1
|
Liu L, Qiao D, Mi X, Yu S, Jing T, An Y. Widely targeted metabolomics and SPME-GC-MS analysis revealed the quality characteristics of non-volatile/volatile compounds in Zheng'an Bai tea. Front Nutr 2024; 11:1484257. [PMID: 39654535 PMCID: PMC11625558 DOI: 10.3389/fnut.2024.1484257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Background As albino tea under the geographical protection of agricultural products, Zheng'an Bai tea is not only rich in amino acids, polyphenols and other beneficial components for the human body, but also its leaf color will turn green as the temperature gradually rises, thus causing changes in the quality characteristics of tea leaves. However, these changing characteristics have not yet been revealed. Methods In-depth quality analysis was carried out on the fresh leaves of Zheng'an Bai tea at four different developmental stages and four samples from the processing stage through extensive targeted metabolomics and SPME-GC-MS analysis. Results In this study, a total of 573 non-volatile metabolites were detected from the fresh leaves and processing samples of Zheng'an Bai tea, mainly including 96 flavonoids, 75 amino acids, 56 sugars and alcohols, 48 terpenoids, 46 organic acids, 44 alkaloids, and 39 polyphenols and their derivatives. In fresh leaves, the most significant differential metabolites (VIP > 1, p < 0.05) among different samples mainly include substances such as ethyl gallate, theaflavin, isovitexin and linalool, while the main differential metabolites of samples in the processing stage include alkaloids, polyphenols and flavonoids such as zarzissine, methyl L-Pyroglutamate, theaflavin 3,3'-digallate, euscaphic acid and ethyl gallate. Overall, substances such as sugars and alcohols, alkaloids and polyphenols show the greatest differences between fresh leaves and the processing process. Meanwhile, 97 kinds of volatile metabolites were detected in these samples, most of which had a higher content in the fresh leaves. Moderate spreading is conducive to the release of the aroma of tea leaves, but fixation causes a sharp decrease in the content of most volatile metabolites. Ultimately, 9 volatile substances including geraniol, linalool, nerolidol, jasmone, octanal, 1-Nonanal, heptaldehyde, methyl salicylate and 1-Octen-3-ol were identified as the key aroma components (OAV >1) of Zheng'an Bai tea. Conclusion In conclusion, this study has for the first time comprehensively revealed the quality change characteristics of fresh leaves at different developmental stages and during the processing of Zheng'an Bai tea, and provided a foundation for further process improvement.
Collapse
Affiliation(s)
- Li Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Dahe Qiao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiaozeng Mi
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| |
Collapse
|
2
|
Gu H, Li J, Qiao D, Li M, Yao Y, Xie H, Huang KL, Liu S, Xie DY, Wei C, Zhu J. A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis). THE NEW PHYTOLOGIST 2024. [PMID: 39550628 DOI: 10.1111/nph.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear. Based on transcriptomes assembled from Ectropis obliqua-fed leaves, a cDNA encoding BAHD acyltransferase, namely CsCHAT1, was highly induced in leaves fed with E. obliqua. Enzymatic assays showed that CsCHAT1 converted (Z)-3-hexenol into 3-HAC. Further suppression of CsCHAT1 expression reduced the accumulation of 3-HAC and lowered the resistance of tea plants to E. obliqua, while 3-HAC replenishment rescued the reduced resistance of CsCHAT1-silenced tea plants against E. obliqua. Two transcription factors (TFs), CsNAC30 and CsTCP11, were co-expressed with CsCHAT1. An integrative approach of biochemistry, DNA-protein interaction, gene silencing, and metabolic profiling revealed that the two TFs positively regulated the expression of CsCHAT1. The suppression of either one decreased the production of 3-HAC and eliminated the resistance of tea plants to E. obliqua. Notably, the suppression of either one considerably impaired JA-induced 3-HAC biosynthesis in tea plant. The proposed pathway can be targeted for innovative agro-biotechnologies protecting tea plants from damage by E. obliqua.
Collapse
Affiliation(s)
- Honglian Gu
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Jiaxing Li
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Tea Research Institute, Guizhou Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Innovation in Karst Mountainous Areas of Ministry of Agriculture and Rural Affairs, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Mei Li
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yingjie Yao
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ke-Lin Huang
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Anhui Provincial Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| |
Collapse
|
3
|
Zou L, Sheng C, Xia D, Zhang J, Wei Y, Ning J. Mechanism of aroma formation in white tea treated with solar withering. Food Res Int 2024; 194:114917. [PMID: 39232537 DOI: 10.1016/j.foodres.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Withering is a crucial process that determines the quality of white tea (WT). Solar withering (SW) is reported to contribute to the aroma quality of WT. However, the mechanism by which aroma is formed in WT subjected to SW remains unclear. In this study, through headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and transcriptomics, we found that 13 key genes enriched in the mevalonic acid and methylerythritol phosphate pathways, such as those of 1-deoxy-D-xylulose-5-phosphate synthase and terpineol synthase, were significantly upregulated, promoting the accumulation of α-terpinolene, geraniol, and nerolidol, which imparted floral and fruity odors to WT subjected to SW. Additionally, the significant upregulation of lipoxygenases enriched in the lipoxygenase pathway promoting the accumulation of hexanol, 1-octen-3-ol, (E, Z)-3,6-nonadien-1-ol, and nonanal, which contributed to the green and fresh odor in WT subjected to SW. This study provided the first comprehensive insight into the effect mechanism of SW on aroma formation in WT.
Collapse
Affiliation(s)
- Li Zou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
4
|
Ma M, Fu H, Wang T, Xiong L, Feng P, Lu B. Widely targeted volatilomics and transcriptome analyses reveal the differences in volatile organic components in differently shaped Amomum tsao-ko fruits. BMC PLANT BIOLOGY 2024; 24:915. [PMID: 39350013 PMCID: PMC11443856 DOI: 10.1186/s12870-024-05594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Amomum tsao-ko is an important aromatic crop used in medicines and food. It can be categorized into three main types based on the fruit shape: long (L), oval (O), and round (R). However, limited information is available on the volatile substances present in differently shaped A. tsao-ko fruits. This study investigated the characteristics and biosynthesis of volatile organic compounds (VOCs) in fresh and dried A. tsao-ko fruits of different shapes using widely targeted volatilomics and transcriptome analyses. RESULTS In total, 978 VOCs, primarily terpenoids, esters, and heterocyclic compounds, were detected. The number of differentially accumulated volatile organic compounds (DAVOCs) in dried fruits of various shapes was significantly higher than that in fresh fruits, with terpenoids, esters, and heterocyclic compounds accounting for approximately 50% of the total DAVOCs. Notably, α-phellandrene, identified as a shared differential accumulated terpenoid across various fruit shapes, was detected in both fresh and dried fruits. Through transcriptome analysis, 40 candidate genes implicated in the terpenoid biosynthesis pathway were screened. An integrated analysis of the metabolome and transcriptome revealed that the structural genes HMGR-2, TPS7, TPS5-10, TPS21-3, TPS21-5, TPS21-6, TPS21-7, and TPS21-9, along with 81 transcription factors (including 17 NACs, 16 MYBs, 16 AP2/ERFs, 13 WRKYs, 13 bHLHs, and 6 bZIPs), co-regulate the biosynthesis of volatile terpenoids. CONCLUSIONS This study expands our understanding of the volatile metabolism profile of A. tsao-ko and provides a solid foundation for future investigations of the mechanisms governing fruit quality.
Collapse
Affiliation(s)
- Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Tiantao Wang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Lina Xiong
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Ping Feng
- Jinping Shili Medicinal Materials Development Co., Ltd, Jinping, Yunnan, 661500, China
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| |
Collapse
|
5
|
Göksu Sürücü C, Tolun A, Halisçelik O, Artık N. Brewing method-dependent changes of volatile aroma constituents of green tea ( Camellia sinensis L.). Food Sci Nutr 2024; 12:7186-7201. [PMID: 39479672 PMCID: PMC11521698 DOI: 10.1002/fsn3.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 11/02/2024] Open
Abstract
The determination of optimal levels of green tea amount and brewing time would have a crucial role in the accumulation of desired aromatic volatile compounds to meet worldwide market demand. Aroma is the most important factor influencing tea consumers' choices along with taste, price, and brand. This study aims to determine how the brewing time and amount of green tea affect the aroma profile of green tea infusion. The effect of the amount of Turkish green tea (5-10 g) and brewing time (5-60 min) on aromatic volatile compounds was evaluated using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) technique. The SPME/GC-MS analysis identified 57 components in the aroma profile of green tea infusions including 13 esters, 12 alkanes, 7 unknowns, 6 ketones, 3 alcohols, 2 terpenes, 2 terpenoids, 1 alkaloid, 1 phenolic compound, 1 lactone, 1 pyrazine, and 1 norisoprenoid. The green tea amount and brewing time had significant effects on the number of chemical compounds. A total of 42, 47, and 36 aromatic volatile compounds were determined by brewing 5, 7.5, and 10 g of green tea. The most abundant constituents in green tea infusions were phytone, 2-decenal, lauric acid, unknown 1, methoxy-1-methylethyl pyrazine, α-ionone, β-ionone, and diethyl phthalate (DEP). With this study, the aroma structures of green tea infusion have been revealed for the first time depending on the brewing time and quantity.
Collapse
Affiliation(s)
- Canan Göksu Sürücü
- Plant‐Based Food Research Center, Field Crops Central Research Institute, Directorate General of Agricultural Research and PoliciesAnkaraTürkiye
| | - Aysu Tolun
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| | - Ozan Halisçelik
- Core Unit Metabolomics, Berlin Institute of HealthCharité UniversityBerlinGermany
| | - Nevzat Artık
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| |
Collapse
|
6
|
Qi D, Shi Y, Lu M, Ma C, Dong C. Effect of withering/spreading on the physical and chemical properties of tea: A review. Compr Rev Food Sci Food Saf 2024; 23:e70010. [PMID: 39267185 DOI: 10.1111/1541-4337.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Withering and spreading, though slightly differing in their parameters, share the same aim of moisture reduction in tea leaves, and they have a strong impact on the physical and chemical properties of tea. Even though researchers tend to pay close attention to the characteristic crafts of different teas, increasing investigations begin to focus on the withering process due to its profound effects on the composition and content of quality-related compounds. This review provides an overview of tea withering process to address questions comprehensively during withering. Hence, it is expected in this review to figure out factors that affect withering results, the way withering influences the physical and chemical properties of withered leaves and tea quality, and intelligent technologies and devices targeted at withering processes to promote the modernization of the tea industry. Herein, several key withering parameters, including duration, temperature, humidity, light irradiation, airflow, and more, are tailored to different tea types, demanding further exploration of advanced withering devices and real-time monitoring systems. The development of real-time monitoring technology enables objective and real-time adjustment of withering status in order to optimize withering results. Tea quality, including taste, aroma, and color quality, is first shaped during withering due to the change of composition and content of quality-related metabolites through (non)enzymatic reactions, which are easily influenced by the factors above. A thorough understanding of withering is key to improving tea quality effectively and scientifically.
Collapse
Affiliation(s)
- Dandan Qi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yali Shi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Chunwang Dong
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
He Y, Liu S, Kang Y, Periakaruppan R, Zhuang J, Wang Y, Chen X, Liu X, Li X. The Light-Intensity-Affected Aroma Components of Green Tea during Leaf Spreading. Foods 2024; 13:2349. [PMID: 39123541 PMCID: PMC11311319 DOI: 10.3390/foods13152349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Leaf spreading is a key processing step that affects the aroma formation of green tea. The effects of a single-light wavelength on the aroma and taste of tea have been extensively studied. Less attention has been paid to the effect of different complex light intensities on the formation of green tea's volatile aroma during leaf spreading. The current study was designed to evaluate how leaf spreading under different complex light intensities relates to the quality of green tea. Using headspace solid-phase micro-extraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS), volatile flavor compounds in green tea were analyzed during leaf spreading in five different light conditions. Multivariate statistical analysis and odor activity values (OAVs) were used to classify these samples and identify key odors. Eight distinct groups, including ninety volatile compounds, were detected. The most prevalent volatile compounds found in green tea samples were hydrocarbons and alcohols, which accounted for 29% and 22% of the total volatile compounds, respectively. Fourteen volatile compounds (OAV > 1) were identified as key active differential odorants. The chestnut-like aroma in green tea was mostly derived from 3-methyl-butanal and linalool, which were significantly accumulated in medium-intensity light (ML).
Collapse
Affiliation(s)
- Youyue He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Shujing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Yuzhong Kang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Rajiv Periakaruppan
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore 641 014, India;
| | - Jing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
| | - Xinqiu Liu
- College of Humanities and Social Development, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (S.L.); (Y.K.); (J.Z.); (Y.W.); (X.C.)
- Huanghai Science and Technology Innovation Research Institute of Shandong, Rizhao 276801, China
| |
Collapse
|
8
|
Yu J, Li J, Lin Z, Zhu Y, Feng Z, Ni D, Zeng S, Zeng X, Wang Y, Ning J, Zhang L, Wan X, Zhai X. Dynamic changes and the effects of key procedures on the characteristic aroma compounds of Lu'an Guapian green tea during the manufacturing process. Food Res Int 2024; 188:114525. [PMID: 38823888 DOI: 10.1016/j.foodres.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.
Collapse
Affiliation(s)
- Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China; Collaborative Innovation Center for Agricultural and Forestry Characteristics Industry in Dabie Mountain Area, Hefei 230036, China
| | - Jingzhe Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhihui Feng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xuehong Zeng
- Huiliu Tea Industrial Co., Limited, Lu'an 237000, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China; Collaborative Innovation Center for Agricultural and Forestry Characteristics Industry in Dabie Mountain Area, Hefei 230036, China.
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China; Collaborative Innovation Center for Agricultural and Forestry Characteristics Industry in Dabie Mountain Area, Hefei 230036, China.
| |
Collapse
|
9
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
10
|
Li Q, Zhang X, Zhao P, Chen Y, Ni D, Wang M. Metal tolerance protein CsMTP4 has dual functions in maintaining zinc homeostasis in tea plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134308. [PMID: 38631255 DOI: 10.1016/j.jhazmat.2024.134308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.
Collapse
Affiliation(s)
- Qinghui Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuyang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Peiling Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingle Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Joint International Research Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
11
|
Qin M, Zhou J, Luo Q, Zhu J, Yu Z, Zhang D, Ni D, Chen Y. The key aroma components of steamed green tea decoded by sensomics and their changes under different withering degree. Food Chem 2024; 439:138176. [PMID: 38091790 DOI: 10.1016/j.foodchem.2023.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-β-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.
Collapse
Affiliation(s)
- Muxue Qin
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Contreras-Avilés W, Heuvelink E, Marcelis LFM, Kappers IF. Ménage à trois: light, terpenoids, and quality of plants. TRENDS IN PLANT SCIENCE 2024; 29:572-588. [PMID: 38494370 DOI: 10.1016/j.tplants.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.
Collapse
Affiliation(s)
- Willy Contreras-Avilés
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands; Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Iris F Kappers
- Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Zhou C, Tian C, Wen S, Yang N, Zhang C, Zheng A, Tan J, Jiang L, Zhu C, Lai Z, Lin Y, Guo Y. Multiomics Analysis Reveals the Involvement of JsLHY in Controlling Aroma Production in Jasmine Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930796 DOI: 10.1021/acs.jafc.3c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayao Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
14
|
Qiu Y, Li Y, Wu L, Wei H, Fu J, Chen W, Lin S, Yang S, Zhang R, Shang W, Liao C, Zeng S, Luo Y, Cai W. Analysis of Important Volatile Organic Compounds and Genes Produced by Aroma of Pepper Fruit by HS-SPME-GC/MS and RNA Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2246. [PMID: 37375872 DOI: 10.3390/plants12122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Pepper is an important condiment, and its aroma affects its commercial value. In this study, transcriptome sequencing and combined headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the differentially expressed genes and volatile organic compounds in spicy and non-spicy pepper fruits. Compared with non-spicy fruits, there were 27 up-regulated volatile organic compounds (VOCs) and 3353 up-regulated genes (Up-DEGs) in spicy fruits. The results of KEGG enrichment analysis of the Up-DEGs combined with differential VOCs analysis showed that fatty acid biosynthesis and terpenoid biosynthesis may be the main metabolic pathways for aroma differences between non-spicy and spicy pepper fruits. The expression levels of the fatty acid biosynthesis-related genes FAD, LOX1, LOX5, HPL, and ADH and the key terpene synthesis gene TPS in spicy pepper fruits were significantly higher than those in non-spicy pepper fruits. The differential expression of these genes may be the reason for the different aroma. The results can provide reference for the development and utilization of high-aroma pepper germplasm resources and the breeding of new varieties.
Collapse
Affiliation(s)
- Yinhui Qiu
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Yongqing Li
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Lidong Wu
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Hang Wei
- Institute of Agricultural Quality Standards and Testing Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Jianwei Fu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiting Chen
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Shuting Lin
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Zhang
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Wei Shang
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Chengshu Liao
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Shaogui Zeng
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ying Luo
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Weiwei Cai
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
- College of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 350002, China
| |
Collapse
|
15
|
Mi X, Yang C, Qiao D, Tang M, Guo Y, Liang S, Li Y, Chen Z, Chen J. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation. Sci Rep 2023; 13:6015. [PMID: 37045909 PMCID: PMC10097665 DOI: 10.1038/s41598-023-32435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Tea plants are crops with economic, health and cultural value. Catechin, caffeine and theanine are the main secondary metabolites of taste. In the process of germplasm collection, we found a resource in the Sandu Aquatic Autonomous County of Guizhou (SDT) that possessed significantly different characteristic metabolites compared with the cultivar 'Qiancha 1'. SDT is rich in theobromine and theophylline, possesses low levels of (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-gallate, and theanine content, and is almost free of caffeine. However, research on this tea resource is limited. Full-length transcriptome analysis was performed to investigate the transcriptome and gene expression of these metabolites. In total, 78,809 unique transcripts were obtained, of which 65,263 were complete coding sequences. RNA-seq revealed 3415 differentially expressed transcripts in the tender leaves of 'Qiancha 1' and 'SDT'. Furthermore, 2665, 6231, and 2687 differentially expressed transcripts were found in different SDT tissues. These differentially expressed transcripts were enriched in flavonoid and amino acid metabolism processes. Co-expression network analysis identified five modules associated with metabolites and found that genes of caffeine synthase (TCS) may be responsible for the low caffeine content in SDT. Phenylalanine ammonia lyase (PAL), glutamine synthetase (GS), glutamate synthase (GOGAT), and arginine decarboxylase (ADC) play important roles in the synthesis of catechin and theanine. In addition, we identified that ethylene resposive factor (ERF) and WRKY transcription factors may be involved in theanine biosynthesis. Overall, our study provides candidate genes to improve understanding of the synthesis mechanisms of these metabolites and provides a basis for molecular breeding of tea plant.
Collapse
Affiliation(s)
- Xiaozeng Mi
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Chun Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Mengsha Tang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Guo
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Sihui Liang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Li
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Zhengwu Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Juan Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
16
|
Wei J, Yang Y, Peng Y, Wang S, Zhang J, Liu X, Liu J, Wen B, Li M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24086937. [PMID: 37108101 PMCID: PMC10138656 DOI: 10.3390/ijms24086937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yun Yang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Ye Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Ye Y, Yan W, Peng L, Zhou J, He J, Zhang N, Cheng S, Cai J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res Int 2023; 165:112460. [PMID: 36869476 DOI: 10.1016/j.foodres.2023.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Selenium-enriched green tea (Se-GT) is of increasing interest because of its health benefits, but its quality components obtained limited research. In this study, Enshi Se-enriched green tea (ESST, high-Se green tea), Pingli Se-enriched green tea (PLST, low-Se green tea), and Ziyang green tea (ZYGT, common green tea) were subjected to sensory evaluation, chemical analysis, and aroma profiling. Chemical profiles in Se-GT were consistent with the taste attributes of the sensory analysis. 9 volatiles were identified as key odorants of Se-GT based on multivariate analysis. Correlations between Se and quality components were further assessed and highly Se-related compounds contents in these three tea samples were compared. The results showed that most amino acids and non-gallated catechins were highly negatively correlated with Se, while gallated catechins exhibited strong positive correlation with Se. And there were strong and significant associations between the key aroma compounds and Se. Moreover, 11 differential markers were found between Se-GTs and common green tea, including catechin, serine, glycine, threonine, l-theanine, alanine, valine, isoleucine, leucine, histidine, and lysine. These findings provide great potential for quality evaluation of Se-GT.
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
18
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
19
|
Huang D, Li M, Wang H, Fu M, Hu S, Wan X, Wang Z, Chen Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
20
|
Wang Z, Wang Z, Dai H, Wu S, Song B, Lin F, Huang Y, Lin X, Sun W. Identification of characteristic aroma and bacteria related to aroma evolution during long-term storage of compressed white tea. Front Nutr 2022; 9:1092048. [PMID: 36601074 PMCID: PMC9806140 DOI: 10.3389/fnut.2022.1092048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Compressed white tea (CWT) is a reprocessed tea of white tea. Long-term storage has greatly changed its aroma characteristics, but the material basis and transformation mechanism of its unique aroma are still unclear. In this study, flavor wheel, headspace gas chromatography ion mobility spectroscopy, chemometrics, and microbiomics were applied to study the flavor evolution and important aroma components during long-term storage of CWT, and core functional bacteria were screened. During long-term storage, the aroma of CWT gradually changed from sweet, fruity and floral to stale flavor, woody and herbal. A total of 56 volatile organic compounds (VOCs) were identified, 54 of which were significantly differences during storage. The alcohols content was the highest during 1-5 years of storage, the esters content was the highest during 7-13 years of storage, and the aldehydes content was the highest during 16 years of storage. Twenty-nine VOCs were identified as important aroma components, which were significantly correlated with 6 aroma sub-attributes (P < 0.05). The functional prediction of bacterial community reminded that bacterial community could participate in the transformation of VOCs during storage of CWT. Twenty-four core functional bacteria were screened, which were significantly associated with 29 VOCs. Finally, 23 characteristic differential VOCs were excavated, which could be used to identify CWT in different storage years. Taken together, these findings provided new insights into the changes in aroma characteristics during storage of CWT and increased the understanding of the mechanism of characteristic aroma formation during storage.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoling Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Yan Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Xingchen Lin
- Fujian Ming Shan Tea Industry Co., Ltd., Fuding, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Weijiang Sun ✉
| |
Collapse
|
21
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
22
|
Yin P, Wang JJ, Kong YS, Zhu Y, Zhang JW, Liu H, Wang X, Guo GY, Wang GM, Liu ZH. Dynamic Changes of Volatile Compounds during the Xinyang Maojian Green Tea Manufacturing at an Industrial Scale. Foods 2022; 11:foods11172682. [PMID: 36076866 PMCID: PMC9455817 DOI: 10.3390/foods11172682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Xinyang Maojian (XYMJ) is one of the premium green teas and originates from Xinyang, which is the northernmost green tea production area in China. The special geographic location, environmental conditions, and manufacturing process contribute to the unique flavor and rich nutrition of XYMJ green tea. Aroma is an important quality indicator in XYMJ green tea. In order to illustrate the aroma of XYMJ green tea, the key odorants in XYMJ green tea and their dynamic changes during the manufacturing processes were analyzed by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 73 volatile compounds of six different chemical classes were identified in the processed XYMJ green tea samples, and the manufacturing processes resulted in the losses of total volatile compounds. Among the identified volatile compounds, twenty-four aroma-active compounds, such as trans-nerolidol, geranylacetone, nonanal, (+)-δ-cadinene, linalool, (Z)-jasmone, cis-3-hexenyl butyrate, cis-3-hexenyl hexanoate, methyl jasmonate, and β-ocimene, were identified as the key odorants of XYMJ green tea based on odor activity value (OAV). The key odorants are mainly volatile terpenes (VTs) and fatty acid-derived volatiles (FADVs). Except for (+)-δ-cadinene, copaene, cis-β-farnesene, (Z,E)-α-farnesene and phytol acetate, the key odorants significantly decreased after fixing. The principal coordinate analysis (PCoA) and the hierarchical cluster analysis (HCA) analyses suggested that fixing was the most important manufacturing process for the aroma formation of XYMJ green tea. These findings of this study provide meaningful information for the manufacturing and quality control of XYMJ green tea.
Collapse
Affiliation(s)
- Peng Yin
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jing-Jing Wang
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Ya-Shuai Kong
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yao Zhu
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jun-Wei Zhang
- Xinyang Yunzhen Tea Co., Ltd., Xinyang 464000, China
| | - Hao Liu
- Xinyang Xianfeng Tea Co., Ltd., Xinyang 464000, China
| | - Xiao Wang
- Xinyang Wenxin Tea Co., Ltd., Xinyang 464000, China
| | - Gui-Yi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Guang-Ming Wang
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
- Correspondence: (G.-M.W.); (Z.-H.L.)
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (G.-M.W.); (Z.-H.L.)
| |
Collapse
|
23
|
Qiao D, Tang M, Jin L, Mi X, Chen H, Zhu J, Liu S, Wei C. A monoterpene synthase gene cluster of tea plant (Camellia sinensis) potentially involved in constitutive and herbivore-induced terpene formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:1-13. [PMID: 35613521 DOI: 10.1016/j.plaphy.2022.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Monoterpenes and sesquiterpenes are the most abundant volatiles in tea plants and have dual functions in aroma quality formation and defense responses in tea plants. Terpene synthases (TPS) are the key enzymes for the synthesis of terpenes in plants; however, the functions of most of them in tea plants are still unknown. In this study, six putative terpene biosynthesis gene clusters were identified from the tea plant genome. Then we cloned three new TPS-b subfamily genes, CsTPS08, CsTPS10 and CsTPS58. In vitro enzyme assays showed that CsTPS08 and CsTPS58 are two multiple-product terpene synthases, with the former synthesizing linalool as the main product, and β-myrcene, α-phellandrene, α-terpinolene, D-limonene, cis-β-ocimene, trans-β-ocimene and (4E,6Z)-allo-ocimene as minor products are also detected, while the latter catalyzing the formation of α-pinene and D-limonene using GPP as the substrate. No product of CsTPS10 was detected in the prokaryotic expression system, but geraniol production was detected when transiently expressed in tobacco leaves. CsTPS08 and CsTPS10 are two functional members of a monoterpene synthase gene cluster, which were significantly induced during both Ectropis oblique feeding and fresh leaf spreading treatments, suggesting that they have dual functions involved in tea plant pest defense and tea aroma quality regulation. In addition, the differences in their expression levels in different tea plant cultivars provide a possibility for the subsequent screening of tea plant resources with a specific aroma flavor. Our results deepen the understanding of terpenoid synthesis in tea plants.
Collapse
Affiliation(s)
- Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, Guizhou, 550006, China
| | - Mengsha Tang
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
24
|
Zhou H, Liu Y, Yang J, Wang H, Ding Y, Lei P. Comprehensive profiling of volatile components in Taiping Houkui green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Variations in Fatty Acids Affected Their Derivative Volatiles during Tieguanyin Tea Processing. Foods 2022; 11:foods11111563. [PMID: 35681313 PMCID: PMC9180273 DOI: 10.3390/foods11111563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023] Open
Abstract
Fatty acids (FAs) are important precursors of oolong tea volatile substances, and their famous derivatives have been shown to be the key aroma components. However, the relationship between fatty acids and their derivatives during oolong tea production remains unclear. In this study, fresh Tieguanyin leaves were manufactured into oolong tea and green tea (control), and fatty acids and fatty acid-derived volatiles (FADV) were extracted from processed samples by the sulfuric acid–methanol method and solvent-assisted flavor evaporation (SAFE), respectively. The results showed that unsaturated fatty acids were more abundant than saturated fatty acids in fresh leaves and decreased significantly during tea making. Relative to that in green tea, fatty acids showed larger variations in oolong tea, especially at the green-making stage. Unlike fatty acids, the FADV content first increased and then decreased. During oolong tea manufacture, FADV contents were significantly and negatively correlated with total fatty acids; during the green-making stage, methyl jasmonate (MeJA) content was significantly and negatively correlated with abundant fatty acids except steric acid. Our data suggest that the aroma quality of oolong tea can be improved by manipulating fatty acid transformation.
Collapse
|
26
|
Identification of Key Aroma Compounds Responsible for the Floral Ascents of Green and Black Teas from Different Tea Cultivars. Molecules 2022; 27:molecules27092809. [PMID: 35566160 PMCID: PMC9100887 DOI: 10.3390/molecules27092809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chemicals underlying the floral aroma of dry teas needs multi-dimensional investigations. Green, black, and freeze-dried tea samples were produced from five tea cultivars, and only ‘Chunyu2’ and ‘Jinguanyin’ dry teas had floral scents. ‘Chunyu2’ green tea contained the highest content of total volatiles (134.75 μg/g) among green tea samples, while ‘Jinguanyin’ black tea contained the highest content of total volatiles (1908.05 μg/g) among black tea samples. The principal component analysis study showed that ‘Chunyu2’ and ‘Jinguanyin’ green teas and ‘Chunyu2’ black tea were characterized by the abundant presence of certain alcohols with floral aroma, while ‘Jinguanyin’ black tea was discriminated due to the high levels of certain alcohols, esters, and aldehydes. A total of 27 shared volatiles were present in different tea samples, and the contents of 7 floral odorants in dry teas had correlations with those in fresh tea leaves (p < 0.05). Thus, the tea cultivar is crucial to the floral scent of dry tea, and these seven volatiles could be promising breeding indices.
Collapse
|
27
|
Metabolomics Combined with Proteomics Provide a Novel Interpretation of the Changes in Flavonoid Glycosides during White Tea Processing. Foods 2022; 11:foods11091226. [PMID: 35563948 PMCID: PMC9103810 DOI: 10.3390/foods11091226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/20/2023] Open
Abstract
In this study, nonvolatile metabolomics and proteomics were applied to investigate the change mechanism of flavonoid glycoside compounds during withering processing of white tea. With the extension of withering time, the content of the main flavonoid glycoside compounds significantly decreased, and then the flavonoid aglycones and water-soluble saccharides contents increased. However, the change trends of these compounds were inconsistent with the expression pattern of related biosynthesis pathway proteins, indicating that the degradation of flavonoid glycosides might exist in the withering process of white tea. One co-expression network that was highly correlated with variations in the flavonoid glycosides’ component contents during the withering process was identified via WGCNA. Further analysis revealed that the degradation of flavonoid glycosides may be related to the antioxidant action of tea leaves undergoing the withering process. Our results provide a novel characterization of white tea taste formation during processing.
Collapse
|
28
|
Mei S, Yu Z, Chen J, Zheng P, Sun B, Guo J, Liu S. The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis. Molecules 2022; 27:molecules27051708. [PMID: 35268809 PMCID: PMC8911848 DOI: 10.3390/molecules27051708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proper postharvest storage preserves horticultural products, including tea, until they can be processed. However, few studies have focused on the physiology of ripening and senescence during postharvest storage, which affects the flavor and quality of tea. In this study, physiological and biochemical indexes of the leaves of tea cultivar ‘Yinghong 9′ preserved at a low temperature and high relative humidity (15–18 °C and 85–95%, PTL) were compared to those of leaves stored at ambient conditions (24 ± 2 °C and relative humidity of 65% ± 5%, UTL). Water content, chromatism, chlorophyll fluorescence, and key metabolites (caffeine, theanine, and catechins) were analyzed over a period of 24 h, and volatilized compounds were determined after 24 h. In addition, the expression of key biosynthesis genes for catechin, caffeine, theanine, and terpene were quantified. The results showed that water content, chromatism, and chlorophyll fluorescence of preserved leaves were more similar to fresh tea leaves than unpreserved tea leaves. After 24 h, the content of aroma volatiles and caffeine significantly increased, while theanine decreased in both groups. Multiple catechin monomers showed distinct changes within 24 h, and EGCG was significantly higher in preserved tea. The expression levels of CsFAS and CsTSI were consistent with the content of farnesene and theanine, respectively, but TCS1 and TCS2 expression did not correlate with caffeine content. Principal component analysis considered results from multiple indexes and suggested that the freshness of PTL was superior to that of UTL. Taken together, preservation conditions in postharvest storage caused a series of physiological and metabolic variations of tea leaves, which were different from those of unpreserved tea leaves. Comprehensive evaluation showed that the preservation conditions used in this study were effective at maintaining the freshness of tea leaves for 2–6 h. This study illustrates the metabolic changes that occur in postharvest tea leaves, which will provide a foundation for improvements to postharvest practices for tea leaves.
Collapse
Affiliation(s)
- Shuang Mei
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zizi Yu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiaming Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
- Correspondence: (J.G.); (S.L.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
- Correspondence: (J.G.); (S.L.)
| |
Collapse
|
29
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|