpa). Foods 2021; 10:foods10061420. [PMID: 34207411 PMCID: PMC8235007 DOI: 10.3390/foods10061420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/14/2023] Open
Abstract
Natal plums (Carissa macrocarpa) are a natural source of bioactive compounds, particularly anthocyanins, and can be consumed as a snack. This study characterized the impact of freeze drying and in vitro gastrointestinal digestion on the phenolic profile, antioxidant capacity, and α-glucosidase activity of the Natal plum (Carissa macrocarpa). The phenolic compounds were quantified using high performance liquid chromatography coupled to a diode-array detector HPLC-DAD and an ultra-performance liquid chromatograph (UPLC) with a Waters Acquity photodiode array detector (PDA) coupled to a Synapt G2 quadrupole time-of-flight (QTOF) mass spectrometer. Cyanidin-3-O-β-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside (Cy-3-G) were the dominant anthocyanins in the fresh and freeze-dried Natal plum powder. Freeze drying did not affect the concentrations of both cyanidin compounds compared to the fresh fruit. Both cyanidin compounds, ellagic acid, catechin, epicatechin syringic acid, caffeic acid, luteolin, and quercetin O-glycoside from the ingested freeze-dried Natal plum powder was quite stable in the gastric phase compared to the small intestinal phase. Cyanidin-3-O-β-sambubioside from the ingested Natal plum powder showed bioaccessibility of 32.2% compared to cyanidin-3-O-glucoside (16.3%). The degradation of anthocyanins increased the bioaccessibility of gallic acid, protocatechuic acid, coumaric acid, and ferulic acid significantly, in the small intestinal digesta. The ferric reducing antioxidant power (FRAP), 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) activities, and inhibitory effect of α-glucosidase activity decreased in the small intestinal phase. Indigenous fruits or freeze-dried powders with Cy-3-Sa can be a better source of anthocyanin than Cy-3-G due to higher bioaccessibility in the small intestinal phase.
Collapse
Affiliation(s)
- Faith Seke
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.S.); (R.M.S.)
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (V.E.M.); (T.S.)
| | - Tinotenda Shoko
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (V.E.M.); (T.S.)
| | - Retha M. Slabbert
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.S.); (R.M.S.)
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, St Lucia, QLD 4069, Australia;
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; (V.E.M.); (T.S.)
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, St Lucia, QLD 4069, Australia;
- Correspondence:
| |
Collapse
|
40
|
Amrani-Allalou H, Boulekbache-Makhlouf L, Izzo L, Arkoub-Djermoune L, Freidja ML, Mouhoubi K, Madani K, Tenore GC. Phenolic compounds from an Algerian medicinal plant ( Pallenis spinosa): simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct 2021; 12:1291-1304. [PMID: 33439206 DOI: 10.1039/d0fo01764g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.
Collapse
Affiliation(s)
- Hanane Amrani-Allalou
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Lila Boulekbache-Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Lynda Arkoub-Djermoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Université Mouloud Mammeri de Tizi Ouzou, Faculté des Sciences Biologiques et des Sciences Agronomiques, Algeria
| | - Mohamed Lamine Freidja
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Département de Biochimie et de Microbiologie, Faculté des Sciences, Université Mohamed Boudiaf, 28000 M'sila, Algeria
| | - Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria. and Centre de Recherche en Technologie Agro-Alimentaire, Route de Tergua-Ouzemour, 06000, Bejaia, Algeria
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
41
|
Ismail BB, Guo M, Pu Y, Çavuş O, Ayub KA, Watharkar RB, Ding T, Chen J, Liu D. Investigating the effect of in vitro gastrointestinal digestion on the stability, bioaccessibility, and biological activities of baobab (Adansonia digitata) fruit polyphenolics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Sridhar K, Charles AL. Multivariate analysis of variance: An advanced chemometric approach to differentiate dose‐dependent antioxidant activities of grape (
Vitis labruscana
) skin extracts. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kandi Sridhar
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology Neipu Taiwan
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation National Pingtung University of Science and Technology Neipu Taiwan
| |
Collapse
|
43
|
Mashitoa FM, Akinola SA, Manhevi VE, Garcia C, Remize F, Slabbert RM, Sivakumar D. Influence of Fermentation of Pasteurised Papaya Puree with Different Lactic Acid Bacterial Strains on Quality and Bioaccessibility of Phenolic Compounds during In Vitro Digestion. Foods 2021; 10:foods10050962. [PMID: 33924943 PMCID: PMC8145966 DOI: 10.3390/foods10050962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022] Open
Abstract
This study describes the impact of utilising different strains of lactic acid bacteria (LAB) for the fermentation of papaya puree and their effect on the quality parameters and bioaccessibility of phenolic compounds during simulated in vitro gastrointestinal digestion. Papaya was processed into puree; pasteurised and fermented at 37 °C for 2 days; and stored for 7 days at 4 °C using LAB strains Lactiplantibacillus plantarum 75 (L75*D2; L75*D7), Weissella cibaria64 (W64*D2; W64*D7) and Leuconostoc pseudomesenteroides 56 (L56*D2; L56*D7), respectively. Non-fermented samples at 0 (PPD0), 2 (PPD2) and 7 days (PPD7) served as controls. pH was reduced with fermentation and was lowest in L56*D2 (3.03) and L75*D2 (3.16) after storage. The colour change (ΔE) increased with the fermentation and storage of purees; L75*D7 showed the highest ΔE (13.8), and its sourness reduced with storage. The fermentation by W64*D7 and L75*D7 increased the % recovery of chlorogenic, vanillic, syringic, ellagic, ferulic acids, catechin, epicatechin and quercetin in the intestinal fraction compared to the L56*D7 and PPD7. Fermentation by W64*D7 and L75*D7 significantly improved the antioxidant capacity of the dialysed fraction compared to the L56*D7 or PPD7. L56*D7-fermented papaya puree showed the highest inhibitory effect of α-glucosidase activity followed by L75*D7. L75*D7 had a significantly higher survival rate. LAB fermentation affected the bioacessibilities of phenolics and was strain dependent. This study recommends the use of Lpb. plantarum 75 for fermenting papaya puree.
Collapse
Affiliation(s)
- Florence M. Mashitoa
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.M.M.); (R.M.S.)
| | - Stephen A. Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
| | - Vimbainashe E. Manhevi
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
| | - Cyrielle Garcia
- Qualisud, Univ Montpellier, Univ de La Réunion, CIRAD, Institut Agro, Avignon Université, F-34398 Montpellier, France; (C.G.); (F.R.)
| | - Fabienne Remize
- Qualisud, Univ Montpellier, Univ de La Réunion, CIRAD, Institut Agro, Avignon Université, F-34398 Montpellier, France; (C.G.); (F.R.)
| | - Retha. M. Slabbert
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.M.M.); (R.M.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
- Correspondence:
| |
Collapse
|
44
|
Ferreyra S, Torres-Palazzolo C, Bottini R, Camargo A, Fontana A. Assessment of in-vitro bioaccessibility and antioxidant capacity of phenolic compounds extracts recovered from grapevine bunch stem and cane by-products. Food Chem 2021; 348:129063. [PMID: 33493848 DOI: 10.1016/j.foodchem.2021.129063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Grapevine woody by-products contain bioactive substances, mainly phenolic compounds (PCs), whose beneficial health effects initially depends on their levels of intake and bioavailability. Therefore, in-vitro simulated gastrointestinal digestion (GID; oral, gastric and intestinal phases) was performed to evaluate the bioaccessibility and antioxidant capacity (AC) of PCs extracts recovered from grapevine bunch stem and cane from Malbec grape cultivar. The total PCs in cane and bunch stem extracts were 74 and 20% bioaccessible, respectively. Syringic acid, cinnamic acid, ε-viniferin, naringenin and myricetin were highly bioaccessible, noticeably ε-viniferin in cane extract with 137%. The high bioaccessibility observed, particularly for compounds at high concentration such as ε-viniferin, will help to better understand the bioactive potential of these by-products. In this sense, bunch stems and canes can be considered as new and sustainable sources of bioactive substances for applications as functional ingredients or nutraceuticals in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Carolina Torres-Palazzolo
- Laboratorio de Cromatografía para Agroalimentos, IBAM-CONICET-UNCuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, IBAM-CONICET-UNCuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Cátedra de Química Orgánica y Biológica, Departamento de Biomatemática y Fisicoquímica, Facultad de Ciencias Agrarias-UNCuyo, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
45
|
Huang S, Liu H, Yan S, Chen D, Mei X. Changes in phenolic composition and bioactivity of raw and pickled cowpea (<i>Vigna unguiculata</i> L. Walp.) green pod after <i>in vitro</i> simulated gastrointestinal digestion. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shirong Huang
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Huan Liu
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Sinian Yan
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Dongfang Chen
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science
| |
Collapse
|
46
|
Melo PS, Massarioli AP, Lazarini JG, Soares JC, Franchin M, Rosalen PL, Alencar SMD. Simulated gastrointestinal digestion of Brazilian açaí seeds affects the content of flavan-3-ol derivatives, and their antioxidant and anti-inflammatory activities. Heliyon 2020; 6:e05214. [PMID: 33088966 PMCID: PMC7566108 DOI: 10.1016/j.heliyon.2020.e05214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023] Open
Abstract
Açaí seeds (Euterpe oleracea Mart.) are the major residue generated during industrial extraction of açaí fruit pulp - a popular and typical Amazon fruit rich in bioactive compounds and nutrients. In this study, we investigated the bioaccessibility of an açaí seed extract using an in vitro simulated gastrointestinal digestion model. Catechin, epicatechin and procyanidins B1 and B2 were identified and quantified in the açaí seed extract and monitored by HPLC-DAD through the digestion phases. Bioaccessibility of these flavan-3-ols and deactivation of reactive oxygen species decreased after the intestinal phase, except for peroxyl radical (ROO●). RAW 264.7 macrophages treated either with the digested or undigested açaí seed extract showed reduced NF-κB activation and TNF-α levels, even following gastrointestinal digestion. Thus, the ROO● scavenging capacity and anti-inflammatory activity of the extract were found to be still remarkable after digestion, suggesting that açaí seeds could be explored as a source of bioactive compounds for functional foods, cosmetic or pharmaceutical purposes.
Collapse
Affiliation(s)
- Priscilla Siqueira Melo
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil.,Center of Nature Sciences, Lagoa do Sino Campus, Federal University of São Carlos (UFSCar), Lauri Simões de Barros Highway, Km 12, SP-189, 18290-000, Buri, SP, Brazil
| | - Adna Prado Massarioli
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil
| | - Josy Goldoni Lazarini
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, 901 Limeira Avenue, 13414-903, Piracicaba, SP, Brazil
| | - Jackeline Cintra Soares
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil
| | - Marcelo Franchin
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, 901 Limeira Avenue, 13414-903, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, 901 Limeira Avenue, 13414-903, Piracicaba, SP, Brazil
| | - Severino Matias de Alencar
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Pádua Dias Avenue, P.O. Box. 9, 13418-900, Piracicaba, SP, Brazil
| |
Collapse
|
47
|
Jara-Palacios MJ, Gonçalves S, Heredia FJ, Hernanz D, Romano A. Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants (Basel) 2020; 9:E675. [PMID: 32731540 PMCID: PMC7465776 DOI: 10.3390/antiox9080675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
Extraction solvent is a very important factor in the recovery of antioxidants from natural matrices. In this study, the effect of three solvents (ethanol, ethanol/water and water) on the phenolic composition, antioxidant and anti-cholinesterase activities and electrochemical behaviour of four winemaking byproducts (seeds, skins, stems, and pomace) was evaluated. Phenolic composition was determined by the Folin-Ciocalteu method and ultra-high-performance liquid chromatography (UHPLC), antioxidant activity by the capacity to scavenge 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals, anti-cholinesterase activity by the Ellman's method, and electrochemical behaviour by cyclic voltammetry. Eight phenolic compounds were quantified with higher content in water/ethanol extracts (e.g., epicatechin in pomace: 17 mg/100 g vs. 7 and 6 mg/100 g in ethanol and water extracts, respectively), although there were some exceptions (e.g., gallic acid in seeds was most abundant in water extracts). Moreover, the highest total phenolic content (TPC) and antioxidant activity were found in ethanol/water extracts (between 2 and 30-fold the values of the other extracts). Overall, the most active extracts in inhibiting both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes were ethanol/water and ethanol extracts from seeds (between 31.11 and 53.90%). The electrochemical behaviour allowed for differentiating the extracts depending on the solvent and the byproduct. Our findings indicate that winemaking byproducts represent a source of phenolic compounds with antioxidant and anti-cholinesterase activities and suggest that cyclic voltammetry is a promising technique to evaluate the phenolic extraction process from these byproducts.
Collapse
Affiliation(s)
- María José Jara-Palacios
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Sandra Gonçalves
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (S.G.); (A.R.)
| | - Francisco J. Heredia
- Food Colour & Quality Laboratory, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Dolores Hernanz
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; (S.G.); (A.R.)
| |
Collapse
|
48
|
Chen J, Kou T, Fan Y, Niu Y. Antioxidant activity and stability of the flavonoids from Lycium barbarum leaves during gastrointestinal digestion in vitro. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractIn this study, stability including the total flavonoids content (TFC) and main monomers composition and antioxidant activity of the flavonoids extract (LBLF) from Lycium barbarum leaves were investigated in the process of simulated oral and gastrointestinal digestion in vitro. During digested through the simulated oral fluid (SOF), gastric fluid (SGF), and intestinal fluid (SIF) in order, TFC of LBLF in the lyophilized digestive fluid samples were determined at different time points. It was shown that compared with the initial TFC of 811.72 ± 0.72 mg RE/g DW, the total flavonoids did not change significantly during oral digestion, while definitely increased at gastric digestion stage (p < 0.05) where the pH value is the lowest in the digestive system, indicating that the release of flavonoids from LBLF was promoted by pepsin, trypsase, and bile, however decreased during intestinal digestion probably due to the instability of LBLF in weak alkali media. Moreover, the antioxidant capacity and bioaccessibility of LBLF were significantly improved by SGF and SIF digestion (p < 0.05). The scavenging effect of the fluid sample after gastric digestion on free radicals followed as O2−· > ABTS+· > DPPH > ·OH > FRAP, while the clearance effect of intestinal digestion sample expressed as ABTS+· > O2−· > DPPH > FRAP > ·OH. High performance liquid chromatography (HPLC) results suggested that chlorogenic acid and rutin in LBLF had low stability during the gastrointestinal digestion in vitro. Our study suggests that LBLF may show the instability in the contents of total flavonoids and some main monomers, but an enhancement in the antioxidant activity during gastrointestinal digestion, providing a reference for the stability improvement of LBLF in the next step.
Collapse
Affiliation(s)
- Jinghua Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, PR China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, Ningxia, 750021, PR China
| | - Tingting Kou
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, PR China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, Ningxia, 750021, PR China
| | - Yanli Fan
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, PR China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, Ningxia, 750021, PR China
| | - Yinhong Niu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, PR China
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, Ningxia, 750021, PR China
| |
Collapse
|
49
|
Xiong J, Chan YH, Rathinasabapathy T, Grace MH, Komarnytsky S, Lila MA. Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chem 2020; 331:127279. [PMID: 32563800 DOI: 10.1016/j.foodchem.2020.127279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Stability of protein-polyphenol aggregate particles, created by complexing polyphenols from blueberry and muscadine grape pomaces with a rice-pea protein isolate blend, was evaluated in an in vitro gastrointestinal model. Recovery index (RI; % total phenolics present post-digestion) was 69% and 62% from blueberry and muscadine grape protein-polyphenol particles, compared to 23% and 31% for the respective pomace extracts. Anthocyanins RI was 52% and 42% from particles (6% and 13% from pomace extracts), and proanthocyanidins RI was 77% and 73% from particles (25% and 14% from pomace extracts), from blueberry and grape, respectively. Protein-polyphenol particle digests retained 1.5 to 2-fold higher antioxidant capacity and suppressed the expression of pro-inflammatory cytokines, iNOS, IL6, and IL1β, compared to unmodified extract digests, which only suppressed IL6. Protein-polyphenol particles as a delivery vehicle in foods may confer better stability during gastrointestinal transit, allow protected polyphenols to reach the gut microbiota, and preserve polyphenol bioactivity.
Collapse
Affiliation(s)
- Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Yu Hsuan Chan
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA; School of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Slavko Komarnytsky
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
50
|
Holkem AT, Favaro-Trindade CS, Lacroix M. Study of anticancer properties of proanthocyanidin-rich cinnamon extract in combination with Bifidobacterium animalis subsp. lactis BLC1 and resistance of these free and co-encapsulated materials under in vitro simulated gastrointestinal conditions. Food Res Int 2020; 134:109274. [PMID: 32517954 DOI: 10.1016/j.foodres.2020.109274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/25/2022]
Abstract
Bifidobacterium animalis subsp. lactis (BLC1) and proanthocyanidin-rich cinnamon extract (PRCE) have many beneficial health properties. However, they are very sensitive materials; co-encapsulation is one alternative to protect them. Therefore, the objective of this work was to evaluate the anticancer properties of free PRCE and in combination with BLC1 and the resistance of these free and co-encapsulated materials under in vitro simulated gastrointestinal conditions. In terms of anticancer proprieties, PRCE had an IC50 value close to 30 mg extract/mL for Hepa 1c1c7 and HT-29 cells and resulted in a significantly higher percentage (p ≤ 0.05) of total apoptotic and necrotic cells compared to treatment in combination with BLC1 (PRCE + BLC1), with values above 31.66% in both cells. For the quinone reductase (QR) assay, there was a significant increase only for PRCE + BLC1 treatment, with a fold induction of 5.11 ± 0.56 for HT-29. The resistance of the encapsulated materials was greater than for the free form after 240 min of simulated gastrointestinal conditions. The combination of these materials in a microcapsule is advantageous because it protects them under gastrointestinal conditions, allowing them to be released into the intestine and act in the early stages of colon cancer.
Collapse
Affiliation(s)
- Augusto Tasch Holkem
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil; Research Laboratory in Sciences Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, São Paulo, Brazil
| | - Monique Lacroix
- Research Laboratory in Sciences Applied to Food, INRS Armand-Frappier Health and Biotechnology Centre, Canadian Irradiation Centre, Institute of Nutrition and Functional Foods (INAF), 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|