1
|
Gu M, Li C, Ren Y, Chen L, Li S, Zhang D, Zheng X. Exploring the effect of part differences on metabolite molecule changes in refrigerated pork: Identifying key metabolite compounds and their conversion pathways. Food Chem 2024; 460:140308. [PMID: 39024809 DOI: 10.1016/j.foodchem.2024.140308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Effect of part differences on metabolite molecule alterations in refrigerated pork was investigated. A metabolomics methodology combined with chemometric analysis was successfully established to identify key compounds and their conversion pathways, including precursors and volatile metabolites, in the Longissimus lumborum as well as the breast and flank stored for 11 days. In total, 12 discriminative precursors were identified using the Short Time-series Expression Miner. In tandem with Random Forest and ANOVA analyses, nine volatile metabolites were identified as key compounds that could be attributed to differences in pork sections. Bidirectional orthogonal partial least squares analysis revealed a potential correlation between these key metabolites and discriminative precursors. Metabolic pathway enrichment analysis demonstrated that the primary metabolic process affected by variations in pork sections is linoleic acid metabolism, which participates in the metabolism of cysteine and glutamic acid to produce methoxy-phenyl-oxime. This study provides valuable insights into the identification of differential metabolites.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuqing Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Çelebi Y, Kavrut E, Bulut M, Çetintaş Y, Tekin A, Hayaloğlu AA, Alwazeer D. Incorporation of hydrogen-producing magnesium into minced beef meat protects the quality attributes and safety of the product during cold storage. Food Chem 2024; 448:139185. [PMID: 38574715 DOI: 10.1016/j.foodchem.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.
Collapse
Affiliation(s)
- Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Türkiye
| | - Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76002 Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Türkiye; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| |
Collapse
|
3
|
Tang W, Chen Y, Guo F. Effects of topping on rhizome, and analysis of chemical composition, antioxidant activity and α-amylase and α-glucosidase inhibition of the aerial parts in Polygonatum cyrtonema. PLoS One 2023; 18:e0287894. [PMID: 37917721 PMCID: PMC10621978 DOI: 10.1371/journal.pone.0287894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 11/04/2023] Open
Abstract
Polygonatum cyrtonema is a perennial plant, and it has long been used in traditional Chinese medicine for food and medicine. The medicinal part of P.cyrtonema is the rhizome; however, the aerial part has not been studied. To understand the effect of the topping of aerial parts on the yield and chemical components of rhizomes, as well as the chemical constituents, antioxidant, and in vitro hypoglycemic activities of the aerial stem, leave, and flower parts of P.cyrtonema, the present study was conducted. The results showed that compared to the control (CK) treatment, the topping of the aerial part increased rhizome weight gain coefficient (3.43) and the total saponin content (37.60 mg/g) significantly (P<0.01) than the CK treatment. The contents of total phenols and total flavonoids in PCL and PCF were significantly (P<0.01) higher than those in rhizomes; however, the polysaccharide content (10.47%) in PCR (whole rhizome) was higher than that in PCS (3.65%), PCL (5.99%), and PCF (4.76%) content. The protein and amino acid contents in PCS, PCL, and PCF were higher than those in rhizomes. The protein and amino acid contents in PCS, PCL, and PCF were higher than those in rhizomes. PCS, PCL, and PCF showed strong antioxidant activity (DPPH, ·OH, ABTS, and FRAP), which were better than traditional medicinal parts (the rhizome).In vitro hypoglycemic results showed that PCS, PCL, and PCF had certain inhibitory activities on α-amylase and α-glucosidase (66.25% and 52.81%), which were close to the hypoglycemic activity of rhizomes (67.96% and 52.22%). The leaf extracts also showed better inhibitory activity. To sum up, the topping measures can improve yield and total saponin content of the rhizomes from P.cyrtonema, which can be applied to improve production. The stems, leaves, and flowers had a much stronger antioxidant and hypoglycemic activities and higher the total polyphenols, flavonoids, proteins, and amino acid content. Therefore, stems, leaves, and flowers of Polygonatum can be fully developed according to different needs. they are typically used in animal feed, food storage and cosmetics.
Collapse
Affiliation(s)
- Wenwen Tang
- College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Tongren Polytechnic College, Tongren, China
| | - Yuan Chen
- College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Luo Y, Bi Y, Du R, Yuan H, Hou Y, Luo R. The impact of freezing methods on the quality, moisture distribution, microstructure, and flavor profile of hand-grabbed mutton during long-term frozen storage. Food Res Int 2023; 173:113346. [PMID: 37803651 DOI: 10.1016/j.foodres.2023.113346] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
The aim of present study was to investigate the influence of conventional freezing (CF, -18 °C), low-temperaturefreezing (LF, -40 °C), and ultra-low-temperature freezing (ULF, -80 °C) on the quality, moisture distribution, microstructure, and flavor profile of hand-grabbed mutton (HGM) during frozen storage (0, 30, 60, 90, 120, 150 and 180 days). The TPC, TVB-N, and TBARS values increased significantly with prolonged storage, while the moisture content decreased (P < 0.05). Additionally, the concentrations of aldehydes, alcohols, ketones, acids, and alkenes decreased significantly as the storage duration increased. However, the concentrations of esters and heterocyclics increased (P < 0.05). Notably, at 30-180 days of storage, the TBARS and TVB-N values in ULF samples were significantly lower than those in CF and LF samples, while the moisture content was significantly higher (P < 0.05). Low field-nuclear magnetic resonance (LF-NMR) analysis showed that ULF decreased water migration and maintained the original texture characteristics of HGM during frozen storage. The ULF and LF groups had significantly higher levels of volatiles than the CF group (P < 0.05). The findings show that ULF, with its relatively rapid freezing rates, can still maintain the high quality of HGM after 180 days of frozen storage, contributing to quality control.
Collapse
Affiliation(s)
- Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Yongzhao Bi
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021, PR China
| | - Hong Yuan
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Ruiming Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China.
| |
Collapse
|
5
|
Beya MM, Netzel ME, Sultanbawa Y, Smyth H, Hoffman LC. Kakadu plum (Terminalia ferdinandiana) bioactivity against spoilage microorganisms and oxidative reactions in refrigerated raw beef patties under modified atmosphere packaging. Meat Sci 2023; 204:109268. [PMID: 37379705 DOI: 10.1016/j.meatsci.2023.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Raw beef patties were treated with either 450 ppm of Sodium metabisulphite (SMB), or Kakadu plum powder (KPP) (0.2%, 0.4%, 0.6%, 0.8%) or no additive (negative control) and stored under Modified Atmosphere Packaging at 4 ± 1 °C for 20 days. Lipid oxidation, microbial growth rate, pH, instrumental color, and surface myoglobin were studied. Total phenolic compounds (TPC) and vitamin C of the KPP were also measured. The TPC was 13.9 g GAE/ 100 g dry weight (DW) and for vitamin C, the L-AA (l-ascorbic acid) and DHAA (dehydroascorbic acid) were 12.05 g/100 g and 0.5 g/ 100 g DW, respectively. The experimental results indicated that lipid oxidation was significantly delayed throughout the storage period for KPP-treated samples compared to both the negative control and SMB-treated samples. KPP at levels of 0.2% and 0.4% in the raw beef patties were efficient in slowing down the microbial growth rate compared to the negative control; however, SMB had a higher antimicrobial activity. The pH, the redness as well as metmyoglobin formation in the raw beef patties were reduced by the inclusion of the KPP in treated samples. A correlation (r = -0.66) was noted between KPP treatments and lipid oxidation, but there was no correlation (r = -0.006) between KPP treatment and microbial growth. This study demonstrates that KPP could be used as natural preservative for shelf-life extension of raw beef patties.
Collapse
Affiliation(s)
- Michel M Beya
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael E Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Heather Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia.
| |
Collapse
|
6
|
Guilherme Sebastião V, Batista D, Rebellato AP, Alves Macedo J, Steel CJ. Sustainable production of naturally colored extruded breakfast cereals from blends of broken rice and vegetable flours. Food Res Int 2023; 172:113078. [PMID: 37689858 DOI: 10.1016/j.foodres.2023.113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
There is a growing demand for practical and healthy food products. Obtaining naturally colored breakfast cereals with the incorporation of functional ingredients is a promising alternative for consumers that are looking for healthiness. This study aimed to evaluate the feasibility of using vegetable flours, rich in pigments, to obtain naturally colored breakfast cereals through thermoplastic extrusion. Vegetables considered "unsuitable for the retail market", classified as "type B", were used to prepare different flours from carrot (CF), spinach (SF) and beetroot (BF). Extrudates were produced from a mixture of 90% broken rice (BR) and 10% vegetable flour (CF, SF or BF). Besides giving the extrudates a natural color, the use of vegetable flours also provided nutritional and functional enrichment due to increased mineral, protein, lipid, fiber and phenolic compound contents, and greater antioxidant capacity. However, some of these components, such as fibers, affect extrudate physical structure and technological characteristics, evidenced by reduced expansion, hardness, paste viscosity and greater interaction with water present in milk under consumption conditions. In general, the evaluated flours proved to be an alternative for imparting a natural color to extruded breakfast cereals, in addition to positively contributing to their nutritional and functional value.
Collapse
Affiliation(s)
- Victor Guilherme Sebastião
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Daniel Batista
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Ana Paula Rebellato
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Caroline Joy Steel
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Rodrigues DB, Veríssimo L, Finimundy T, Rodrigues J, Oliveira I, Gonçalves J, Fernandes IP, Barros L, Heleno SA, Calhelha RC. Chemical and Bioactive Screening of Green Polyphenol-Rich Extracts from Chestnut By-Products: An Approach to Guide the Sustainable Production of High-Added Value Ingredients. Foods 2023; 12:2596. [PMID: 37444334 DOI: 10.3390/foods12132596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Opportunities for the valorisation of agro-industrial residues of the chestnut (Castanea sativa Mill.) production chain have been fostered with the production of multifunctional polyphenol-rich extracts with the potential to be introduced as natural additives or active components in several products. Nonetheless, it is crucial to explore the feasibility of different extracts from the various by-products for these applications through the exhaustive study of their composition and bioactivities without losing sight of the sustainable character of the process. This work aimed at the screening of the phenolic compound composition and bioactivities of different green extracts of chestnut burs, shells and leaves, as the first step to establish their potential application as natural ingredients, primarily as food preservatives. To this end, maceration (MAC) as a conventional extraction method besides ultrasound and microwave-assisted extractions (UAE and MAE) was employed to obtain the extracts from chestnut by-products using water (W) and hydroethanolic solution (HE) as solvents. Phenolic compounds were analysed by HPLC-DAD-(ESI-)MS/MS; the antioxidant capacity was assessed by colourimetric assays, and the antimicrobial activity was evaluated against several strains of food-borne bacteria and fungi. The leaf extracts obtained by MAC-HE and UAE-HE presented the highest concentration of phenolic compounds (70.92 ± 2.72 and 53.97 ± 2.41 mg.g-1 extract dw, respectively), whereas, for burs and shells, the highest recovery of total phenolic compounds was achieved by using UAE-HE and UAE-W (36.87 ± 1.09 and 23.03 ± 0.26 mg.g-1 extract dw, respectively). Bis-HHDP-glucose isomers, chestanin and gallic acid were among the most abundant compounds. Bur extracts (MAC-HE and UAE-HE) generally presented the highest antioxidant capacity as measured by TBARS, while the best results in DPPH and reducing power assays were found for shell extracts (MAE-W and MAC-HE). Promising antibacterial activity was noticed for the aqueous extracts of burs, leaves and hydroethanolic extracts of shells, with emphasis on the MAE-W extract of burs that showed bactericidal activity against E. cloacae, P. aeruginosa and S. aureus (MBC 5 mg.mL-1). Overall, it can be concluded that chestnut by-products, including burs, shells and leaves, are sources of polyphenolic compounds with significant antioxidant and antimicrobial activities. The choice of extraction method and solvent greatly influenced the composition and bioactivity of the extracts. These findings highlight the potential of chestnut by-products for the development of natural additives, particularly for food preservation, while also emphasizing the importance of sustainable utilization of agricultural waste materials. Further research is warranted to optimize extraction techniques and explore additional applications for these valuable bioactive compounds.
Collapse
Affiliation(s)
- Daniele Bobrowski Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lavínia Veríssimo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Joana Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Izamara Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - João Gonçalves
- Tree Flowers Solutions, Lda, Edificio Brigantia Ecopark, Av. Cidade de Léon, 5300-358 Bragança, Portugal
| | - Isabel P Fernandes
- Tree Flowers Solutions, Lda, Edificio Brigantia Ecopark, Av. Cidade de Léon, 5300-358 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Badar IH, Li Y, Liu H, Chen Q, Liu Q, Kong B. Effect of vegetable oil hydrogel emulsion as a fat substitute on the physicochemical properties, fatty acid profile, and color stability of modified atmospheric packaged buffalo burgers. Meat Sci 2023; 199:109143. [PMID: 36827828 DOI: 10.1016/j.meatsci.2023.109143] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Buffalo burgers were prepared with 50% or 100% buffalo backfat substitution using walnut, and peanut oil emulsion gels (EGs) blended with chia flour. Burgers were stored at 2 °C in modified atmosphere packaging for 12 days. The fat replacement decreased total fat by 26% and increased ash by 34%. Hardness and chewiness decreased with increasing the fat replacement; however, it did not affect springiness and cohesiveness values. Burger reformulations led to an increase in cooking yield (10%). Walnut oil EGs increased PUFA level up to 458%. Both oils enhanced PUFA/SFA and ω-6/ω-3 ratios and atherogenic and thrombogenic indices. Concerning color attribute, about 66% reduction was observed in redness values during the storage period of 12 days. Moreover, the sensory scores for all attributes, i.e., appearance, odor, flavor, and juiciness, were in the acceptable range of five or above in the reformulated burgers. In conclusion, 50% fat substitution using walnut and peanut oil EGs improved the nutritional profile of buffalo burgers without compromising the technological and sensory characteristics.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Guo X, Xu S, Meng X, Peng Z. Dose-Dependent Effect of Hyperoside on the Physicochemical and Gel Properties of Porcine Myofibrillar Proteins at Different NaCl Concentrations under Oxidative Stress. Foods 2023; 12:foods12081684. [PMID: 37107482 PMCID: PMC10137490 DOI: 10.3390/foods12081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of HYP (10, 50, and 250 μM/g protein) on the physicochemical and gel properties of myofibrillar proteins (MPs) at different NaCl concentrations under oxidative stress were explored. The incorporation of HYP significantly reduced carbonyl content and decreased the loss of free amine groups in a dose-dependent manner, regardless of NaCl concentration. In addition, HYP induced a dose-dependent decrement in total sulfhydryl content regardless of NaCl concentration, which might result from the formation of thiol-quinone adducts via Michael addition. The surface hydrophobicity was significantly increased with HYP addition. Nevertheless, compared with samples treated with 50 μM/g HYP, 250 μM/g HYP caused a significant decrease in surface hydrophobicity, which might be due to the increase in the extent of MPs unfolding and the concomitant aggregation of MPs by hydrophobic interaction. Furthermore, HYP also showed a dose-dependent increment in the water-holding capacity (WHC) and gel strength of MPs gels, which might be due to more orderly crosslinks via fibrous filaments at 0.2 M NaCl and more regular and lamellar structures with smaller and more homogeneous pores at 0.6 M NaCl. In summary, HYP reduced the oxidation-mediated changes of physicochemical characteristics, preventing the oxidative damage of MPs and reinforcing the ordered crosslinks of MPs-MPs and MPs-HYP during thermal gelation, ultimately resulting in a better gel quality. These results provide a theoretical support for the practical application of HYP as a natural antioxidant in gel-type meat products.
Collapse
Affiliation(s)
- Xiuyun Guo
- School of Turism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Shuangyi Xu
- School of Turism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xiangren Meng
- School of Turism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Zengqi Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Manzoor A, Haque A, Ahmad S, Hopkins DL. Incorporation of betel leaf extract provides oxidative stability and improves phytochemical, textural, sensory and antimicrobial activities of buffalo meat sausages. Meat Sci 2023; 200:109157. [PMID: 36913796 DOI: 10.1016/j.meatsci.2023.109157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The antioxidant effect of betel leaf extract (BLE) on lipid and protein oxidation, microbial count and physicochemical attributes was investigated in meat sausages during refrigerated storage at 4 ± 1 °C. Buffalo meat sausages were developed after incorporating 0, 250, 500 and 750 mg kg-1 of BLE (BLE0, BLE1, BLE2 and BLE3) respectively. The sausages showed no changes in proximate composition due to BLE inclusion, but there was an improvement in microbial quality, color score, textural properties and lipid and protein oxidative stability. Further, higher sensory scores were observed for the BLE-incorporated samples. The images from scanning electron microscopy (SEM) revealed a reduction in surface roughness and unevenness showing microstructure modification in BLE treated sausages compared to the control sausages. Hence, to improve the storage stability and impede the rate of lipid oxidation in sausages, BLE incorporation proved to be an effective strategy.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U, Aligarh, U.P, India.
| | - Abdul Haque
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U, Aligarh, U.P, India
| | - Saghir Ahmad
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U, Aligarh, U.P, India
| | | |
Collapse
|
11
|
Gu M, Li C, Su Y, Chen L, Li S, Li X, Zheng X, Zhang D. Novel insights from protein degradation: deciphering the dynamic evolution of biogenic amines as a quality indicator in pork during storage. Food Res Int 2023; 167:112684. [PMID: 37087256 DOI: 10.1016/j.foodres.2023.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
Biogenic amines (BAs) have drawn great attention as important markers for monitoring food quality. However, the BAs content in protein degradation profiles during pork storage was inadequately investigated. In this work, the Longissimus lumborum and Breast and flank of pork were collected, and their peptides contents, free amino acids (FAAs) contents, BAs contents, and several characteristic physicochemical indexes were monitored during storage at 4 °C. As a result, the differences of nutritional components in the Longissimus lumborum and Breast and flank could not affect the shelf life of refrigerated pork. There are 161 small peptides in the Longissimus lumborum of pork identified by LC-MS. As verified, arginine, glutamic acid, valine, and alanine could serve as four indicative amino acids during protein degradation in pork, and the arginine degradation pathway is more complex. Redundancy analysis confirmed that putrescine and cadaverine were significantly related to the precursor FAAs content, and their sum value could be used as a novel quality indicator instead of the biogenic amine index (BAI). Finally, the above prediction was also verified by the other species (beef, mutton and chicken) to improve the index system of meat quality evaluation in cold chain logistics.
Collapse
|
12
|
Aksu Mİ, Turan E, Gülbandılar A, Tamtürk F. Utilization of spray-dried raspberry powder as a natural additive to improve oxidative stability, microbial quality and overcome the perception of discoloration in vacuum-packed ground beef during chilled storage. Meat Sci 2023; 197:109072. [PMID: 36516591 DOI: 10.1016/j.meatsci.2022.109072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The present study was conducted to determine the effects of spray-dried raspberry powder (SDRP) (CONTROL, 1.0%, 2.0%, and 3.0%) as a natural antioxidant, antimicrobial, and colorant on physicochemical properties, lipid oxidation, discoloration, and microbial quality of vacuum-packed (VP) ground beef during chilled storage at 2 ± 0.5 °C for 18 days. By incorporating SDRP into VP ground beef pH, lipid oxidation (TBARS), lightness, and hue angle (h°) values decreased (P < .01), while redness (a*) and chroma (C*) values improved (P < .01). SDRP treatments had higher redness, more stable color, and lower pH and TBARS values during storage in a dose-dependent manner (P < .05), demonstrating that SDRP had a preventive effect on lipid oxidation and discoloration. The combination of vacuum packaging with SDRP generally resulted in lower bacterial growth during storage. These results demonstrated that 2% or 3% SDRP treatment has promising potential as an effective strategy to achieve oxidative and microbial stability and overcome discoloration in VP fresh meats.
Collapse
Affiliation(s)
- Muhammet İrfan Aksu
- Eskişehir Osmangazi University, Faculty of Agriculture, Department of Food Engineering, 26160 Eskişehir, Turkey.
| | - Emre Turan
- Ordu University, Faculty of Agriculture, Department of Food Engineering, 52200 Ordu, Turkey
| | - Aysel Gülbandılar
- Eskişehir Osmangazi University, Faculty of Agriculture, Department of Food Engineering, 26160 Eskişehir, Turkey
| | - Faruk Tamtürk
- DÖHLER Food and Beverage Ingredients R&D Center, Karaman 70100, Turkey
| |
Collapse
|
13
|
Effect of Partial Meat Replacement by Hibiscus sabdariffa By-Product and Pleurotus djamor Powder on the Quality of Beef Patties. Foods 2023; 12:foods12020391. [PMID: 36673487 PMCID: PMC9858442 DOI: 10.3390/foods12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
The effects of Hibiscus sabdariffa (roselle; Hs) by-product (2-5%) and Pleurotus djamor (pink oyster; Pd) powder (5-7.5%) as meat replacers on the physicochemical and sensorial properties of beef patties were analyzed. The addition of these non-meat ingredients significantly decreased moisture and increased fiber content, and did not affect the protein level of the product. The antioxidant effect of the roselle by-product was limited, while Pleurotus djamor favored the oxidation processes. The samples supplemented with roselle by-product and mushroom powder presented significantly lower microbial counts (total viable counts, enterobacteria, and Pseudomonas) than control, but texture and sensorial parameters were significantly affected. The patties darkened due to the presence of the Hibiscus by-product, while the color of the samples containing 5% Pleurotus djamor was hardly modified. These samples, together with the control samples, were the most sensorially appreciated. The addition of these ingredients provoked a decrease in texture parameters, being less pronounced in the samples with only 2% of roselle by-product. In spite of the good antimicrobial and antioxidant properties of Hibiscus by-products, its inclusion in meat should be moderate (2-2.5%) to avoid consumer rejection when Pleurotus djamor is also included in the formulation.
Collapse
|
14
|
Timón M, Andrés AI, Sorrentino L, Cardenia V, Petrón MJ. Effect of Phenolic Compounds from Almond Skins Obtained by Water Extraction on Pork Patty Shelf Life. Antioxidants (Basel) 2022; 11:2175. [PMID: 36358547 PMCID: PMC9686502 DOI: 10.3390/antiox11112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2023] Open
Abstract
The extraction of phenols from almond skin using water has not been applied before. The purpose of this study was to obtain aqueous extracts from almond skin to be added to pork patties to prolong their shelf life. Four different varieties of almonds were studied and aqueous extracts were obtained. The antioxidant capacity and composition of phenol compounds of the extracts were determined. Results showed that the use of water produces extracts with phenol compounds and antioxidant capacity, with the Antoñeta variety presenting the best performance in terms of antioxidant behavior. The most abundant phenolic compounds identified were isorhamentin-3-O-rutinoside, catechin and protocatechuic acid, all of them had a hydrophilic character due to the -OH groups in their molecules. The effect of almond skin extracts (ALMOND) on the shelf life of pork patties was compared with the effects of a control without extract (CONTROL NEG) and a control with sodium ascorbate (CONTROL POS). Throughout storage, values of pH, weight loss, headspace composition, color, TBARs and psychrotrophic aerobic bacteria were studied. CONTROL POS samples showed the lowest lipid oxidation values in comparison to CONTROL NEG or ALMOND extract samples.
Collapse
Affiliation(s)
- Marisa Timón
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain
| | - Ana Isabel Andrés
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain
| | - Ludovico Sorrentino
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy
| | - María Jesús Petrón
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain
| |
Collapse
|
15
|
Roila R, Sordini B, Esposto S, Ranucci D, Primavilla S, Valiani A, Taticchi A, Branciari R, Servili M. Effect of the Application of a Green Preservative Strategy on Minced Meat Products: Antimicrobial Efficacy of Olive Mill Wastewater Polyphenolic Extract in Improving Beef Burger Shelf-Life. Foods 2022; 11:foods11162447. [PMID: 36010447 PMCID: PMC9407252 DOI: 10.3390/foods11162447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023] Open
Abstract
The mincing process of raw meat favors microbial spoilage as well as chemical and enzymatic oxidation processes. In order to limit this degradative process, preservatives are routinely added to minced meat products. The role of olive mill wastewater polyphenolic extract as a replacement for synthetic preservatives in beef burger was assessed. The antioxidant capacity of the extract experimentally added to beef burger was evaluated using the oxygen radical absorbance capacity method (ORACFL) to assess the shelf-life, while the lipid oxidation was measured by thiobarbituric reactive substance (TBAR) determination. The antimicrobial activity was assayed by means of classical methods and predictive microbiology. The experimental addition of polyphenolic extract led to 62% lower lipid oxidation and 58% higher antioxidant capacity; it also successfully modulated spoilage microbial populations with an average growth reduction of 15% on day 7. Results indicate that olive mill wastewater polyphenolic extracts could be added to raw ground beef meat to act as natural antioxidants and to modulate microbial growth.
Collapse
Affiliation(s)
- Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Beatrice Sordini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence: (S.E.); (D.R.); Tel.: +39-075-585-7952 (S.E.); +39-075-585-7931 (D.R.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
- Correspondence: (S.E.); (D.R.); Tel.: +39-075-585-7952 (S.E.); +39-075-585-7931 (D.R.)
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
16
|
Leite SMB, da Silva Assunção EM, Alves AVDNG, de Souza Maciel E, de Moraes Pinto LA, Kaneko IN, Guerrero A, Correa APF, Müller Fernandes JI, Lopes NP, Vital MJS, Monteschio JDO. Incorporation of copaiba and oregano essential oils on the shelf life of fresh ground beef patties under display: Evaluation of their impact on quality parameters and sensory attributes. PLoS One 2022; 17:e0272852. [PMID: 35947587 PMCID: PMC9365165 DOI: 10.1371/journal.pone.0272852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The preservative effect of the addition of different essential oils (copaiba and oregano) on meat quality parameters and sensorial acceptability was analyzed for fresh ground beef patties over 21 days of display. Five treatments were assessed: control (CON) without antioxidants; addition of the synthetic additive butylated hydroxytoluene (BHT); addition 0.05% of copaiba essential oil (CEO); 0.05% of oregano essential oil (OEO); or blend of 0.025% copaiba and 0.025% oregano essential oils (BEO). The lowest cooking losses and greatest tenderness (P <0.05) were reached with the blend (BEO). The inclusion of oregano essential oil presented a more intense chroma (P <0.05), with the best color retained during display. Oregano essential oil (OEO) and the blend (BEO) showed the highest antioxidant activity, reducing the lipid oxidation of beef patties during display (P < 0.05). Consumers preferred the odor of beef patties with essential oils (OEO and BEO) to the CON; however, the flavor from OEO had the lowest acceptability and the worst scores for overall acceptability (P < 0.05). Patties with the blend addition (BEO) were the best scored on overall acceptability assessments. In conclusion, the oregano and copaiba essential oils blend had a good preservative effect on fresh beef patties during display and increased sensory acceptability of the product, thus being a possible alternative for replacing synthetic compounds in processed foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabelle Naemi Kaneko
- Department of Animal Science, Federal University of Rondônia Foundation, Rondônia, Brazil
| | - Ana Guerrero
- Facultad de Veterinaria, Departamento Producción y Sanidad Animal, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, España, Spain
| | | | | | - Nívia Pires Lopes
- Department of Animal Science, Federal University of Roraima, Boa Vista, Roraima, Brazil
| | | | | |
Collapse
|
17
|
Application of ginseng powder and combined starter culture for improving the oxidative stability, microbial safety and quality characteristics of sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Śmiecińska K, Gugołek A, Kowalska D. Effects of Garlic ( Allium sativum L.) and Ramsons ( Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers. Animals (Basel) 2022; 12:1905. [PMID: 35892554 PMCID: PMC9367434 DOI: 10.3390/ani12151905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the quality of rabbit meat burgers with the addition of garlic (Allium Sativum L.) powder (G), ramsons (Allium ursinum L.) powder (R) or their combination (GR). The effects of additives on lipid oxidation, color parameters, microbiological quality and organoleptic properties of raw and oven-baked burgers were analyzed before and after refrigerated storage. Four meat formulations were prepared: control (C)-without additives, with the addition of G (0.35 g/100 g of meat), R (0.35 g/100 g of meat) and GR (0.35 g/100 g of meat each). The addition of GR induced an increase in pH and TBARS values in raw and oven-baked burgers. The pH of raw and oven-baked burgers was also affected by storage time (ST), and it was lower after 7 days of storage (ST7) than before storage (ST0). TBARS values were higher at ST7 only in raw burgers. The addition of R and GR decreased the values of color parameter L* (lightness) relative to G and C in raw and oven-baked burgers. The greatest changes in parameter a* (redness) were observed after the addition of R and GR, both before and after heat treatment. The values of parameter b* (yellowness) increased after the addition of R, GR (raw and oven-baked burgers) and G (raw burgers). In raw burgers, color saturation (C*) was higher in groups R and GR than in groups C and G, and the value of hue angle (h°) was lower in burgers with GR than in those with G and R. In oven-baked burgers, the values of C* and h° were lower in group GR than in the remaining treatments (C, G and R). In raw burgers, ST had no effect on the values of L*, whereas the values of parameters a*, b*, C* and h° were lower at ST7 than at ST0. In oven-baked burgers, the values of L* were higher at ST0 than at ST7, and the values of a*, b*, C* and h° were higher at ST7 than at ST0. The tested additives had no influence on the presence of off-odors in raw burgers. This parameter was affected by ST, and its value was lower at ST0 than at ST7. The appearance and overall acceptability of burgers were affected only by additives, and raw burgers containing GR received the lowest scores. After heat treatment, control burgers scored lowest for all attributes, whereas burgers with the addition of R and GR received the highest scores. The analyzed additives had no effect on the growth of Enterobacteriacea, Pseudomonas spp., lactic acid bacteria or total aerobic psychrotrophic bacteria. However, the counts of all identified bacteria increased at ST7. In conclusion, garlic powder and ramsons powder can be added to rabbit meat burgers to extend their shelf life and improve their eating quality.
Collapse
Affiliation(s)
- Katarzyna Śmiecińska
- Department of Commodity Science and Processing of Animal Raw Materials, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Andrzej Gugołek
- Department of Fur-Bearing Animal Breeding and Game Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Dorota Kowalska
- Department of Small Livestock Breeding, National Research Institute of Animal Production, Balice, 32-083 Kraków, Poland;
| |
Collapse
|
19
|
Velázquez L, Quiñones J, Inostroza K, Sepúlveda G, Díaz R, Scheuermann E, Domínguez R, Lorenzo JM, Velásquez C, Sepúlveda N. Maqui ( Aristotelia chilensis (Mol.) Stuntz): A Natural Antioxidant to Improve Quality of Meat Patties. Antioxidants (Basel) 2022; 11:antiox11071405. [PMID: 35883896 PMCID: PMC9312050 DOI: 10.3390/antiox11071405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aristotelia chilensis is an endemic shrub of the South Pacific with high concentrations of bioactive compounds in its leaves and, therefore, it is highly valued. The effect of Aristotelia chilensis leaf powders (maqui leaf powders; Ma) on the quality and shelf life of beef patties during 7 days of storage was investigated. Five beef patties treatments were prepared: (1) Control without antioxidants (CT); (2) Beef patties with synthetic antioxidants plus color (250 mg/kg) (PL); (3) Beef patties with 500 ppm of maqui leaf powders (Ma500); (4) Beef patties with 1000 ppm of maqui leaf powders (Ma1000); and (5) Beef patties with 2000 ppm of maqui leaf powders (Ma2000). The quality of the beef patties was evaluated on day 0 and day 7 of storage by physicochemical analysis (moisture, ash and lipid content, color, pH, fatty acid profile and lipid oxidation) and organoleptic analysis. The addition of maqui leaf powders did not produce changes in the proximate composition of the beef patties. The pH for all treatments showed a range of 5.50−5.75 and significant differences (p < 0.05) were observed at the beginning and end of storage. The pH of the control beef patties increased during storage while the pH of the beef patties with synthetic and natural antioxidants decreased. Redness (a*) was the color indicator that was mostly affected by the inclusion of 1000 ppm and 2000 ppm powders. High lipid oxidation was observed in control samples on the seventh day of storage due to the high percentage of fat used in the formulation and the absence of any antioxidant. However, the Ma500, Ma1000, and Ma2000 treatments presented the lowest lipid oxidation rates (42.05%, 40.29%, and 43.14%, respectively) in comparison with the synthetic antioxidant (52.23%). This lipid inhibition is related to the strong antioxidant activity (29.75 µg/mL IC50 DPPH) of the maqui leaf powder due to its high content of total polyphenols (148.76 mg GAE/g), mainly characterized by having great amounts of hydroxybenzoic acids (82.5 mg GAE/g), flavonoids (7.1 mg QE/g), and hydroxycinnamic acids (3.7 mg CAE/g). Although minimal variations were observed in some individual fatty acids, and despite the trend to decrease MUFA and increase SFA with the maqui leaf powder addition, these differences were minimal and, according to the nutritional indices results, without any influence on the nutritional quality of the beef patties. The organoleptic analysis showed that the addition of maqui leaf powders did not affect the general acceptability of the new formulations. This study reports for the first time the substitution of synthetic antioxidants with Aristotelia chilensis leaves extract. Based on the results, it can be concluded that this ingredient can be used as an alternative for the production of raw meat products with clean labels.
Collapse
Affiliation(s)
- Lidiana Velázquez
- Centro de Tecnología e Innovación de la Carne (CTI-Carne), Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (J.Q.); (G.S.); (R.D.); (C.V.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - John Quiñones
- Centro de Tecnología e Innovación de la Carne (CTI-Carne), Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (J.Q.); (G.S.); (R.D.); (C.V.)
| | - Karla Inostroza
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Gastón Sepúlveda
- Centro de Tecnología e Innovación de la Carne (CTI-Carne), Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (J.Q.); (G.S.); (R.D.); (C.V.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Centro de Tecnología e Innovación de la Carne (CTI-Carne), Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (J.Q.); (G.S.); (R.D.); (C.V.)
| | - Erick Scheuermann
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence: (J.M.L.); (N.S.)
| | - Carla Velásquez
- Centro de Tecnología e Innovación de la Carne (CTI-Carne), Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (J.Q.); (G.S.); (R.D.); (C.V.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Centro de Tecnología e Innovación de la Carne (CTI-Carne), Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (J.Q.); (G.S.); (R.D.); (C.V.)
- Correspondence: (J.M.L.); (N.S.)
| |
Collapse
|
20
|
Changes in the Quality Attributes of Selected Long-Life Food at Four Different Temperatures over Prolonged Storage. Foods 2022; 11:foods11142004. [PMID: 35885247 PMCID: PMC9319022 DOI: 10.3390/foods11142004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
This study reports the development of selected indicators affecting changes in food quality and safety of selected long-life canned (Szeged goulash, canned chicken meat, pork pâté, canned tuna fish) and dehydrated (instant goulash soup) food during a two-year storage experiment at four different temperatures. The storage temperatures were selected to represent Arctic (−18 °C), temperate (5 °C), subtropical (25 °C) and tropical (40 °C) climatic zones where such food is likely to be stored during, for example, humanitarian and military missions. Microorganism amounts below the detection limit (p < 0.05), regardless of the storage temperature (p ≥ 0.05), were monitored in canned samples. The contents of dry matter, fat and proteins did not change during storage, regardless of the storage temperature (p ≥ 0.05). During the 24-month storage, all food showed an increase in the level of ammonia (p < 0.05) and the TBARS-value (p < 0.05), whereas the rate of increase in both parameters was significantly higher at higher storage temperatures (p < 0.05). The losses of individual amino acids during storage ranged from 5% rel. calculated on the amino acid contents in Month “0” up to 15% rel. (p < 0.05). With storage temperatures above the freezing point, the hardness values decreased with the increase in the storage temperature (p < 0.05) and prolongation of the storage period (p < 0.05). Moreover, with temperatures of −18 °C, the development of hardness, measured as the “decrease rate”, was significantly higher compared to the absolute values.
Collapse
|
21
|
Dewi SR, Stevens LA, Pearson AE, Ferrari R, Irvine DJ, Binner ER. Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Awad AM, Kumar P, Ismail‐Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Overview of plant extracts as natural preservatives in meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Pavan Kumar
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Livestock Products Technology College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mohammad Rashedi Ismail‐Fitry
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia UPM Serdang Malaysia
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Awis Qurni Sazili
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
- Halal Product Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
| |
Collapse
|
23
|
Changes in Flavor- and Aroma-Related Fermentation Metabolites and Antioxidant Activity of Glutinous Rice Wine Supplemented with Chinese Chestnut (Castanea mollissima Blume). FERMENTATION 2022. [DOI: 10.3390/fermentation8060266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Traditional glutinous rice wine (TGRW) has been fermented in China for over 9000 years. Recently, an innovative regional variation of TGRW, chestnut rice wine, banli mijiu (BLMJ), was developed by adding Chinese chestnut (Castanea mollissima Blume) into the fermentation brew. The objective of this study was to characterize the effects of chestnut on the nutritional, aromatic, and antioxidant properties of TGRW. To compare the aromatic sensory profiles between TGRW and BLMJ, the free amino acids and ethyl carbamate, phenolic, and flavonoid contents were determined. In addition, the antioxidant properties, including reducing power, metal chelation, and free radical scavenging activities, were also compared. A total of 98 distinct flavor components were identified in BLMJ, among which 38 were detected by sniffing instrument, compared to 77 distinct flavor components in TGRW. BLMJ thus contains a wider range of flavor components, but similar alcohol, acid and reducing sugar profiles compared with TGRW. Twenty-five free amino acids were detected in both wines, with lower contents of each in BLMJ compared with TGRW. BLMJ also exhibited stronger antioxidant properties than TGRW. The findings of this study suggest that chestnut can increase the diversity of aromatic components and improve antioxidant qualities of traditional rice wine.
Collapse
|
24
|
Aryee ANA, Akanbi TO, Nwachukwu ID, Gunathilake T. Perspectives on preserving lipid quality and strategies for value enhancement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Fidelis EM, Savall ASP, de Oliveira Pereira F, Quines CB, Ávila DS, Pinton S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Barido FH, Lee SK. Effect of detoxified Rhus verniciflua extract on oxidative stability
and quality improvement of raw chicken breast during cold
storage. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:380-395. [PMID: 35530403 PMCID: PMC9039955 DOI: 10.5187/jast.2022.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the utilization of detoxified Rhus
verniciflua (RV) extract as a natural antioxidant to extend the
shelf life of chicken breast meat during storage. Pre-heating at (35°C,
100°C, 120°C, and 140°C) was conducted on heartwood of RV
prior to extraction to improve its antioxidant activity and remove the
allergenic compound urushiol. The antioxidant activity was the highest when RV
pre-heated at 120°C with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity
observed at 62.29 EC50 µg/mL and 12.11 IC50 mg/mL,
respectively. Pre-heating also significantly increased the total phenolic
content (TPC), with the highest improvement was seen at 120°C,
100°C, and 140°C respectively, wherein 35°C shared no
difference with the raw RV (RRV). Urushiol content was vanished following
pre-heating at 120°C and 140°C. With respect to these result,
pre-heating treatment at 120°C was applied before the extraction of the
heartwood of RV. Prepared breast meat sample was dipped into distilled water as
a negative control, 0.02% butylated hydroxytoluene (BHT) as positive control,
and a solution containing detoxified RV extract (0.10%, 0.25%, 0.50%, 1.00%) at
4°C for 60 min. Treatment group with 0.50% and 1.00% addition increased
the redness and yellowness value on day 6 and day 3 of storage respectively
(p < 0.05). The pH value of breast meat was also
increased in treatment of 0.50% and 1.00% on day 0, but subsequently lower until
end of storge day compared to control negative (p <
0.05). Furthermore, 0.50% treatment exhibited a higher antioxidant activity,
stronger inhibition of the microbial growth evaluated by total viable count and
maintaining a lower total volatile basic nitrogen among treatments
(p < 0.05), unless for BHT and 1.00% treatment
groups (p > 0.05). It indicates a similar efficacy of
detoxified RV extract with that of positive control treated with BHT. The
results of this study suggested that dipping chicken breast meat into a solution
containing 0.50% of previously pre-heated RV heartwood at 120°C could be
a promising natural antioxidant for extending the shelf life, and at the same
time improve its quality during storage.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science,
College of Animal Life Sciences, Kangwon National University,
Chuncheon 24341, Korea
- Corresponding author: Sung Ki Lee, Department of
Applied Animal Science, College of Animal Life Sciences, Kangwon National
University, Chuncheon 24341, Korea. Tel: +82-33-250-8646, E-mail:
| |
Collapse
|
27
|
Lemes AC, Egea MB, de Oliveira Filho JG, Gautério GV, Ribeiro BD, Coelho MAZ. Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Front Bioeng Biotechnol 2022; 9:802543. [PMID: 35155407 PMCID: PMC8829320 DOI: 10.3389/fbioe.2021.802543] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds can provide health benefits beyond the nutritional value and are originally present or added to food matrices. However, because they are part of the food matrices, most bioactive compounds remain in agroindustrial by-products. Agro-industrial by-products are generated in large quantities throughout the food production chain and can—when not properly treated—affect the environment, the profit, and the proper and nutritional distribution of food to people. Thus, it is important to adopt processes that increase the use of these agroindustrial by-products, including biological approaches, which can enhance the extraction and obtention of bioactive compounds, which enables their application in food and pharmaceutical industries. Biological processes have several advantages compared to nonbiological processes, including the provision of extracts with high quality and bioactivity, as well as extracts that present low toxicity and environmental impact. Among biological approaches, extraction from enzymes and fermentation stand out as tools for obtaining bioactive compounds from various agro-industrial wastes. In this sense, this article provides an overview of the main bioactive components found in agroindustrial by-products and the biological strategies for their extraction. We also provide information to enhance the use of these bioactive compounds, especially for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Ailton Cesar Lemes, ; Maria Alice Zarur Coelho,
| | | | | | - Gabrielle Victoria Gautério
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bernardo Dias Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Alice Zarur Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Ailton Cesar Lemes, ; Maria Alice Zarur Coelho,
| |
Collapse
|
28
|
Edible active film based on gelatin and Malpighia emarginata waste extract to inhibit lipid and protein oxidation in beef patties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, Souto EB, Lombardi-Boccia G, Ramadan MF, Santini A, Romani A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021; 26:6338. [PMID: 34770747 PMCID: PMC8586962 DOI: 10.3390/molecules26216338] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
The by-products/wastes from agro-food and in particular the fruit industry represents from one side an issue since they cannot be disposed as such for their impact on the environment but they need to be treated as a waste. However, on the other side, they are a source of bioactive healthy useful compounds which can be recovered and be the starting material for other products in the view of sustainability and a circular economy addressing the global goal of "zero waste" in the environment. An updated view of the state of art of the research on fruit wastes is here given under this perspective. The topic is defined as follows: (i) literature quantitative analysis of fruit waste/by-products, with particular regards to linkage with health; (ii) an updated view of conventional and innovative extraction procedures; (iii) high-value added compounds obtained from fruit waste and associated biological properties; (iv) fruit wastes presence and relevance in updated databases. Nowadays, the investigation of the main components and related bioactivities of fruit wastes is being continuously explored throughout integrated and multidisciplinary approaches towards the exploitation of emerging fields of application which may allow to create economic, environmental, and social value in the design of an eco-friendly approach of the fruit wastes.
Collapse
Affiliation(s)
- Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario “Città di Prato” Servizi didattici e scientifici per l’Università di Firenze, Piazza Giovanni Ciardi, 25-59100 Prato, Italy;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| |
Collapse
|
30
|
Bellucci ERB, Dos Santos JM, Carvalho LT, Borgonovi TF, Lorenzo JM, Silva-Barretto ACD. Açaí extract powder as natural antioxidant on pork patties during the refrigerated storage. Meat Sci 2021; 184:108667. [PMID: 34656002 DOI: 10.1016/j.meatsci.2021.108667] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The current trends among consumers are pushing for the use of natural antioxidants options. Açaí fruit is rich on polyphenolic components but no studies have been carried out to evaluate their effect in meat products. The objective was to investigate the effect of açaí extract on refrigerated pork patties quality. Five treatments were done: without antioxidant (CON), Sodium Erythorbate 500 mg.kg -1 (ERY), Açaí Extract: 250 (AEL), 500 (AEM), 750 mg.kg -1 (AEH). Açaí extract did not affect the proximate composition, pH and cooking parameters. The concentrations of açaí extract studied increased antioxidant activity and reduced lipid oxidation (0.379, 0.293, and 0.217 vs. 0.889 mg MDA.kg-1 for AEL, AEM, AEH vs. CON, respectively). However, only the AEL treatment did not affect the color parameters, showing the best option for the application on pork patties. Thus, açaí extract at 250 mg.kg-1 can be used as a natural antioxidant replacing sodium erythorbate to preserve the quality of refrigerated pork patties.
Collapse
Affiliation(s)
- Elisa Rafaela Bonadio Bellucci
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - João Marcos Dos Santos
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Larissa Tátero Carvalho
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Taís Fernanda Borgonovi
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Andrea Carla da Silva-Barretto
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
31
|
Yu HH, Chin YW, Paik HD. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021; 10:2418. [PMID: 34681466 PMCID: PMC8535775 DOI: 10.3390/foods10102418] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products.
Collapse
Affiliation(s)
- Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
32
|
Aksu Mİ, Turan E. Effects of lyophilized black carrot ( Daucus carota L.) water extract on the shelf life, physico-chemical and microbiological quality of high-oxygen modified atmosphere packaged (HiOx-MAP) ground beef. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3514-3524. [PMID: 34366468 PMCID: PMC8292474 DOI: 10.1007/s13197-021-05044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED In the present study, firstly, various properties of lyophilized water extracts (LBCWE) produced from fresh black carrot were determined. LBCWE was observed to be a rich source of monomeric anthocyanins (1188.40 ± 17.38 mg C3G/100 g; n = 4) and phenolics (2733.83 ± 17.78 mg GAE/100 g, n = 4). Secondly, ground beef containing LBCWE (Control, 100, 200 and 300 ppm) and packaged in HiOx-MAP (80% O2 + 20% CO2) was evaluated in terms of lipid oxidation, metmyoglobin (MetMb), color, pH and microbial counts during storage at 2.0 ± 0.5 °C for 12 days. By increasing level of LBCWE, the pH, lipid oxidation, MetMb and microbial counts were decreased (P < 0.01). The LBCWE significantly affected the color and microbial count parameters (P < 0.01). The highest redness and lowest microbial growth during storage was in the 300 ppm LBCWE group (P < 0.05). On the 12th day of storage, Pseudomonas and Enterobactericeae decreased 1.24 log and 1.46 log units in this group according to control. The shelf life of ground beef can be extended by 3 days with MAP + 300 ppm extract application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05044-1.
Collapse
Affiliation(s)
- Muhammet İrfan Aksu
- Faculty of Agriculture, Department of Food Engineering, Eskişehir Osmangazi University, 26160 Eskişehir, Turkey
| | - Emre Turan
- Faculty of Agriculture, Department of Food Engineering, Ordu University, 52200 Ordu, Turkey
| |
Collapse
|
33
|
Natural Antioxidants from Endemic Leaves in the Elaboration of Processed Meat Products: Current Status. Antioxidants (Basel) 2021; 10:antiox10091396. [PMID: 34573028 PMCID: PMC8466473 DOI: 10.3390/antiox10091396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/01/2023] Open
Abstract
During the last few years, consumers' demand for animal protein and healthier meat products has increased considerably. This has motivated researchers of the meat industry to create products that present healthier components while maintaining their safety, sensory characteristics, and shelf life. Concerning this, natural plant extracts have gained prominence because they can act as antioxidants and antimicrobials, increasing the stability and shelf life of processed meat products. It has been observed that the leaves of plant species (Moringa oleifera, Bidens pilosa, Eugenia uniflora, Olea europea, Prunus cerasus, Ribes nigrum, etc.) have a higher concentration and variety of polyphenols than other parts of the plants, such as fruits and stems. In Chile, there are two native berries, maqui (Aristotelia chilensis) and murtilla (Ugni molinae Turcz), that that stand out for their high concentrations of polyphenols. Recently, their polyphenols have been characterized, demonstrating their potential antioxidant and antimicrobial action and their bioactive action at cellular level. However, to date, there is little information on their use in the elaboration of meat products. Therefore, the objective of this review is to compile the most current data on the use of polyphenols from leaves of native plants in the elaboration of meat products and their effect on the oxidation, stability, and organoleptic characteristics during the shelf life of these products.
Collapse
|
34
|
The Relationship between Lipid Content in Ground Beef Patties with Rate of Discoloration and Lipid Oxidation during Simulated Retail Display. Foods 2021; 10:foods10091982. [PMID: 34574092 PMCID: PMC8469196 DOI: 10.3390/foods10091982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
The relationships between the lipid content, lipid oxidation, and discoloration rate of ground beef during a simulated retail display were characterized in this study. A total of 276 batches of ground beef were manufactured with inside rounds and subcutaneous fat from 138 beef carcasses at different targeted levels of lean:fat. There was a total of four different targeted grind levels during the manufacture of the ground beef, and the lipid content for the samples used in this study ranged from 2% to 32% total lipid. Fatty acid composition was determined based on subcutaneous fat, whereas the proximate composition of moisture and total lipids, instrumental color, visual discoloration, and lipid oxidation measured as thiobarbituric acid reactive substances were evaluated on ground beef patties during 7 days of simulated retail at 4 °C display under LED lights. Analysis for the correlation and the creation of linear regression models indicated that lipid content played a more critical role in the discoloration rate compared to lipid oxidation and fatty acid composition. Lipid oxidation could be more reliably predicted by lipid content and instrumental color compared to visual discoloration. Overall, ground beef formulated with greater lipid content is expected to experience greater rates of lipid oxidation and discoloration during retail display.
Collapse
|
35
|
The Antioxidant Effect of Colombian Berry ( Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants (Basel) 2021; 10:antiox10081290. [PMID: 34439538 PMCID: PMC8389266 DOI: 10.3390/antiox10081290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
A scarce amount of knowledge about the use of Colombian berry (CB) in meat products is available in the literature. This work studies the impact of the addition of CB extracts (CBE) on pork patties at three different concentrations in the range 250–750 mg/kg. CBE were characterized in terms of their polyphenolic profile and antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, half maximal inhibitory antioxidant concentration (IC50), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP) and oxygen radical absorbance capacity (ORAC) tests)]. After pork patties elaboration, instrumental and sensorial colour, as well as lipid oxidation measured as thiobarbituric acid reactive substances assay (TBARS) values, were evaluated for 10 days of refrigerated storage in a modified atmosphere (80% O2–20% CO2). The total anthocyanin composition represented 35% of the polyphenolic substances of the CBE, highlighting high contents in cyanidin derivatives. Additionally, other flavonoids (quercetin and kaempferol compounds) and phenolics acids, substances positively related to antioxidant activity, were identified and quantified. In addition, the incorporation of CBE resulted in improvements in colour and lipid stability of pork patties, especially for the highest concentration used. Our findings demonstrated that CBE could be added to pork patties without impairing their sensorial profile. Overall, our results indicate that the use of CBE as a source of natural antioxidant, natural colourant, or even as a functional ingredient could be promising, but more studies are necessary to confirm it.
Collapse
|
36
|
Wang Z, He Z, Zhang D, Chen X, Li H. Effects of purslane extract on the quality indices of rabbit meat patties under chilled storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zefu Wang
- College of Food Science Southwest University Chongqing China
| | - Zhifei He
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| | - Dong Zhang
- College of Food Science Southwest University Chongqing China
| | - Xiaosi Chen
- College of Food Science Southwest University Chongqing China
| | - Hongjun Li
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| |
Collapse
|
37
|
Delgado-Pando G, Ekonomou SI, Stratakos AC, Pintado T. Clean Label Alternatives in Meat Products. Foods 2021; 10:foods10071615. [PMID: 34359485 PMCID: PMC8306945 DOI: 10.3390/foods10071615] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Food authorities have not yet provided a definition for the term "clean label". However, food producers and consumers frequently use this terminology for food products with few and recognisable ingredients. The meat industry faces important challenges in the development of clean-label meat products, as these contain an important number of functional additives. Nitrites are an essential additive that acts as an antimicrobial and antioxidant in several meat products, making it difficult to find a clean-label alternative with all functionalities. Another important additive not complying with the clean-label requirements are phosphates. Phosphates are essential for the correct development of texture and sensory properties in several meat products. In this review, we address the potential clean-label alternatives to the most common additives in meat products, including antimicrobials, antioxidants, texturisers and colours. Some novel technologies applied for the development of clean label meat products are also covered.
Collapse
Affiliation(s)
- Gonzalo Delgado-Pando
- Institute of Food Science, Technology and Nutrition (CSIC), José Antonio Novais 10, 28040 Madrid, Spain;
| | - Sotirios I. Ekonomou
- Centre for Research in Biosciences, Coldharbour Lane, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (S.I.E.); (A.C.S.)
| | - Alexandros C. Stratakos
- Centre for Research in Biosciences, Coldharbour Lane, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (S.I.E.); (A.C.S.)
| | - Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (CSIC), José Antonio Novais 10, 28040 Madrid, Spain;
- Correspondence:
| |
Collapse
|
38
|
Dai Y, Wu H, Liu X, Liu H, Yin L, Wang Z, Xia X, Zhou J. Antioxidant activities and inhibitory effects of blueberry pomace and wine pomace crude extracts on oxidation of oil in water emulsion and fish mince. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yiqiang Dai
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Han Wu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiaoli Liu
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Hui Liu
- College of Food and Biological Engineering Xuzhou University of Technology Xuzhou China
| | - Liqing Yin
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Zhe Wang
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Xiudong Xia
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Jianzhong Zhou
- Institute of Agro‐Product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
39
|
Zhou Y, Li Z, Chen Y, Fang H, Wang S. Effects of rosemary and ginger on the storage quality of western‐style smoked sausage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering Jilin University Changchun China
| | - Zonghao Li
- College of Food Science and Engineering Jilin University Changchun China
| | - Yan Chen
- College of Food Science and Engineering Jilin University Changchun China
| | - Hui Fang
- College of Food Science and Engineering Jilin University Changchun China
| | - Shujie Wang
- College of Biological and Agricultural Engineering Jilin University Changchun China
| |
Collapse
|
40
|
Turan E, Şimşek A. Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color stability, microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions. Meat Sci 2021; 178:108522. [PMID: 33957374 DOI: 10.1016/j.meatsci.2021.108522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The objective was to determine the effects of different concentrations of lyophilized black mulberry water extract (BMWE) on lipid oxidation, metmyoglobin (MMb) formation, color stability, microbial quality, and sensory properties of aerobic (AP) and vacuum (VP) packaged beef patties during 15 days of chilled storage. Compared to control, incorporating of BMWE decreased (P < .01) the pH, thiobarbituric acid reactive substances (TBARS), MMb, and hue angle values of both AP and VP beef patties, while improving the redness (a*) and chroma values (P < .01). Addition of BMWE contributed significantly to extending the shelf life of beef patties by limiting lipid oxidation, discoloration and microbial growth during storage compared to control (P < .01). Although the lowest TAMB (total aerobic mesophylic bacteria) counts, TBARS and MMb values were determined in 0.4% BMWE groups, 0.2% BMWE was the most favourable concentration considering sensory acceptability and instrumental redness. These results showed that BMWE could be used as a promising natural colorant, antioxidant and antimicrobial agent in beef patties instead of synthetic additives.
Collapse
Affiliation(s)
- Emre Turan
- Ordu University, Faculty of Agriculture, Department of Food Engineering, Ordu, Turkey.
| | - Atilla Şimşek
- Ordu University, Faculty of Agriculture, Department of Food Engineering, Ordu, Turkey
| |
Collapse
|
41
|
Castanea sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Food Res Int 2021; 144:110364. [PMID: 34053557 DOI: 10.1016/j.foodres.2021.110364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
Castanea sativa is an outstanding species that represents a valuable natural resource for rural populations. C. sativa shells (CSS), an abundant agro-industrial by-product generated during chestnut peeling process, is commonly discarded or used as fuel. Nevertheless, CSS produced are not depleted by this application and huge amounts are still available, being particularly rich in bioactive compounds (polyphenols, vitamin E, lignin and oligosaccharides) with health benefits. Phytochemical studies reported not only antioxidant and antimicrobial activities, but also anti-inflammatory, anticancer, hypolipidemic, hypoglycemic and neuroprotective activities. The application of a suitable extraction technique is required for the isolation of bioactive compounds, being green extraction technologies outstanding for the industrial recovery of chestnut shells' bioactive compounds. CSS were highlighted as remarkable sources of functional ingredients with promising applications in food and nutraceutical fields, mainly as natural antioxidants and effective prebiotics. This review aims to summarize the phytochemical composition and pro-healthy properties of CSS, emphasizing the sustainable extraction techniques employed in the recovery of bioactive compounds and their potential applications in food and nutraceutical industries.
Collapse
|
42
|
Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of Castanea sativa (Italian Cultivar "Marrone di Roccadaspide" PGI) Burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS. Antioxidants (Basel) 2021; 10:antiox10020278. [PMID: 33670426 PMCID: PMC7917746 DOI: 10.3390/antiox10020278] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The Italian "Marrone di Roccadaspide" (Castanea sativa), a labeled Protected Geographical Indication (PGI) product, represents an important economic resource for the Italian market. With the aim to give an interesting opportunity to use chestnuts by-products for the development of nutraceutical and/or cosmetic formulations, the investigation of burs and leaves along with chestnuts of C. sativa, cultivar "Marrone di Roccadaspide", has been performed. The phenolic, tannin, and flavonoid content of the MeOH extracts of "Marrone di Roccadaspide" burs, leaves, and chestnuts as well as their antioxidant activity by spectrophotometric methods (1,1-diphenyl-2-picrylhydrazyl (DPPH), Trolox Equivalent Antioxidant Capacity (TEAC), and Ferric Reducing Antioxidant Power (FRAP) have been evaluated. Furthermore, a cell-based antioxidant in vitro test along with in vitro assays for the evaluation of the ability to reduce nuclear factor-kappa B (NF-κB) activation and nitric oxide (NO) production have been carried out. In order to identify the secondary metabolites responsible for the high phenolic content and the strong antioxidant activity shown by leaves and burs extracts, and to highlight the differences between their chemical composition, the analysis of the metabolite profile of the MeOH extracts obtained from both by-products and chestnuts by liquid chromatography coupled to electrospray ionization and multiple-stage linear ion-trap and Orbitrap high-resolution mass spectrometry (LC-(-)ESI/LTQOrbitrap/MS/MS) has been performed. LC-MS analysis allowed the identification of different classes of specialized metabolites including hydrolyzable tannins, flavonoids, ellagic acid and phenol glucoside derivatives, and triterpenoids as well as polar lipids. Our results show how the antioxidant activity of the extracts can be correlated to their high tannins and flavonoids content while polar lipids occurring in the MeOH extract of the leaves could contribute to determining its higher anti-inflammatory activity.
Collapse
|
43
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
44
|
Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021; 26:495. [PMID: 33477709 PMCID: PMC7831927 DOI: 10.3390/molecules26020495] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Moving toward a more sustainable development, a pivotal role is played by circular economy and a smarter waste management. Industrial wastes from plants offer a wide spectrum of possibilities for their valorization, still being enriched in high added-value molecules, such as secondary metabolites (SMs). The current review provides an overview of the most common SM classes (chemical structures, classification, biological activities) present in different plant waste/by-products and their potential use in various fields. A bibliographic survey was carried out, taking into account 99 research articles (from 2006 to 2020), summarizing all the information about waste type, its plant source, industrial sector of provenience, contained SMs, reported bioactivities, and proposals for its valorization. This survey highlighted that a great deal of the current publications are focused on the exploitation of plant wastes in human healthcare and food (including cosmetic, pharmaceutical, nutraceutical and food additives). However, as summarized in this review, plant SMs also possess an enormous potential for further uses. Accordingly, an increasing number of investigations on neglected plant matrices and their use in areas such as veterinary science or agriculture are expected, considering also the need to implement "greener" practices in the latter sector.
Collapse
Affiliation(s)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (P.T.); (L.M.); (F.P.)
| | | | | | | |
Collapse
|
45
|
Rocchetti G, Bernardo L, Pateiro M, Barba FJ, Munekata PES, Trevisan M, Lorenzo JM, Lucini L. Impact of a Pitanga Leaf Extract to Prevent Lipid Oxidation Processes during Shelf Life of Packaged Pork Burgers: An Untargeted Metabolomic Approach. Foods 2020; 9:E1668. [PMID: 33203110 PMCID: PMC7696221 DOI: 10.3390/foods9111668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
In this work, the comprehensive metabolomic changes in pork burgers treated with different antioxidants, namely, (a) a control without antioxidants, (b) 200 mg/kg butylated hydroxytoluene (BHT), and (c) 250 mg/kg pitanga leaf extract (PLE, from Eugenia uniflora L.), each one packaged under modified atmosphere (80% O2 and 20% CO2) for 18 days storage at 2 ± 1 °C, were deeply studied. In particular, untargeted metabolomics was used to evaluate the impact of the antioxidant extracts on meat quality. The PLE phytochemical profile revealed a wide variety of antioxidant compounds, such as polyphenols, alkaloids, and terpenoids. Multivariate statistics (both unsupervised and supervised) allowed to observe marked differences in BHT and PLE burgers metabolomic profiles during storage. Most of the differences could be attributed to hexanoylcarnitine, 4-hydroxy-2-nonenal, 6-hydroxypentadecanedioic acid, 9S,11S,15S,20-tetrahydroxy-5Z,13E-prostadienoic acid (20-hydroxy-PGF2a), sativic acid, followed by glycerophospholipids. In addition, significant correlations (p < 0.01) were observed between thiobarbituric acid reactive substances and metabolites related to lipid oxidation processes. Therefore, the approach used showed a clear modulation of lipid oxidation, likely promoted by the plant leaf extract, thus confirming the ability of PLE to delay lipid oxidative phenomena during storage.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| | - Letizia Bernardo
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, 46100 Burjassot, València, Spain;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Marco Trevisan
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Luigi Lucini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| |
Collapse
|
46
|
Effects of different cooking methods and of the inclusion of chestnut (Castanea sativa Miller) in the finishing diet of Celta pig breed on the physicochemical parameters and volatile profile of Longissimus thoracis et lumborum muscle. Food Res Int 2020; 137:109407. [DOI: 10.1016/j.foodres.2020.109407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/12/2023]
|
47
|
do Santos Junior AC, de Oliveira RF, Henry FDC, Maia Junior JDA, Moulin MM, Della Lucia SM, Quirino CR, Martins MLL, Rampe MCC. Physicochemical composition, lipid oxidation, and microbiological quality of ram mortadella supplemented with Smallanthus sonchifolius meal. Food Sci Nutr 2020; 8:5953-5961. [PMID: 33282247 PMCID: PMC7684614 DOI: 10.1002/fsn3.1880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
This study evaluated the physicochemical, lipid peroxidation, and microbiological quality of mortadellas prepared with ram and supplemented with different amounts of Smallanthus sonchifolius meal. Three mutton mortadella formulations supplemented with 1.25%, 2.50%, and 5% yacón meal and control formulation without yacón meal was included. The physicochemical, lipid peroxidation, and microbiological analyses were carried out in the time periods 10, 45 days, three, and six month after the preparation of mortadella. The control formulation presenting lighter and more intense red tone compared with the other formulations. All formulations presenting lipid peroxidation increased 90 days after processing; already the pH and Aw values were constant for all formulations at the experimental times stipulated. All formulations had the physicochemical characterization and microbiological quality standards, according to defined in regulations for mortadella production in Brazil. The results show that mutton mortadella supplemented with yacón meal is a promising alternative in the manufacture of healthy meat products.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzana Maria Della Lucia
- Departamento de Engenharia de AlimentosUniversidade Federal do Espírito Santo (UFES)AlegreBrasil
| | | | | | | |
Collapse
|
48
|
Ozaki MM, Santos MD, Ribeiro WO, Azambuja Ferreira NCD, Picone CSF, Domínguez R, Lorenzo JM, Pollonio MAR. Radish powder and oregano essential oil as nitrite substitutes in fermented cooked sausages. Food Res Int 2020; 140:109855. [PMID: 33648173 DOI: 10.1016/j.foodres.2020.109855] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Radish powder (0.5 and 1.0%) and oregano essential oil (OEO) (100 mg/kg) were applied in fermented cooked sausages without the addition of nitrite. The products were evaluated along processing and storage at 4 °C and 20 °C during 30 and 60 days. Carvacrol (77.19%), p-cymene (8.78%), γ-terpinene (4.78%) and thymol (3.53%) were the main compounds identified in OEO, which are responsible for its antioxidant capacity. The use of radish powder resulted in an adequate development of colour (12.5-13.5 for a*), nitrite formation (1.9-2.4 mg/kg), pH (5.0-5.2), aw (0.91-0.92), weight loss (35.8-37.7%) and texture (70-75 N) properties for this type of fermented meat products, and it was also efficient in the decrease of mesophilic bacteria counts (2.3-2.4 log CFU/g in samples with 0.5% radish powder). Sensory analysis showed the consumer's preference regarding aroma for treatments added of OEO and no differences were found in overall acceptance among all treatments, indicating that despite the absence of synthetic nitrite in formulations, the combination of radish powder and OEO was approved by the consumers. However, lipid oxidation was not controlled during storage, since higher TBARS values were found in nitrite-free treated sausages, especially in those stored at 20 °C (2.80 mg MDA/kg in samples with 1% radish powder). Therefore, the use of radish powder and OEO showed promising results to development of fermented cooked sausages from a natural source of nitrite, mainly regarding their physicochemical stability and sensory acceptance.
Collapse
Affiliation(s)
- Maristela Midori Ozaki
- School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Wanessa Oliveira Ribeiro
- School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | | | | | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
49
|
Alirezalu K, Hesari J, Yaghoubi M, Khaneghah AM, Alirezalu A, Pateiro M, Lorenzo JM. Combined effects of ε-polylysine and ε-polylysine nanoparticles with plant extracts on the shelf life and quality characteristics of nitrite-free frankfurter-type sausages. Meat Sci 2020; 172:108318. [PMID: 32980722 DOI: 10.1016/j.meatsci.2020.108318] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
In this study, ɛ-polylysine (ɛ-PL) or ɛ-polylysine nanoparticle (ɛ-PLN) combined with plants extracts (including green tea, olive leaves and stinging nettle extracts) were used as nitrite replacers in frankfurter-type sausages. The sausage samples were wrapped in polyethylene bags (in vacuum conditions) and their physicochemical, microbiological and sensory properties were evaluated during 45 days of refrigerated storage. The results showed that the incorporation of ɛ-polylysine had no significant effects on proximate composition of sausages. However, ɛ-PL and ɛ-PLN sausages had significantly (P < 0.05) lower lightness, redness and higher yellowness compared to control samples. At the end of storage, sausages formulated with ɛ-PLN had significantly (P < 0.05) higher contents of phenolic compounds and lowest TBARS values. Microbiological counts also indicated that ɛ-PLN displayed significantly higher inhibitory effects. Higher sensory indices were obtained in ɛ-PLN sausages. Based on the obtained results, ɛ-PLN was effective to improve frankfurter-type sausages shelf life. Therefore, these ingredients could be useful for frankfurter-type sausages production as nitrite replacers.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran.
| | - Javad Hesari
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Technology, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, Ourense 32900, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
50
|
Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Sci 2020; 172:108305. [PMID: 32947238 DOI: 10.1016/j.meatsci.2020.108305] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
This study investigated the physicochemical, nutritional and sensorial characteristics of beef burgers formulated with quinoa flour (QF) and buckwheat flour (BWF) as replacers of the mixture of soy protein powder (SP) and bread crumb (BC). Six treatments were formulated in two groups (15% and 30% of added flour as Groups A and B, respectively). The oil absorption and water holding capacity were higher (P < 0.05) in Soy protein burgers (SPB) than in other burgers. The mineral content of magnesium, phosphorus, iron and zinc was higher in the quinoa burgers (QB) than in the other formulations for both A and B groups. Also, the result of sensory evaluation revealed increases (P < 0.05) in overall acceptability and taste attributes of QB and BWB (Buckwheat Burger) in both groups. The shelf life results showed significant differences between SPB and treated samples (QB and BWB). Therefore, these new beef burger formulations might be a viable option in improvement of nutritional, durability and sensory properties.
Collapse
|