1
|
Bisht V, Das B, Hussain A, Kumar V, Navani NK. Understanding of probiotic origin antimicrobial peptides: a sustainable approach ensuring food safety. NPJ Sci Food 2024; 8:67. [PMID: 39300165 DOI: 10.1038/s41538-024-00304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The practice of preserving and adding value to food dates back to over 10,000 BCE, when unintentional microbial-driven chemical reactions imparted flavor and extended the shelf life of fermented foods. The process evolved, and with the urbanization of society, significant shifts in dietary habits emerged, accompanied by sporadic food poisoning incidents. The repercussions of the COVID-19 pandemic have intensified the search for antibiotic alternatives owing to the rise in antibiotic-resistant pathogens, emphasizing the exploration of probiotic-origin antimicrobial peptides to alleviate human microbiome collateral damage. Often termed 'molecular knives', these peptides outstand as potent antimicrobials due to their compatibility with innate microflora, amenability to bioengineering, target specificity, versatility and rapidity in molecular level mode of action. This review centres on bacteriocins sourced from lactic acid bacteria found in ethnic fermented foods, accentuating their desirable attributes, technological applications as nanobiotics and potential future applications in the modern context of ensuring food safety.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Ajmal Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Vinod Kumar
- Visiting faculty, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
2
|
Pires AF, Díaz O, Cobos A, Pereira CD. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-Based Materials. Foods 2024; 13:2638. [PMID: 39200565 PMCID: PMC11353588 DOI: 10.3390/foods13162638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Packaging for food products is particularly important to preserve product quality and shelf life. The most used materials for food packaging are plastic, glass, metal, and paper. Plastic films produced based on petroleum are widely used for packaging because they have good mechanical properties and help preserve the characteristics of food. However, environmental concerns are leading the trend towards biopolymers. Films and coatings based on biopolymers have been extensively studied in recent years, as they cause less impact on the environment, can be obtained from renewable sources or by-products, are relatively abundant, have a good coating and film-forming capacity, are biodegradable and have nutritional properties that can be beneficial to human health. Whey protein-based films have demonstrated good mechanical resistance and a good barrier to gases when at low relative humidity levels, in addition to demonstrating an excellent barrier to aromatic compounds and especially oils. The use of whey proteins for films or coatings has been extensively studied, as these proteins are edible, have high nutritional value, and are biodegradable. Thus, the main objective of this document was to review new methodologies to improve the physicochemical properties of whey protein films and coatings. Importance will also be given to the combinations of whey proteins with other polymers and the development of new techniques that allow the manipulation of structures at a molecular level. The controlled release and mass transfer of new biomaterials and the improvement of the design of films and packaging materials with the desired functional properties can increase the quality of the films and, consequently, broaden their applications.
Collapse
Affiliation(s)
- Arona Figueroa Pires
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Angel Cobos
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Carlos Dias Pereira
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
3
|
Pires A, Pietruszka H, Bożek A, Szkolnicka K, Gomes D, Díaz O, Cobos A, Pereira C. Sheep's Second Cheese Whey Edible Coatings with Oregano and Clary Sage Essential Oils Used as Sustainable Packaging Material in Cheese. Foods 2024; 13:674. [PMID: 38472787 DOI: 10.3390/foods13050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Sheep's second cheese whey (SCW), the by-product resulting from whey cheese production, was used as a component of cheese coatings containing oregano (Origanum compactum) and clary sage (Salvia sclarea) essential oils (EOs). SCW powder was obtained by the ultrafiltration/diafiltration of SCW followed by reverse osmosis and freeze drying. The coatings were produced with a mixture of SCW and whey protein isolate (WPI) using glycerol as plasticizer. Model cheeses were produced with cow´s milk and those containing SCW:WPI coatings; those with and without EOs were compared to controls without coating and with a commercial coating containing natamycin. At the end of ripening (28 days), the cheeses containing EOs presented higher water activity (ca. 0.930) and moisture content, as well as lower titratable acidity. Concerning color parameters, significant differences were also observed between products and as a result of ripening time. However, the use of SCW:WPI coatings did not significantly influence the color parameters at the end of ripening. Regarding texture parameters, the cheeses containing SCW:WPI coatings presented significantly lower values for hardness, chewiness, and gumminess. Significant differences were also observed for all microbial groups evaluated either between products and as a result of ripening time. In all cases, lactobacilli and lactococci counts surpassed log 7-8 CFU/g, while the counts of yeasts and molds increased steadily from ca. log 3 to log 6 CFU/g. The lowest counts of yeasts and molds were observed in the samples containing natamycin, but nonsignificant differences between products were observed. In conclusion, SCW:WPI cheese coatings can successfully substitute commercial coatings with the advantage of being edible packaging materials manufactured with by-products.
Collapse
Affiliation(s)
- Arona Pires
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hubert Pietruszka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - Agata Bożek
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - David Gomes
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Angel Cobos
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Pereira
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Centro de Estudos dos Recursos Naturais, Ambiente e Sociedade-CERNAS, 3045-601 Coimbra, Portugal
| |
Collapse
|
4
|
Antonino C, Difonzo G, Faccia M, Caponio F. Effect of edible coatings and films enriched with plant extracts and essential oils on the preservation of animal-derived foods. J Food Sci 2024; 89:748-772. [PMID: 38161278 DOI: 10.1111/1750-3841.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Edible coatings and films for food preservation are becoming more popular thanks to their environmentally friendly properties and active ingredient-carrying ability. Their application can be effective in contrasting quality decay by limiting oxidation and deterioration of foods. Many reviews analyze the different compounds with which films and coatings can be created, their characteristics, and the effect when applied to food. However, the possibility of adding plant extracts and essential oils in edible coatings and films to preserve processed animal-derived products has been not exhaustively explored. The aim of this review is to summarize how edible coatings and films enriched with plant extracts (EXs) and essential oils (EOs) influence the physico-chemical and sensory features as well as the shelf-life of cheese, and processed meat and fish. Different studies showed that various EXs and EOs limited both oxidation and microbial growth after processing and during food preservation. Moreover, encapsulation has been found to be a valid technology to improve the solubility and stability of EOs and EXs, limiting strong flavor, controlling the release of bioactive compounds, and maintaining their stability during storage. Overall, the incorporation of EXs and EOs in edible coating and film to preserve processed foods can offer benefits for improving the shelf-life, limiting food losses, and creating a food sustainable chain.
Collapse
Affiliation(s)
- Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
6
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Dursun Capar T. Characterization of sodium alginate-based biodegradable edible film incorporated with Vitis vinifera leaf extract: Nano-scaled by ultrasound-assisted technology. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Rosseto M, Rigueto CVT, Alessandretti I, de Oliveira R, Raber Wohlmuth DA, Loss RA, Dettmer A, Richards NSPDS. Whey-based polymeric films for food packaging applications: a review of recent trends. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3217-3229. [PMID: 36329662 DOI: 10.1002/jsfa.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The food industry is always looking for new strategies to extend the shelf life of food. In recent years, the focus has been on edible films and coatings. These play an essential role in the quality, safety, transport, storage, and display of a wide variety of fresh and processed foods and contribute to environmental sustainability. In this sense, this study aimed to carry out a bibliometric analysis and literature review on the production of whey-based films for application in food packaging. Whey-based films have different characteristics when compared to other biopolymers, such as antimicrobial and immunomodulatory capacity. A wide variety of compounds were found that can be incorporated into whey films, aiming to overcome their limitations related to high solubility and low mechanical properties. These compounds range from plasticizing agents, secondary biomacromolecules added to balance the polymer matrix (gelatin, starch, chitosan), and bioactive agents (essential oils, pigments extracted from plants, and other antimicrobial agents). The most cited foods as application matrix were meat (fish, chicken, ham, and beef), in addition to different types of cheese. Edible and biodegradable films have the potential to replace synthetic polymers, combining social, environmental, and economic aspects. The biggest challenge on a large scale is the stability of physical, chemical, and biological properties during application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Federal University of Santa Maria (UFSM), Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Federal University of Santa Maria (UFSM), Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Santa Maria, Brazil
| | - Ingridy Alessandretti
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Postgraduate Program in Food Science and Technology (PPGCTA), Passo Fundo, Brazil
| | - Rafaela de Oliveira
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Daniela Alexia Raber Wohlmuth
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Postgraduate Program in Food Science and Technology (PPGCTA), Passo Fundo, Brazil
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
9
|
Ferraz AR, Goulão M, Santo CE, Anjos O, Serralheiro ML, Pintado CMBS. Novel, Edible Melanin-Protein-Based Bioactive Films for Cheeses: Antimicrobial, Mechanical and Chemical Characteristics. Foods 2023; 12:foods12091806. [PMID: 37174344 PMCID: PMC10178364 DOI: 10.3390/foods12091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The cheese rind is the natural food packaging of cheese and is subject to a wide range of external factors that compromise the appearance of the cheese, including color defects caused by spoilage microorganisms. First, eight films based on whey protein isolate (WPI) coatings were studied, of which IS3CA (WPI 5% + sorbitol 3% + citric acid 3%) was selected for presenting better properties. From the IS3CA film, novel films containing melanin M1 (74 µg/mL) and M2 (500 µg/mL) were developed and applied to cheese under proof-of-concept and industrial conditions. After 40 days of maturation, M2 presented the lowest microorganism count for all the microbial parameters analyzed. The cheese with M2 showed the lowest lightness, which indicates that it is the darkest cheese due to the melanin concentration. It was found that the mechanical and colorimetric properties are the ones that contribute the most to the distinction of the M2 film in cheese from the others. Using FTIR-ATR, it was possible to distinguish the rinds of M2 cheeses because they contained the highest concentrations of melanin. Thus, this study shows that the film with M2 showed the best mechanical, chemical and antimicrobial properties for application in cheese.
Collapse
Affiliation(s)
- Ana Rita Ferraz
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuela Goulão
- Escola Superior Agrária, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Christophe E Santo
- CATAA-Associação Centro de Apoio Tecnológico Agro-Alimentar, 6000-459 Castelo Branco, Portugal
- Center for Functional Ecology Science for People & the Planet, TERRA Associated Laboratory, Department of Life Sciences, University of Coimbra Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ofélia Anjos
- Escola Superior Agrária, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- CEF-Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Maria Luísa Serralheiro
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cristina M B S Pintado
- Escola Superior Agrária, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- CERNAS-Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- QRural-Unidade de Investigação Qualidade de Vida no Mundo Rural, Instituto Politécnico de Castelo Branco, Avenida Pedro Álvares Cabral, n° 12, 6000-084 Castelo Branco, Portugal
| |
Collapse
|
10
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
11
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
El Abdali Y, Mahraz AM, Beniaich G, Mssillou I, Chebaibi M, Bin Jardan YA, Lahkimi A, Nafidi HA, Aboul-Soud MAM, Bourhia M, Bouia A. Essential oils of Origanum compactum Benth: Chemical characterization, in vitro, in silico, antioxidant, and antibacterial activities. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Abstract
This study was performed to investigate the phytochemical profile, and the, in vitro, and, in silico, antioxidant and antibacterial properties of the essential oil (EO) extracted from Origanum compactum. EO phytochemical screening was examined by gas chromatography coupled to mass spectrometry. The antioxidant potential, in vitro, was assessed using reducing power(FRAP), free 2,2 diphenylpicrylhydrazyl (DPPH) radical scavenging and total antioxidant capacity tests. Antibacterial properties against two Gram (−) and two Gram (+) bacteria were assessed using the minimal inhibitory concentration (MIC) and the disc diffusion methods. By use of molecular docking, antioxidant and antibacterial activities of oregano EO were also tested. Thymol (75.53%) was the major compound among the nine compounds identified in the EO of Origanum compactum, followed by carvacrol (18.26%). Oregano EO showed an important antioxidant capacity, as tested by FRAP and DPPH assays, with EC50 and IC50 values of 13.300 ± 0.200 and 0.690 ± 0.062 mg/mL, respectively. The same EO has a total antioxidant capacity of 173.900 ± 7.231 mg AAE/g EO. The antibacterial results showed significant activity of Origanum compactum EO against all tested bacteria, especially against S. aureus (MIC = 0.25 mg/mL) and B. subtilis (MIC = 0.06 mg/mL). In silico, carvacrol was the most active molecule against nicotinamide adenine dinucleotide phosphate oxidase (2CDU) and S. aureus nucleoside diphosphate kinase (3Q8U) with a glide score of −6.082, and −6.039 kcal/mol, respectively. Regarding the inhibition of E. coli beta-ketoacyl-[acyl carrier protein] synthase (1FJ4), piperitenone was the most active molecule with a glide score of −7.112 kcal/mol. In light of the results obtained, the EO of Origanum compactum Moroccan species can be used as promising natural food conservatives and an agent to fight antibiotic-resistant nosocomial microbes.
Collapse
Affiliation(s)
- Youness El Abdali
- Laboratory of Biotechnology, Environment, Agri-food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University , Fez 30050 , Morocco
| | - Adil M. Mahraz
- Laboratory of Engineering, Electrochemistry, Modeling and Environment (LIEME), Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University , Fez , Morocco
| | - Ghada Beniaich
- Laboratory of Engineering, Electrochemistry, Modeling and Environment (LIEME), Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University , Fez , Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University , Fez 30050 , Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, BP 1893 , Km 22, Road of Sidi Harazem , Fez , Morocco
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Amal Lahkimi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment (LIEME), Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University , Fez , Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University , 2325 Quebec City , QC G1V 0A6 , Canada
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University , P.O. Box 10219 , Riyadh 11433 , Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University , Laayoune 70000 , Morocco
| | - Abdelhak Bouia
- Laboratory of Biotechnology, Environment, Agri-food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University , Fez 30050 , Morocco
| |
Collapse
|
13
|
Biological control of pathogens in artisanal cheeses. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Venkatachalam K, Rakkapao N, Lekjing S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. MEMBRANES 2023; 13:membranes13020161. [PMID: 36837664 PMCID: PMC9967404 DOI: 10.3390/membranes13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/12/2023]
Abstract
Biopolymer-based edible packaging is an effective way of preserving food while protecting the environment. This study developed an edible composite film using chitosan and native glutinous rice starch (NGRS) and incorporated essential oils (EOs) such as garlic, galangal, turmeric, and kaffir lime at fixed concentrations (0.312 mg/mL) to test its physicochemical and antimicrobial properties. The EO-added films were found to significantly improve the overall color characteristics (lightness, redness, and yellowness) as compared to the control film. The control films had higher opacity, while the EO-added films had slightly reduced levels of opacity and produced clearer films. The tensile strength and elongation at break values of the films varied among the samples. The control samples had the highest tensile strength, followed by the turmeric EO-added samples. However, the highest elongation at break value was found in the galangal and garlic EO-added films. The Young's modulus results showed that garlic EO and kaffir lime EO had the lowest stiffness values. The total moisture content and water vapor permeability were very low in the garlic EO-added films. Despite the differences in EOs, the Fourier-transform infrared spectroscopy (FTIR) patterns of the tested films were similar among each other. Microstructural observation of the surface and cross-section of the tested edible film exhibited smooth and fissureless patterns, especially in the EO-added films, particularly in the galangal and kaffir lime EO-added films. The antimicrobial activity of the EO-added films was highly efficient against various gram-positive and gram-negative pathogens. Among the EO-added films, the garlic and galangal EO-added films exhibited superior inhibitory activity against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas fluorescence, and turmeric and kaffir lime EO-added films showed potential antimicrobial activity against Lactobacillus plantarum and L. monocytogenes. Overall, this study concludes that the addition of EOs significantly improved the physicochemical and antimicrobial properties of the CH-NGRS-based edible films, making them highly suitable for food applications.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
| | - Natthida Rakkapao
- Department of Applied Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Center of Excellence in Membrane Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Correspondence:
| |
Collapse
|
15
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
16
|
Layer-by-Layer Coating Approach Based on Sodium Alginate, Sage Seed Gum, and Savory Oil: Shelf-Life Extension of Fresh Cheese. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Dıblan S, Kaya S. Shelf life modelling of kaşar cheese packaged with potassium sorbate, nisin, silver substituted zeolite, or chitosan incorporated active multilayer plastic films. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
19
|
Moula Ali AM, Sant'Ana AS, Bavisetty SCB. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Polat Yemiş G, Sezer E, Sıçramaz H. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil ( Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules 2022; 27:7298. [PMID: 36364124 PMCID: PMC9658201 DOI: 10.3390/molecules27217298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 03/09/2024] Open
Abstract
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. The GC-MS analysis showed that the main components of myrtle essential oil were 1,8-cineol (38.64%), α-pinene (30.19%), d-limonene (7.51%), and α-ocimene (6.57%). Myrtle essential oil showed an inhibitory effect on all tested L. monocytogenes strains and this effect significantly increased after ultrasonication. Minimum inhibitory and minimum bactericidal concentrations of myrtle essential oil nanoemulsion were found to be 4.00-4.67 mg/mL and 5.00-7.33 mg/mL, respectively. The antibacterial activity of myrtle essential oil nanoemulsion against L. monocytogenes was confirmed by the membrane integrity and FESEM analyses. Nanoemulsion coatings containing myrtle essential oil showed antibacterial activity against L. monocytogenes with no adverse effects on the physicochemical properties of cheese samples. Nanoemulsion coatings containing 1.0% and 2.0% myrtle essential oil reduced the L. monocytogenes population in cheese during the storage by 0.42 and 0.88 log cfu/g, respectively. These results revealed that nanoemulsion-based alginate edible coatings containing myrtle essential oil have the potential to be used as a natural food preservative.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
- Sakarya University Research, Development, and Application Center (SARGEM), Serdivan 54187, Turkey
| | - Elif Sezer
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| | - Hatice Sıçramaz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan 54187, Turkey
| |
Collapse
|
21
|
Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Salanță LC, Cropotova J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. PLANTS 2022; 11:plants11192488. [PMID: 36235353 PMCID: PMC9570595 DOI: 10.3390/plants11192488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Consumer awareness and demands for quality eco-friendly food products have made scientists determined to concentrate their attention on sustainable advancements in the utilization of bioactive compounds for increasing safety and food quality. Essential oils (EOs) are extracted from plants and exhibit antimicrobial (antibacterial and antifungal) activity; thus, they are used in food products to prolong the shelf-life of foods by limiting the growth or survival of microorganisms. In vitro studies have shown that EOs are effective against foodborne bacteria, such as Escherichia coli, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. The growing interest in essential oils and their constituents as alternatives to synthetic preservatives has been extensively exploited in recent years, along with techniques to facilitate the implementation of their application in the food industry. This paper’s aim is to evaluate the current knowledge on the applicability of EOs in food preservation, and how this method generally affects technological properties and consumers’ perceptions. Moreover, essential aspects concerning the limitation of the available alternatives are highlighted, followed by a presentation of the most promising trends to streamline the EOs’ usability. Incorporating EOs in packaging materials is the next step for green and sustainable foodstuff production and a biodegradable method for food preservation.
Collapse
Affiliation(s)
- Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
- Correspondence:
| |
Collapse
|
23
|
Iversen LJL, Rovina K, Vonnie JM, Matanjun P, Erna KH, ‘Aqilah NMN, Felicia WXL, Funk AA. The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules 2022; 27:5604. [PMID: 36080371 PMCID: PMC9457879 DOI: 10.3390/molecules27175604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today's world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products' shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Collapse
Affiliation(s)
- Luk Jun Lam Iversen
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Andree Alexander Funk
- Rural Development Corporation, Level 2, Wisma Pertanian, Locked Bag 86, Kota Kinabalu 88998, Sabah, Malaysia
| |
Collapse
|
24
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
25
|
Zhang W, Rhim JW. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Garavand F, Jafarzadeh S, Cacciotti I, Vahedikia N, Sarlak Z, Tarhan Ö, Yousefi S, Rouhi M, Castro-Muñoz R, Jafari SM. Different strategies to reinforce the milk protein-based packaging composites. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
29
|
Papadaki A, Manikas AC, Papazoglou E, Kachrimanidou V, Lappa I, Galiotis C, Mandala I, Kopsahelis N. Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach. Food Chem 2022; 385:132604. [PMID: 35303655 DOI: 10.1016/j.foodchem.2022.132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Edible films were developed using whey protein concentrate (WPC) and a natural bio-polymer, namely bacterial cellulose (BC). BC was produced via fermentation from orange peels and subsequently acid-hydrolyzed to obtain BC nanowhiskers (BCNW) with high crystallinity (XRD analysis). Morphology of BCNW was analyzed by SEM, TEM, and AFM. WPC/BCNW film composites, containing different amounts of BCNW (0.5-15%, w/w) were developed and characterized. WPC/BCNW film composite was analyzed by Raman spectroscopy, indicating the successful incorporation and the homogenous distribution of BCNW into the WPC film matrix. Mechanical characterization showed that BCNW behaved as a reinforcing filler in the WPC film, increasing tensile strength and Young's modulus by 32% and 80%, respectively. In addition, water vapor permeability was reduced by 33.9% upon the addition of 0.5% BCNW. This study presented a sustainable approach towards the production of WPC films with improved tensile and water barrier properties, suggesting its potential application as a packaging material.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Anastasios C Manikas
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou St, Platani, 26504 Patras, Greece; Department Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Eleonora Papazoglou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Iliada Lappa
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Costas Galiotis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou St, Platani, 26504 Patras, Greece; Department Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece.
| |
Collapse
|
30
|
Zhang W, Rhim JW. Functional edible films/coatings integrated with lactoperoxidase and lysozyme and their application in food preservation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Heat-denatured and alcalase-hydrolyzed protein films/coatings containing marjoram essential oil and thyme extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Kontogianni VG, Kasapidou E, Mitlianga P, Mataragas M, Pappa E, Kondyli E, Bosnea L. Production, characteristics and application of whey protein films activated with rosemary and sage extract in preserving soft cheese. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Haghighatpanah N, Omar-Aziz M, Gharaghani M, Khodaiyan F, Hosseini SS, Kennedy JF. Effect of mung bean protein isolate/pullulan films containing marjoram (Origanum majorana L.) essential oil on chemical and microbial properties of minced beef meat. Int J Biol Macromol 2022; 201:318-329. [PMID: 35026220 DOI: 10.1016/j.ijbiomac.2022.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
In this study, the effect of marjoram essential oil (MEO) on the mechanical, barrier, antioxidant and antimicrobial properties of mung bean protein isolate (MPI)/pullulan (PU) composite films and its influence on the quality of minced beef meat during 14 days storage at 4 °C was studied. The Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results confirmed the compatibility between components. Also, depend on the different ratios of combination of MEO and MPI/PU, tensile strength (TS) and elongation at break (EAB) were varied. The results showed that an increase in the level of the MPI led to a significant increment in TS and water-proof properties of the composite films. Also, with addition of MEO, the EAB of the antimicrobial blend-films was decreased, while TS and water-proof properties were increased. In addition, enrichment of the films with MEO led to a considerable positive effect on DPPH radical scavenging and antibacterial activity against pathogenic bacteria (Staphylococcus aureus and Escherichia coli). Based on the bacterial and chemical analyses of the minced meat samples, MEO-incorporation in MPI/PU films enhanced oxidative stability of minced beef samples, and also showed effective antimicrobial activity against all of the tested bacteria.
Collapse
Affiliation(s)
- Negar Haghighatpanah
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Maedeh Omar-Aziz
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohammad Gharaghani
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcestershire B60 4JE, UK
| |
Collapse
|
34
|
SOGUT ECE, SEYDIM ATIFCAN. Starch and whey protein isolate films including an aroma compound stabilized by nanocellulose. AN ACAD BRAS CIENC 2022; 94:e20211232. [DOI: 10.1590/0001-3765202220211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/20/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- ECE SOGUT
- Department of Food Engineering, Turkey
| | | |
Collapse
|
35
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
36
|
ZHANG W, LIN M, FENG X, YAO Z, WANG T, XU C. Effect of lemon essential oil-enriched coating on the postharvest storage quality of citrus fruits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.125421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Mei LIN
- Zhejiang Institute of Citrus Research, China
| | - Xianju FENG
- Zhejiang Institute of Citrus Research, China
| | - Zhoulin YAO
- Zhejiang Institute of Citrus Research, China
| | - Tianyu WANG
- Zhejiang Institute of Citrus Research, China
| | - Chengnan XU
- Zhejiang Institute of Citrus Research, China
| |
Collapse
|
37
|
Christaki S, Moschakis T, Kyriakoudi A, Biliaderis CG, Mourtzinos I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Contessa CR, da Rosa GS, Moraes CC. New Active Packaging Based on Biopolymeric Mixture Added with Bacteriocin as Active Compound. Int J Mol Sci 2021; 22:ijms221910628. [PMID: 34638967 PMCID: PMC8508738 DOI: 10.3390/ijms221910628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to develop a chitosan/agar-agar bioplastic film incorporated with bacteriocin that presents active potential when used as food packaging. The formulation of the film solution was determined from an experimental design, through the optimization using the desirability function. After establishing the concentrations of the biopolymers and the plasticizer, the purified bacteriocin extract of Lactobacillus sakei was added, which acts as an antibacterial agent. The films were characterized through physical, chemical, mechanical, barrier, and microbiological analyses. The mechanical properties and water vapor permeability were not altered by the addition of the extract. The swelling property decreased with the addition of the extract and the solubility increased, however, the film remained intact when in contact with the food, thus allowing an efficient barrier. Visible light protection was improved by increased opacity and antibacterial capacity was effective. When used as Minas Frescal cream cheese packaging, it contributed to the increase of microbiological stability, showing a reduction of 2.62 log UFC/g, contributing a gradual release of the active compound into the food during the storage time. The film had an active capacity that could be used as a barrier to the food, allowing it to be safely packaged.
Collapse
|
39
|
Punia Bangar S, Chaudhary V, Thakur N, Kajla P, Kumar M, Trif M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods 2021; 10:2282. [PMID: 34681331 PMCID: PMC8534497 DOI: 10.3390/foods10102282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc., and other consumable constituents extracted from various non-conventional sources are used alone or imbibed together. Edible packaging with antimicrobial components had led to the development of the hypothesis of active packaging which safeguards the quality of foods as well as health of consumers. Natural antimicrobial agents (NAMAs) like essential oils from spices, bioactive compounds derived from vegetables and fruits, animal and microorganism derived compounds having antimicrobial properties can be potentially used in edible films as superior replcement for synthetic compounds, thus serving the purpose of quality and heath. Most of the natural antimicrobial agents enjoy GRAS status and are safer than their synthetic counterparts. This review focuses on updated literature on the sources, properties and potential applications of NAMAs in the food industry. This review also analyzes the biodegradability and biocompatibility and edibility properties of NAMAs enriched films and it can be concluded that NAMAs are better substitutes but affect the organoleptic as well as the mechanical properties of the films. Despite many advantages, the inclusion of NAMAs into the films needs to be investigated more to quantify the inhibitory concentration without affecting the properties of films and exerting potential antimicrobial action to ensure food safety.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125001, India
| | - Neha Thakur
- Department of Livestock Product Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125001, India;
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton 10 Technology, Mumbai 400019, India;
| | - Monica Trif
- CENCIRA Agrofood Research and Innovation Centre, Research and Development Department, Ion Meșter, 6, 400650 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Folentarska A, Łagiewka J, Krystyjan M, Ciesielski W. Biodegradable Binary and Ternary Complexes from Renewable Raw Materials. Polymers (Basel) 2021; 13:polym13172925. [PMID: 34502965 PMCID: PMC8433750 DOI: 10.3390/polym13172925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this paper is to investigate the interactions between polysaccharides with different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients. Another objective is to understand the mechanisms of these systems and the interdependence between their properties and intermolecular interactions. At present, there are not many studies on ternary blends composed of natural food polymers: polysaccharides of different electrical charge (anionic and neutral starches), proteins and lipids. Additionally, there are no reports concerning what type of interactions between polysaccharide, proteins and lipids exist simultaneously when the components are mixed in different orders. This paper intends to fill this gap. It also presents the application of natural biopolymers in the food and non-food industries.
Collapse
Affiliation(s)
- Agnieszka Folentarska
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Jakub Łagiewka
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland;
| | - Wojciech Ciesielski
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
- Correspondence: or
| |
Collapse
|
41
|
Lima RC, de Carvalho APA, Vieira CP, Moreira RV, Conte-Junior CA. Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers (Basel) 2021; 13:2675. [PMID: 34451212 PMCID: PMC8398146 DOI: 10.3390/polym13162675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
The side effects and potential impacts on human health by traditional chemical additives as food preservatives (i.e., potassium and sodium salts) are the reasons why novel policies are encouraged by worldwide public health institutes. More natural alternatives with high antimicrobial efficacy to extend shelf life without impairing the cheese physicochemical and sensory quality are encouraged. This study is a comprehensive review of emerging preservative cheese methods, including natural antimicrobials (e.g., vegetable, animal, and protist kingdom origins) as a preservative to reduce microbial cheese contamination and to extend shelf life by several efforts such as manufacturing ingredients, the active ingredient for coating/packaging, and the combination of packaging materials or processing technologies. Essential oils (EO) or plant extracts rich in phenolic and terpenes, combined with packaging conditions and non-thermal methods, generally showed a robust microbial inhibition and prolonged shelf life. However, it impaired the cheese sensory quality. Alternatives including EO, polysaccharides, polypeptides, and enzymes as active ingredients/nano-antimicrobials for an edible film of coating/nano-bio packaging showed a potent and broad-spectrum antimicrobial action during shelf life, preserving cheese quality parameters such as pH, texture, color, and flavor. Future opportunities were identified in order to investigate the toxicological effects of the discussed natural antimicrobials' potential as cheese preservatives.
Collapse
Affiliation(s)
- Rayssa Cruz Lima
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
| | - Carla P. Vieira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Rodrigo Vilela Moreira
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
42
|
Zhang W, Jiang H, Rhim JW, Cao J, Jiang W. Tea polyphenols (TP): a promising natural additive for the manufacture of multifunctional active food packaging films. Crit Rev Food Sci Nutr 2021; 63:288-301. [PMID: 34229564 DOI: 10.1080/10408398.2021.1946007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a bioactive extract from tea leaves, tea polyphenols (TP) are safe and natural. Its excellent antioxidant and antibacterial properties are increasingly regarded as a good additive for improving degradable food packaging film properties. This article comprehensively reviewed the functional properties of active films containing TP developed recently. The effects of TP addition to enhancing active food packaging films' performance, including thickness, water sensitivity, barrier properties, color, mechanical properties, antioxidant, antibacterial, and intelligent discoloration properties, were discussed. Besides, the practical applications in food preservation of active films containing TP are also discussed. This work concluded that the addition of TP could impart antioxidant and antibacterial properties to active packaging films and act as a crosslinking agent to improve other physical and chemical properties of the film, such as mechanical and barrier properties. However, the effect of TP on specific properties of the active packaging film is complex, and the appropriate TP concentration needs to be selected according to the type of film matrix and the interaction between the components. Notably, the addition of TP improved the efficiency of the active packaging film in food preservation applications, which accelerates the process of replacing the traditional plastic-based food packaging with active packaging film.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China.,Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
43
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
44
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Daniloski D, Petkoska AT, Lee NA, Bekhit AED, Carne A, Vaskoska R, Vasiljevic T. Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|