1
|
Bavaro AR, Tarantini A, Bruno A, Logrieco AF, Gallo A, Mita G, Valerio F, Bleve G, Cardinali A. Functional foods in Mediterranean diet: exploring the functional features of vegetable case-studies obtained also by biotechnological approaches. Aging Clin Exp Res 2024; 36:208. [PMID: 39412623 PMCID: PMC11485090 DOI: 10.1007/s40520-024-02860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
The Mediterranean Diet (MedDiet) is a widely recognized dietary pattern, with its effects largely attributed to "functional foods" which are able to positively influence one or more target functions, improving health and maintaining a state of well-being.In this review, three "case-study" typical of the MedDiet, such as artichokes, capers and table olives are considered as traditional functional vegetables rich in bioactive compounds, mainly polyphenols. The review extensively discusses the antioxidant effects of these molecules, as well as their role in aging prevention and reduction, maintaining human health, and influencing the abundance and composition of intestinal microbiota. Additionally, this review focuses on the fate of the dietary polyphenols along the digestive tract.Among biotechnological strategies, the review explores the role of fermentation process in modifying the biochemical profile, recovery, bioaccessibility and bioavailability of bioactive compounds present in some vegetable foods of MedDiet. Finally, the main challenges in the selection, addition, and maintenance of probiotic strains in traditional food products are also summarized, with a view to develop new probiotic carriers for "functional diets".
Collapse
Affiliation(s)
- Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Annamaria Tarantini
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Angelica Bruno
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
- Xianghu Lab, Biomanufactoring Institute, Hangzhou, Zhejiang, China
| | - Antonia Gallo
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Giovanni Mita
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Francesca Valerio
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy.
| | - Gianluca Bleve
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy.
| | - Angela Cardinali
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| |
Collapse
|
2
|
Tarantini A, Crupi P, Ramires FA, D'Amico L, Romano G, Blando F, Branco P, Clodoveo ML, Corbo F, Cardinali A, Bleve G. Study of the effects of pasteurization and selected microbial starters on functional traits of fermented table olives. Food Microbiol 2024; 122:104537. [PMID: 38839217 DOI: 10.1016/j.fm.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Table olives are one of the most known fruit consumed as fermented food, being a fundamental component of the Mediterranean diet. Their production and consumption continue to increase globally and represent an important economic source for the producing countries. One of the most stimulating challenges for the future is the modernization of olive fermentation process. Besides the demand for more reproducible and safer production methods that could be able to reduce product losses and potential risks, producers and consumers are increasingly attracted by the final product characteristics and properties on human health. In this study, the contribution of microbial starters to table olives was fully described in terms of specific enzymatic and microbiological profiles, nutrient components, fermentation-derived compounds, and content of bioactive compounds. The use of microbial starters from different sources was tested considering their technological features and potential ability to improve the functional traits of fermented black table olives. For each fermentation assay, the effects of controlled temperature (kept at 20 °C constantly) versus not controlled environmental conditions (oscillating between 7 and 17 °C), as well as the consequences of the pasteurization treatment were tested on the final products. Starter-driven fermentation strategies seemed to increase both total phenolic content and total antioxidant activity. Herein, among all the tested microbial starters, we provide data indicating that two bacterial strains (Leuconostoc mesenteroides KT 5-1 and Lactiplantibacillus plantarum BC T3-35), and two yeast strains (Saccharomyces cerevisiae 10A and Debaryomyces hansenii A15-44) were the better ones related to enzyme activities, total phenolic content and antioxidant activity. We also demonstrated that the fermentation of black table olives under not controlled environmental temperature conditions was more promising than the controlled level of 20 °C constantly in terms of technological and functional properties considered in this study. Moreover, we confirmed that the pasteurization process had a role in enhancing the levels of antioxidant compounds.
Collapse
Affiliation(s)
- Annamaria Tarantini
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy; University of Bari, Soil, Plant and Food Science Department (Di.S.S.P.A), Bari, Italy
| | - Pasquale Crupi
- Dipartimento Interdisciplinare di Medicina, Università Degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Francesca Anna Ramires
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | - Leone D'Amico
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | - Giuseppe Romano
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | - Federica Blando
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy
| | | | - Maria Lisa Clodoveo
- Dipartimento Interdisciplinare di Medicina, Università Degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Filomena Corbo
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona, 4-70125, Bari, Italy
| | - Angela Cardinali
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Bari, 70126, Italy
| | - Gianluca Bleve
- Consiglio Nazionale Delle Ricerche - Istituto di Scienze Delle Produzioni Alimentari, Unità Operativa di Lecce, 73100, Lecce, Italy.
| |
Collapse
|
3
|
Ardic Z, Aktas AB. Enrichment of green table olives by natural anthocyanins during fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2244-2254. [PMID: 37273560 PMCID: PMC10232377 DOI: 10.1007/s13197-023-05751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
The aim of this study is the enrichment of green table olives with anthocyanins by using beetroot and black carrot in the fermentation media and to improve functional properties of fermented olives. For this purpose, a full factorial design was constructed by considering the fermentation time, vegetable type and vegetable concentration as processing factors. The changes in the chemical and microbiological properties of both olive and brine samples were monitored. During fermentation, while phenolic components of olives were transferred to the brine, the anthocyanins originating from the black carrot and beetroot diffused into both olive and brine samples. The total monomeric anthocyanin content of fermented olives containing 20% percent of black carrot and beetroot was 149.87 and 154.05 mg/kg respectively. Moreover, the color of olives turned as fermentation progressed. Both ANOVA results (p < 0.05) and PCA model (R2 = 0.99; Q2 = 0.93) confirmed that reaction time is most important factor for the fermentation process. The sensorial analysis results indicated that the olives fermented with 20% vegetable for 10 days had been highly scored by panelists. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05751-x.
Collapse
Affiliation(s)
- Zelal Ardic
- Food Engineering Department, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - A. Burcu Aktas
- Biochemistry Department, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
4
|
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars. Foods 2023; 12:2386. [PMID: 37372597 DOI: 10.3390/foods12122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial and biochemical changes in the brine during the spontaneous fermentation of Gordal, Hojiblanca and Manzanilla olive cultivars processed according to the natural style were monitored. The microbial composition was assessed through a metagenomic study. Sugars, ethanol, glycerol, organic acids and phenolic compounds were quantified by standard methods. In addition, the volatile profiles, contents of phenolic compounds in the olives and quality parameters of the final products were compared. Fermentation in Gordal brines was conducted by lactic acid bacteria (mainly Lactobacillus and Pediococcus) and yeasts (mainly Candida boidinii, Candida tropicalis and Wickerhamomyces anomalus). In Hojiblanca and Manzanilla brines, halophilic Gram-negative bacteria (e.g., Halomonas, Allidiomarina and Marinobacter) along with yeasts (mainly, Saccharomyces) were responsible for the fermentation. Higher acidity and lower pH values were reached in Gordal brines compared to Hojiblanca and Manzanilla. After 30 days of fermentation, no sugars were detected in Gordal brine, but residual amounts were found in the brines from Hojiblanca (<0.2 g/L glucose) and Manzanilla (2.9 g/L glucose and 0.2 g/L fructose). Lactic acid was the main acid product in Gordal fermentation, whereas citric acid was the predominant organic acid in the Hojiblanca and Manzanilla brines. Manzanilla brine samples showed a greater concentration of phenolic compounds than Hojiblanca and Gordal brines. After a 6-month fermentation, Gordal olives were superior compared to the Hojiblanca and Manzanilla varieties regarding product safety (lower final pH and absence of Enterobacteriaceae), content of volatile compounds (richer aroma), content of bitter phenolics (lower content of oleuropein, which resulted in less perceived bitterness) and color parameters (more yellow and lighter color, indicating a higher visual appraisal). The results of the present study will contribute to a better understanding of each fermentation process and could help to promote natural-style elaborations using the above-mentioned olive cultivars.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Antonio Higinio Sánchez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Antonio López-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Amparo Cortés-Delgado
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
5
|
Mechi D, Pérez-Nevado F, Montero-Fernández I, Baccouri B, Abaza L, Martín-Vertedor D. Evaluation of Tunisian Olive Leaf Extracts to Reduce the Bioavailability of Acrylamide in Californian-Style Black Olives. Antioxidants (Basel) 2023; 12:antiox12010117. [PMID: 36670979 PMCID: PMC9854615 DOI: 10.3390/antiox12010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The aim of this work was analyzing the use of olive leaf extracts (OLE) obtained from two local Tunisian olive tree cultivars 'Chemlali' and 'Sayali' to reduce the acrylamide in Californian-style black olives. The phenol profile, antioxidant, and antibacterial activity of the two OLE extracts were evaluated. The principal phenols found were hydroxytyrosol (1809.6 ± 25.3 mg 100 g-1), oleuropein (2662.2 ± 38 mg 100 g-1) and luteolin-7-O-glucoside (438.4 ± 38 mg 100 g-1) presented higher levels in 'Sayali' variety. Small differences were observed between the two kinds of extracts used; the greatest activity of OLE was observed against S. choleraesuis, with values up to 50% inhibition. The extract of 'Chemlali' cultivar was added to the Californian-style table olive, improving its phenol content and its antioxidant characteristics without negatively affecting its sensorial characteristics; these olives showed the highest firmness and proper quality characteristics. The gastrointestinal activity on the acrylamide concentration showed a partial degradation of this compound through the digestion, although the addition of the extract does not seem influence in its gastrointestinal digestion. These findings prove the usefulness of by-products to generate a high-quality added-value product, and this would also be relevant as a step towards a more sustainable, circular economy model.
Collapse
Affiliation(s)
- Dalel Mechi
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
- Faculty of Science of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Francisco Pérez-Nevado
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Correspondence: (F.P.-N.); (D.M.-V.); Tel.: +34-924-012-664 (D.M.-V.)
| | - Ismael Montero-Fernández
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Bechir Baccouri
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Leila Abaza
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Correspondence: (F.P.-N.); (D.M.-V.); Tel.: +34-924-012-664 (D.M.-V.)
| |
Collapse
|
6
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
7
|
Baccouri B, Rajhi I, Theresa S, Najjar Y, Mohamed SN, Willenberg I. The potential of wild olive leaves ( Olea europaea L. subsp. oleaster) addition as a functional additive in olive oil production: the effects on bioactive and nutraceutical compounds using LC-ESI-QTOF/MS. Eur Food Res Technol 2022; 248:2809-2823. [PMID: 35873866 PMCID: PMC9295881 DOI: 10.1007/s00217-022-04091-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022]
Abstract
This study aims to investigate the influence of traditional maceration upon the enrichment of olive oil with oleaster leaves. The phenolic and tocopherolic compositions of control olive oil and enriched olive oils were determined. The influence of these oil preparation procedures on oil quality indicators was also investigated through spectrophotometric indices and fatty acid profiles. The total contents of bioactive compounds and pigments improved in oils obtained by maceration of fresh wild olive leaves, and were in statistically significant correlation with leaves proportions additions. The obtained results revealed that 15 phenolic compounds belonging to different phenolic types were characterized and quantified by an effective HPLC-DAD-ESI-MS/MS method. In all expected olive oils, the oleuropein aglycon (3,4-DHPEA-EA), and ligstroside aglycon (p-HPEAEA) derivatives were the most abundant compounds. Similarly, to phenolic compounds, tocopherols strongly increased with leaves addition during maceration process. The data obtained from this study suggested that the addition of olive leaf to oils allowed more functional olive oils with higher antioxidant contents. Thus, Extra Virgin Olive Oil (EVOO) extracted with 10% of olive leaves presented the highest amount of phenolic and tocopherol compounds.
Collapse
Affiliation(s)
- Bechir Baccouri
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
| | - Imene Rajhi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
| | - Sieren Theresa
- Working Group for Lipid Research, Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI), 32756 Detmold, Germany
| | - Yesmene Najjar
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
| | - Salma Nayet Mohamed
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
| | - Ina Willenberg
- Working Group for Lipid Research, Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI), 32756 Detmold, Germany
| |
Collapse
|
8
|
Martín-Vertedor D, Schaide T, Boselli E, Martínez M, García-Parra J, Pérez-Nevado F. Effect of High Hydrostatic Pressure in the Storage of Spanish-Style Table Olive Fermented with Olive Leaf Extract and Saccharomyces cerevisiae. Molecules 2022; 27:molecules27062028. [PMID: 35335389 PMCID: PMC8950053 DOI: 10.3390/molecules27062028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Olives treated according to the Spanish-style are firstly treated with caustic soda and then fermented in brine to reduce phenols. Next, olives are packed and subjected to pasteurization. The effect of different high hydrostatic pressure treatments (400 MPa, 4 and 6 min) was evaluated in Spanish-style table olives fermented with olive leaf extract (OLE) and S. cerevisiae compared with thermal pasteurization (P) at 80 °C for 15 min. HHP and P led to a significant reduction in yeast and aerobic mesophiles after the conservation treatment and during storage (300 days). The physical-chemical properties changed slightly during storage, except for olive hardness; olives treated with HHP presented a higher hardness than pasteurized ones. The CIELAB parameter L* decreased until day 300 in most of the treatments, as well as phenols. The HHP treatment led to significantly higher contents of phenolics (even during storage) than olives submitted to P. Some sensory attributes (colour, aspect, hardness, and overall evaluation) decreased during storage. P treatment caused a decrease in appearance, aroma, hardness, and overall evaluation compared to olives treated with HHP. Thus, the application of HHP in table olives to increase the shelf-life can be considered a valid alternative to P.
Collapse
Affiliation(s)
- Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Correspondence: ; Tel.: +34-924-012-664
| | - Thais Schaide
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| | - Emanuele Boselli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy;
| | - Manuel Martínez
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Área de Producción Vegetal, Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| | - Jesús García-Parra
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Francisco Pérez-Nevado
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| |
Collapse
|
9
|
Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2022; 11:foods11040552. [PMID: 35206029 PMCID: PMC8871176 DOI: 10.3390/foods11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The growing demand for high-quality gluten-free baked snacks has led researchers to test innovative ingredients. The aim of this work was to assess the feasibility of olive cake powder (OCP) to be used as a functional ingredient in gluten-free (GF) breadsticks. OCP was used by replacing 1, 2, and 3% of maize flour into GF breadstick production (BS1, BS2, BS3, respectively), and their influence on nutritional, bioactive, textural, and sensorial properties was assessed and compared with a control sample (BSC). BS1, BS2, and BS3 showed a higher lipid, moisture, and ash content. BS2 and BS3 had a total dietary fibre higher than 3 g 100 g−1, achieving the nutritional requirement for it to be labelled as a “source of fibre”. The increasing replacement of olive cake in the formulation resulted in progressively higher total phenol content and antioxidant activity for fortified GF breadsticks. The L* and b* values decreased in all enriched GF breadsticks when compared with the control, while hardness was the lowest in BS3. The volatile profile highlighted a significant reduction in aldehydes, markers of lipid oxidation, and Maillard products (Strecker aldehydes, pyrazines, furans, ketones) in BS1, BS2, and BS3 when compared with BSC. The sensory profile showed a strong influence of OCP addition on GF breadsticks for almost all the parameters considered, with a higher overall pleasantness score for BS2 and BS3.
Collapse
|
10
|
Caponio GR, Difonzo G, de Gennaro G, Calasso M, De Angelis M, Pasqualone A. Nutritional Improvement of Gluten-Free Breadsticks by Olive Cake Addition and Sourdough Fermentation: How Texture, Sensory, and Aromatic Profile Were Affected? Front Nutr 2022; 9:830932. [PMID: 35223958 PMCID: PMC8869757 DOI: 10.3389/fnut.2022.830932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing need for gluten-free bakery products with an improved nutritional profile. Currently, gluten-free baked goods deliver low protein, fiber, and mineral content and elevated predicted glycaemic index (pGI). Olive cake (OC), a by-product from virgin olive oil extraction, is an excellent natural source of unsaturated fatty acids, dietary fiber and bioactive molecules, including polyphenols and tocopherols. In this framework, this study aimed at using two selected lactic acid bacteria and a yeast for increasing the antioxidant features and the phenol profile of the gluten-free breadsticks fortified with OC with the perspective of producing a functional food. Control (CTR) samples were prepared and compared with fermented ones (fCTR). Samples were added with either non-fermented OC (nfOC) or fermented for 12 and 20 h (fOC-12 and fOC-20). Our results showed that the predicted glycemic index (pGI) was influenced by both OC addition and sourdough fermentation. In fact, the lowest value of pGI was found in fOC-12, and hydrolysis index and pGI values of samples with OC (fOC-12 and nfOC) were statistically lower than fCTR. Both OC addition and fermentation improved the total phenol content and antioxidant activity of breadsticks. The most pronounced increase in hardness values was observed in the samples subjected to sourdough fermentation as evidenced both from texture profile analysis and sensory evaluation. Moreover, in most cases, the concentration of the detected volatile compounds was reduced by fermentation. Our work highlights the potential of OC to be upcycled in combination with fermentation to produce gluten-free breadsticks with improved nutritional profile, although additional trials are required to enhance textural and sensory profile.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Graziana Difonzo
| | - Giuditta de Gennaro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
11
|
Difonzo G, Totaro MP, Caponio F, Pasqualone A, Summo C. Olive Leaf Extract (OLE) Addition as Tool to Reduce Nitrate and Nitrite in Ripened Sausages. Foods 2022; 11:foods11030451. [PMID: 35159601 PMCID: PMC8834353 DOI: 10.3390/foods11030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Olive leaf extract (OLE) is known to be a source of phenolic compounds with antioxidant and antimicrobial activities. This study investigated the effects of the OLE addition to reduce nitrate/nitrite (NO) content on the physico-chemical features of ripened pork sausages. Seven formulations of pork sausages were set up: CTRL (0 mg/kg OLE; 300 mg/kg NO), Tr1 (200 mg/kg OLE; 150 mg/kg NO), Tr2 (400 mg/kg OLE; 150 mg/kg NO), Tr3 (800 mg/kg OLE; 150 mg/kg NO), Tr4 (200 mg/kg OLE; 0 mg/kg NO), Tr5 (400 mg/kg OLE; 0 mg/kg NO), and Tr6 (800 mg/kg OLE; 0 mg/kg NO). At the end of the ripening period, all the samples were within hygienic limits and the substitution of the additives with OLE allowed the reduction of NO residual contents. Both OLE and NO influenced the colour parameters. At the highest dose of OLE, both alone and in combination with reduced dose of NO, no significant differences in terms of moisture, pH, and aw were found compared to CTRL. In absence of NO, a significant reduction of weight loss was observed. Moreover, in the samples without NO a reduction of the hardness was detected. Finally, the oxidative stability test showed that the increase of the OLE amount prolonged the induction time.
Collapse
|
12
|
Impact of incorporating olive leaves during the industrial extraction of cv. Arbequina oils on the physicochemical–sensory quality and health claim fulfillment. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03870-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Difonzo G, Squeo G, Pasqualone A, Summo C, Paradiso VM, Caponio F. The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3099-3116. [PMID: 33275783 DOI: 10.1002/jsfa.10986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Vito M Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Espeso J, Isaza A, Lee JY, Sörensen PM, Jurado P, Avena-Bustillos RDJ, Olaizola M, Arboleya JC. Olive Leaf Waste Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.660582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Olive trees are the oldest known cultivated trees in the world and present-day cultivation is widespread, with an estimated magnitude of 9 million hectares worldwide. As the olive oil industry has continued to grow, so has the environmental impact of olive oil production, such as the energy and water consumption, gas emissions and waste generation. The largest contributor to waste generation are the olive leaves, an abundant and unavoidable byproduct of olive-oil production due to the necessity of tree-pruning. It is estimated that an annual 1.25 million tons of olive leaf waste are generated in Spain alone, around 50% of the total world production. The leaves are currently used for biomass production or animal feed. However, because of their polyphenolic composition, olive leaves have potential in numerous other applications. In this review we analyze the chemical composition of olive leaves, and discuss current processing methods of the olive leaf waste, including thermochemical, biochemical, drying, extraction and condensation methods. We also examine current applications of the treated olive leaves in sectors relating to cattle feed, fertilizers, novel materials, energy generation, and food and pharmaceutical products. The aim of this review is to provide a resource for producers, policy makers, innovators and industry in shaping environmentally sustainable decisions for how olive leaf waste can be utilized and optimized.
Collapse
|
15
|
Difonzo G, Troilo M, Squeo G, Pasqualone A, Caponio F. Functional compounds from olive pomace to obtain high-added value foods - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:15-26. [PMID: 32388855 DOI: 10.1002/jsfa.10478] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Olive pomace, the solid by-product from virgin olive oil extraction, constitutes a remarkable source of functional compounds and has been exploited by several authors to formulate high value-added foods and, consequently, to foster the sustainability of the olive-oil chain. In this framework, the aim of the present review was to summarize the results on the application of functional compounds from olive pomace in food products. Phenolic-rich extracts from olive pomace were added to vegetable oils, fish burgers, fermented milk, and in the edible coating of fruit, to take advantage of their antioxidant and antimicrobial effects. Olive pomace was also used directly in the formulation of pasta and baked goods, by exploiting polyunsaturated fatty acids, phenolic compounds, and dietary fiber to obtain high value-added healthy foods and / or to extend their shelf-life. With the same scope, olive pomace was also added to animal feeds, providing healthy, improved animal products. Different authors used olive pomace to produce biodegradable materials and / or active packaging able to increase the content of bioactive compounds and the oxidative stability of foods. Overall, the results highlighted, in most cases, the effectiveness of the addition of olive pomace-derived functional compounds in improving nutritional value, quality, and / or the shelf-life of foods. However, the direct addition of olive pomace was found to be more challenging, especially due to alterations in the sensory and textural features of food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Marica Troilo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
16
|
Mujdeci GN, Ozbas ZY. Technological and enzymatic characterization of the yeasts isolated from natural fermentation media of Gemlik olives. J Appl Microbiol 2021; 131:801-818. [PMID: 33346384 DOI: 10.1111/jam.14979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
AIM To determine the technological and enzymatic characteristics of 54 yeast strains belonging to 16 species previously isolated from natural fermentation media of Gemlik olives. The distinguishing feature of these strains, according to their selective technological and enzymatic properties using principal component analysis (PCA), was also intended. METHODS AND RESULTS The technological properties of yeast strains, growth characteristics at different temperatures, pH and salt concentrations were examined. Besides, yeast strains' abilities to use oleuropein as a sole carbon source, to assimilate citric acid and to produce H2 S were examined and their catalase, pectolytic, proteolytic and killer activities were also tested. All strains could grow between 15 and 28°C which are favourable temperatures for natural olive fermentation and they were able to tolerate high salt concentration and low pH in the brine of natural fermentation media. As a result of enzymatic characterization with API-ZYM test system, all strains have esterase activity, which is an important feature for developing table olive aroma. In this research, β-glucosidase activity, which contributes to removing bitterness out of olives, was one of the main distinguishing features of yeast strains. Several strains of Candida hellenica, Pichia anomala and Candida pelliculosa species had β-glucosidase activity. PCA tested yeasts and several strains belonging to C. hellenica (AF84-1), P. anomala (BF1-1, BF46-2) and C. pelliculosa (BF46-3, BF143-2) species have promising technological and enzymatic properties for natural table olive production. CONCLUSION Five promising strains belonging to C. hellenica, P. anomala and C. pelliculosa species may be suitable adjunct starter cultures with lactic acid bacteria in natural fermentation media of table olive. SIGNIFICANCE AND IMPACT OF THE STUDY This study has been the first contribution to the enzymatic and technological characterization of yeasts isolated from Gemlik olives in Turkey. Some strains could be proposed as a promising adjunct culture in the production of table olives.
Collapse
Affiliation(s)
- G N Mujdeci
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Z Y Ozbas
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| |
Collapse
|
17
|
Silva AFR, Resende D, Monteiro M, Coimbra MA, Silva AMS, Cardoso SM. Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants (Basel) 2020; 9:antiox9121246. [PMID: 33302474 PMCID: PMC7763879 DOI: 10.3390/antiox9121246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hydroxytyrosol (HT) is an amphipathic functional phenol found in the olive tree, both in its leaves and fruits, in free or bound forms, as well as in olive oil and by-products of olive oil manufacture. The European Food Safety Authority recommends regular consumption of HT due to its several beneficial effects on human health, which are closely associated to its antioxidant activity. These reasons make HT an excellent candidate for application as a functional ingredient in the design of novel food products. Patents already exist for methodologies of extraction, purification, and application of HT in supplements and food products. The present review discusses the impact of HT incorporation on food properties and its effects on consumers, based on relevant data related to the use of HT as a functional ingredient, both as a pure compound or in the form of HT-rich extracts, in various food products, namely in edible oils, beverages, bakery products, as well animal-based foods such as meat, fishery and dairy products.
Collapse
|
18
|
Evolution of VOC and Sensory Characteristics of Stracciatella Cheese as Affected by Different Preservatives. Foods 2020; 9:foods9101446. [PMID: 33053809 PMCID: PMC7601598 DOI: 10.3390/foods9101446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
Undesired volatile organic compounds (VOCs) can negatively affect the flavor of fresh food products; especially those characterized by a mild and delicate aroma. Finding connections between chemical and sensory analyses is a useful way to better understand the arising of off-flavors. A study was conducted on stracciatella; a traditional Italian cream cheese that is emerging on international markets. Samples were prepared by adding two different preservatives (alone or combined): sorbic acid and an olive leaf extract. Their influence on flavor preservation during refrigerated storage was investigated by chemical, microbiological and sensory analyses. A strong change of the VOC profile was ascertained after 8 days in the control cheese and in the sample added with leaf extract alone. The samples containing sorbic acid, alone or in combination with leaf extract, gave the best chemical and sensory results, demonstrating a significant shelf-life extension. In particular, these samples had lower concentrations of undesired metabolites, such as organic acids and volatiles responsible for off-flavor, and received better scores for odor and taste. Ex and Ex-So samples had significantly higher antioxidant activity than Ctr and So throughout the entire storage period, and the color parameter shows no differences among samples taken on the same day. The use of the olive leaf extract, at the concentration tested, seemed to be interesting only in the presence of sorbic acid due to possible synergic effect that mainly acted against Enterobacteriaceae.
Collapse
|
19
|
Castellino M, Renna M, Leoni B, Calasso M, Difonzo G, Santamaria P, Gambacorta G, Caponio F, De Angelis M, Paradiso VM. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Kamel Moawad R, Abdelmaguid NM, Saleh Mohamed OS. Improving the Quality and Shelf-life of Raw Rabbit Meat During Refrigeration Storage Using Olive/mulberry Leaves Extracts Dipping. Pak J Biol Sci 2020; 23:1122-1130. [PMID: 32981243 DOI: 10.3923/pjbs.2020.1122.1130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The consumption of fresh rabbit meat has become more popular among consumers in recent years, but they are easily perishable. In this study antioxidant and antimicrobial effects of mulberry (Morus nigra) leaves extract (MLE) and olive (Olea europaea) leaves extract (OLE) dip treatments at 2% w/v on the quality attributes and shelf-life of fresh rabbit meat during chilling storage under aerobic conditions were investigated. MATERIALS AND METHODS Rabbit meat samples were refrigerated at 4±1°C to be periodically examined for their sensory quality, physicochemical parameters and bacteriological status. RESULTS Results indicated that as the time of cold storage progressed, the overall mean scores of physicochemical and microbiological parameters were increased, while sensory scores were decreased (p<0.05) irrespective of treatment. Both natural extracts (MLE/OLE) significantly (p<0.05) delayed oxidative quality changes, protein deterioration and proliferation of bacteria noticed during the chilling study. CONCLUSION Olive leaves extract (OLE; 2%) was more significant (p<0.05) positively affect than mulberry leaves extract (MLE; 2%) in maintaining chemical indices, lipid stability, consumer acceptance, microbial load and can prolonged the expiry of treated rabbit meat by 4 days as compared to control one. Hence, the potential of olive leaves extract to preserve rabbit meat during cold storage has been demonstrated.
Collapse
|
21
|
Perpetuini G, Prete R, Garcia-Gonzalez N, Khairul Alam M, Corsetti A. Table Olives More than a Fermented Food. Foods 2020; 9:E178. [PMID: 32059387 PMCID: PMC7073621 DOI: 10.3390/foods9020178] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Table olives are one of the oldest vegetable fermented foods in the Mediterranean area. Beside their economic impact, fermented table olives represent also an important healthy food in the Mediterranean diet, because of their high content of bioactive and health-promoting compounds. However, olive fermentation is still craft-based following traditional processes, which can lead to a not fully predictable final product with the risk of spontaneous alterations. Nowadays, food industries have to face consumer demands for safe and healthy products. This review offers an overview about the main technologies used for olive fermentation and the role of lactic acid bacteria and yeasts characterizing this niche during the fermentation. Particular attention is offered to the selection and use of microorganisms as starter cultures to fasten and improve the safety of table olives. The development and implementation of multifunctional starter cultures in order to obtain heath-oriented table olives is also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Aldo Corsetti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 641000 Teramo, Italy; (G.P.); (R.P.); (N.G.-G.); (M.K.A.)
| |
Collapse
|
22
|
Martín-Vertedor D, Fernández A, Hernández A, Arias-Calderón R, Delgado-Adámez J, Pérez-Nevado F. Acrylamide reduction after phenols addition to Californian-style black olives. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Flamminii F, Di Mattia CD, Difonzo G, Neri L, Faieta M, Caponio F, Pittia P. From by-product to food ingredient: evaluation of compositional and technological properties of olive-leaf phenolic extracts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6620-6627. [PMID: 31350764 DOI: 10.1002/jsfa.9949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Most olive by-products, like olive leaves, are still undervalued despite their strong potential as a source of healthy and functional components. To exploit their potential use as active ingredients in complex food systems, it is of primary importance the knowledge of their composition and technological functionality which represented the objective of this work. RESULTS Phenolic extracts from olive leaves, obtained by extraction with pure water (Eth0) and two different water-ethanol solutions (Eth30, Eth70), were characterized for their composition and technological properties such as water- / oil- holding ability, air/water surface activity, and emulsifying capacity at pH 4.5 and 7. Their chemical stability over time, at constant temperature, was also investigated. The technological properties were affected by extraction media and pH. Phenolic extracts displayed significant surface activity, showing dose-dependent behavior. Surface properties were affected by pH and this result was confirmed by the emulsifying capacity. The extracts showed good oil-holding capacity but limited water-binding capacity. Eth70 showed the highest chemical stability, which was confirmed by the rate parameters obtained by modeling data using a Weibull model. CONCLUSION The results of this study highlight that olive leaves extracts can represent a useful ingredient in acidic lipid-containing foods. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Federica Flamminii
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Carla Daniela Di Mattia
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Lilia Neri
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Marco Faieta
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pittia
- Faculty of Bioscience and Technology for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
24
|
Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules 2019; 24:molecules24142625. [PMID: 31330951 PMCID: PMC6680596 DOI: 10.3390/molecules24142625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
The nutraceutical properties of extra-virgin olive oil (EVOO) can be further improved by the addition of olive leaves during olive pressing. However, while Citrus leaves are rich sources of bioactive substances, no data are available in the literature about the effect of Citrus leaf addition on the nutraceutical and sensorial profiles of olive oil. This study aimed at comparing the chemical and sensorial qualities of olive oils obtained from ripe olives pressed together with either Olea or Citrus spp. (lemon or orange) cryomacerated leaves. General composition parameters as well as major antioxidants and antioxidant activity were measured. A panel test evaluation, as well as headspace volatile characterization (headspace solid phase microextraction, HS-SPME), were also performed. All data were compared with an EVOO extracted from the same olive batch used as control. It was possible to obtain Leaf Olive Oils (LOOs) characterized by a higher (p < 0.05) content of antioxidants, compared to the control sample, and the highest oleuropein concentration was detected in the olive oil extracted in presence of olive leaf (+50% in comparison with the control). All the LOOs showed a higher smell complexity and the scent of ripe fruit was generally mitigated. Lemon and olive LOOs showed the best smell profile.
Collapse
|
25
|
Žuntar I, Putnik P, Bursać Kovačević D, Nutrizio M, Šupljika F, Poljanec A, Dubrović I, Barba FJ, Režek Jambrak A. Phenolic and Antioxidant Analysis of Olive Leaves Extracts ( Olea europaea L.) Obtained by High Voltage Electrical Discharges (HVED). Foods 2019; 8:foods8070248. [PMID: 31288471 PMCID: PMC6678916 DOI: 10.3390/foods8070248] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background: The aim of this study was to evaluate high voltage electrical discharges (HVED) as a green technology, in order to establish the effectiveness of phenolic extraction from olive leaves against conventional extraction (CE). HVED parameters included different green solvents (water, ethanol), treatment times (3 and 9 min), gases (nitrogen, argon), and voltages (15, 20, 25 kV). Methods: Phenolic compounds were characterized by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), while antioxidant potency (total phenolic content and antioxidant capacity) were monitored spectrophotometrically. Data for Near infrared spectroscopy (NIR) spectroscopy, colorimetry, zeta potential, particle size, and conductivity were also reported. Results: The highest yield of phenolic compounds was obtained for the sample treated with argon/9 min/20 kV/50% (3.2 times higher as compared to CE). Obtained results suggested the usage of HVED technology in simultaneous extraction and nanoformulation, and production of stable emulsion systems. Antioxidant capacity (AOC) of obtained extracts showed no significant difference upon the HVED treatment. Conclusions: Ethanol with HVED destroys the linkage between phenolic compounds and components of the plant material to which they are bound. All extracts were compliant with legal requirements regarding content of contaminants, pesticide residues and toxic metals. In conclusion, HVED presents an excellent potential for phenolic compounds extraction for further use in functional food manufacturing.
Collapse
Affiliation(s)
- Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Filip Šupljika
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Poljanec
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Dubrović
- Teaching Institute for Public health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Zhang L, Holle M, Kim J, Daum M, Miller M. Nisin incorporation enhances the inactivation of lactic acid bacteria during the acid wash step of bioethanol production from sugarcane juice. Lett Appl Microbiol 2019; 69:50-56. [DOI: 10.1111/lam.13165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 11/27/2022]
Affiliation(s)
- L. Zhang
- College of Food Science Northeast Agricultural University Harbin China
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign Urbana IL USA
| | - M.J. Holle
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign Urbana IL USA
| | - J.‐S. Kim
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign Urbana IL USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - M.A. Daum
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign Urbana IL USA
| | - M.J. Miller
- Department of Food Science & Human Nutrition University of Illinois at Urbana‐Champaign Urbana IL USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| |
Collapse
|
27
|
Schaide T, Cabrera-Bañegil M, Pérez-Nevado F, Esperilla A, Martín-Vertedor D. Effect of olive leaf extract combined with Saccharomyces cerevisiae in the fermentation process of table olives. Journal of Food Science and Technology 2019; 56:3001-3013. [PMID: 31205355 DOI: 10.1007/s13197-019-03782-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
Yeasts have a great importance in the table olives quality and have been proved more and more as starter cultures. Moreover, the addition of olive leaf extract (OLE) could enhance the nutritional value of table olives, but there are no studies in which added OLE has been combined with yeasts during fermentation. The aim of this work was to determine if the quality and functional value of table olives increases when OLE and a yeast starter are used during a Spanish-style olive fermentation process. Several combinations were used: (1) fermentations trials with OLE combined with a strain of Saccharomyces cerevisiae; (2) fermentations with OLE; (3) control fermentations, with no extract or starter culture. During fermentation performed with the addition of OLE and yeasts, the yeast number remained stable for most of the time, resulting in a slight decrease of yeasts by the end of the process. The phenolic profile of olive flesh and brines of the trials was analysed during the fermentation. The addition of OLE increased the concentration of phenols in olive flesh and brines at the end of the fermentation; in these fermentations, hydroxytyrosol was the most abundant, at around 1700 mg/kg in olive flesh and 3500 mg/L in brines olive flesh, whereas in the control fermentation the concentrations were around 900 mg/kg and 2500 mg/L, respectively. In spite of adding OLE, the fermentation resulted in olives without bitterness. We can conclude that yeast inoculation combined with OLE improves safety, nutritional value and other properties of the final product, without affecting its sensorial qualities.
Collapse
Affiliation(s)
- Thaís Schaide
- 1Area of Nutrition and Bromatology, Department of Animal Production and Food Science, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra. de Cáceres, 06071 Badajoz, Spain.,2Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura Avda, Adolfo Suárez, 06007 Badajoz, Spain
| | - Manuel Cabrera-Bañegil
- 2Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura Avda, Adolfo Suárez, 06007 Badajoz, Spain
| | - Francisco Pérez-Nevado
- 1Area of Nutrition and Bromatology, Department of Animal Production and Food Science, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra. de Cáceres, 06071 Badajoz, Spain.,Instituto Universitario de Recursos Agrarios (INURA), Avda. de la Investigación, Campus Universitario, 06071 Badajoz, Spain
| | - Antonio Esperilla
- 1Area of Nutrition and Bromatology, Department of Animal Production and Food Science, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra. de Cáceres, 06071 Badajoz, Spain.,Instituto Universitario de Recursos Agrarios (INURA), Avda. de la Investigación, Campus Universitario, 06071 Badajoz, Spain
| | - Daniel Martín-Vertedor
- 1Area of Nutrition and Bromatology, Department of Animal Production and Food Science, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Ctra. de Cáceres, 06071 Badajoz, Spain.,Instituto Universitario de Recursos Agrarios (INURA), Avda. de la Investigación, Campus Universitario, 06071 Badajoz, Spain
| |
Collapse
|
28
|
Difonzo G, Squeo G, Calasso M, Pasqualone A, Caponio F. Physico-Chemical, Microbiological and Sensory Evaluation of Ready-to-Use Vegetable Pâté Added with Olive Leaf Extract. Foods 2019; 8:foods8040138. [PMID: 31018492 PMCID: PMC6518013 DOI: 10.3390/foods8040138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 11/23/2022] Open
Abstract
The shelf-life extension implicates the reduction of food waste. Plant polyphenols can have a crucial role in the shelf-life extension of foods. Olive leaf extract (OLE) is rich in phenolic compounds such as oleuropein, which is well-known for its antioxidant properties. Physico-chemical, microbiological and sensory aspects of non-thermally stabilized olive-based pâté fortified with OLE at concentrations of 0.5 (EX0.5) and 1 mg kg−1 (EX1) were investigated. These samples were compared with olive-based pâté fortified with the synthetic antioxidant BHT (butylated hydroxytoluene) and with a control sample (CTR) without antioxidants. No sensory defects were perceived in all samples, even if a more intense typical olive flavour was perceived in samples containing OLE compared to those containing BHT and CTR. This result was confirmed by significantly higher levels of 2-methylbutanal and 3-methylbutanal in samples containing OLE compared to CTR and BHT. Moreover, the main microbial groups registered a significant loss of 0.5–1 logarithmic cycles in samples containing OLE, especially in EX1. The results of the present study indicate the potentiality of using OLE as natural preservatives in non-thermally stabilized olive-based pâté, since some spoilage-related microbial groups were negatively affected by the addition of OLE at the highest concentration.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| |
Collapse
|
29
|
Caponio F, Difonzo G, Squeo G, Fortunato S, Silletti R, Summo C, Paradiso VM, Pasqualone A. Influence of Homogenization Time and Speed on Rheological and Volatile Composition in Olive-Based Pâtés. Foods 2019; 8:foods8040115. [PMID: 30987298 PMCID: PMC6518118 DOI: 10.3390/foods8040115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022] Open
Abstract
The influence of the homogenization time and speed on rheological and volatile composition in olive-based pâtés was studied. Five experimental trials were performed applying different combinations of time and speed homogenization: 1, 3, and 5 min at 12,000 rpm and 4000, 8000, and 12,000 rpm at 5 min. The obtained results showed that the processing parameters of the homogenization step significantly influenced the rheological and sensory properties of olive-based pâtés. Both time and speed influenced the rheological properties of the product. The increase of homogenization time and speed determined a significant reduction of hardness and syneresis. As regards color indices, significantly higher L* values were obtained when intermediate time and speed conditions were applied, whereas a* and b* indices showed a not univocal behavior. Both time and speed variables also influenced the volatile fraction of the pâtés (higher homogenization speed and time corresponded to higher terpenes and aldehydes).
Collapse
Affiliation(s)
- Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Stefania Fortunato
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Roccangelo Silletti
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Vito M Paradiso
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy.
| |
Collapse
|
30
|
Ranieri M, Di Mise A, Difonzo G, Centrone M, Venneri M, Pellegrino T, Russo A, Mastrodonato M, Caponio F, Valenti G, Tamma G. Green olive leaf extract (OLE) provides cytoprotection in renal cells exposed to low doses of cadmium. PLoS One 2019; 14:e0214159. [PMID: 30897184 PMCID: PMC6428325 DOI: 10.1371/journal.pone.0214159] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is a heavy and highly toxic metal that contaminates air, food and water. Cadmium accumulates in several organs altering normal functions. The kidney is the major organ at risk of damage from chronic exposure to cadmium as a contaminant in food and water. This study aims to investigate the beneficial effects of OLE in renal collecting duct MCD4 cells exposed to a low dose cadmium (1 μM). In MCD4 cells cadmium caused an increase in ROS production, as well as generation of lipid droplets and reduced cell viability. Moreover, cadmium exposure led to a remarkable increase in the frequency of micronuclei and DNA double-strand breaks, assessed using the alkaline comet assay. In addition, cadmium dramatically altered cell cytoskeleton architecture and caused S-glutathionylation of actin. Notably, all cadmium-induced cellular deregulations were prevented by co-treatment with OLE, possibly due to its antioxidant action and to the presence of bioactive phytocompounds. Indeed, OLE treatment attenuated Cd-induced actin S-glutathionylation, thereby stabilizing actin filaments. Taken together, these observations provide a novel insight into the biological action of OLE in renal cells and support the notion that OLE may serve as a potential adjuvant against cadmium-induced nephrotoxicity.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Pellegrino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria Russo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.), Bari, Italy
- Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.), Bari, Italy
- * E-mail:
| |
Collapse
|