1
|
Yolmeh M, Sforça ML, Sant'Ana AS. Antimicrobial properties of Bifidobacterium animalis subsp. lactis Bb-12 paraprobiotic obtained using ohmic heating against Salmonella enterica: A metabolomic approach. Int J Food Microbiol 2025; 429:111016. [PMID: 39674117 DOI: 10.1016/j.ijfoodmicro.2024.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to obtain paraprobiotics from Bifidobacterium animalis subsp. lactis Bb-12 (BB) presenting optimized antimicrobial activity against Salmonella enterica (SE). The paraprobiotics of BB (BBP) were obtained using ohmic heating (OH) under different conditions, and their effects on critical features of Salmonella, such as bacterial growth, biofilm formation, and adherence to Caco-2 cells, were studied. In addition, a metabolomic analysis was performed using 1H NMR spectroscopy to identify the metabolites involved in antimicrobial activity against SE. Through an optimization approach, it was found that the linear model demonstrated the highest predictive potential for the antimicrobial activity (AMA) of BBP among the fitted models. In contrast, the quadratic model was more predictive for the antibiofilm activity (ABA) and anti-adherence activity (AAA). The highest effects on the AMA, ABA, and AAA of BBP were associated with the variables electric field (EF), OH time, and OH temperature, respectively. Glycerol (37.6 μmol/g), ethanol (22.6 μmol/g), and lactate (9.8 μmol/g) were measured as the main metabolites in BB, while glycerol (47.8 μmol/g), acetate (34.0 μmol/g), and lactate (24.6 μmol/g) were the main metabolites in BBP. All the anti-SE characteristics of BBP obtained under the optimal conditions of the OH process were higher than those of BB (the untreated sample), which could be related to the higher levels of detected metabolites. The OH process, EF of 8.7 V/cm, OH temperature of 88 °C, cell concentration of 8.7 log CFU/mL, and OH time of 3.6 min, was the best OH condition for obtaining a BBP effective against SE.
Collapse
Affiliation(s)
- Mahmoud Yolmeh
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Zahidah I, Bölek S, Terzioğlu ÖT, Adıgüzel S. Determination of the effects of novel paraprobiotic supplement of Lactobacillus plantarum on soy dairy-free beverage by physicochemical, antioxidant, sensory analyses, and Raman spectroscopy technique. J Food Sci 2024; 89:7189-7202. [PMID: 39349981 DOI: 10.1111/1750-3841.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 11/13/2024]
Abstract
Paraprobiotics are inactivated microbial cells that improve the health status of consumers when taken in adequate doses. They can be used instead of probiotics to eliminate disadvantages such as instability in production and storage difficulties. They can also be an alternative nutritional supplement for individuals sensitive to fermented products. In this study, a paraprobiotic supplement obtained from Lactobacillus plantarum was added to a soy dairy-free beverage at two concentrations of 108 and 109 CFU/mL. Then, total soluble solids, pH, color, titratable acidity, antioxidant activity, and total phenolic content of the beverage were measured, and sensory analysis was also performed. The results indicate that paraprobiotic addition significantly increased (p < 0.05) the antioxidant activity (75.44 ± 0.23 µmol TE/g sample), total phenolic content (834.32 ± 6.69 mg GAE/g), protein (3.28 ± 0.18%), fat (2.35 ± 0.06), and ash content (0.57 ± 0.08). These results were also validated using the Raman spectroscopy technique. The paraprobiotic-supplemented soy dairy-free beverage had the highest taste and overall impression values. Since the parabiotic addition did not affect the physicochemical properties of the beverage, manufacturers can develop commercial products containing paraprobiotics without altering the production process. PRACTICAL APPLICATION: Paraprobiotics provide an alternative for individuals sensitive to fermented products but still desire the health benefits of probiotics. They additionally provide practical and technological advantages, including a longer shelf life without a need for a cold chain to preserve the viability and stability of microorganisms. The results of this study can be a reference for the industry to develop food products containing paraprobiotics with increased antioxidative and nutritional properties.
Collapse
Affiliation(s)
- Inas Zahidah
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| | - Sibel Bölek
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| | - Özlem Türksoy Terzioğlu
- Department of Molecular Biology and Genetics, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| | - Seyfure Adıgüzel
- Department of Molecular Biology and Genetics, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Jalali S, Mojgani N, Sanjabi MR, Saremnezhad S, Haghighat S. Functional properties and safety traits of L. rhamnosus and L. reuteri postbiotic extracts. AMB Express 2024; 14:114. [PMID: 39384663 PMCID: PMC11465093 DOI: 10.1186/s13568-024-01768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
Postbiotics are the non-viable bacterial products or the low molecular weight metabolites produced by probiotics that have received considerable attention owing to their health promoting effects. The present study aimed to investigate the safety and antibacterial properties of postbiotic components of Lacticaseibacillus rhamnosus (Lra) and Limosilactobacillus reuteri (Lre) for their potential applications in food products. The freeze dried postbiotic metabolites (FD-P) from Lra and Lre were extensively analyzed for their physico-chemical properties and antibacterial actions against common food borne pathogens. Higher levels of total flavonoids (1971.79 ± 20 mg Qu/ g), total short-chain fatty acid (23 µg/g), sugar contents, CAT, and SOD anti-oxidative enzymes were detected in the Lra postbiotic, while GSH-px levels and riboflavin were higher in Lre postbiotics (P < 0.01). No significant differences were recorded in the total phenolic (2501 and 2518 mg GAE/ L) and crude protein contents (305. 58 and 296.23 µg/g) of the postbiotics (p ≥ 0.05), respectively. Both FD-P samples showed enhanced activities against Gram-Positive pathogens compared to Gram-Negative pathogens (p < 0.05), while combining the two postbiotics further potentiated the antibacterial actions. Both FD-P samples were non-hemolytic to human erythrocyte cells, and exhibited low cytotoxicity in MRC 5 and IPEC-J2 cell lines at the highest used concentrations (150 mg/ml). In summary, the postbiotics derived from Lra and Lre are safe bioactive ingredients with enhanced antibacterial and antioxidant capabilities, having potential applications as a natural preservatives in food system, potentially enhancing safety and extending the shelf life of food products.
Collapse
Affiliation(s)
- Safura Jalali
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute- Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mohammad Reza Sanjabi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Solmaz Saremnezhad
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Liu M, Jiang X, Zeng X, Guo Y, Zhang T, Fan X, Xu J, Wu Z, Pan D. A protective mechanism of heat inactivation to enhance Levilactobacillus brevis PDD-2 against alcohol-induced chronic liver disease based on proteomic analysis. Food Funct 2024; 15:8356-8369. [PMID: 39023014 DOI: 10.1039/d4fo01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A proteomics-based analysis of the effect of heat inactivation on the alleviation of alcoholic liver disease (ALD) using Levilactobacillus brevis PDD-2 is presented, aimed at exploring the potential and mechanisms of postbiotic elements prepared through heat inactivation in the treatment of ALD. It was found that L. brevis PDD-2 and its postbiotic (heat-inactivated L. brevis PDD-2) alleviate chronic ALD via the gut-liver axis. In particular, heat-inactivated L. brevis PDD-2 significantly increased the relative abundance of Erysipelotrichaceae and better facilitated the oxidative stress balance in the liver. The tandem mass tag (TMT)-based quantitative proteomics technique analyses revealed that heat-inactivated L. brevis PDD-2 was associated with up-regulated expression levels of proteins related to the redox system, cellular metabolism, amino acid and oligopeptide transport, and surface proteins with immunomodulatory capacity. These findings provide a theoretical basis for developing novel therapeutic strategies and lay a solid foundation for further revealing its exhaustive mechanisms.
Collapse
Affiliation(s)
- Mingzhen Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoxiao Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, China
- Institute of Agricultural Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xiankang Fan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jue Xu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo 315211, Zhejiang, China.
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Hsu Y, Chen W, Hsieh P, Chu Y. Functional assessments of Psidium guajava L. and Morus alba L. leaf extracts on postprandial glucose control. Food Sci Nutr 2024; 12:5250-5266. [PMID: 39055216 PMCID: PMC11266929 DOI: 10.1002/fsn3.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes is a leading cause of death, according to statistics published by the Department of Health, Executive Yuan of Taiwan. In modern medicine, diabetes can be controlled using various medications; however, some drugs often have undesirable side effects. It therefore became a goal to find plant-based material that can reduce glucose concentration in the blood while reducing the incidence of complications and not causing side effects. Alpha-glucosidase inhibitors (AGIs) are effective glucose-lowering medicines and are enzymes essential to carbohydrate digestion. Inhibition of α-glucosidase leads to a delayed and reduced rise in postprandial blood glucose levels. This study evaluates the inhibitory effect of mixed extracts of Psidium guajava L. and Morus alba L. leaves on α-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. The inhibition of α-glucosidase activity was assayed in vitro. Half maximal inhibitory concentration (IC50) values of Psidium guajava L. and Morus alba L. were 2.25 and 0.1 mg/mL, respectively. The IC50 value of a commercial anti-hyperglycemic agent (Glucobay) is 6.41 mg/mL. The IC50 value of a mixture of extracts of Psidium guajava L. and Morus alba L. was 0.07 mg/mL. In cytotoxicity tests, survival percentages and shape did not significantly affect the murine embryonic liver cell line (BNL CL.2) when treated with varying concentrations of mixture extracts for varying periods of time. In summary, Psidium guajava L. and Morus alba L. showed positive anti-diabetes activity and suggested promising potential for alternative functional foods for diabetes mellitus (DM) patients.
Collapse
Affiliation(s)
- Yen‐Ping Hsu
- Department of Food Science, College of AgricultureNational Pingtung University of Science and TechnologyNeipuPingtungTaiwan
| | - Wu‐Yuan Chen
- PD Biotech Co., LtdNeipuPingtungTaiwan
- Pingtung Christian HospitalPingtung CityPingtungTaiwan
| | - Pao‐Chuan Hsieh
- Department of Food Science, College of AgricultureNational Pingtung University of Science and TechnologyNeipuPingtungTaiwan
| | - Yung‐Lin Chu
- Department of Food Science, College of AgricultureNational Pingtung University of Science and TechnologyNeipuPingtungTaiwan
| |
Collapse
|
6
|
Soutelino MEM, Rocha RDS, de Oliveira BCR, Mársico ET, Silva ACDO. Technological aspects and health effects of hydrolyzed collagen and application in dairy products. Crit Rev Food Sci Nutr 2024; 64:6120-6128. [PMID: 36625363 DOI: 10.1080/10408398.2022.2163974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the rise of a consumer market increasingly concerned with food and healthy lifestyle habits, the search for functional products has increased in the last years. In this context, dairy products are relevant since they are already included in the consumer's diet. Furthermore, hydrolyzed collagen stands out among products with bioactive action, as it promotes the reduction of the incidence of arthritis, osteoporosis, hypertension, obesity, and premature aging and contains healing, antioxidant and antimicrobial properties. In addition to health benefits, the addition of these ingredients to dairy products can influence physical, chemical, rheological, microbiological, and sensory characteristics, such as: decreased syneresis and improved texture of fermented milks; viscosity increase in dairy beverage; increased proteolytic activity in cheeses; and increasing the viability of probiotics, without significantly altering the quality standards of the legislation. Despite the benefits described, more studies are needed to evaluate these effects in different dairy products.
Collapse
Affiliation(s)
| | - Ramon da Silva Rocha
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | | | - Eliane Teixeira Mársico
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University (UFF), Niterói, RJ, Brazil
| | | |
Collapse
|
7
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
8
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Stănciuc N, Borda D, Gurgu-Grigore L, Cotârleț M, Vasile AM, Nistor OV, Dumitrașcu L, Pihurov M, Păcularu-Burada B, Bahrim GE. Lactiplantibacillus plantarum MIUG BL21 paraprobiotics: Evidences on inactivation kinetics and their potential as cytocompatible and antitumor alternatives. Food Chem X 2024; 21:101114. [PMID: 38298354 PMCID: PMC10828639 DOI: 10.1016/j.fochx.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Two new -biotics concepts, such as paraprobiotics and postbiotics were introduced, with beneficial effects beyond the viability of probiotic. In this study, the effect of individual (thermal, ohmic heating, high pressure, and ultrasound) and combined (ohmic, high pressure and ultrasound in combination with heating) treatments on the inactivation kinetics of Lactiplantibacillus plantarum was investigated. Different inactivation rates were obtained, up to 8.18 after 10 min at 90 °C, 2.07 after 15 min at a voltage gradient of 20 V/cm, 6.62 after 10 min at 600 MPa and 3.6 after ultrasound treatment for 10 min at 100 % amplitude. The experimental data were fitted to Weibullian model proposed by Peleg, allowing to estimate the inactivation rate coefficient (b) and the shape of the inactivation curves (n). At lower concentration, the samples showed both cytocompatibility and antiproliferative effect, stimulating the cell proliferation on both murine fibroblast and human colorectal adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Leontina Gurgu-Grigore
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Mihaela Cotârleț
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Aida Mihaela Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Oana Viorela Nistor
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Marina Pihurov
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, 800008 Galați, Romania
| |
Collapse
|
10
|
Zeng X, Wang Y, Yang S, Liu Y, Li X, Liu D. The functionalities and applications of whey/whey protein in fermented foods: a review. Food Sci Biotechnol 2024; 33:769-790. [PMID: 38371680 PMCID: PMC10866834 DOI: 10.1007/s10068-023-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 02/20/2024] Open
Abstract
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
Collapse
Affiliation(s)
- Xiaorong Zeng
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yujie Wang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Shuda Yang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yijun Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye, 734000 China
| | - Diru Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
11
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
12
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023; 64:12524-12554. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
13
|
Li Y, Tong T, Li P, Peng Y, Zhang M, Liu J, She Y, Li Z, Li Y. Screening of Potential Probiotic Lactobacillaceae and Their Improvement of Type 2 Diabetes Mellitus by Promoting PI3K/AKT Signaling Pathway in db/db Mice. Pol J Microbiol 2023; 72:285-297. [PMID: 37725896 PMCID: PMC10508973 DOI: 10.33073/pjm-2023-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 09/21/2023] Open
Abstract
The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yueyang Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yian Peng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- School of Public Health, Anhui University of Science and Technology, Hefei, China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd., Beijing, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yongli Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Kürşad İncili G, Akgöl M, Karatepe P, Kanmaz H, Kaya B, Tekin A, Adnan Hayaloğlu A. Inhibitory effect of bioactive compounds derived from freeze-dried paraprobiotic of Pediococcus acidilactici against food-borne pathogens: In-vitro and food model studies. Food Res Int 2023; 170:113045. [PMID: 37316034 DOI: 10.1016/j.foodres.2023.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
It was aimed to assess the antimicrobial potential of lyophilized/freeze-dried paraprobiotic (LP) of P. acidilactici against some food-borne pathogens under in-vitro conditions and food model, and determination of bioactive compounds that contribute to the antimicrobial activity of LP. For this purpose, minimum inhibitory concentration (MIC), inhibition zones were determined against Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7. The MIC value was 6.25 mg/mL and a 20 µL LP displayed 8.78 to 10.0 mm inhibition zones against these pathogens. In the food matrice challenge, two concentrations of LP (3% and 6%) alone or in combination with EDTA (0.02 M) were added to pathogenic bacteria spiked meatballs, and antimicrobial activity of LP was also determined during refrigerated storage. 6% LP + 0.02 M EDTA treatment provided 1.32 to 3.11 log10 CFU/g reductions in the numbers of these pathogens (P < 0.05). Furthermore, this treatment provided significant reductions on psychrotrophs, TVC, LAB, mold-yeast, and Pseudomonas spp. over the storage (P < 0.05). Regarding characterization results, LP contained contained a wide variety of bioactive compounds, including 5 organic acids (2.15 to 30.64 g/100 g), 19 free amino acids (6.97 to 699.15 mg/100 g), free fatty acids (short-, medium-, and long-chain fatty acids), 15 polyphenols (0.03 to 383.78 mg/100 g), and some volatile compounds such as pyrazines, pyranone and pyrrole derivatives. These bioactive compounds are not only involved in antimicrobial activity but also contribute to the free radical scavenging activity according to the DPPH, ABTS and FRAP assays. In conclusion, the result revealed that the LP improved the chemical and microbiological quality of foods due to containing biologically-active metabolites involved in antimicrobial and antioxidant capacity.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Ali Tekin
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
15
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
17
|
The Biotics Family: Current Knowledge and Future Perspectives in Metabolic Diseases. Life (Basel) 2022; 12:life12081263. [PMID: 36013442 PMCID: PMC9410396 DOI: 10.3390/life12081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease pose a major public health threat. Many studies have confirmed the causal relationship between risk factors and the etiopathogenesis of these diseases. Despite this, traditional therapeutic management methods such as physical education and diet have proven insufficient. Recently, researchers have focused on other potential pathways for explaining the pathophysiological variability of metabolic diseases, such as the involvement of the intestinal microbiota. An understanding of the relationship between the microbiome and metabolic diseases is a first step towards developing future therapeutic strategies. Currently, much attention is given to the use of biotics family members such as prebiotics (lactolose, soy oligosaccharides, galactooligosaccharides, xylooligosaccharides or inulin) and probiotics (genera Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus or Enterococcus). They can be used both separately and together as synbiotics. Due to their direct influence on the composition of the intestinal microbiota, they have shown favorable results in the evolution of metabolic diseases. The expansion of the research area in the biotics family has led to the discovery of new members, like postbiotics. In the age of personalized medicine, their use as therapeutic options is of great interest to our study.
Collapse
|
18
|
Pintarič M, Langerholc T. Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life (Basel) 2022; 12:1187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | | |
Collapse
|
19
|
Escudero-López B, Cerrillo I, Ortega Á, Martín F, Fernández-Pachón MS. Effect of Acute Intake of Fermented Orange Juice on Fasting and Postprandial Glucose Metabolism, Plasma Lipids and Antioxidant Status in Healthy Human. Foods 2022; 11:foods11091256. [PMID: 35563979 PMCID: PMC9101597 DOI: 10.3390/foods11091256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
Higher postprandial plasma glucose and lipemia, and oxidative and inflammatory responses, are considered important cardiovascular risk factors. Fermentation of fruits has generated products with high concentrations of bioactive compounds. The aim of this study was to evaluate the potential acute effects that fermented orange juice (FOJ) can exert in healthy humans by modulating postprandial response, and inflammatory/antioxidant status, compared with orange juice (OJ). Nine volunteers were recruited for a randomized, controlled, and crossover study. Participants ingested 500 mL of FOJ. At 4 h post intake, subjects consumed a standardized mixed meal. Blood samples were collected at 0-8 h hours post intake. The subjects repeated the protocol with OJ following a 2-week washout period. Glucose and lipid metabolism, plasma antioxidant capacity (ORAC, FRAP), endogenous antioxidants (albumin, bilirubin, uric acid), C-reactive protein and fibrinogen were measured in plasma samples. There was a trend of a smaller increase in LDL-C after FOJ intake compared with OJ, a significant decrease in apo-B and significant increase in ORAC. The glycemic and triglyceride response of meal was attenuated with FOJ. No differences were obtained in endogenous antioxidants and inflammation status between the treatments. The acute consumption of FOJ could play a protective role against cardiovascular risk factors.
Collapse
|
20
|
ZHANG D, WU S. Effects of Foxc1 and Oct4 genes regulating BMSCs transplantation on cardiomyocyte apoptosis after acute myocardial infarction in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.55321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Pimentel TC, de Oliveira LIG, de Souza RC, Magnani M. Probiotic ice cream: A literature overview of the technological and sensory aspects and health properties. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatiana Colombo Pimentel
- Federal Institute of Paraná Campus Paranavaí Paranavaí PR 87736‐536Brazil
- State University of Maringá Food Engineering Post‐Graduation Maringá PR 87020‐900Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering University of Paraíba João Pessoa PB 58051‐900 Brazil
| |
Collapse
|
22
|
Kumar H, Schütz F, Bhardwaj K, Sharma R, Nepovimova E, Dhanjal DS, Verma R, Kumar D, Kuča K, Cruz-Martins N. Recent advances in the concept of paraprobiotics: Nutraceutical/functional properties for promoting children health. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34748444 DOI: 10.1080/10408398.2021.1996327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Probiotics consumption has been associated with various health promoting benefits, including disease prevention and even treatment by modulating gut microbiota. Contrary to this, probiotics may also overstimulate the immune system, trigger systemic infections, harmful metabolic activities, and promote gene transfer. In children, the fragile immune system and impaired intestinal barrier may boost the occurrence of adverse effects following probiotics' consumption. To overcome these health challenges, the key focus has been shifted toward non-viable probiotics, also called paraprobiotics. Cell wall polysaccharides, peptidoglycans, surface proteins and teichoic acid present on cell's surface are involved in the interaction of paraprobiotics with the host, ultimately providing health benefits. Among other benefits, paraprobiotics possess the ability to regulate innate and adaptive immunity, exert anti-adhesion, anti-biofilm, anti-hypertensive, anti-inflammatory, antioxidant, anti-proliferative, and antagonistic effects against pathogens, while also enhance clinical impact and general safety when administered in children in comparison to probiotics. Clinical evidence have underlined the paraprobiotics impact in children and young infants against atopic dermatitis, respiratory and gastrointestinal infections, in addition to be useful for immunocompromised individuals. Therefore, this review focuses on probiotics-related issues in children's health and also discusses the Lactobacillus and Bifidobacterium spp. qualities for qualifying as paraprobiotics and their role in promoting the children's health.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Francine Schütz
- Department of Medicine/Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Natália Cruz-Martins
- Department of Medicine/Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra, PRD, Portugal
| |
Collapse
|
23
|
Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods 2021; 10:foods10071590. [PMID: 34359462 PMCID: PMC8306164 DOI: 10.3390/foods10071590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the gastrointestinal microbiota has been recognised as being essential for health. Indeed, several publications have documented the suitability of probiotics, prebiotics, and symbiotics in the management of different diseases such as diabetes mellitus (DM). Advances in laboratory techniques have allowed the identification and characterisation of new biologically active molecules, referred to as “postbiotics”. Postbiotics are defined as functional bioactive compounds obtained from food-grade microorganisms that confer health benefits when administered in adequate amounts. They include cell structures, secreted molecules or metabolic by-products, and inanimate microorganisms. This heterogeneous group of molecules presents a broad range of mechanisms and may exhibit some advantages over traditional “biotics” such as probiotics and prebiotics. Owing to the growing incidence of DM worldwide and the implications of the microbiota in the disease progression, postbiotics appear to be good candidates as novel therapeutic targets. In the present review, we summarise the current knowledge about postbiotic compounds and their potential application in diabetes management. Additionally, we envision future perspectives on this topic. In summary, the results indicate that postbiotics hold promise as a potential novel therapeutic strategy for DM.
Collapse
|
24
|
Siciliano RA, Reale A, Mazzeo MF, Morandi S, Silvetti T, Brasca M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021; 13:1225. [PMID: 33917707 PMCID: PMC8068161 DOI: 10.3390/nu13041225] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics are live microorganisms that confer health benefits on the host. However, in recent years, several concerns on their use have been raised. In particular, industrial processing and storage of probiotic products are still technological challenges as these could severely impair cell viability. On the other hand, safety of live microorganisms should be taken into account, especially when administered to vulnerable people, such as the elderly and immunodeficient individuals. These drawbacks have enhanced the interest toward new products based on non-viable probiotics such as paraprobiotics and postbiotics. In particular, paraprobiotics, defined as "inactivated microbial cells (non-viable) that confer a health benefit to the consumer," hold the ability to regulate the adaptive and innate immune systems, exhibit anti-inflammatory, antiproliferative and antioxidant properties and exert antagonistic effect against pathogens. Moreover, paraprobiotics can exhibit enhanced safety, assure technological and practical benefits and can also be used in products suitable for people with weak immunity and the elderly. These features offer an important opportunity to prompt the market with novel functional foods or nutraceuticals that are safer and more stable. This review provides an overview of central issues on paraprobiotics and highlights the urgent need for further studies aimed at assessing safety and efficacy of these products and their mechanisms of action in order to support decisions of regulatory authorities. Finally, a definition is proposed that unambiguously distinguishes paraprobiotics from postbiotics.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Maria Fiorella Mazzeo
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| |
Collapse
|
25
|
Brandão LR, de Brito Alves JL, da Costa WKA, Ferreira GDAH, de Oliveira MP, Gomes da Cruz A, Braga VDA, Aquino JDS, Vidal H, Noronha MF, Cabral L, Pimentel TC, Magnani M. Live and ultrasound-inactivated Lacticaseibacillus casei modulate the intestinal microbiota and improve biochemical and cardiovascular parameters in male rats fed a high-fat diet. Food Funct 2021; 12:5287-5300. [PMID: 34009228 DOI: 10.1039/d1fo01064f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to evaluate the effects of ingestion of live (9 log CFU mL-1) and ultrasound-inactivated (paraprobiotic, 20 kHz, 40 min) Lacticaseibacillus casei 01 cells for 28 days on healthy parameters (biochemical and cardiovascular) and intestinal microbiota (amplicon sequencing of 16S ribosomal RNA) of rats fed a high-fat diet. Twenty-four male Wistar rats were divided into four groups of six animals: CTL (standard diet), HFD (high-fat diet), HFD-LC (high-fat diet and live L. casei), and HFD-ILC (high-fat diet and inactivated L. casei). The administration of live and ultrasound-inactivated L. casei prevented the increase (p < 0.05) in cholesterol levels (total and LDL) and controlled the insulin resistance in rats fed a high-fat diet. Furthermore, it promoted a modulation of the intestinal microbial composition by increasing (p < 0.05) beneficial bacteria (Lachnospiraceae and Ruminoccocaceae) and decreasing (p < 0.05) harmful bacteria (Clostridiaceae, Enterobacteriaceae, and Helicobacteriacea), attenuating the effects promoted by the HFD ingestion. Only live cells could increase (p < 0.05) the HDL-cholesterol, while only inactivated cells caused attenuation (p < 0.05) of the blood pressure. Results show beneficial effects of live and inactivated L. casei 01 and indicate that ultrasound inactivation produces a paraprobiotic with similar or improved health properties compared to live cells.
Collapse
Affiliation(s)
- Larissa Ramalho Brandão
- Department of Food Engineering, Technology, Federal University of Paraíba, João Pessoa, Brazil.
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | | | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center Federal University of Paraíba, João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Hubert Vidal
- Univ-Lyon, CarMeN (Cardio, Metabolism, Diabetes and Nutrition) Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Melline Fontes Noronha
- Research Informatics Core, Research Resource Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucélia Cabral
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Marciane Magnani
- Department of Food Engineering, Technology, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|