1
|
Zhang S, Liu T, He M, Zhang S, Liao J, Lei T, Wu X, Yu Y, Wang T, Tan H. A nationwide study of heavy metal(loid)s in agricultural soils and the soil-grown black morel Morchella sextelata in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122243. [PMID: 39213850 DOI: 10.1016/j.jenvman.2024.122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of heavy metal(loid)s (HMs) in soil-grown mushrooms poses potential health risks. Morchella sextelata (black morel) is a typical soil-grown mushroom with a rapidly expanding cultivation area. This study investigated the distribution of arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc in 213 pairs of soil and morel samples collected from 29 provincial administrative regions in China, together with the nutritional contents in the morel samples. The HM contents in the arable soils used to cultivate morels were 2.4-33.1 times higher than those in desert soils, while the HM contents in arable-soil morels were 2.9-155.9 times higher than desert morels. The HM contents of morels and their cultivation soils were significantly correlated (0.465 ≤ R ≤ 0.778, P < 0.001). Furthermore, the enrichment factors of most HMs were higher in arable soils than in desert soils (P < 0.05), except Hg. A considerable proportion of the arable soils produced morels with HMs exceeding the risk control standards (RCSs) for food and the health-risk thresholds of dietary intake. In comparison, HMs in morels from desert soils were far below the RCSs and health-risk thresholds. In addition, desert morels contained higher contents of crude proteins, total polysaccharides, and free amino acids (P < 0.001). These findings indicate that growing morels in desert soils is a way of green production that provides mushroom products with improved safety and nutrition.
Collapse
Affiliation(s)
- Shengyin Zhang
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tianhai Liu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Mingjiang He
- Institute of Agricultural Resources and Environments, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shuncun Zhang
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jie Liao
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tianzhu Lei
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang Wu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Yang Yu
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Tao Wang
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Tan
- The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610000, China.
| |
Collapse
|
2
|
Di J, Song L, Chen T, Di Y, Guo Z, Chen S, Xiang C. Correlation between environmental nickel exposure and the development of arthritis: A large-sample cross-sectional investigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116571. [PMID: 38850703 DOI: 10.1016/j.ecoenv.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Nickel is a common metallic element in orthopedic implanted devices and living environment exposures. It is associated with varieties of diseases. The purpose of this investigation was to explore the correlation between nickel exposure and the prevalence of arthritis. METHODS Data were obtained from the National Health and Nutrition Examination Survey (NHANES) database from 2017 to 2018. Multivariate logistic regression was utilized to analyze the relationship between urinary nickel levels and arthritis. In addition, hierarchical modeling further explored the interactions and trends between urinary nickel levels and arthritis. Propensity score matching (PSM) method was used to reduce the effect of confounders. Additionally, restricted cubic spline curve (RCS) was used to assess the possible nonlinear association between urinary nickel and arthritis. RESULTS The investigation was comprised of 139 arthritis patients and 547 healthy participants. After correction by PSM, there was a positive correlation between arthritis and Nickel exposure levels. The risk of developing arthritis was significantly increased when nickel exposure levels were in the Q4 interval (OR=2.25, 95 % CI=1.03-5.02). When stratified by age and sex, nickel exposure was significantly and positively associated with arthritis in the subgroup aged over 65 years. (OR=2.78,95 %CI=1.20-6.46). Also, the difference between nickel exposure and arthritis was significant in the different gender subgroups (interaction P<0.05). Restricted cubic spline (RCS) results showed a significant linear association between nickel exposure levels and arthritis. In addition, there was a non-linear association between nickel exposure and arthritis across gender and age subgroups. CONCLUSION A significant positive association between nickel exposure levels and arthritis was showed by the experimental data. Controlling the use of nickel-containing medical prostheses and reducing exposure to nickel-containing daily necessity could help to slow the onset of arthritis.
Collapse
Affiliation(s)
- Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Liying Song
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Chen
- The Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Yijing Di
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zijian Guo
- Department of Orthopaedic Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Chen
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Billmann M, Pelfrêne A, Hulot C, Papin A, Pauget B. Toward a more realistic estimate of exposure to chromium and nickel in soils of geogenic and/or anthropogenic origin: importance of oral bioaccessibility. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:273. [PMID: 38958773 DOI: 10.1007/s10653-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.
Collapse
Affiliation(s)
- Madeleine Billmann
- Laboratoire de Génie Civil et géo⁃Environnement - LGCgE, Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, 48 Boulevard Vauban, 59000, Lille, France.
- Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 Avenue du Grésillé, BP 90406, 49004, Angers Cedex 01, France.
| | - Aurélie Pelfrêne
- Laboratoire de Génie Civil et géo⁃Environnement - LGCgE, Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, 48 Boulevard Vauban, 59000, Lille, France.
| | - Corinne Hulot
- Ineris, Parc Technologique Alata, BP 2, 60550, Verneuil⁃en⁃Halatte, France
| | - Arnaud Papin
- Ineris, Parc Technologique Alata, BP 2, 60550, Verneuil⁃en⁃Halatte, France
| | | |
Collapse
|
4
|
Chen J, Fan X, Chen J, Luo X, Huang X, Zhou Z, He Y, Feng S, Jiao Y, Wang R, Ji M, Miao J, Zhang M, Wu B. Effects of hesperidin on the histological structure, oxidative stress, and apoptosis in the liver and kidney induced by NiCl 2. Front Vet Sci 2024; 11:1424711. [PMID: 38983771 PMCID: PMC11231102 DOI: 10.3389/fvets.2024.1424711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
The aim of this study was to investigate the effect of hesperidin on the liver and kidney dysfunctions induced by nickel. The mice were divided into six groups: nickel treatment with 80 mg/kg, 160 mg/kg, 320 mg/kg hesperidin groups, 0.5% CMC-Na group, nickel group, and blank control group. Histopathological techniques, biochemistry, immunohistochemistry, and the TUNEL method were used to study the changes in structure, functions, oxidative injuries, and apoptosis of the liver and kidney. The results showed that hesperidin could alleviate the weight loss and histological injuries of the liver and kidney induced by nickel, and increase the levels of lactate dehydrogenase (LDH), alanine aminotransferase (GPT), glutamic oxaloacetic transaminase (GOT) in liver and blood urea nitrogen (BUN), creatinine (Cr) and N-acetylglucosidase (NAG) in kidney. In addition, hesperidin could increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) in the liver and kidney, decrease the content of malondialdehyde (MDA) and inhibit cell apoptosis. It is suggested that hesperidin could help inhibit the toxic effect of nickel on the liver and kidney.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Xinmei Fan
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Juan Chen
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Xin Luo
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Xin Huang
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Ziling Zhou
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Yue He
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Shaohua Feng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Yuqing Jiao
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Ruiqing Wang
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Menya Ji
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Jing Miao
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Mengyuan Zhang
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, China
| |
Collapse
|
5
|
Rizwan M, Usman K, Alsafran M. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. CHEMOSPHERE 2024; 357:142028. [PMID: 38621494 DOI: 10.1016/j.chemosphere.2024.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
6
|
Zhang K, Yang C, Zhao X, Wang Y, Gu Z, Yang R, Ding H, Li S, Qin J, Chu X. Associations of Urinary Nickel with NAFLD and Liver Fibrosis in the USA: A Nationwide Cross‑Sectional Study. Biol Trace Elem Res 2024:10.1007/s12011-024-04151-2. [PMID: 38514508 DOI: 10.1007/s12011-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Despite the robust correlation between metabolic disorders and heavy metals, there has been limited research on the associations between nickel levels and non-alcoholic fatty liver disease (NAFLD) as well as liver fibrosis. This study aimed to examine the associations among urinary nickel, NAFLD, and liver fibrosis. The data utilized in this study were obtained from the National Health and Nutrition Examination Survey 2017-2020. A comprehensive screening process was conducted, resulting in the inclusion of a total of 3169 American adults in the analysis. The measurement of urinary nickel was conducted through inductively coupled-plasma mass spectrometry. Vibration-controlled transient elastography was employed to assess the controlled attenuation parameter and liver stiffness measurement as indicators for NAFLD and liver fibrosis, respectively. Multivariable logistic regression models were employed to evaluate the associations among urinary nickel, NAFLD, and liver fibrosis. Restricted cubic splines were employed to explored the nonlinear associations. After adjusting for all covariates, the correlation between the highest quartile of urinary nickel and NAFLD was found to be significant (OR = 1.65; 95% CI, 1.19-2.27). Subgroup analysis revealed that the correlation was significant only in men. A significant association occurred between the second quartile of urinary nickel and liver fibrosis (OR 1.88; 95% CI, 1.22-2.90). Restricted cubic spline showed that the relationship was linear between urinary nickel and NAFLD and non-monotonic, inverse U-shaped between urinary nickel and liver fibrosis. This cross-sectional study indicated that the risk of NAFLD is associated with urinary nickel, and this correlation was only present among males.
Collapse
Affiliation(s)
- Kening Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Chunxiao Yang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Xue Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Zhuo Gu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Ruiming Yang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Haiyan Ding
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Shuangshuang Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Jian Qin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China.
- Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
7
|
de Paiva EL, Ali S, Vasco ER, Alvito PC, de Oliveira CAF. Bioaccessibility data of potentially toxic elements in complementary foods for infants: A review. Food Res Int 2023; 174:113485. [PMID: 37986492 DOI: 10.1016/j.foodres.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/22/2023]
Abstract
The introduction of complementary foods (CFs) is a critical step in an infant's transition to solid foods, providing essential nutrients beyond breast milk. However, CFs may contain potentially toxic elements (PTEs), such as arsenic and cadmium that pose health risks to infants. In this context, understanding the bioaccessibility of PTEs is vital as it determines the fraction of a contaminant released from the food matrix and available for absorption in the gastrointestinal tract. Efforts have been made to standardize the assessment methodology for bioaccessibility, ensuring consistent and reliable data. Moreover, regulatory agencies have established guidelines for PTEs levels in food. However, important gaps still exist, which motivates many research opportunities on this topic.
Collapse
Affiliation(s)
- Esther Lima de Paiva
- Faculty of Animal Science and Food Engineering - University of São Paulo (FZEA/USP), Rua Duque de Caxias, 13635-900 Pirassununga, SP, Brazil.
| | - Sher Ali
- Faculty of Animal Science and Food Engineering - University of São Paulo (FZEA/USP), Rua Duque de Caxias, 13635-900 Pirassununga, SP, Brazil
| | - Elsa Reis Vasco
- National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Paula Cristina Alvito
- National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | | |
Collapse
|
8
|
Billmann M, Hulot C, Pauget B, Badreddine R, Papin A, Pelfrêne A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165263. [PMID: 37400023 DOI: 10.1016/j.scitotenv.2023.165263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Understanding the behavior of metal(loi)ds transported from soil to humans is critical for human health risk assessment (HHRA). In the last two decades, extensive studies have been conducted to better assess human exposure to potentially toxic elements (PTEs) by estimating their oral bioaccessibility (BAc) and quantifying the influence of different factors. This study reviews the common in vitro methods used to determine the BAc of PTEs (in particular As, Cd, Cr, Ni, Pb, and Sb) under specific conditions (particularly in terms of the particle size fraction and validation status against an in vivo model). The results were compiled from soils derived from various sources and allowed the identification of the most important influencing factors of BAc (using single and multiple regression analyses), including physicochemical soil properties and the speciation of the PTEs in question. This review presents current knowledge on integrating relative bioavailability (RBA) in calculating doses from soil ingestion in the HHRA process. Depending on the jurisdiction, validated or non-validated bioaccessibility methods were used, and risks assessors applied different approaches: (i) using default assumptions (i.e., RBA of 1); (ii) considering that bioaccessibility value (BAc) accurately represents RBA (i.e., RBA equal to BAc); (iii) using regression models to convert BAc of As and Pb into RBA as proposed by the USA with the US EPA Method 1340; or (iv) applying an adjustment factor as proposed by the Netherlands and France to use BAc from UBM (Unified Barge Method) protocol. The findings from this review should help inform risk stakeholders about the uncertainties surrounding using bioaccessibility data and provide recommendations for better interpreting the results and using bioaccessibility in risk studies.
Collapse
Affiliation(s)
- Madeleine Billmann
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France; Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 avenue du Grésillé BP 90406, F-49004 Angers Cedex 01, France
| | - Corinne Hulot
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | | | - Rabia Badreddine
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Arnaud Papin
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Aurélie Pelfrêne
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France.
| |
Collapse
|
9
|
Li M, Chen Z, Xiong Q, Mu Y, Xie Y, Zhang M, Ma LQ, Xiang P. Refining health risk assessment of arsenic in wild edible boletus from typical high geochemical background areas: The role of As species, bioavailability, and enterotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122148. [PMID: 37419204 DOI: 10.1016/j.envpol.2023.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Arsenic (As) is easily accumulated in wild Boletus. However, the accurate health risks and adverse effects of As on humans were largely unknown. In this study, we analyzed the total concentration, bioavailability, and speciation of As in dried wild boletus from some typical high geochemical background areas using an in vitro digestion/Caco-2 model. The health risk assessment, enterotoxicity, and risk prevention strategy after consumption of As-contaminated wild Boletus were further investigated. The results showed that the average concentration of As was 3.41-95.87 mg/kg dw, being 1.29-56.3 folds of the Chinese food safety standard limit. DMA and MMA were the dominant chemical forms in raw and cooked boletus, while their total (3.76-281 mg/kg) and bioaccessible (0.69-153 mg/kg) concentrations decreased to 0.05-9.27 mg/kg and 0.01-2.38 mg/kg after cooking. The EDI value of total As was higher than the WHO/FAO limit value, while the bioaccessible or bioavailable EDI suggested no health risks. However, the intestinal extracts of raw wild boletus triggered cytotoxicity, inflammation, cell apoptosis, and DNA damage in Caco-2 cells, indicating existing health risk assessment models based on total, bioaccessible, or bioavailable As may be not accurate enough. Given that, the bioavailability, species, and cytotoxicity should be systematically considered in accurate risk assessment. In addition, cooking mitigated the enterotoxicity along with decreasing the total and bioavailable DMA and MMA in wild boletus, suggesting that cooking could be a simple and effective way to decrease the health risks of consumption of As-contaminated wild boletus.
Collapse
Affiliation(s)
- Mengying Li
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qing Xiong
- Environmental Health Institute, Center for Disease Control and Prevention of Yunnan Province, Kunming, 650022, China
| | - Yunzhen Mu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yumei Xie
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Mengyan Zhang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xiang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
10
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
11
|
De Cock A, Forio MAE, Croubels S, Dominguez-Granda L, Jacxsens L, Lachat C, Roa-López H, Ruales J, Scheyvaerts V, Solis Hidalgo MC, Spanoghe P, Tack FMG, Goethals PLM. Health risk-benefit assessment of the commercial red mangrove crab: Implications for a cultural delicacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160737. [PMID: 36502983 DOI: 10.1016/j.scitotenv.2022.160737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Mangrove forests, provide vital food resources and are an endangered ecosystem worldwide due to pollution and habitat destruction. A risk-benefit assessment (RBA) was performed on the red mangrove crab (Ucides occidentalis) from the threatened Guayas mangroves in Ecuador. It was aimed to assess the combined potential adverse and beneficial health impact associated with crab consumption and define a recommended safe intake (SI) to improve the diet of the Ecuadoran population while ensuring safe food intake. Target hazard quotients (THQs), benefit quotients (Qs), and benefit-risk quotients (BRQs) were calculated based on the concentrations of the analyzed contaminants (121 pesticide residues, 11 metal(loid)s, antimicrobial drugs from 3 classes) and nutrients (fatty acids, amino acids, and essential nutrients). Except for inorganic arsenic (iAs), the THQ was below 100 for all investigated contaminants, suggesting that the average crab consumer is exposed to levels that do not impose negative non-carcinogenic or carcinogenic health effects in the long and/or short term. Concentrations of iAs (average AsIII: 25.64 and AsV: 6.28 μg/kg fw) were of the highest concern because of the potential to cause negative health effects on long-term consumption. Despite the thriving aquaculture in the Guayas estuary, concentrations of residues of the antimicrobial drugs oxytetracycline (OTC), florfenicol, and nitrofurans still were low. Based on the fact that different risk reference values exist, related to different safety levels, four SI values (0.002, 0.04, 4, and 18 crabs/day) were obtained. The strictest intake values indicate a concern for current consumption habits. In conclusion, the red mangrove crab contains various important nutrients and can be part of a balanced diet for the Ecuadorian population when consumed in limited portions. The present study emphasizes the importance of safeguarding the quality of the environment as a prerequisite for procuring nutritious and safe food.
Collapse
Affiliation(s)
- Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Marie Anne Eurie Forio
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luis Dominguez-Granda
- Centro del Agua y Desarrollo Sustentable, Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Avenida principal de la ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, ECO90211 Guayaquil, Ecuador
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Heydi Roa-López
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, ECO90211 Guayaquil, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de los Alimentos y Biotecnología, Escuela Politécnica Nacional, José Rubén Orellana Ricaurte, Ladrón de Guevara E11-253 y Andalucía, 170517 Quito, Ecuador
| | - Victoria Scheyvaerts
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Michelle Carolina Solis Hidalgo
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, ECO90211 Guayaquil, Ecuador
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Frieda Saeysstraat 1, B-9052 Gent, Belgium
| | - Peter L M Goethals
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Babaahmadifooladia M, da Silva Junior EC, Van de Wiele T, Du Laing G, Jacxsens L. Probabilistic chronic dietary exposure assessment adjusted for bioaccessible fraction to metals by consumption of seaweed and derived foods. Food Chem 2022; 395:133588. [PMID: 35839698 DOI: 10.1016/j.foodchem.2022.133588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
The chronic exposure to heavy elements, i.e. Ni, As, Cd, Hg and Pb the evaluation of toxicological risk through intake of raw or seaweed based foods for Belgian consumers is presented in this study. The bioaccessible fraction, obtained for different metals, were used to refine the exposure values to avoid overestimation in the reported exposures. The decrease in the exposure values was higher for As with average bioaccessible fraction of 56.8% followed by Pb, Cd, Ni and Hg. The pure seaweeds show more approximation or exceeding of toxicological limits compared to the composite foodstuffs. For all elements (except Hg), toxicological limits are approached at the maximum exposure situation due to consumption of certain seaweed-based foods. Further, the study demonstrates that the introduction of innovative foods on an emerging market may result in potential health issues due to the shift in consumption patterns as the increased consumption of seaweed and their derivatives in Europe.
Collapse
Affiliation(s)
- Mehrnoosh Babaahmadifooladia
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Gent, Belgium.
| | - Ediu Carlos da Silva Junior
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Gent, Belgium; Department of Soil Science, Federal University of Lavras, 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Gent, Belgium
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Gent, Belgium
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
13
|
Lučić M, Miletić A, Savić A, Lević S, Ignjatović IS, Onjia A. Dietary intake and health risk assessment of essential and toxic elements in pepper (Capsicum annuum). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Topal M, Arslan Topal EI, Öbek E. Preliminary assessment of health risks associated with consumption of grapevines contaminated with mining effluents in Turkey: Persistent trace elements and critical raw materials. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:517-527. [PMID: 34255427 DOI: 10.1002/ieam.4491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, some persistent trace elements and critical raw materials were investigated in grapevines contaminated with Pb-Zn mining effluents. The persistent trace elements under certain conditions remain without any change in form in the environment over long periods. The critical raw materials are the ones that have economic importance and have the risks associated with their supply. The health risks of persistent trace elements and critical raw materials in the leaves of grapevine that are consumed by humans were determined. The highest persistent trace elements concentrations followed the order of root > stem > leaf for Mn, Cu, Cd, Ni, and Cr while root > leaf > stem for Zn and leaf > root > stem for Pb. The maximum critical raw material concentrations for Co and V followed the order of root > stem > leaf. For Sb and La, these were leaf > root > stem and root > stem > leaf, respectively. The maximum critical raw materials concentrations for W was leaf > stem = root. The total maximum carcinogenic value was 0.146 for Cd while the total minimum carcinogenic value was 0.0054 for Pb. In this study, potential carcinogenic risk values in terms of ingestion of contaminated soil (Cr, Cd, and Ni) and dietary take of grapevine leaves (Ni, Cr, Cd, and Pb) are higher than acceptable levels (1 × 10-4 - 1 × 10-6 ). Maximum cancer risk on human health was determined as dietary intake of grapevine leaves. When hazard quotient for dietary (HQdie ), hazard quotient for ingestion (HQing ), and hazard quotient for inhalation (HQinh ) values of critical raw materials were examined, the maximum values were observed for children. Also, the highest hazard quotient for dermal (HQder ) value was determined for men. The hazard index and total hazard index values were >1 for critical raw materials. As a result, values >1 indicated potential non-carcinogenic human health risk associated with the consumption of grapevines contaminated with mining effluents. Actual region-specific exposure estimates for consumption of grapevines, however, were not evaluated. Integr Environ Assess Manag 2022;18:517-527. © 2021 SETAC.
Collapse
Affiliation(s)
- Murat Topal
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
- Munzur University Rare Earth Elements Application and Research Center, Tunceli, Turkey
| | - E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| |
Collapse
|
15
|
Werdemberg Dos Santos LC, Granja Arakaki D, Silva de Pádua Melo E, Nascimento VA. Health Hazard Assessment Due to Slimming Medicinal Plant Intake. Biol Trace Elem Res 2022; 200:1442-1454. [PMID: 34021873 DOI: 10.1007/s12011-021-02732-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/18/2021] [Indexed: 01/13/2023]
Abstract
According to the World Health Organization (WHO), about 80% of people rely on medicinal plants for their primary health needs. Traditional medicine's principal benefits are their vast population knowledge, low severe adverse effects rate, low cost, and the lack of a medical prescription to use them. While obesity has become a global health issue, an increase in finding cheap and fast ways to lose weight escalates medicinal herbs' use for this purpose, both in dietary supplements or in teas. At the same time that Brazil aims to expand traditional medicine, reports regarding toxicology and poisoning put natural products' safety in check. Plants can accumulate heavy metals and metalloids leading to health risks; however, there is a lack of information on that matter, possibly due to a lack of international standardization regarding elemental contamination - this study aimed to determine metal and metalloid concentrations in slimming medicinal plants and their respective teas and evaluate their safety consumption. Metal and metalloid content were determined by inductively coupled plasma optical emission spectrometry (ICP OES). All plants and teas were within the set limits for tolerable upper intake level (UL), provisional tolerable daily maximum intake (PTDMI), and provisional tolerable weekly intake (PTWI). The hazard quotient index (HQ) was above 1 for almost all plants, and the Hibiscus sabdariffa tea regarding aluminum content. The arsenic level was above the Brazilian Pharmacopeia limit in natura plants demonstrating risk in their consumption. Some herbs also presented detection for elements with no safety limits set, such as lead, cadmium, and arsenic, which could mark as a red flag for consumption once their security intake is not precise yet.
Collapse
Affiliation(s)
- Laís Caroline Werdemberg Dos Santos
- GEBABS - Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Daniela Granja Arakaki
- GEBABS - Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Elaine Silva de Pádua Melo
- GEBABS - Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Valter Aragão Nascimento
- GEBABS - Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Brazil.
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Brazil.
| |
Collapse
|
16
|
Andrée DC, Marie Anne Eurie F, Niels DT, Isabel GA, Arne D, Wout VE, Lenin RF, Jasmine DR, Liesbeth J, Pieter S, Luis DG, Peter L M G. From field to plate: Agricultural pesticide presence in the guayas estuary (Ecuador) and commercial mangrove crabs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117955. [PMID: 34435567 DOI: 10.1016/j.envpol.2021.117955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Mangroves are unique coastal ecosystems, located in tropical and subtropical regions. Yet, the functioning of these essential ecosystems is threatened by the presence of pollutants, including pesticides originating from agricultural activities. We investigated pesticide residues in the Guayas estuarine environment, since agricultural activities rapidly increased in the Guayas river basin over the past decades. A multi-residue analysis involving a selection of 88 pesticides was performed on the white meat and the hepatopancreas of the red mangrove crab (Ucides Occidentalis) at 15 sampling sites within the Guayas estuary along with water, sediment, and leaves samples. We found that 35 active compounds were present in the Guayas estuary, of which pyrimethanil was most commonly detected and had the highest concentrations in almost all compartments. Also, cadusafos was present in all studied compartments of the Guayas mangrove system and several prohibited pesticides (including carbendazim, carbofuran, and parathion) were detected. An ecotoxicological and probabilistic consumer risk assessment pointed out that current butachlor, carbendazim, and fludioxonil concentrations can cause adverse effects in aquatic organisms in the long term. Moreover, high potential acute and chronic risks of cadusafos residues on aquatic invertebrates and of diuron on algae in the Guayas wetlands were observed. Still, the exposure results indicated that the health risk for the consumers of the commercial red mangrove crab is low concerning cadusafos, chlorpyrifos, diuron, linuron, and pyrimethanil residues in crab tissues. The findings presented in this research can provide a useful basis for local water managers and environmental conservation groups to act and reduce the usage of pesticides, to avoid threatening aquatic and human health.
Collapse
Affiliation(s)
- De Cock Andrée
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Forio Marie Anne Eurie
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - De Troyer Niels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Garcia Arevalo Isabel
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Laboratoire de Biogéochimie des Contaminants Métalliques, Ifremer, Centre Atlantique, F-44311, Nantes Cedex 3, France
| | - Deknock Arne
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Van Echelpoel Wout
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Riascos Flores Lenin
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - De Rop Jasmine
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Jacxsens Liesbeth
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Spanoghe Pieter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Dominguez Granda Luis
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Goethals Peter L M
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
17
|
Mutić J, Jovanović V, Jacxsens L, Tondeleir J, Ristivojević P, Djurdjić S, Rajković A, Veličković TĆ. Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation. Foods 2021; 10:foods10112690. [PMID: 34828971 PMCID: PMC8623076 DOI: 10.3390/foods10112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Bivalves are a good source of nutrients but also a potential source of environmental contaminants, which could pose a risk for consumers. The aims of this study were: the determination of 16 elements by ICP-MS in 48 samples of five bivalve species purchased from market in Korea; the identification of elements useful for species classification using multivariate analyses; and the benefit-risk evaluation associated to the consumption of these bivalves. The highest difference among content of elements between species was found for Cd, Mn, Ni, Zn, and Fe. Partial last squares discriminant analysis revealed elements with a VIP score >1 which were considered as the most relevant for explaining certain species. As, Cd, Co, and Ni were found as taxonomical markers of V. philippinarum; Mn, Zn, Mg, and Na of A. irradians; and Cd, Ni, and Fe of M. yessoensis. These species could serve as good dietary sources of essential elements. Cd exposure by consumption of Manila clams is not representing a health risk for the Korean population; however, through consumption of Yesso scallops, 5.3% of the Korean population has a potential health risk. Removal of the digestive gland before eating will drastically reduce the amount of Cd ingested.
Collapse
Affiliation(s)
- Jelena Mutić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.M.); (V.J.); (P.R.); (S.D.)
- Department of Molecular Biotechnology, Environmental Technology and Food Technology, Ghent University Global Campus, Incheon 21985, Korea
| | - Vesna Jovanović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.M.); (V.J.); (P.R.); (S.D.)
- Department of Molecular Biotechnology, Environmental Technology and Food Technology, Ghent University Global Campus, Incheon 21985, Korea
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of BioScience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.J.); (J.T.); (A.R.)
| | - Jannes Tondeleir
- Department of Food Technology, Safety and Health, Faculty of BioScience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.J.); (J.T.); (A.R.)
| | - Petar Ristivojević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.M.); (V.J.); (P.R.); (S.D.)
- Department of Molecular Biotechnology, Environmental Technology and Food Technology, Ghent University Global Campus, Incheon 21985, Korea
| | - Sladjana Djurdjić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.M.); (V.J.); (P.R.); (S.D.)
| | - Andreja Rajković
- Department of Food Technology, Safety and Health, Faculty of BioScience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.J.); (J.T.); (A.R.)
| | - Tanja Ćirković Veličković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.M.); (V.J.); (P.R.); (S.D.)
- Department of Molecular Biotechnology, Environmental Technology and Food Technology, Ghent University Global Campus, Incheon 21985, Korea
- Department of Food Technology, Safety and Health, Faculty of BioScience Engineering, Ghent University, B-9000 Ghent, Belgium; (L.J.); (J.T.); (A.R.)
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +82-32-626-4211; Fax: +82-32-626-4109
| |
Collapse
|
18
|
De Cock A, De Troyer N, Eurie MAF, Garcia Arevalo I, Van Echelpoel W, Jacxsens L, Luca S, Du Laing G, Tack F, Dominguez Granda L, Goethals PLM. From Mangrove to Fork: Metal Presence in the Guayas Estuary (Ecuador) and Commercial Mangrove Crabs. Foods 2021; 10:foods10081880. [PMID: 34441657 PMCID: PMC8393220 DOI: 10.3390/foods10081880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mangrove wetlands provide essential ecosystem services such as coastal protection and fisheries. Metal pollution due to industrial and agricultural activities represents an issue of growing concern for the Guayas River Basin and related mangroves in Ecuador. Fisheries and the related human consumption of mangrove crabs are in need of scientific support. In order to protect human health and aid river management, we analyzed several elements in the Guayas Estuary. Zn, Cu, Ni, Cr, As, Pb, Cd, and Hg accumulation were assessed in different compartments of the commercial red mangrove crab Ucides occidentalis (hepatopancreas, carapax, and white meat) and the environment (sediment, leaves, and water), sampled at fifteen sites over five stations. Consistent spatial distribution of metals in the Guayas estuary was found. Nickel levels in the sediment warn for ecological caution. The presence of As in the crabs generated potential concerns on the consumers' health, and a maximum intake of eight crabs per month for adults is advised. The research outcomes are of global importance for at least nine Sustainable Development Goals (SDGs). The results presented can support raising awareness about the ongoing contamination of food and their related ecosystems and the corresponding consequences for environmental and human health worldwide.
Collapse
Affiliation(s)
- Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
- Correspondence: ; Tel.: +32-92649001
| | - Niels De Troyer
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| | - Marie Anne Forio Eurie
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| | - Isabel Garcia Arevalo
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
- Laboratoire de Biogéochimie des Contaminants Métalliques, Ifremer, Centre Atlantique, CEDEX 3, 44311 Nantes, France
| | - Wout Van Echelpoel
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Stijn Luca
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Gijs Du Laing
- Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (G.D.L.); (F.T.)
| | - Filip Tack
- Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (G.D.L.); (F.T.)
| | - Luis Dominguez Granda
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Campus Gustavo Galindo, 090112 Guayaquil, Ecuador;
| | - Peter L. M. Goethals
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.D.T.); (M.A.F.E.); (I.G.A.); (W.V.E.); (P.L.M.G.)
| |
Collapse
|
19
|
Dehghani M, Sharifian S, Taherizadeh MR, Nabavi M. Tracing the heavy metals zinc, lead and nickel in banana shrimp (Penaeus merguiensis) from the Persian Gulf and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38817-38828. [PMID: 33745043 DOI: 10.1007/s11356-021-13063-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Seafood has long been considered a unique source of nutrition. However, increasing trends in consumption of marine products must be considered, especially in potentially polluted environments such as the Persian Gulf. This study was undertaken to analyse the level of heavy metal contamination of nickel (Ni), zinc (Zn), and lead (Pb) in shrimp (Penaeus merguiensis) captured from the northern Persian Gulf. The concentration of heavy metals in the muscle of shrimp followed the order Zn > Ni > Pb. The content of Zn and Ni was higher than recommended standard limits by the FAO/WHO. The combined impact of all metals was lower than the acceptable limit of 1 in shrimp. The carcinogenic risk for Ni was higher than the unacceptable value. In total, our finding indicated no potential health risk from the daily consumption of this species. However, long-term consumption of shrimp can pose a risk of carcinogenic effects of nickel. Continuous monitoring of these trace metals in seafood is necessary to ensure the quality of seafood and food safety.
Collapse
Affiliation(s)
- Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
20
|
Li L, Zhang Y, Ippolito JA, Xing W, Tu C. Lead smelting alters wheat flour heavy metal concentrations and health risks. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:454-464. [PMID: 33462853 DOI: 10.1002/jeq2.20198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Wheat (Triticum aestivum L.) flour consumption may be a major source of human metal intake, especially when wheat is cultivated in metal-contaminated soils. This work investigated Cd, Cu, Pb, and Zn distribution in whole wheat flour, wheat flour, and wheat bran when grown in an area polluted by Pb smelting. Wheat product heavy metal concentrations were analyzed, and the (non)carcinogenic risks were assessed. Mean Cd, Cu, Pb, and Zn concentrations in whole wheat flour were 0.38, 3.83, 0.48, and 29.3 mg kg-1 , respectively; those in flour were only slightly reduced. The ratios between noncarcinogenic average daily dose of whole wheat flour and wheat flour consumption ranged from 1.06 to 3.76, with Pb having the greatest values compared with other metals. For children, the average hazard quotients (HQs) of whole wheat flour consumption of Cd, Cu, Pb, and Zn were 4.19, 1.06, 1.53, and 1.07; those for wheat flour consumption were 3.81, 0.68, 0.70, and 0.98, respectively. The HQs of adults were less than those of children. Overall results indicated that consumption of wheat products may lead to health concerns in the heavy metal contaminated area, yet when wheat flour rather than whole wheat flour is consumed, only the human health risk from Pb ingestion is reduced. Altering or removing human edible crops in the most contaminated areas should be considered.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan Univ. of Technology, Zhengzhou, Henan, 450001, China
| | - Yuqing Zhang
- School of the Environment, Henan Univ. of Technology, Zhengzhou, Henan, 450001, China
| | - James A Ippolito
- Dep. of Soil and Crop Sciences, Colorado State Univ., Fort Collins, CO, 80523-1170, USA
| | - Weiqin Xing
- School of the Environment, Henan Univ. of Technology, Zhengzhou, Henan, 450001, China
| | - Chen Tu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
21
|
Babaahmadifooladi M, Jacxsens L. Chronic dietary exposure to nickel from selected foods consumed in Belgium. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 38:95-112. [DOI: 10.1080/19440049.2020.1833088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mehrnoosh Babaahmadifooladi
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Guérin T, Massanyi P, Van Loveren H, Baert K, Gergelova P, Nielsen E. Update of the risk assessment of nickel in food and drinking water. EFSA J 2020; 18:e06268. [PMID: 33193868 PMCID: PMC7643711 DOI: 10.2903/j.efsa.2020.6268] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its previous Opinion on nickel in food and drinking water, taking into account new occurrence data, the updated benchmark dose (BMD) Guidance and newly available scientific information. More than 47,000 analytical results on the occurrence of nickel were used for calculating chronic and acute dietary exposure. An increased incidence of post-implantation loss in rats was identified as the critical effect for the risk characterisation of chronic oral exposure and a BMDL 10 of 1.3 mg Ni/kg body weight (bw) per day was selected as the reference point for the establishment of a tolerable daily intake (TDI) of 13 μg/kg bw. Eczematous flare-up reactions in the skin elicited in nickel-sensitised humans, a condition known as systemic contact dermatitis, was identified as the critical effect for the risk characterisation of acute oral exposure. A BMDL could not be derived, and therefore, the lowest-observed-adverse-effect-level of 4.3 μg Ni/kg bw was selected as the reference point. The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel-sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.
Collapse
|
23
|
Babaahmadifooladi M, Jacxsens L, Van de Wiele T, Carlos da Silva Júnior E, Du Laing G. Assessment of bioaccessible and dialyzable fractions of nickel in food products and their impact on the chronic exposure of Belgian population to nickel. Food Chem 2020; 342:128210. [PMID: 33508898 DOI: 10.1016/j.foodchem.2020.128210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to investigate bioaccessible/dialyzable fractions of nickel in selected foods and to clarify the impact of the food digestion/absorption on the final exposure of consumers to nickel. In vitro gastrointestinal incubation experiments were conducted to estimate the bioaccessibility of nickel in different foods. For estimation of a dialyzable fraction, dialysis filtration was conducted. Highest bioaccessibility (99.6%) was observed for wheat-based breakfast cereals. Lowest bioaccessibilities was observed for dried-fruits (on average 20.4%). Highest (61.5%) and lowest (24.5%) dialyzable fractions were observed for wheat-based breakfast cereal and chocolate respectively. Bioaccessible/dialyzable fractions based exposure assessments were highlighted the overestimation of exposures calculated based on total nickel concentrations in foods. This is particularly important when exposure values were compared with toxicological thresholds in a risk characterization study. When threshold values have been obtained through animal studies in which nickel was dosed at 100% accessibility/availability, e.g. nickel salts this is even more important.
Collapse
Affiliation(s)
- Mehrnoosh Babaahmadifooladi
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Ediu Carlos da Silva Júnior
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium; Department of Soil Science, Federal University of Lavras, Lavras, MG CEP 37200-000, Brazil.
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
24
|
Beneficial Effects of a Low-Nickel Diet on Relapsing IBS-Like and Extraintestinal Symptoms of Celiac Patients during a Proper Gluten-Free Diet: Nickel Allergic Contact Mucositis in Suspected Non-Responsive Celiac Disease. Nutrients 2020; 12:nu12082277. [PMID: 32751300 PMCID: PMC7468824 DOI: 10.3390/nu12082277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Background and Aim: Nickel (Ni)-rich foods can induce allergic contact mucositis (ACM) with irritable bowel syndrome (IBS)-like symptoms in predisposed subjects. Ni ACM has a high prevalence (>30%) in the general population and can be diagnosed by a Ni oral mucosa patch test (omPT). Many celiac disease (CD) patients on a gluten-free diet (GFD) often show a recrudescence of gastrointestinal and extraintestinal symptoms, although serological and histological remission has been achieved. Since a GFD often results in higher loads of ingested alimentary Ni (e.g., corn), we hypothesized that it would lead to a consequent intestinal sensitization to Ni in predisposed subjects. We wanted to (1) study Ni ACM prevalence in still symptomatic CD patients on a GFD and (2) study the effects of a low-Ni diet (LNiD) on their recurrent symptoms. Material and Methods: We recruited 102 consecutive CD patients (74 female, 28 male; age range 18–65 years, mean age 42.3 ± 7.4) on a GFD since at least 12 months, in current serological and histological remission (Marsh–Oberhuber type 0–I) who complained of relapsing gastrointestinal and/or extraintestinal symptoms. Inclusion criteria: presence of at least three gastrointestinal symptoms with a score ≥5 on the modified Gastrointestinal Symptom Rating Scale (GSRS) questionnaire. Exclusion criteria: IgE-mediated food allergy; history of past or current cancer; inflammatory bowel diseases; infectious diseases including Helicobacter pylori; lactose intolerance. All patients enrolled underwent Ni omPT and followed a LNiD for 3 months. A 24 symptoms questionnaire (GSRS modified according to the Salerno Experts’ Criteria, with 15 gastrointestinal and 9 extraintestinal symptoms) was administered at T0 (free diet), T1 (GFD, CD remission), T2 (recurrence of symptoms despite GFD), and T3 (GFD + LNiD) for comparisons. Comparisons were performed using Wilcoxon signed-rank test. RESULTS: Twenty patients (all female, age range 23–65 years, mean age 39.1 ± 2.9) out of 102 (19.6%) were finally included. All 20 patients enrolled (100%) showed positive Ni omPT, confirming an Ni ACM diagnosis. A correct GFD (T0 vs. T1) induced the improvement of 19 out of the total 24 (79.2%) symptoms, and 14 out of 24 (58.3%) were statistically significant (p-value < 0.0083 according to Bonferroni correction). Prolonged GFD (T1 vs. T2) revealed the worsening of 20 out of the total 24 (83.3%) symptoms, and 10 out of 24 (41.7%) were statistically significant. LNiD (T2 vs. T3) determined an improvement of 20 out of the total 24 (83.4%) symptoms, and in 10 out of 24 (41.7%) symptoms the improvement was statistically significant. Conclusions: Our data suggest that the recrudescence of gastrointestinal and extraintestinal symptoms observed in CD subjects during GFD may be due to the increase in alimentary Ni intake, once gluten contamination and persisting villous atrophy are excluded. Ni overload can induce Ni ACM, which can be diagnosed by a specific Ni omPT. Improvement of symptoms occurs after a proper LNiD. These encouraging data should be confirmed with larger studies.
Collapse
|