1
|
Zhang L, Bai R, Jiang S, Li Z, Chen Y, Ye X, Yu J, Ding W. Effect of electron beam irradiation on glycosylation reaction and structural characterization of whey isolate protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:179-188. [PMID: 39166742 DOI: 10.1002/jsfa.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Whey protein isolate (WPI) is a high-quality animal protein resource. The modification of WPI through physical, chemical and biological methods can substantially improve the functional properties of proteins. This study investigated the effect of electron beam irradiation (EBI) on the modification of WPI-xylose glycosylation. RESULTS The degree of grafting and browning revealed that EBI promoted WPI glycosylation. The maximum emission wavelength of intrinsic fluorescence was red-shifted and the fluorescence intensity was reduced, suggesting that irradiation induced the unfolding of the WPI structure, thereby promoting glycosylation. Fourier-transformed infrared spectroscopy revealed that the covalent binding of the conjugates occurred on the introduction of the hydrophilic groups, resulting in decreased surface hydrophobicity. When compared with conventional wet-heat glycosylation, irradiation-assisted glycosylation improved the emulsifying activity of WPI from 179.76 ± 0.83 to 277.83 ± 1.44 m2 g-1, and the emulsifying and rheological properties improved. CONCLUSION These results confirmed that EBI can increase the degree of WPI glycosylation and improve the functional properties of proteins, thereby laying a theoretical foundation for the further application of WPI. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd, Yangling, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Fan L, Yang G, Li M, Xu J, Zhou D, Li R, Wang S. Radio frequency heating assisted Maillard reaction of whey protein - gum Arabic: Improving structural and unlocking functional properties. Int J Biol Macromol 2024; 293:139341. [PMID: 39743097 DOI: 10.1016/j.ijbiomac.2024.139341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Whey protein (WP) is a highly nutritious animal protein, but its functional properties are sensitive to environmental factors, such as temperature, pH, and ionic strength, which prevent its applications in various food systems. The conjugation of proteins with polysaccharides via the Maillard reaction is an efficient method to improve their functionalities. The purpose of this study was to use radio frequency (RF) heating technology to assist the covalent coupling of WP and gum Arabic (GA) for improving their grafting efficiency and functional properties. Results showed that under the optimal condition of RF heating, the degree of glycosylation (DG) of the conjugate could reach 19.19%, while the maximum DG value of the conjugate obtained by water bath (WB) heating was only 10.60%. There was a good correlation between the DG and dielectric properties of WP-GA conjugates. Structural analysis revealed that compared with their mixtures, the network structure of WP-GA conjugates was clear, the content of β-turn and random coil increased, and the fluorescence intensity and surface hydrophobicity decreased. In addition, glycosylation enhanced the emulsifying, foaming, and antioxidant properties of WP-GA conjugates. This study indicates that the RF heating technology has potential application values in the glycosylation modification of proteins.
Collapse
Affiliation(s)
- Liumin Fan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengge Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingting Zhou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China.
| |
Collapse
|
3
|
Kouravand F, Shahidi F, Fathi M, Koocheki A, Roshanak S. Physicochemical stability and controlled release of vitamin D 3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. J Microencapsul 2024; 41:770-781. [PMID: 39565049 DOI: 10.1080/02652048.2024.2418615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
AIM The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D3 (Vit-D3). METHODS Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D3 release from the emulsions. RESULTS The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D3 retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period. CONCLUSION Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D3.
Collapse
Affiliation(s)
- Farzaneh Kouravand
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Milad Fathi
- Department of Food Science and Technology, Collage of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
4
|
Karabulut G, Kapoor R, Feng H. Soluble hemp protein-xylose conjugates fabricated by high-pressure homogenization and pH-shifting treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9640-9651. [PMID: 39105678 DOI: 10.1002/jsfa.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The process of Maillard conjugation occurs with plant proteins and sugars and can be influenced by several factors, such as processing time, pH, and shear force. By utilizing cavitation processes such as high-pressure homogenization (HPH) and pH-shifting, it is possible to regulate the degree of grafting, functional characteristics, and structural changes in the formation of conjugates. The present study aimed to improve the hemp protein concentrate (HPC) through two different conjugation techniques: HPH and pH-shifting-assisted processes. RESULTS The best conjugation conditions for the conventional method were identified as a 1:2 HPC to xylose ratio, a pH of 10, and 3 h of treatment at 70 °C. The use of HPH and pH 12-shifting methods resulted in a remarkable 2.5-fold increase in grafting degree, requiring less processing time. Fourier transform infrared spectra confirmed the formation of conjugates. Conjugates produced through HPH with pH 12-shifting (MPHX) transformed into soluble glycoproteins with a particle size of 74 nm. MPHX solubility increased by 5.7-fold than HPC, reaching 85.7%, with a more negatively charged surface at -32.4 mV. Microimages showed cracked and sharp forms for conjugated proteins compared to untreated HPC. Additionally, MPHX conjugates demonstrated superior properties in emulsion stability, foaming capacity, and antioxidant activity compared to HPC and classical conjugates. CONCLUSION The use of HPH and pH-shifting-assisted Maillard conjugation was highly effective in enhancing the functional attributes of hemp protein conjugates. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| | - Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina, USA
| |
Collapse
|
5
|
Rawat R, Saini CS. Glycation of sunnhemp protein with dextran via dry heating: Thermal, micro-structural characterization, and amino acid profiling. J Food Sci 2024; 89:8983-8998. [PMID: 39495561 DOI: 10.1111/1750-3841.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024]
Abstract
This study aims to obtain sunnhemp protein isolate (SHPI) and dextran conjugates by dry heating method of Maillard conjugation. The effects of different incubation time (0, 1, 3, 5, 7, and 9 days) on the molecular flexibility, available lysine content, antioxidant properties, molecular structure, and thermal and micro-structural properties of conjugates were compared with SHPI (no conjugation) at 60°C and 79% relative humidity. The results indicated the formation of SHPI-dextran conjugates as confirmed by the change in molecular flexibility, lysine content, antioxidant activities, color, and water activity values. The molecular structure revealed the confirmation of covalent bonding between SHPI and dextran. Differential scanning calorimetry and thermo-gravimetric analysis results exhibited improvement in the thermal stability of SHPI when conjugated with dextran. The microstructural characterization showed that Maillard conjugation changed the surface structure of SHPI. The analysis of amino acid composition displayed that lysine, arginine, and phenylalanine were the dominant Maillard reaction sites of SHPI and dextran. Among all the conjugated samples, 5 days of incubation time was selected as an optimum condition for the development of SHPI-dextran conjugates on the basis of the aforementioned characterization. Overall, it was concluded that Maillard conjugation of sunnhemp protein with dextran via dry-heating technique could modify and improve its various attributes. PRACTICAL APPLICATION: The conjugation of plant proteins with polysaccharide through the Maillard reaction under dry heating conditions represents a natural and green technique for improving the techno-functional properties of proteins. The study has the potential to establish framework for the utilization of Sunnhemp protein isolate-dextran conjugates. This approach offers the potential for cost-effective production of emulsifiers and development of effective encapsulating matrices. The investigation expands on an underutilized plant protein source facilitating an alternative to animal-based proteins and contributing to the development of a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Rashmi Rawat
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India
| |
Collapse
|
6
|
Nikolić V, Žilić S, Simić M, Šavikin K, Stević T, Živković J, Sarić B, Milovanović D, Kandić Raftery V. Characterization and Potential Food Applications of Oat Flour and Husks from Differently Colored Genotypes as Novel Nutritional Sources of Bioactive Compounds. Foods 2024; 13:3853. [PMID: 39682925 DOI: 10.3390/foods13233853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Oats are gluten-free cereals rich in dietary fiber, β-glucans, phenolic acids, flavonoids, carotenoids, vitamin E, and phytosterols. They have been used in traditional medicine for centuries to treat hyperacidity, acute pancreatitis, burns, and skin inflammation. This study assessed the nutritional and phenolic profile of oat flour (OF) and ground oat husks (OHs) from white, brown, and black hulled oat genotypes, as well as the antioxidant and antimicrobial activity of their extracts. The extracts were tested on six strains of gastrointestinal tract pathogens. OF samples had, on average, a high protein content (15.83%), fat content (6.27%), and β-glucan content (4.69%), while OH samples were rich in dietary fiber. OHs had significantly higher average total phenolic compounds compared to OF and had twice as high antioxidant capacity. Ferulic acid was predominant in all samples, followed by p-coumaric, isoferulic, vanillic, and syringic acid. The traditionally prepared OH extracts manifested the best bactericidal activity against Listeria monocytogenes, Escherichia coli, and Staphylococcus haemolyticus, while Salmonella typhimurium was the least sensitive to the bactericidal effect of all the investigated samples. Both OF and powdered OHs have potential applications in the functional food industry and pharmacy due to their bioactive compounds, their biological activity, as well as their overall nutritional profile.
Collapse
Affiliation(s)
- Valentina Nikolić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Slađana Žilić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Marijana Simić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Katarina Šavikin
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Tatjana Stević
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Beka Sarić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Danka Milovanović
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Vesna Kandić Raftery
- Breeding Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| |
Collapse
|
7
|
Sánchez-Elvira A, Hernández-Corroto E, García MC, Castro-Puyana M, Marina ML. Sustainable extraction of proteins from lime peels using ultrasound, deep eutectic solvents, and pressurized liquids, as a source of bioactive peptides. Food Chem 2024; 458:140139. [PMID: 38943952 DOI: 10.1016/j.foodchem.2024.140139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
The aim of this work was to develop, for the first time, sustainable strategies, based on the use of Ultrasound-Assisted Extraction, Natural Deep Eutectic Solvents, and Pressurized Liquid Extraction, to extract proteins from lime (Citrus x latifolia) peels and to evaluate their potential to release bioactive peptides. PLE showed the largest extraction of proteins (66-69%), which were hydrolysed using three different enzymes (Alcalase 2.4 L FG, Alcalase®PURE 2.4 L, and Thermolysin). The in vitro antioxidant and antihypertensive activities of released peptides were evaluated. Although all hydrolysates showed antioxidant and antihypertensive activity, the hydrolysate obtained with Thermolysin showed the most significant values. Since the Total Phenolic Content in all hydrolysates was low, peptides were likely the main contributors to these bioactivities. Hydrolysates were analyzed by UHPLC-QTOF-MS and a total of 98 different peptides were identified. Most of these peptides were rich in amino acids associated with antioxidant activity.
Collapse
Affiliation(s)
- A Sánchez-Elvira
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - E Hernández-Corroto
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M C García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M Castro-Puyana
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - M L Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
8
|
Ferdowsian S, Kazemi-Taskooh Z, Varidi MJ, Nooshkam M, Varidi M. Optimization of cold-induced aerated gels formed by Maillard-driven conjugates of SPI-gellan gum as an oil substitute in mayonnaise sauce. Curr Res Food Sci 2024; 9:100923. [PMID: 39640017 PMCID: PMC11617906 DOI: 10.1016/j.crfs.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
This research aimed at characterization of composite cold-set aerated gels composed of SPI-gellan gum Maillard conjugates. The optimized gel was eventually incorporated in mayonnaise sauce as an oil substitute. The optimum conditions were statistically determined as 1.5% SPI, 300 mM CaCl2, and 90 min heating time. All of which resulted 35% glycation degree and high molecular weight conjugates on top of SDS-PAGE injection wells. Increasing CaCl2 concentration enhanced the adsorption of conjugates at air-water interface, decreasing the density but increasing the WHC and hardness. Increasing heating time facilitated gelation which improved gel hardness. The optimized gel was microstructurally homogeneous with increased overrun (20.8%) and H-bonds. The rheological measurements showed viscoelastic gel network which was thermally stable up to 90 °C, besides increasing G', G" and η∗ at 85 °C. Substitution of optimized gel in mayonnaise sauce improved the nutritional value and thermal stability (77.13%), but declined calorie. The substituted mayonnaise sauce was greatly accepted by panelists. Thus, the aerated gel formed at optimum conditions had great structural and mechanical characteristics and its usage as an oil analogue induced a low-calorie mayonnaise sauce with acceptable sensory properties.
Collapse
Affiliation(s)
- Setayesh Ferdowsian
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Zahra Kazemi-Taskooh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi, P.O. Box 9177948944, Iran
| |
Collapse
|
9
|
Jike X, Wu C, Yang N, Rong W, Zhang M, Zhang T, Lei H. Lactiplantibacillus plantarum encapsulated by chitosan-alginate and soy protein isolate-reducing sugars conjugate for enhanced viability. Int J Biol Macromol 2024; 281:136162. [PMID: 39443175 DOI: 10.1016/j.ijbiomac.2024.136162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
To investigate the protective effects of various wall materials on probiotics, two types of Lactiplantibacillus plantarum 90 (Lp90) microcapsules were prepared using sodium alginate and chitosan (Lp-AC), soy protein isolate (SPI) and reducing sugars conjugate (Lp -MRP) as wall materials, respectively. The physical properties, cell viability under different conditions and the application of the microcapsules were investigated. Results showed that the selected wall materials were safe to Lp90 and their simulated digestion products exhibited antioxidant activities and prebiotic properties. The encapsulation efficiencies of Lp-AC and Lp-MRP were above 80 %. Both microcapsules significantly enhanced cell survival rates under various conditions including low pH, bile salts, thermal processing, mechanical force, storage, and gastrointestinal digestion, with Lp-MRP demonstrating superior protective effects. When incorporated into milk and orange juice and stored at 4 °C for 28 d, the colony counts of beverages containing Lp90 microcapsules exceeded 6 Log CFU/mL, with minimal changes in total soluble solids. Lp-MRP exhibited higher cell viability and smaller viscosity changes at 25 °C for 28 d. Therefore, the single-layer encapsulation using SPI and reducing sugars conjugate showed promise over traditional chitosan-alginate double-layer encapsulation concerning probiotic protection, targeted delivery, and application.
Collapse
Affiliation(s)
- Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Wenbin Rong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Ting Zhang
- Institute of Farm Product Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Bolchini S, Larcher R, Morozova K, Scampicchio M, Nardin T. Screening of Antioxidant Maillard Reaction Products Using HPLC-HRMS and Study of Reaction Conditions for Their Production as Food Preservatives. Molecules 2024; 29:4820. [PMID: 39459189 PMCID: PMC11510528 DOI: 10.3390/molecules29204820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The Maillard reaction (MR) involves interactions between reducing sugars and amino acids or proteins during heating, producing Maillard reaction products (MRPs) that influence food flavour, aroma, and colour. Some MRPs exhibit antioxidant properties, prompting interest in their potential as natural food preservatives. This study aimed to develop a method for detecting and identifying antioxidant MRPs using high-pressure liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (HRMS). By improving chromatographic conditions, the separation of antioxidant MRPs was optimised using known antioxidant MRPs as reference signals. This work also examined the effects of pH, reaction time, and different sugar-amino acid combinations on the production and composition of antioxidant MRPs. Results indicated that neutral to basic pH facilitated faster reactions, with pH 7 selected as optimal. A library of 50 m/z signals for potential antioxidant MRPs was created, and the best combinations of amino acids and sugars for their production were identified. These findings pave the way for more precise analyses of antioxidant MRPs, with future research focusing on isolating and characterising specific MRPs to understand their structures and mechanisms, ultimately contributing to the development of functional foods with natural antioxidant properties.
Collapse
Affiliation(s)
- Sara Bolchini
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Roberto Larcher
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano, 39100 Bolzano, Italy; (S.B.); (K.M.); (M.S.)
| | - Tiziana Nardin
- Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| |
Collapse
|
11
|
Chai J, Zhao X, Zhang W, Wang Y, Xu X. Cyclic Continuous Glycation Enhanced Dispersibility of Myofibrillar Protein: Reaction Efficiency and Sites Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22290-22302. [PMID: 39316410 DOI: 10.1021/acs.jafc.4c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Reaction efficiency in glycation lacks sufficient attention, leading to the waste of process costs. Cyclic continuous glycation (CCG) is an effective approach to accelerate covalent binding between myofibrillar protein (MP) and glucose. This study elucidated that CCG promoted the exposure of reactive glycated sites in MP with full unfolding of secondary and tertiary structures. Notably, the glycation rate was significantly increased by 65.43%. Physicochemical properties indicated that MP-glucose conjugates with high graft degree exhibited favorable solubility, dispersibility, and thermal stability. Furthermore, proteomics was applied to reveal the glycated sites and products in glycoconjugates of MP. Glycation preferentially acted on the tails of the myosin heavy chain. The glucosylation modification on the head region was enhanced by CCG contributing to the inhibition of the head-head interaction. Overall, this study systematically clarifies the mechanism of CCG, providing a theoretical basis for the application of glycation in innovative meat products.
Collapse
Affiliation(s)
- Jiale Chai
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xue Zhao
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Weiyi Zhang
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yue Wang
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xinglian Xu
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
12
|
Chuang KC, Chiang YC, Chang YJ, Lee YC, Chiang PY. Evaluation of Antioxidant and Anti-Glycemic Characteristics of Aged Lemon Peel Induced by Three Thermal Browning Models: Hot-Air Drying, High Temperature and Humidity, and Steam-Drying Cycle. Foods 2024; 13:3053. [PMID: 39410088 PMCID: PMC11475740 DOI: 10.3390/foods13193053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study evaluated the antioxidant and anti-glycemic properties of black lemon Chenpi (BLC) (Citrus limon (L.) Burm. f. cv. Eureka), processed using three thermal browning models-hot-air drying (HAL), high temperature and humidity, and steam-drying cycle (SCL)-and compared them to fresh lemon peel and commercial Chenpi. The moisture-assisted aging technology (MAAT) is an environmentally friendly process for inducing browning reactions in the lemon peel, enhancing its functional properties. Our results demonstrated significant increases in sucrose, total flavonoid content, and antioxidant capacities (2,2-diphenylpicrylhydrazyl: 12.86 Trolox/g dry weight; ferric reducing antioxidant power: 14.92 mg Trolox/g dry weight) with the MAAT-HAL model. The MAAT-SCL model significantly improved the browning degree, fructose, total polyphenol content, narirutin, and 5-hydroxymethylfurfural synthesis (p < 0.05). Additionally, aged lemon peel exhibited potential α-glucosidase inhibitory activity (28.28%), suggesting its role in blood sugar regulation after meals. The multivariate analysis (principal component and heatmap analyses) indicated that BLC processed using the MAAT-SCL model exhibited similarities to commercial Chenpi, indicating its potential for functional food development. Our results indicate that MAAT-SCL can enhance the economic value of lemon by-products, offering a sustainable and functional alternative to traditional Chenpi.
Collapse
Affiliation(s)
| | | | | | | | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
13
|
Ounjaijean S, Chaipoot S, Phongphisutthinant R, Kanthakat G, Taya S, Pathomrungsiyounggul P, Wiriyacharee P, Boonyapranai K. Evaluation of Prebiotic and Health-Promoting Functions of Honeybee Brood Biopeptides and Their Maillard Reaction Conjugates. Foods 2024; 13:2847. [PMID: 39272610 PMCID: PMC11395396 DOI: 10.3390/foods13172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
This study addresses the growing interest in natural functional ingredients by evaluating the prebiotic and health-promoting functions of honeybee brood biopeptides (HBb-Bps) and their conjugates. The purpose was to investigate their antioxidant activities, enzyme inhibition properties, and effects on probiotic growth and short-chain fatty acid (SCFA) production. The HBb-Bps were conjugated with honey, glucose, and fructose via the Maillard reaction. Antioxidant activities were assessed using DPPH and ABTS assays. The inhibitory effects on amylase, pancreatic lipase, and the angiotensin-converting enzyme (ACE) were measured. Probiotic growth and SCFA production were evaluated using L. plantarum TISTR846, and L. lactis TISTR1464. The HBb-Bps and their conjugates exhibited enhanced antioxidant activities post-Maillard reaction. They showed moderate enzyme inhibition, which decreased after conjugation. However, ACE inhibition increased with conjugation. The HBb-Bps significantly promoted probiotic growth and SCFA production, with further enhancement by the Maillard reaction. Overall, the HBb-Bps and their conjugates demonstrate significant prebiotic and health-promoting functions, suggesting their potential as natural ingredients in functional foods and nutraceuticals. Further research should focus on the in vivo effects and, given their solubility and stability these biopeptides could be incorporated into functional food formulations, such as health beverages, protein bars, and other fortified foods designed to deliver specific health benefits.
Collapse
Affiliation(s)
- Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Pairote Wiriyacharee
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Li Y, Xiao S, Zhang Q, Wang N, Yang Q, Hao J. Development and standardization of spectrophotometric assay for quantification of thermal hydrolysis-origin melanoidins and its implication in antioxidant activity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135021. [PMID: 38944987 DOI: 10.1016/j.jhazmat.2024.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Melanoidins are brown recalcitrant polymers originating from the thermal hydrolysis pretreatment (THP) of organic solid waste (OSW). Owing to their various formation pathways and complex structures, there is currently no reliable method to quantify melanoidins. In this study, a spectrophotometric method was developed to determine melanoidins concentration in different OSW. Three typical model Maillard reaction systems (glucose-glycine, glucose/fructose-20 amino acids, and dextran-bovine serum albumin) were used to acquire the characteristic peaks and establish standard curves. The results showed that a standard curve using glucose/fructose-20 amino acids model melanoidins at 280 nm was the optimal quantification method, because it had the best correlation with the physicochemical indicators of melanoidins and semi-quantification results calculated by excitation-emission matrix fluorescence. In addition, the applicability of the proposed method was evaluated using multiple real melanoidins samples extracted from thermally pretreated OSW under different THP conditions and food-derived melanoidins as well, demonstrating its validity and advantages. This study is the first to provide a simple, effective, and accurate method for quantifying THP-origin melanoidins from different sources. Remarkably, as a specific and important application scenario, the proposed quantification method was employed to investigate the concentration dependence of melanoidins antioxidation in thermally pretreated OSW.
Collapse
Affiliation(s)
- Yingying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Siwei Xiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Qin YQ, Fan YG, Ren JN, Wang LY, Han NF, Fan G. Structural and functional properties of whey protein isolate-inulin conjugates prepared with ultrasound or wet heating method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7281-7290. [PMID: 38655901 DOI: 10.1002/jsfa.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in the food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), new C-N bonds were formed in Fourier-transform infrared (FTIR) spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of circular dichroism (CD) spectroscopy also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| | - Nan-Feng Han
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, China
| |
Collapse
|
16
|
Cabrera‐Ramírez AH, Manríquez‐Medina M, Romero‐Robles LE, Chavez‐Santoscoy RA. Synthesis and evaluation of Maillard conjugates for encapsulation and controlled delivery of quercetin under simulated gastrointestinal tract conditions. Food Sci Nutr 2024; 12:6826-6840. [PMID: 39554356 PMCID: PMC11561787 DOI: 10.1002/fsn3.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 11/19/2024] Open
Abstract
Encapsulation of bioactive molecules for therapeutic use is gaining great interest in the scientific community. Several encapsulation methodologies have been evaluated, sacrificing, in some cases, either encapsulation efficiency or compound integrity. Our work developed Maillard conjugates (MCs) based on the whey protein (WP)-Maltodextrin (MD) interaction to encapsulate quercetin by freeze-drying. The WP:MD ratio used (1:2 or 1:3) yielded the formation of MCs, demonstrated by an increased browning index and changes in the protein secondary structure. Freeze-drying showed high encapsulation efficiency, reaching 87.65% and 84.72% in treatments loaded with 3.3 mg quercetin/g MCs. Quercetin-loaded MCs showed spherical-shape (4-10 μm) and a negative charge, suggesting colloidal stability. Moreover, in vitro tests demonstrated a sustained release of quercetin throughout the oral, gastric, and intestinal phases, highlighting the MCs efficacy as bioactive delivery systems. This work provides useful information to design bioactive compound delivery systems for food and pharmaceutical applications.
Collapse
|
17
|
Hosseini H, Mahmoudi R, Pakbin B, Manafi L, Hosseini S, Pilevar Z, Brück WM. Effects of intrinsic and extrinsic growth factors on virulence gene expression of foodborne pathogens in vitro and in food model systems; a review. Food Sci Nutr 2024; 12:6093-6107. [PMID: 39554324 PMCID: PMC11561799 DOI: 10.1002/fsn3.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 11/19/2024] Open
Abstract
Since foodborne diseases are one of the major causes of human hospitalization and death, one of the main challenges to food safety is the elimination or reduction of pathogens from food products throughout the food production chain. Pathogens, such as Salmonella species, Escherichia coli, Bacillus cereus, Clostridium species, Staphylococcus aureus, Listeria monocytogenes, Campylobacter species, etc., enter the consumer's body through the consumption of contaminated food and eventually cause disease, disability, and death in humans. In particular, the expression of virulence genes of these pathogens in various food environments containing them has been repeatedly reported, which is a key issue for the survival and pathogenicity of the pathogen. Hence, in this review, the interventions to prevent and control foodborne diseases, such as the application of natural preservatives, redox potential, heat treatments, high-pressure processing, and gaseous atmosphere, are discussed based on the literature. Moreover, the effects of various environmental conditions on bacterial gene expression are comprehensively reviewed. In conclusion, the effects of intrinsic and extrinsic factors on the growth and pathogenicity of bacteria are very complicated. The information obtained from the current study can be used to develop new control strategies, improve food safety, and ensure human health.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Food Sciences & Technology Department, National Nutrition & Food Technology Research Institute, Faculty of Nutrition & Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Razzagh Mahmoudi
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Babak Pakbin
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSionSwitzerland
| | - Leila Manafi
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Setayesh Hosseini
- Department of Cell and Molecular Biology Sciences, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Pilevar
- School of HealthArak University of Medical SciencesArakIran
| | - Wolfram Manuel Brück
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSionSwitzerland
| |
Collapse
|
18
|
Chai J, Zhao X, Xu Y, Xu X. An unfolding/aggregation kinetic instructed rational design towards improving graft degree of glycation for myofibrillar protein. Food Chem 2024; 446:138876. [PMID: 38432134 DOI: 10.1016/j.foodchem.2024.138876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Glycation is an effective strategy for the application of myofibrillar protein (MP) in beverage formulas by improving water solubility. In conventional glycation, the efficiency was limited as MP-saccharides conjugates mostly produced at low temperature due to thermosensitivity. This study was aimed to explore unfolding/aggregation kinetics of MP, including aggregate behavior, structural characteristics, and micromorphology, which guided the selection of temperature for glycation. It was shown that 40 °C/47.5 °C were critical temperature for MP unfolding/aggregation, respectively. Accordingly, an innovative technology of glycation (cyclic continuous glycation, CCG) was established by combining such temperatures. The results confirmed that cyclic continuous heating (CCH) inhibited excessive exposure of sulfhydryl and hydrophobic groups impeding protein aggregation. Importantly, it was revealed that rational designed CCG promoted covalent binding of MP to glucose by regulating unfolding-aggregation balance, exhibiting higher glycation degree. Overall, CCG-modified MP is expected to motivate the application of meat proteins in food formulations.
Collapse
Affiliation(s)
- Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xue Zhao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yujuan Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
19
|
Rodriguez-Amaya DB, Amaya-Farfan J. The Maillard reactions: Pathways, consequences, and control. VITAMINS AND HORMONES 2024; 125:149-182. [PMID: 38997163 DOI: 10.1016/bs.vh.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The century old Maillard reactions continue to draw the interest of researchers in the fields of Food Science and Technology, and Health and Medical Sciences. This chapter seeks to simplify and update this highly complicated, multifaceted topic. The simple nucleophilic attack of an amine onto a carbonyl group gives rise to a series of parallel and subsequent reactions, occurring simultaneously, resulting into a vast array of low and high mass compounds. Recent research has focused on: (1) the formation and transformation of α-dicarbonyl compounds, highly reactive intermediates which are essential in the development of the desired color and flavor of foods, but also lead to the production of the detrimental advanced glycation end products (AGEs); (2) elucidation of the structures of melanoidins in different foods and their beneficial effects on human health; and (3) harmful effects of AGEs on human health. Considering that MRs have both positive and negative consequences, their control to accentuate the former and to mitigate the latter, is also being conscientiously investigated with the use of modern techniques and technology.
Collapse
Affiliation(s)
| | - Jaime Amaya-Farfan
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
20
|
Chen S, Pan H. Vesicle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:347-383. [PMID: 39218506 DOI: 10.1016/bs.afnr.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vesicular delivery systems are highly ordered assemblies consisting of one or more concentric bilayers formed by the self-assembly of amphiphilic building blocks in the presence of water. In the field of functional food, vesicular delivery systems have been widely explored for effective formulations to deliver functional substances. With the effort of scientific research, certain categories of vesicular delivery systems have successfully been translated from the laboratory to the global market of functional food. This chapter aims to present comprehensively the various vesicular delivery systems, including their design, preparation methods, encapsulation of functional substances, and application in nutritional interventions.
Collapse
Affiliation(s)
- Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, P.R. China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
21
|
Li J, Wang X, Chang C, Gu L, Su Y, Yang Y, Agyei D, Han Q. Chicken Egg White Gels: Fabrication, Modification, and Applications in Foods and Oral Nutraceutical Delivery. Foods 2024; 13:1834. [PMID: 38928777 PMCID: PMC11202995 DOI: 10.3390/foods13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chicken egg white (EW) proteins possess various useful techno-functionalities, including foaming, gelling or coagulating, and emulsifying. The gelling property is one of the most important functionalities of EW proteins, affecting their versatile applications in the food and pharmaceutical industries. However, it is challenging to develop high-quality gelled foods and innovative nutraceutical supplements using native EW and its proteins. This review describes the gelling properties of EW proteins. It discusses the development and action mechanism of the physical, chemical, and biological methods and exogenous substances used in the modification of EW gels. Two main applications of EW gels, i.e., gelling agents in foods and gel-type carriers for nutraceutical delivery, are systematically summarized and discussed. In addition, the research and technological gaps between modified EW gels and their applications are highlighted. By reviewing the new modification strategies and application trends of EW gels, this paper provides insights into the development of EW gel-derived products with new and functional features.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
22
|
Yuan M, Cao Y, Zheng H, Chen K, Lu Y, Wang J, Zhu L, Chen M, Cai Z, Shen Y. Structural and functional properties of Maillard-reacted casein phosphopeptides with different carbohydrates. Food Sci Biotechnol 2024; 33:1603-1614. [PMID: 38623432 PMCID: PMC11016028 DOI: 10.1007/s10068-023-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
This study used glucose, fructose, maltose and dextran to explore the effects of different carbohydrates on the Maillard reaction of casein phosphopeptides (CPP). The color parameter results showed that heating time from 1 to 5 h led to brown color, which was consistent with the observed increased in browning intensity. Fourier transform infrared spectroscopy results verified that four carbohydrates reacted with CPP to produce Maillard conjugates. Fluorescence spectroscopy showed that the Maillard reaction changed the tertiary structure of CPP by decreasing the intrinsic fluorescence intensity and surface hydrophobicity compared with the CPP-carbohydrate mixture. At the same time, the Maillard reaction effectively improved the emulsifying properties, reducing power and DPPH radical scavenging activity of CPP. Furthermore, this study also found that glucose and fructose improved CPP more than maltose and dextran. Therefore, monosaccharides have good potential in modifying CPP via the Maillard reaction. Graphical Abstract
Collapse
Affiliation(s)
- Meng Yuan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yu Cao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Haoyang Zheng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Kunlin Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yuping Lu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jing Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Liqin Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Ming Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Zhipeng Cai
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yonggen Shen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
23
|
Agustinisari I, Mulia K, Harimurti N, Nasikin M, Rienoviar, Herawati H, Manalu LP. The Potency of Maillard Conjugates Containing Whey Protein as Natural Emulsifier. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:3254132. [PMID: 38962097 PMCID: PMC11222009 DOI: 10.1155/2024/3254132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
There is a continued need for the advancement of natural emulsifiers to replace synthetic emulsifiers, driven by human health concerns. This study is aimed at producing protein-polysaccharide conjugates through the Maillard reaction and at evaluating its ability as an emulsifier based on its emulsifying properties. The proteins used in this study were bovine milk whey protein and soy protein isolates, while the polysaccharides were maltodextrin and pectin. The protein-polysaccharide conjugation used a Maillard reaction under dry heating conditions. The protein and polysaccharide mass ratios were 1 : 2 and 1 : 3. The results showed that the types of proteins and polysaccharides and their mass affect the surface tension of the conjugate products. Whey protein-pectin conjugates with a mass ratio of 1 : 2 and a concentration of 1% had the lowest surface tension at 43.77 dyne/cm2. This conjugate sample also showed the highest emulsifying index at 27.20 m2/g. The conjugate powder containing pectin as a polysaccharide showed better emulsifying activity than that of those containing maltodextrin. However, the smallest droplet size of the emulsion (256.5 nm) resulted from the emulsification process using whey protein-maltodextrin conjugates as an emulsifier. The FTIR and gel electrophoresis (SDS-PAGE) analysis confirmed the conjugation formation. In general, protein-polysaccharide conjugates containing whey protein could potentially act as a natural emulsifier for food.
Collapse
Affiliation(s)
- Iceu Agustinisari
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Kamarza Mulia
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Niken Harimurti
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Mohammad Nasikin
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Rienoviar
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Heny Herawati
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Lamhot Parulian Manalu
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| |
Collapse
|
24
|
Liu J, Zhu X, Shi W. Enhancement mechanism of glycation with l-arabinose and xylose on texture properties of silver carp mince gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4128-4135. [PMID: 38308538 DOI: 10.1002/jsfa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glycation is a green processing technology. Based on our previous studies, glycation with l-arabinose and xylose was beneficial to enhance the texture properties of silver carp mince (SCM) gels. However, the possible enhancement mechanism remained unclear. Therefore, in this study, SCM gels with different types of reducing sugar (glucose, l-arabinose, and xylose) were prepared based on our previous study. The possible mechanism of texture enhancement of SCM gels was analyzed by investigating the changes in water distribution, protein structures, and microstructure in the gel system. RESULTS The glycation of l-arabinose and xylose enhanced the hardness, cohesiveness, chewiness, and resilience of SCM gels. Hardness increased from 1883.04 (control group) to 3624.54 (l-arabinose group) and 4348.18 (xylose group). Low-field nuclear magnetic resonance (LF-NMR) showed that glycation promoted the tight binding of immobilized water to proteins. Raman spectroscopic analysis showed that glycation increased the surface hydrophobicity and promoted the formation of disulfide bonds. Scanning electron microscopy (SEM) showed that glycation promoted the formation of uniform and dense three-dimensional network structure in SCM gels. CONCLUSION In summary, glycation enhanced the binding ability of immobilized water to proteins, improved the surface hydrophobicity, promoted the formation of disulfide bonds, and led to a more uniform and dense gel network structure of proteins, thus enhancing the texture properties of SCM gels. This research provided a theoretical basis for a better understanding of the mechanism of the effect of glycation on the quality of gel products and also provided technical support for the application of l-arabinose and xylose in new functional gel foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junya Liu
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University, Nanjing, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xueshen Zhu
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University, Nanjing, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
25
|
Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, Farag MA, Liu L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem 2024; 438:137994. [PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
Collapse
Affiliation(s)
- Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, NE, USA.
| | - Ning Yan
- Ning Yan, Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
26
|
Rezvankhah A, Ghanbarzadeh B, Mirzaee H, Ahmadi Hassan Abad A, Tavakkoli A, Yarmand A. Conjugation of gum Arabic and lentil protein hydrolysates through Maillard reaction: Antioxidant activity, volatile compounds, functional and sensory properties. Food Sci Nutr 2024; 12:2855-2873. [PMID: 38628169 PMCID: PMC11016417 DOI: 10.1002/fsn3.3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/19/2024] Open
Abstract
Lentil protein hydrolysates (LPH) and lentil protein hydrolysates cross-linked (LPHC) were grafted with gum Arabic (GA) through a wet Maillard reaction at 100°C for 2 h and called MLPH and MLPHC. The samples were assessed for absorption, degree of grafting (DG), surface hydrophobicity, antioxidant activity, molecular weight (MW) profile, chemical alteration, volatile compounds, functional and sensory properties. Results showed that Maillard grafting led to increase in absorption and DG (maximum value: MLPHC), and led to the reduction of the surface hydrophobicity and antioxidant activity (minimum value: MLPHC). MW profiles indicated that MLPH and MLPHC formed new bands at MW >250 kDa. Regarding the Fourier transform infrared spectroscopy (FTIR), Maillard conjugation led to the occurrence of peaks at 1759 and 1765 cm-1, while the intensities of amide I bands at 1637 and 1659 cm-1 and amide II bands at 1498 and 1495 cm-1 were decreased. Hydrolysis, cross-linking, and especially Maillard grafting provided well-balanced content of volatile components. Indeed, the proportions of alcohols, ketones, aldehydes, and acids were changed, thereby, the inherent grassy and planty tastes were diminished while new umami taste was developed. Maillard grafting led to significant improvement of functional properties, while MLPH and MLPHC indicated the highest emulsifying activity at pH 10.0 (73.76 and 70.12 m2/g, respectively) and stability (369.64 and 288.22 min), foaming capacity (88.57% and 142.86%) and stability (60.57% and 72%). Sensory analysis has demonstrated that umami taste was highly developed in MLPH and MLPHC, which can be well considered as meat proteins and flavor enhancers such as monosodium glutamate (MSG).
Collapse
Affiliation(s)
- Amir Rezvankhah
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural ResourcesUniversity of TehranTehranIran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Homaira Mirzaee
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | | | - Ali Tavakkoli
- Applied Science Learning Center Sham ShamFood Science GroupShirazIran
| | - Alireza Yarmand
- Student of internal diseases of large animals, Veterinary Faculty of Research Science UnitIslamic Azad UniversityTehranIran
| |
Collapse
|
27
|
Zhang X, Liu SQ. Effects of Reducing Sugars on Colour, Amino Acids, and Volatile Flavour Compounds in Thermally Treated Minced Chicken Carcass Hydrolysate. Foods 2024; 13:991. [PMID: 38611297 PMCID: PMC11011280 DOI: 10.3390/foods13070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigated the changes in colour, amino acids, and volatile flavour compounds in the enzymatic hydrolysates of chicken carcasses containing different types and amounts of reducing sugars (xylose, arabinose, glucose, and fructose), so as to develop a chicken-based flavouring agent. Before heat treatment at 100 °C for 60 min, the chosen reducing sugars were separately added to the chicken carcass hydrolysate at its natural pH. Pentoses decreased pH more significantly than hexoses in the chicken carcass hydrolysate. The browning degree followed the pattern of pH decline, as pentoses caused more intense browning than hexoses, with xylose dosage having the greatest effect on the colour changes (ΔE). Fructose addition notably reduced free amino acids (FAAs) and cystine contents. Furthermore, phenylalanine decreased with increasing dosages of arabinose, xylose, and fructose. Glutamic acid content decreased significantly with fructose addition but showed insignificant changes with xylose. At the same dosage, the addition of pentoses resulted in the production of more sulphur-containing volatile compounds like methional, 2-[(methylthio) methyl] furan, and dimethyl disulphide than hexoses. Methional and furfural, which provide a roasted, savoury flavour, were produced by adding more xylose. Heat treatment with xylose also removed hexanal, the main off-odourant.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Food Science and Technology, National University of Singapore, Science Drive 3, Singapore 117543, Singapore;
| | - Shao-Quan Liu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215213, China
| |
Collapse
|
28
|
Zhou T, Huang M, Cui H, Chen P, Hayat K, Zhang X, Ho CT. Exogenous Alanine Promoting the Reaction between Amadori Compound and Deoxyxylosone and Inhibiting the Formation of 2-Furfural during Thermal Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5878-5886. [PMID: 38462902 DOI: 10.1021/acs.jafc.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The involvement of exogenous alanine was observed to inhibit the generation of 2-furfural during the thermal degradation of the Amadori rearrangement product (ARP). To clarify the reason for the reduced yield of 2-furfural triggered by exogenous alanine, the evolution of the precursors of 2-furfural formed in the ARP model and ARP-alanine model was investigated, and a model including ARP and 15N-labeled alanine was used to differentiate the role of endogenous and exogenous alanine in the degradation of ARP. It was found that the condensation between ARP and 3-deoxyxylosone could occur during thermal treatment. Nevertheless, the interaction of ARP with 3-deoxyxylosone exhibited an accelerated pace in the presence of exogenous alanine. In this way, exogenous alanine blocked the recovery of endogenous alanine while simultaneously enhancing the consumption of ARP and 3-deoxyxylosone during the Maillard reaction. Hence, the yield of 2-furfural was diminished with the interference of exogenous alanine. Furthermore, the promotion of the reaction between ARP and deoxyxylosone induced by exogenous alanine blocked their retro-aldolization reaction to short-chain α-dicarbonyls (α-DCs) and consequently resulted in a lack of pyrazine formation during the ARP degradation. The present study provided a feasible method for the controlled formation of 2-furfural during the thermal treatment of ARP derived from alanine.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Pusen Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
29
|
Nooshkam M, Varidi M. Antioxidant and antibrowning properties of Maillard reaction products in food and biological systems. VITAMINS AND HORMONES 2024; 125:367-399. [PMID: 38997170 DOI: 10.1016/bs.vh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Oxidative damage refers to the harm caused to biological systems by reactive oxygen species such as free radicals. This damage can contribute to a range of diseases and aging processes in organisms. Moreover, oxidative deterioration of lipids is a serious problem because it reduces the shelf life of food products, degrades their nutritional value, and produces reaction products that could be toxic. Antioxidants are effective compounds for preventing lipid oxidation, and synthetic antioxidants are frequently added to foods due to their high effectiveness and low cost. However, the safety of these antioxidants is a subject that is being discussed in the public more and more. Synthetic antioxidants have been found to have potential negative effects on health due to their ability to accumulate in tissues and disrupt natural antioxidant systems. During thermal processing and storage, foods containing reducing sugars and amino compounds frequently produce Maillard reaction products (MRPs). Through the chelation of metal ions, scavenging of reactive oxygen species, destruction of hydrogen peroxide, and suppression of radical chain reaction, MRPs exhibit excellent antioxidant properties in a variety of food products and biological systems. Also, the capacity of MRPs to chelate metals makes them as a potential inhibitor of the enzymatic browning in fruits and vegetables. In this book chapter, the methods used for the evaluation of antioxidant activity of MRPs are provided. Moreover, the antioxidant and antibrowning activities of MRPs in food and biological systems is discussed. MRPs can generally be isolated and used as commercial preparations of natural antioxidants.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
30
|
Jiang Y, Sun J, Chandrapala J, Majzoobi M, Brennan C, Zeng XA, Sun B. Current situation, trend, and prospects of research on functional components from by-products of baijiu production: A review. Food Res Int 2024; 180:114032. [PMID: 38395586 DOI: 10.1016/j.foodres.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| | - Jayani Chandrapala
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Charles Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
31
|
Zhang X, Shaukat M, Liu R, Peng L, Wang Y, Su W, Song Y, Tan M. Orally administered dual-targeted astaxanthin nanoparticles as novel dietary supplements for alleviating hepatocyte oxidative stress. Food Funct 2024; 15:2131-2143. [PMID: 38305460 DOI: 10.1039/d3fo05319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The enhancement of bioavailability of food bioactive compounds as dietary supplements can be achieved through the development of targeted delivery systems. This study aimed to develop a novel dual-targeted delivery system for hepatocytes and mitochondria using phacoemulsification self-assembly. The delivery systems were engineered by modifying whey protein isolate (WPI) with galactose oligosaccharide (GOS) and triphenylphosphonium (TPP) to improve AXT transport to the liver and promote hepatic well-being. The dual-targeted nanoparticles (AXT@TPP-WPI-GOS) significantly reduced reactive oxygen species in in vitro experiments, thereby slowing down apoptosis. The AXT@TPP-WPI-GOS exhibited a prominent mitochondrial targeting capacity with a Pearson correlation coefficient of 0.76 at 4 h. In vivo pharmacokinetic experiments revealed that AXT@TPP-WPI-GOS could enhance AXT utilization by 28.18 ± 11.69%. Fluorescence imaging in mice demonstrated significantly higher levels of AXT@TPP-WPI-GOS accumulation in the liver compared to that of free AXT. Therefore, these nanoparticles hold promising applications in nutrient fortification, improving the bioavailability of AXT and supporting hepatic well-being.
Collapse
Affiliation(s)
- Xiumin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mahwish Shaukat
- Department of Food Sciences, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Liyang Peng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuxiao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yukun Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
32
|
Zhong L, Hu Q, Zhan Q, Zhao M, Zhao L. Oat protein isolate- Pleurotus ostreatus β-glucan conjugate nanoparticles bound to β-carotene effectively alleviate immunosuppression by regulating gut microbiota. Food Funct 2024; 15:1867-1883. [PMID: 38236028 DOI: 10.1039/d3fo05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Individuals with immune disorders cannot establish an adequate defense to pathogens, leading to gut microbiota dysbiosis. β-Carotene can regulate immune response, but its bioavailability in vivo is very low. Herein, we developed a glycosylated oat protein-based nanoparticle to improve the application of β-carotene for mitigating cyclophosphamide-induced immunosuppression and gut microbiota imbalance in mice. The results showed that the nanoparticles facilitated a conversion of β-carotene to retinol or retinyl palmitate into the systemic circulation, leading to an increased bioavailability of β-carotene. The encapsulated β-carotene bolstered humoral immunity by elevating immunoglobulin levels, augmenting splenic T lymphocyte subpopulations, and increasing splenic cytokine concentrations in immunosuppressed mice. This effect was accompanied by the alleviation of pathological features observed in the spleen. In addition, the encapsulated β-carotene restored the abnormal gut microbiota associated with immunosuppression, including Erysipelotrichaceae, Akkermansia, Bifidobacterium and Roseburia. This study suggested that nanoparticles loaded with β-carotene have great potential for therapeutic intervention in human immune disorders by specifically targeting the gut microbiota.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P.R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
33
|
Du M, Yu W, Ding N, Jian M, Cheng Y, Gan J. Antioxidant, aroma, and sensory characteristics of Maillard reaction products from Urechis unicinctus hydrolysates: development of food flavorings. Front Nutr 2024; 11:1325886. [PMID: 38379540 PMCID: PMC10876865 DOI: 10.3389/fnut.2024.1325886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
To develop food flavorings with a delicious taste and an anti-oxidation effect, in this study, the glucose Maillard reaction was used for hydrolysates of Urechis unicinctus. The various biological activities of Maillard reaction products (MRPs) and their antioxidant capacity were evaluated. The results showed that the unique fishy odor substances of seafood in MRPs were reduced, indicating that the Maillard reaction improved the flavor of the hydrolysate of Urechis unicinctus. Meanwhile, MRPs exhibited more competitive radical scavenging activities compared to the hydrolysate. Moreover, MRPs demonstrated a considerable potential to protect against 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress in a cell model in vitro and in a zebrafish model in vivo. Finally, a novel food flavoring was produced with MRPs as raw material, while the sensory qualities were deemed acceptable. In consequence, during industrial production, MRPs of Urechis unicinctus hydrolysate act as a high-quality raw material for functional flavorings and provide an effective way for the utilization of marine resources.
Collapse
Affiliation(s)
- Mengdi Du
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Wei Yu
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ning Ding
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengqi Jian
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong, China
| |
Collapse
|
34
|
Zhang X, Chen M, Wang N, Luo J, Li M, Li S, Hemar Y. Conjugation of chitopentaose with β-lactoglobulin using Maillard reaction, and its effect on the allergic desensitization in vivo. Int J Biol Macromol 2024; 258:128913. [PMID: 38141707 DOI: 10.1016/j.ijbiomac.2023.128913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The conjugation of chitopentaose (CHP) on β-lactoglobulin (βLg) via Maillard reaction was used to desensitize βLg. The stable βLg-CHP conjugate (βC-4) was formed at 4 h incubation, which contains 5 CHP attached molecules and a conjugated degree of 42 %. The conjugation promoted the thermal stability and emulsifying properties of βLg, and inhibited the immunoglobulin E (IgE) combining capacity by decreasing the content of β-sheet in βLg. Moreover, βLg-CHP conjugates were imparted with anti-oxidant properties and anti-inflammatory activities. Further, the combined action of inhibited IgE combining capacity and anti-inflammatory activities improved the allergy desensitization in βLg sensitized mice. The results showed that overexpressed IgE and inflammatory factors, unbalanced Th1-/Th2- immune cytokines were significantly attenuated after βLg was conjugated with CHP, avoiding the inflammatory lesions in spleen and colon. Additionally, the adverse changes in gut microbiota were alleviated in βC-4 group with a decrease of Bacteroidetes and increase of Firmicutes at phylum level and the probiotic bacteria of Lactobacillaceae was significantly improved at the family level. Thus, the conjugation of CHP can desensitize allergic reaction caused by βLg.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Meng Chen
- Center for Disease Control and Prevention of Tengzhou City, Zaozhuang 277500, China
| | - Ning Wang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Juanjuan Luo
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Sining Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Yacine Hemar
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
35
|
Dai Y, Li H, Liu X, Wu Q, Ping Y, Chen Z, Zhao B. Effect of enzymolysis combined with Maillard reaction treatment on functional and structural properties of gluten protein. Int J Biol Macromol 2024; 257:128591. [PMID: 38052287 DOI: 10.1016/j.ijbiomac.2023.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 μmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.
Collapse
Affiliation(s)
- Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, China.
| | - Xinhui Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
36
|
Ge Y, Zhou Y, Li S, Yan J, Chen H, Qin W, Zhang Q. Astaxanthin encapsulation in soybean protein isolate-sodium alginate complexes-stabilized nanoemulsions: antioxidant activities, environmental stability, and in vitro digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1539-1552. [PMID: 37807825 DOI: 10.1002/jsfa.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Nanoemulsions (NEs) have been considered an effective carrier to protect environmentally labile bioactive compounds from degradation during food processing. Among the numerous types of NEs, biopolymer-stabilized NEs have gained much attention to achieve this function because of the extensive sources, biocompatibility, and tunability. Therefore, the antioxidant activities, environmental stability, and in vitro digestibility of astaxanthin (AST)-loaded soybean protein isolate (SPI)-alginate (SA) complexes-stabilized NEs (AST-SPI-SA-NEs) were investigated in this study. RESULTS The AST-SPI-SA-NEs exhibited an encapsulation efficiency of 88.30 ± 1.67%, which is greater than that of the AST-loaded SPI-stabilized NEs (AST-SPI-NEs) (77.31 ± 0.83%). Both AST-SPI-SA-NEs and AST-SPI-NEs exhibited significantly stronger hydroxyl or diphenylpicryl-hydrazyl radical-scavenging activities than the free AST. The formation of SPI-SA complexes strengthened the thermal, light, and storage stability of AST-SPI-SA-NEs with no apparently increasing mean diameter (around 200 nm). AST-SPI-SA-NEs also exhibited a better freeze-thaw dispersibility behavior than AST-SPI-NEs. AST-SPI-SA-NEs were more stable than AST-SPI-NEs were under in vitro gastrointestinal digestion conditions and exhibited a greater bioaccessibility (47.92 ± 0.42%) than both AST-SPI-NEs (12.97 ± 1.33%) and free AST (7.87 ± 0.37%). Hydrogen bonding was confirmed to participate in the formation of AST-SPI-SA-NEs and AST-SPI-NEs based on the molecular docking results. CONCLUSIONS The construction of SPI-SA-NEs is conducive to the encapsulation, protection, and absorption of AST, providing a promising method for broadening the application of AST in processed foods or developing novel ingredients of functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhong Ge
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yangying Zhou
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shunfa Li
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jing Yan
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
37
|
Fan X, Li C, Shi Z, Xia Q, Du L, Zhou C, Pan D. Soy protein isolate-guar gum-goose liver oil O/W Pickering emulsions that remain stable under accelerated oxidation at high temperatures. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1107-1115. [PMID: 37736877 DOI: 10.1002/jsfa.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Goose liver oil (GLO) is a solid-liquid mixture, rich in polyunsaturated fatty acids and high in nutritional value, but poor in fluidity and easily oxidized. Therefore, oil-in-water (O/W) Pickering emulsions of three polysaccharides and soy protein isolate (SPI) with GLO were prepared to improve the stability of it. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy, and zeta potential revealed that the SPI and complexes with konjac glucomannan, pectin, and guar gum (GG) ranged from 17 to 75 kDa, with the site of action being the -OH stretch and the amide group, and bound by hydrogen bonding. Adding konjac glucomannan and GG significantly increased the water contact angle of the SPI to 74.1° and 59.0°, respectively. Therefore, the protein-polysaccharide complexes could enhance the emulsion stability. In addition, the O/W Pickering emulsions with GLO had near-Newtonian fluid rheological properties with a significant increase in apparent viscosity and viscoelasticity, forming a dual network structure consisting of a ductile and flexible protein network and a rigid and brittle polysaccharide network. The microstructure observation indicated that the O/W emulsions were spherical and homogeneous. The highest emulsification activity was observed for the SPI-GG-GLO emulsions, without significant delamination or flocculation and high oxidative stability after 7 days in storage. CONCLUSION These results demonstrate that the construction of SPI-GG-GLO O/W Pickering emulsions can stabilize GLO even at high temperatures that promote oxidation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chunwei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Phongphisutthinant R, Wiriyacharee P, Boonyapranai K, Ounjaijean S, Taya S, Pitchakarn P, Pathomrungsiyounggul P, Utarat P, Wongwatcharayothin W, Somjai C, Chaipoot S. Effect of Conventional Humid-Dry Heating through the Maillard Reaction on Chemical Changes and Enhancement of In Vitro Bioactivities from Soy Protein Isolate Hydrolysate-Yeast Cell Extract Conjugates. Foods 2024; 13:380. [PMID: 38338515 PMCID: PMC10855142 DOI: 10.3390/foods13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigated the formation of soy protein isolate hydrolysate-yeast cell extract (SPIH-YCE) conjugates through a humid-dry heating process and their impact on bioactivity. The incubation of SPIH-YCE samples at 60 °C and ~75% humidity for varying durations (0, 5, 10, 15, and 20 days) resulted in a significant decrease in reducing sugars and free amino acids, while the degree of glycation increased by approximately 65.72% after 10 days. SDS-PAGE analysis and size exclusion chromatography revealed the presence of peptides and glycoprotein molecules, with an increase in the distribution of larger peptide size chains. The conjugated SPIH-YCE (10 days) exhibited the highest antioxidant capacity compared to the other samples at different incubation times. A comparative study between SPIH-YCE (day 0) and SPIH-YCE after 10 days of incubation showed significantly higher anti-inflammatory and ACE inhibitory activities for the conjugates subjected to the humid-dry heating process. This suggests that SPIH-YCE conjugates could serve as an alternative substance with the potential to provide health benefits by mitigating or preventing non-communicable diseases (NCDs). This research highlights the importance of the Maillard reaction in enhancing bioactivity and offers insights into the alterations of the chemical structure of these conjugates.
Collapse
Affiliation(s)
- Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.T.)
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pairote Wiriyacharee
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (P.U.); (W.W.)
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.B.); (S.O.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.B.); (S.O.)
| | - Sirinya Taya
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.T.)
| | | | | | - Patamaphorn Utarat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (P.U.); (W.W.)
| | | | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.T.)
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
39
|
Qiu J, Li H, Liu Y, Li C, Fang Z, Hu B, Li X, Zeng Z, Liu Y. Changes in flavor and biological activities of Lentinula edodes hydrolysates after Maillard reaction. Food Chem 2024; 431:137138. [PMID: 37604001 DOI: 10.1016/j.foodchem.2023.137138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
This study aimed to elucidate how the Maillard reaction (MR) affects the flavor and bioactivities of Lentinula edodes hydrolysates (LEHs). Changes in flavor were investigated using non-targeted metabolomics techniques (GC-MS and LC-MS/MS) and sensory evaluation. Simultaneously, UV absorption, fluorescence, and FT-IR spectra were used to characterize the process of MR. We also evaluated the effects of MR on the antioxidant activity, hypoglycemic activity and antimicrobial activity of LEHs in vitro. The results revealed that MR produced many volatile aldehydes and ketones and decreased the content of most amino acids, sugars and flavonoids in the LEHs while increasing the content of l-theanine and succinic acid. MRPs had a strong caramel and like-meat flavor and an obvious improvement in umami, taste continuity, and total acceptability. Furthermore, MR improved the antioxidant and antimicrobial properties of LEHs. This research establishes a theoretical foundation for MR in the deep processing of edible mushrooms.
Collapse
Affiliation(s)
- Jianguo Qiu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Hongyu Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Yang Liu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Cheng Li
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Zhengfeng Fang
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Bin Hu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China
| | - Xiaolin Li
- Sichuan Academy of Agricultural Sciences, Sichuan Institute of Edible Fungi, Edible Fungi Cultivation and Physiology Research Center, Chengdu 610066, China
| | - Zhen Zeng
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| | - Yuntao Liu
- Sichuan Agricultural University, College of Food Science, Yaan 625014, China.
| |
Collapse
|
40
|
Gao K, Zha F, Rao J, Chen B. Nonenzymatic glycation as a tunable technique to modify plant proteins: A comprehensive review on reaction process, mechanism, conjugate structure, and functionality. Compr Rev Food Sci Food Saf 2024; 23:e13269. [PMID: 38284590 DOI: 10.1111/1541-4337.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
41
|
Amiratashani F, Yarmand MS, Kiani H, Askari G, Naeini KK, Parandi E. Comprehensive structural and functional characterization of a new protein-polysaccharide conjugate between grass pea protein (Lathyrus sativus) and xanthan gum produced by wet heating. Int J Biol Macromol 2024; 254:127283. [PMID: 37806423 DOI: 10.1016/j.ijbiomac.2023.127283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The purpose of this work was to use a controlled wet-heating process to promote Maillard reaction (MR) between grass pea protein (GPPI) and xanthan gum (XG), and then analyse structural, functional and antioxidant properties of the conjugate (GPPI-XGCs). During heating, the degree of glycation of all conjugated samples was raised (up to 37.43 %) and, after heating for 24 h, the lightness of the samples decreased by 24.75 %. Circular dichroism showed changes in secondary structure with lower content of α-helix and random coil in conjugates. XRD patterns showed that MR destroyed the crystalline structure of the protein. In addition, Lys and Arg content of the produced conjugates decreased by 16.94 % and 6.17 %, respectively. Functional properties including foaming capacity and stability were increased by 45.17 % and 37.17 %, and solubility reached 98.88 %, due to the protein unfolding driven by MR. GPPI-XGCs showed significantly higher antioxidant activities with maximum ABTS-RS value of 49.57 %. This study revealed how MR can improve GPPI's properties, which can aid the food industry in producing a wide range of plant-based foods. Especially, among other characteristics, the foaming properties were significantly improved and the final product can be introduced as a promising foaming agent to be used in food formulation.
Collapse
Affiliation(s)
- Farzane Amiratashani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Hossein Kiani
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Kiana Kassaeian Naeini
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Tehran, Iran.
| |
Collapse
|
42
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
43
|
Wang Q, Li J, Tu Y, Cai J, Ren F, Zhang H. Characteristics and antioxidant activity of Maillard reaction products from β-lactoglobulin and isomaltooligosaccharide. Front Nutr 2023; 10:1282485. [PMID: 37915620 PMCID: PMC10616461 DOI: 10.3389/fnut.2023.1282485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Starch-derived isomaltooligosaccharide (IMO) is potentially used as prebiotics in infant formulas. Given that they are non-digestible carbohydrates rich in reducing substrates, it's crucial to understand if they can interact with β-lactoglobulin (β-LG) to produce Maillard reaction products (MRPs) and how these MRPs might influence the nutritional properties of β-LG. In our investigation, we conjugated β-LG with IMO to generate MRPs. Using a spectrophotometer, we identified the intermediates and assessed browning. We also evaluated changes in free amino groups and structural alterations. The antioxidative activity of the resulting compounds was assessed using DPPH and the ferric reducing/antioxidant power (FRAP) assay. Our data revealed increased visible absorption and fluorescence intensity, suggesting the formation of intermediate and browning products. The content of free amino groups diminished by 33%, supporting the conjugation of IMO with β-LG. However, circular dichroism results indicated no significant alterations in the secondary structure of β-LG. Notably, the β-LG-IMO MRPs exhibited enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing/antioxidant power (FRAP). The findings provide insights into the characteristics and antioxidant activities of the conjugates derived from IMO and dairy protein in infant formula.
Collapse
Affiliation(s)
- Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jiayang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yaqi Tu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Fazheng Ren
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
44
|
Kungsuwan K, Sawangrat C, Ounjaijean S, Chaipoot S, Phongphisutthinant R, Wiriyacharee P. Enhancing Bioactivity and Conjugation in Green Coffee Bean ( Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic-Protein Conjugates. Molecules 2023; 28:7066. [PMID: 37894545 PMCID: PMC10609076 DOI: 10.3390/molecules28207066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cold plasma technology is gaining attention as a promising approach to enhancing the bioactivity of plant extracts. However, its impact on green coffee bean extracts (GCBEs) still needs to be explored. In this study, an innovative underwater plasma jet system was employed to investigate the effects of cold plasma on Coffea arabica GCBEs, focusing on the conjugation reflected by the change in composition and bioactivity. The DPPH radical scavenging antioxidant activity exhibited a gradual increase with plasma treatment up to 35 min, followed by a decline. Remarkably, at 35 min, the plasma treatment resulted in a significant 66% increase in the DPPH radical scavenging activity of the GCBE. The total phenolic compound content also displayed a similar increasing trend to the DPPH radical scavenging activity. However, the phenolic profile analysis indicated a significant decrease in chlorogenic acids and caffeine. Furthermore, the chemical composition analysis revealed a decrease in free amino acids, while sucrose remained unchanged. Additionally, the SDS-PAGE results suggested a slight increase in protein size. The observed enhancement in antioxidant activity, despite the reduction in the two major antioxidants in the GCBE, along with the increase in protein size, might suggest the occurrence of conjugation processes induced by plasma, particularly involving proteins and phenolic compounds. Notably, the plasma treatment exhibited no adverse effects on the extract's safety, as confirmed by the MTT assay. These findings indicate that cold plasma treatment holds significant promise in improving the functional properties of GCBE while ensuring its safety. Incorporating cold plasma technology into the processing of natural extracts may offer exciting opportunities for developing novel and potent antioxidant-rich products.
Collapse
Affiliation(s)
- Kuntapas Kungsuwan
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sakaewan Ounjaijean
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
45
|
Dumitrașcu L, Borda D, Aprodu I. Alternative Processing Options for Improving the Proteins Functionality by Maillard Conjugation. Foods 2023; 12:3588. [PMID: 37835241 PMCID: PMC10572503 DOI: 10.3390/foods12193588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Conjugation of the proteins with carbohydrates, occurring in the early stages of the Maillard reactions, received increased attention because of the high potential to ensure the improvement of the biological activity and functional properties of the proteins of different origins. The Maillard conjugates are conventionally formed through wet or dry heating, but the use of alternative technologies involving ultrasound, microwave, pulsed electric fields, high-pressure, or electrodynamic treatments appears to be efficient in accelerating the reaction steps and limiting the formation of toxic compounds. An overview of the mechanisms of these processing technologies, the main parameters influencing the Maillard conjugate formation, as well as their advantages and disadvantages, is provided in this paper. Different strategies employing these alternative technologies are reported in the literature: as pretreatment of the proteins, either alone or in admixture with the carbohydrates, followed by conventional heating, as a single alternative treatment step, or as a combination of heating and alternative processing. The desired functional properties of the proteins can be achieved by selecting the appropriate processing strategy and optimizing the reaction parameters. Moreover, alternative technologies can be exploited to obtain Maillard conjugates with remarkable biological activity in terms of antioxidant, antimicrobial, antihypertensive, anti-inflammatory, antimutagenic, or bifidogenic properties.
Collapse
Affiliation(s)
| | | | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Str., 800008 Galati, Romania; (L.D.); (D.B.)
| |
Collapse
|
46
|
Chaipoot S, Wiriyacharee P, Phongphisutthinant R, Buadoktoom S, Srisuwun A, Somjai C, Srinuanpan S. Changes in Physicochemical Characteristics and Antioxidant Activities of Dried Shiitake Mushroom in Dry-Moist-Heat Aging Process. Foods 2023; 12:2714. [PMID: 37509806 PMCID: PMC10379447 DOI: 10.3390/foods12142714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Shiitake mushrooms are prized for their unique flavor and bioactive properties. While there has been extensive research on drying methods, a comprehensive investigation of the effects of drying parameters in the dry-moist-heat system on shiitake quality is still needed. This study aimed to investigate the effects of dry-moist-heat aging on dried shiitake mushrooms comprehensively. Four aging temperatures, specifically 50, 60, 70, and 80 °C, were applied to the mushrooms, maintaining a constant humidity level of 75% RH and aging duration of 20 days. Color analysis revealed a progressive decrease in measured values as aging temperature increased, indicating noticeable changes in visual characteristics. Regarding amino acid composition, glutamic acid was found to be the predominant amino acid in shiitake mushrooms in the range of 90.29-467.42 mg/100 g. However, aging led to a reduction in overall amino acid content, with higher aging temperatures resulting in greater decline. Similarly, the equivalent umami content (EUC) also decreased (from 123.99 to 7.12 g MSG/100 g) with the increase in aging temperatures up to 80 °C, suggesting a decline in the overall umami taste sensation. Interestingly, despite the reduction in amino acid levels and umami content, the aging process positively impacted the phenolic compounds and the antioxidant activity of dried shiitake mushrooms. The antioxidative abilities of all aged mushroom extracts for DPPH, ABTS, and FRAP ranged from 65.01 to 81.39 µg TE/mL, 87.04 to 258.33 µg GAE/mL, and 184.50 to 287.68 µg FeSO4/mL, respectively. The utilization of aged temperature at 60 °C for 20 days with controlled relative humidity (~75%) should be a suitable aging condition of this edible mushroom with both antioxidant and umami qualities. Nevertheless, the control sample demonstrated higher levels of amino acid content and EUC compared to the aged samples. Conversely, the aged samples exhibited higher polyphenol content and greater antioxidant activity. Depending on specific requirements, these powders can be used in food formulation as flavor enhancers for control samples or as enriching agents for polyphenols and antioxidant activity in matured samples. Therefore, all of the powders obtained have potential applications in the field of nutrition.
Collapse
Affiliation(s)
- Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Srirana Buadoktoom
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Aungkana Srisuwun
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
47
|
Nooshkam M, Varidi M, Zareie Z, Alkobeisi F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem X 2023; 18:100725. [PMID: 37397219 PMCID: PMC10314162 DOI: 10.1016/j.fochx.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The sensitivity of protein-stabilized emulsions to flocculation, coalescence, and phase separation under destabilization conditions (i.e., heating, aging, pH, ionic strength, and freeze-thawing) may limit the widespread use of proteins as effective emulsifiers. Therefore, there is a great interest in modulating and improving the technological functionality of food proteins by conjugating them with polysaccharides, through the Maillard reaction. The present review article highlights the current approaches of protein-polysaccharide conjugate formation, their interfacial properties, and the behavior of protein-polysaccharide conjugate stabilized emulsions under various destabilization conditions, including long-term storage, heating and freeze-thawing treatments, acidic conditions, high ionic strength, and oxidation. Protein-polysaccharide conjugates are capable of forming a thick and cohesive macromolecular layer around oil droplets in food emulsions and stabilizing them against flocculation and coalescence under unfavorable conditions, through steric and electrostatic repulsion. The protein-polysaccharide conjugates could be therefore industrially used to design emulsion-based functional foods with high physicochemical stability.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Zahra Zareie
- Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Alkobeisi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
48
|
Soy protein isolate-polyguluronate nanoparticles loaded with resveratrol for effective treatment of colitis. Food Chem 2023; 410:135418. [PMID: 36652800 DOI: 10.1016/j.foodchem.2023.135418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Polyguluronate (PG) is an acidic homopolymer of α-(1,4)-l-guluronate separated from alginate. In this study, PG was first grafted with soy protein isolate (SPI) through the Maillard reaction to obtain a new glycoprotein (SPI-PG). Then, this novel glycoprotein was used to prepare nanoparticles to encapsulate the resveratrol (RES). Our results showed that SPI-PG-RES had better pH stability, storage stability and ionic stability than SPI-RES. In vitro digestion experiments showed that the RES bioavailability of SPI-PG-RES was much higher than that of free RES and SPI-RES. Furthermore, the in vitro antioxidant capacity of SPI-PG-RES was much stronger than that of free RES and SPI-RES. In addition, SPI-PG-RES was more effective in preventing the symptoms of DSS-induced colitis than RES and SPI-RES. These results suggested that the protein nanoparticles prepared using SPI-PG were a stable and effective hydrophobic polyphenol carrier and could be applied to food-grade components in functional foods and nutritional supplements.
Collapse
|
49
|
You Q, Wang Z, Tian X, Xu X. A multi-block data approach to assessing beef quality: ComDim analysis of hyperspectral imaging, 1H NMR, electronic nose and quality parameters data. Food Chem 2023; 425:136469. [PMID: 37270887 DOI: 10.1016/j.foodchem.2023.136469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
Several factors affect the quality of beef. In the field of chemometrics, multi-block data analysis methods are useful for examining multiple sources of information from a sample. This study focuses on the application of ComDim, a multi-block data analysis method, to evaluate beef from different parts of hyperspectral spectrum and image texture information, 1H NMR fingerprints, quality parameters and electronic nose. Compared to principal component analysis (PCA) methods based on low-level data fusion, ComDim is more efficient and powerful, because it reveals the relationships between the methods and techniques studied, as well as the variability of beef quality across multiple metrics. The quality and metabolite composition of beef tenderloin and hindquarters were differentiated, with low L* value and high shear tenderloin distinguished from hindquarters with opposite characteristics. The proposed strategy demonstrates that ComDim approach can be used to characterize samples when different techniques describe the same set of samples.
Collapse
Affiliation(s)
- Qian You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Ziyuan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
50
|
Xu Y, Xu X, Xu B. Glycosylation modification: A promising strategy for regulating the functionalities of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:8933-8947. [PMID: 37183695 DOI: 10.1080/10408398.2023.2204945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Myofibrillar proteins (MPs), the most important proteins in muscle, play a vital role in the texture, flavor, sensory and consumer acceptance of final muscle-based food products. Over the past several decades, conjugation of carbohydrates to MPs via glycosylation is of particular interest due to the substantial enhancement in MPs characteristics. Studying the covalent interactions between carbohydrates and MPs under various processing conditions and molecular mechanisms by which carbohydrates affect the functionalities of MPs can introduce new perspectives for design and production of muscle-based foods. However, there is no insightful and comprehensive summary of the structural, physicochemical and functional characteristics changes of MPs induced by glycosylation modification and how these changes can be adopted to potentially promote the science-based development of tailor-made muscle foods. Based on this, the functionalities of MPs as well as their practical limiting issues are initially highlighted. A comprehensive overview of fabrication strategies is then introduced. Additionally, changes in the structural and functional properties of MPs regulated by glycosylation have also been carefully summarized. On this basis, the research limitations to be solved and our perspectives for the future development of muscle-based foods are put forward.
Collapse
Affiliation(s)
- Yujuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|