1
|
Silveira YDO, Franca AS, Oliveira LS. Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties. Foods 2025; 14:113. [PMID: 39796403 PMCID: PMC11719490 DOI: 10.3390/foods14010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves. The antimicrobial activity of the produced films was tested against Staphylococcus aureus, Salmonella Typhimurium and Listeria monocytogenes. Cassava periderm and cortex were bleached with either NaClO or H2O2 before starch aqueous extraction. The active films' antimicrobial effectiveness was assessed by the formation of inhibitory halos around film disc samples in an agar diffusion method. The inhibition zone diameters were statistically similar for all microorganisms, with an average diameter of 11.87 ± 1.62 mm. The films presented an average water vapor permeability of 0.14 g mm/m2 h kPa, an average tensile strength of 0.17 MPa and an elongation at break of 32.90%. Based on the determined properties, the produced films were deemed adequate for use in food packaging, in which antimicrobial activity is paramount.
Collapse
Affiliation(s)
- Yuri D. O. Silveira
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (Y.D.O.S.); (L.S.O.)
| | - Adriana S. Franca
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (Y.D.O.S.); (L.S.O.)
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S. Oliveira
- Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (Y.D.O.S.); (L.S.O.)
- Departamento de Engenharia Mecânica (DEMEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
2
|
Mileti O, Baldino N, Marchio V, Lupi FR, Gabriele D. Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste. Gels 2024; 10:681. [PMID: 39590037 PMCID: PMC11593490 DOI: 10.3390/gels10110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The recovery of potato waste for circular-economy purposes is a growing area of industrial research. This waste, rich in nutrients and potential for reuse, can be a valuable source of starch for packaging applications. Rheology plays a crucial role in characterizing film-forming solutions before casting. In this work, packaging film was prepared from potato waste using rheological information to formulate the film-forming solution. To this aim, rheological measurements were carried out on starch/glycerol-only samples, and the data obtained were used to optimize the formulation from the waste. The polyphenol content of the peels was analyzed, and the resulting films were comprehensively characterized. This included assessments of color, extensibility, Fourier-transform infrared (FT-IR) spectroscopy, surface microscopy, and contact angle. Polyphenol-loaded films, suitable for packaging applications, were developed from potato waste. These films exhibited distinct properties compared to those made with pure starch, including an improved wettability of about 75° for the best sample and a high elastic modulus of about 36 MPa, which reduces the deformability but enhances the resistance against the stress. Through rheological studies, we were able to design films from potato peel waste. These films demonstrated promising mechanical performance.
Collapse
Affiliation(s)
- Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| | - Vittoria Marchio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036 Rende, Italy;
| | - Francesca R. Lupi
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| |
Collapse
|
3
|
Castillo-Patiño D, Rosas-Mejía HG, Albalate-Ramírez A, Rivas-García P, Carrillo-Castillo A, Morones-Ramírez JR. Transforming Agro-Industrial Waste into Bioplastic Coating Films. ACS OMEGA 2024; 9:42970-42989. [PMID: 39464469 PMCID: PMC11500142 DOI: 10.1021/acsomega.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Addressing the environmental impact of agro-industrial waste, this study explores the transformation of banana, potato, and orange peels into bioplastics suitable for thin coating films. We prepared six extracts at 100 g/L, encompassing individual (banana peel, BP; orange peel, OP; and potato peel, PP) and combined [BP/OP, BP/PP, and BP/OP/PP] formulations, with yeast mold (YM) medium serving as the control. Utilizing the spin-coating method, we applied 1 mL of each sample at 1000 rpm for 1 min to create the films. Notably, the OP extract demonstrated a twofold increase in bioplastic yield (860.33 mg/L) compared to the yields of BP (391.43 mg/L), PP (357.67 mg/L), BP/OP (469.40 mg/L), BP/PP (382.50 mg/L), BP/OP/PP (272.67 mg/L), and YM (416.33 mg/L) extracts. Atomic force microscopy analysis of the film surfaces revealed a roughness under 8 nm, with the OP extract recording the highest at 7.0275 nm, whereas the BP/OP mixture exhibited the lowest roughness at 0.2067 nm and also formed the thinnest film at 6.5 nm. With R2 trend values exceeding 0.9950, the films exhibited water vapor permeability values ranging from 3.05 × 10-3 to 4.44 × 10-3, with the OP film being the least permeable and the BP/PP films the most permeable. The OP film demonstrated the lowest solubility in both water and ethanol with values of 64.71 and 1.05%, respectively. The solubilities of all films were above 60% in water and below 4% in ethanol. Furthermore, the films exhibited antimicrobial efficacy against both Gram-positive and Gram-negative bacteria. Our findings confirm the potential of utilizing banana, orange, and potato peels as viable substrates for eco-friendly bioplastics in thin-film applications.
Collapse
Affiliation(s)
- Diana
Lucinda Castillo-Patiño
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Humberto Geovani Rosas-Mejía
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Alonso Albalate-Ramírez
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Pasiano Rivas-García
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Amanda Carrillo-Castillo
- Autonomous
University of Ciudad Juarez, Plutarco Elias Avenue, 1210 Foviste Chamizal, Ciudad Juárez 32310, Chihuahua, Mexico
| | - José Rubén Morones-Ramírez
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| |
Collapse
|
4
|
Ran Y, Li F, Xu Z, Zeng K, Ming J. Recent advances in dietary polyphenols (DPs): antioxidant activities, nutrient interactions, delivery systems, and potential applications. Food Funct 2024; 15:10213-10232. [PMID: 39283683 DOI: 10.1039/d4fo02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dietary polyphenols (DPs) have garnered growing interest because of their potent functional properties and health benefits. Nevertheless, the antioxidant capabilities of these substances are compromised by their multifarious structural compositions. Furthermore, most DPs are hydrophobic and unstable when subjected to light, heat, and varying pH conditions, restricting their practical application. Delivery systems based on the interactions of DPs with food constituents such as proteins, polypeptides, polysaccharides, and metal ions are being created as a viable option to improve the functional activities and bioavailability of DPs. In this review, the latest discoveries on the dietary sources, structure-antioxidant activity relationships, and interactions with nutrients of DPs are discussed. It also innovatively highlights the application progress of polyphenols and their green nutraceutical delivery systems. The conclusion drawn is that the various action sites and structures of DPs are beneficial for predicting and designing polyphenols with enhanced antioxidant attributes. The metal complexation of polyphenols and green encapsulation systems display promising outcomes for stabilizing DPs during food processing and in vivo digestion. In the future, more novel targeted delivery systems of DPs for nutrient fortification and intervention should be developed. To expand their usage in customized food products, they should meet the requirements of specific populations for personalized food and nutrition.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Kaihong Zeng
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Li L, Xia L, Xiao F, Xiao Y, Ji W, Xu B, Wang H. Antimicrobial photodynamic inactivation pH-responsive films based on gelatin/chitosan incorporated with aloe-emodin. Food Chem 2024; 444:138686. [PMID: 38340503 DOI: 10.1016/j.foodchem.2024.138686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Using novel active food packaging has gradually become a daily necessity in terms of impeding microbial contamination. Here, an antimicrobial photodynamic inactivation (PDI) pH-responsive film is developed by incorporating aloe-emodin (AE) into a vehicle of gelatin/chitosan (GC). Besides enhancement in hydrophobicity, the well-dispersed crystals of AE in the GC matrix by hydrogen bonding can upgrade the film's mechanical strength and barrier. The matrix is capable of regulating the release of AE in response to acidic stimuli by a combination mechanism of diffusion and polymer relaxation. Being benefitted from the inherent bioactivity of AE and the PDI activity under visible light irradiation (i.e., 456 nm), the target film of GC-AE2 has excellent antibacterial effect towards Staphylococcus aureus and Escherichia coli, showing bacterial viability of 9.93 ± 1.33 % and 14.85 ± 1.16 %, respectively. Furthermore, the film can effectively thwart Botrytis cinerea infection in cherry tomatoes, demonstrating its potential in preventing the microbial spoilage of postharvest fruits.
Collapse
Affiliation(s)
- Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China
| | - Li Xia
- School of Biological Engineering, Huainan Normal University, 232038 Huainan, Anhui, China
| | - Feng Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China.
| |
Collapse
|
6
|
Wang Y, Ju J, Diao Y, Zhao F, Yang Q. The application of starch-based edible film in food preservation: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-34. [PMID: 38712440 DOI: 10.1080/10408398.2024.2349735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Jimenez-Champi D, Romero-Orejon FL, Moran-Reyes A, Muñoz AM, Ramos-Escudero F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. CYTA - JOURNAL OF FOOD 2023; 21:418-432. [DOI: 10.1080/19476337.2023.2213746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 01/05/2025]
Affiliation(s)
- Diana Jimenez-Champi
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Frank L. Romero-Orejon
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Angie Moran-Reyes
- Facultad de Nutrición y Alimentación, Escuela Profesional de Nutrición y Dietética, Universidad Femenina del Sagrado Corazón (UNIFE), Lima, Perú
| | - Ana María Muñoz
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Lima, Perú
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima, Perú
| |
Collapse
|
8
|
Jiang H, Zhang W, Cao J, Jiang W. Development of biodegradable active films based on longan seed starch incorporated with banana flower bract anthocyanin extracts and applications in food freshness indication. Int J Biol Macromol 2023; 251:126372. [PMID: 37595722 DOI: 10.1016/j.ijbiomac.2023.126372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The recovery of food by-products is of great significance. Food by-products contain diverse materials showing promise for the development of food packaging or edible coatings. In the present study, the effects of banana flower bract anthocyanin extracts (BFBAEs) on properties of longan seed starch (LSS) films were investigated for the first time. The prepared BFBAEs presented great compatibility with LSS matrix without changing the film chemical structures. The LSS films containing BFBAEs presented improved UV light barrier capacities, increased water vapor permeability, and lowered thermal stability compared to the pure LSS films. Additionally, the introduction of BFBAEs significantly reduced tensile strength and increased elongation at break of LSS films. There is growing demands for the fabrication of intelligent films for the visible monitoring of food freshness. BFBAEs imparted great antioxidant activities and pH-sensitive and ammonia-sensitive discoloration capacities on LSS films. LSS/BFBAEs III films were employed to detect food (beef and shrimp) freshness, and distinguishable color variations could be observed as the food freshness reduced. The LSS-based films were almost completely degraded after 30 days. Two types of by-products were combined to develop novel biodegradable active films, which showed promise for the discernible detection of the freshness of perishable foods.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
9
|
Fabrication of starch-based packaging materials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
This chapter aims to provide the reader with some information about the possibility of starch as a suitable substitute for synthetic polymers in biodegradable food packaging. This is due to the starch has good characteristics which are great biodegradability, low cost and also easy to gain from natural resources. However, some of technical challenges are also introduced before starch-based polymers can be used in more applications. These technical challenges involved preparation methods and incorporation of additives and these are being summarized in this topic. Hence, the enhancement of starch can be done in order to prepare innovative starch-based biodegradable materials.
Collapse
|
10
|
Lopes J, Malheiro C, Prodana M, Loureiro S, Ferreira P, Coimbra MA, Gonçalves I. Locust bean milling-derived dust as a raw material for the development of biodegradable bioplastics with antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1088-1096. [PMID: 35315088 DOI: 10.1002/jsfa.11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Non-value agrifood byproducts are rich in biomolecules such as proteins and polysaccharides, and possess film-forming ability, motivating their use in the development of biodegradable plastics. This work studied the feasibility of using locust bean milling-derived dust (LBMD) as a source of biomolecules suitable for developing biodegradable plastics. RESULTS LBMD is composed of 56% protein, 28% carbohydrate, 10% moisture, 6% lipid, and 2% ash. In addition, phenolic compounds are also present. The carbohydrates are mainly composed by (1 → 4)-mannose, (1 → 4,6)-mannose, and t-galactose glycosidic linkages. Depending on the LBMD concentration used, when employed in casting biodegradable plastics, LBMD yields transparent yellowish bioplastics with 90% elongation at break and surface water contact angles ranging from 60° to 90°. Additionally, LBMD-based bioplastics display antioxidant activity, inhibiting cationic 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals up to 61% in just 24 h. LBMD-based bioplastics are disintegrated when incubated on the soil surface for 34 weeks, perhaps acting as a soil nutrient. CONCLUSION LBMD represents a potential source of biomolecules for producing transparent, flexible, water tolerant, antioxidant, and biodegradable bioplastics, opening up opportunities to implement a novel circular strategy to valorize this locust bean industry byproduct. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joana Lopes
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Catarina Malheiro
- CESAM, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Marija Prodana
- CESAM, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- CESAM, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paula Ferreira
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Idalina Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Santos JDC, Brites P, Martins C, Nunes C, Coimbra MA, Ferreira P, Gonçalves I. Starch consolidation of calcium carbonate as a tool to develop lightweight fillers for LDPE-based plastics. Int J Biol Macromol 2023; 226:1021-1030. [PMID: 36436608 DOI: 10.1016/j.ijbiomac.2022.11.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Calcium carbonate (CaCO3) is used as a filler to improve the stiffness and processability of plastics at low cost. However, its high density limits the quantity to be used. In this work, the feasibility of using starch consolidation of eggshells-derived CaCO3 (ES) to develop lightweight fillers for low density polyethylene (LDPE)-based materials was studied. Starch, recovered from potato by-products, was combined with ES, gelatinized, dried, and milled as a fine powder. The obtained ES/starch-based particles were then compounded with LDPE and their influence on chromatic, mechanical, morphological, and density properties of mold injected LDPE-based materials was studied. Commercially available CaCO3 (COM) was used as control. ES/starch particles were 18 times less dense than the commercially available CaCO3 (2.62 g cm-3). When incorporated into LDPE-based formulations, ES/starch originated brownish materials with lower density (1.18 g cm-3) and higher stiffness (542 MPa of Young's modulus) than those produced with the COM sample (1.33 g cm-3 of density; 221 MPa of Young's modulus). Therefore, starch consolidation of ES revealed to be a promising approach to develop lightweight fillers able to provide stiffness and color to LDPE-based plastics, while valorizing biomolecules-rich by-products.
Collapse
Affiliation(s)
- Jéssica D C Santos
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Brites
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carolina Martins
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Idalina Gonçalves
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Moreira ASP, Gonçalves J, Sousa F, Maia I, Pereira H, Silva J, Coimbra MA, Ferreira P, Nunes C. Potential of Coccolithophore Microalgae as Fillers in Starch-Based Films for Active and Sustainable Food Packaging. Foods 2023; 12:foods12030513. [PMID: 36766042 PMCID: PMC9914559 DOI: 10.3390/foods12030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Coccolithophore microalgae, such as Emiliania huxleyi (EHUX) and Chrysotila pseudoroscoffensis (CP), are composed of calcium carbonate (CaCO3) and contain bioactive compounds that can be explored to produce sustainable food packaging. In this study, for the first time, these microalgae were incorporated as fillers in starch-based films, envisioning the development of biodegradable and bioactive materials for food packaging applications. The films were obtained by solvent casting using different proportions of the filler (2.5, 5, 10, and 20%, w/w). For comparison, commercial CaCO3, used as filler in the plastic industry, was also tested. The incorporation of CaCO3 and microalgae (EHUX or CP) made the films significantly less rigid, decreasing Young's modulus up to 4.7-fold. Moreover, the incorporation of microalgae hydrophobic compounds as lipids turned the surface hydrophobic (water contact angles > 90°). Contrary to what was observed with commercial CaCO3, the films prepared with microalgae exhibited antioxidant activity, increasing from 0.9% (control) up to 60.4% (EHUX 20%) of ABTS radical inhibition. Overall, the introduction of microalgae biomass improved hydrophobicity and antioxidant capacity of starch-based films. These findings should be considered for further research using coccolithophores to produce active and sustainable food packaging material.
Collapse
Affiliation(s)
- Ana S. P. Moreira
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Joana Gonçalves
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Francisco Sousa
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Maia
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Joana Silva
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Manuel A. Coimbra
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
13
|
The ‘Edge Effect’ Phenomenon in Plants: Morphological, Biochemical and Mineral Characteristics of Border Tissues. DIVERSITY 2023. [DOI: 10.3390/d15010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ‘edge’ effect is considered one of the fundamental ecological phenomena essential for maintaining ecosystem integrity. The properties of plant outer tissues (root, tuber, bulb and fruit peel, tree and shrub bark, leaf and stem trichomes) mimic to a great extent the ‘edge’ effect properties of different ecosystems, which suggests the possibility of the ‘edge’ effect being applicable to individual plant organisms. The most important characteristics of plant border tissues are intensive oxidant stress, high variability and biodiversity of protection mechanisms and high adsorption capacity. Wide variations in morphological, biochemical and mineral components of border tissues play an important role in the characteristics of plant adaptability values, storage duration of roots, fruit, tubers and bulbs, and the diversity of outer tissue practical application. The significance of outer tissue antioxidant status and the accumulation of polyphenols, essential oil, lipids and minerals, and the artificial improvement of such accumulation is described in connection with plant tolerance to unfavorable environmental conditions. Methods of plant ‘edge’ effect utilization in agricultural crop breeding, production of specific preparations with powerful antioxidant value and green nanoparticle synthesis of different elements have been developed. Extending the ‘edge’ effect phenomenon from ecosystems to individual organisms is of fundamental importance in agriculture, pharmacology, food industry and wastewater treatment processes.
Collapse
|
14
|
Das S, Kalyani MI. From trash to treasure: review on upcycling of fruit and vegetable wastes into starch based bioplastics. Prep Biochem Biotechnol 2022:1-15. [PMID: 36565171 DOI: 10.1080/10826068.2022.2158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Growing public concern toward environmental sustainability is currently motivating a paradigm shift toward designing easily degradable plastics that can replace conventional synthetic plastics. The massive rise in food waste generation has led to an increased burden on landfills, thereby resulting in the higher emission of greenhouse gases. Using this food waste to produce bioplastics will benefit not only the environment but also develop a systematic food waste management system. Moreover, bioplastics are preferred due to the use of biomaterials derived from renewable resources. Furthermore, bioplastics degrade faster than conventional synthetic plastics, which take years to degrade. The biodegradation of bioplastics occurs under normal environmental conditions and disintegrates into carbon dioxide, water, biomass, and inorganic compounds without producing hazardous residues. In this review, we will discuss the synthesis of starch based bioplastics using discarded parts of various fruits and vegetables. Furthermore, we will address the importance of various components in the development of starch based bioplastics, such as fillers, plasticizers, and other additives that are essential in providing the bioplastic with different physio-mechanical properties. Therefore, bioplastic production using food waste will pave the way to achieve systematic waste management and environmental sustainability in the near future.
Collapse
Affiliation(s)
- Subhankar Das
- Biotechnology Unit, Mangalore University, Mangalore, India
| | | |
Collapse
|
15
|
Intelligent colorimetric soy protein isolate-based films incorporated with curcumin through an organic solvent-free pH-driven method: Properties, molecular interactions, and application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022; 11:foods11233797. [PMID: 36496605 PMCID: PMC9739830 DOI: 10.3390/foods11233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
Collapse
|
17
|
Benito-González I, Ortiz-Gimeno MDM, López-Rubio A, Martínez-Abad A, Garrido-Fernández A, Martínez-Sanz M. Sustainable starch biocomposite films fully-based on white rice (Oryza sativa) agroindustrial by-products. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Li L, Xia L, Xiao F, Xiao Y, Liu L, Jiang S, Wang H. Colorimetric active carboxymethyl chitosan/oxidized sodium alginate-Oxalis triangularis ssp. papilionacea anthocyanins film@gelatin/zein-linalool membrane for milk freshness monitoring and preservation. Food Chem 2022; 405:134994. [DOI: 10.1016/j.foodchem.2022.134994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
19
|
Papageorgiou CS, Lymberopoulos S, Bakas P, Zagklis DP, Sygouni V, Paraskeva CA. Hydroxytyrosol Enrichment of Olive Leaf Extracts via Membrane Separation Processes. MEMBRANES 2022; 12:1027. [PMID: 36363582 PMCID: PMC9698498 DOI: 10.3390/membranes12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antioxidants isolated from plant materials, such as phenolics, have attracted a lot of attention because of their potential uses. This contributes to the idea of the biorefinery, which is a way to produce useful products from biomass waste. Olea europaea byproducts have been extensively investigated for their large contents in phenolics. Oleuropein is a phenolic compound abundant in olive leaves, with its molecule containing hydroxytyrosol, elenolic acid, and glucose. In this work, olive leaf extracts were treated using different combinations of ultrafiltration and nanofiltration membranes to assess their capacity of facilitating the production of hydroxytyrosol-enriched solutions, either by separating the initially extracted oleuropein or by separating the hydroxytyrosol produced after a hydrolysis step. The best performance was observed when an ultrafiltration membrane (UP010, 10,000 Da) was followed by a nanofiltration membrane (TS40, 200-300 Da) for the treatment of the hydrolyzed extract, increasing the purity of the final product from 25% w/w of the total extracted compounds being hydroxytyrosol when membrane processes were not used to 68% w/w.
Collapse
Affiliation(s)
- Costas S. Papageorgiou
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Stathis Lymberopoulos
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Panagiotis Bakas
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Dimitris P. Zagklis
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Varvara Sygouni
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Christakis A. Paraskeva
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| |
Collapse
|
20
|
Laorenza Y, Chonhenchob V, Bumbudsanpharoke N, Jittanit W, Sae-tan S, Rachtanapun C, Chanput WP, Charoensiddhi S, Srisa A, Promhuad K, Wongphan P, Harnkarnsujarit N. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers (Basel) 2022; 14:polym14183706. [PMID: 36145850 PMCID: PMC9504574 DOI: 10.3390/polym14183706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/17/2022] Open
Abstract
Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Weerachet Jittanit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Wasaporn Pretescille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
21
|
Liu Y, Liu M, Zhang L, Cao W, Wang H, Chen G, Wang S. Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Optimization of Conventional Extraction Parameters for Recovering Phenolic Compounds from Potato (Solanum tuberosum L.) Peels and Their Application as an Antioxidant in Yogurt Formulation. Antioxidants (Basel) 2022; 11:antiox11071401. [PMID: 35883892 PMCID: PMC9311538 DOI: 10.3390/antiox11071401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to optimize the conventional parameters for the extraction of phenolic compounds from potato (Solanum tuberosum L.) peels (PP). A central composite design (CCD) was used to establish the impacts of ethanol concentration (%), extraction time (min), and liquid/solid ratio (mL/g). The optimal experimental conditions that maximized extraction were ethanol at a concentration of 80% (v/v) for a time of 150 min with a ratio of 1 g/30 mL. Under optimal conditions, the total phenolic content (TPC) and the total flavonoid content (TFC) were 204.41 ± 8.64 mg GAE/100 g DW and 21.47 ± 0.76 mg QE/100 g DW, respectively. The PP extract had a potent antioxidant capacity tested by phosphomolybdate and DPPH assays with IC50 of 10.65 ± 0.21 and 179.75 ± 3.18 µg/mL, respectively. Furthermore, by fortifying yogurt with PP as a natural ingredient, an improvement ofits physical, nutritional, antioxidant, and sensorial qualities was attempted in this study. The yogurts formulated with PP revealed significantly higher (p ≤ 0.05) TPC, TFC, and antioxidant capacity in comparison with the control sample. In addition, the sensory evaluation showed that the yogurts enriched with PP were preferred over the control yogurt. The results indicate that PP can be considered an interesting byproduct since it can improve the nutritional, bioactive, and sensorial profile of yogurt, highlighting that PP, due to its high phenol content, can substantially improve the antioxidant effect of the new formulated yogurt.
Collapse
|
23
|
Rodrigues Arruda T, Campos Bernardes P, Robledo Fialho e Moraes A, de Fátima Ferreira Soares N. Natural bioactives in perspective: The future of active packaging based on essential oils and plant extracts themselves and those complexed by cyclodextrins. Food Res Int 2022; 156:111160. [DOI: 10.1016/j.foodres.2022.111160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
24
|
Oliveira NL, Oliveira ACS, Silva SH, Rodrigues AA, Borges SV, Oliveira JE, Resende JV. Development and characterization of starch‐based films added ora‐pro‐nobis mucilage and study of biodegradation and photodegradation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Petronilho S, Oliveira A, Domingues MR, Nunes FM, Coimbra MA, Gonçalves I. Hydrophobic Starch-Based Films Using Potato Washing Slurries and Spent Frying Oil. Foods 2021; 10:foods10122897. [PMID: 34945448 PMCID: PMC8700295 DOI: 10.3390/foods10122897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Starch is a promising candidate for preparing biodegradable films with useful gas barriers and thermoplastic capabilities. However, these materials are hydrophilic and brittle, thus limiting their application range. To overcome these drawbacks, it has been hypothesized that starch can be hydrophobized and plasticized during the starch-based film production using a single-step approach and following transesterification principles. In this work, KOH powder and spent frying oil (SFO) were used as an alkaline catalyst and a source for triacylglycerides, respectively, to promote the modification of starch. Different ratios of SFO (w/w related to the dried starch weight) were tested. When compared to the neat films (without a catalyst and SFO), the incorporation of at least 15% SFO/KOH gave rise to transparent, hydrophobic (water contact angles of ca. 90∘), stretchable (ca. 20×), elastic (ca. 5×), and water tolerant starch-based films, contrary to the films produced without the catalyst. ATR-FTIR and 1H NMR revealed structural differences among the produced films, suggesting that starch was modified with the SFO-derived fatty acids. Therefore, adding KOH during the potato starch/spent frying oil-based film's production was determined to be a promising in situ strategy to develop starch-based materials with improved hydrophobicity and flexibility, while valorizing the potato chip industry's byproducts.
Collapse
Affiliation(s)
- Sílvia Petronilho
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.O.); (M.R.D.); (M.A.C.)
- Chemistry Research Centre-Vila Real, Department of Chemistry, University of Trás os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence:
| | - André Oliveira
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.O.); (M.R.D.); (M.A.C.)
| | - M. Rosário Domingues
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.O.); (M.R.D.); (M.A.C.)
- Mass Spectrometry Centre, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real, Department of Chemistry, University of Trás os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.O.); (M.R.D.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
27
|
Bioactive Edible Films and Coatings Based in Gums and Starch: Phenolic Enrichment and Foods Application. COATINGS 2021. [DOI: 10.3390/coatings11111393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Edible films and coatings allow preserving fresh and processed food, maintaining quality, preventing microbial contamination and/or oxidation reactions and increasing the shelf life of food products. The structural matrix of edible films and coatings is mainly constituted by proteins, lipids or polysaccharides. However, it is possible to increase the bioactive potential of these polymeric matrices by adding phenolic compounds obtained from plant extracts. Phenolic compounds are known to possess several biological properties such as antioxidant and antimicrobial properties. Incorporating phenolic compounds enriched plant extracts in edible films and coatings contribute to preventing food spoilage/deterioration and the extension of shelf life. This review is focused on edible films and coatings based on gums and starch. Special attention is given to bioactive edible films and coatings incorporating plant extracts enriched in phenolic compounds.
Collapse
|
28
|
Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants (Basel) 2021; 10:antiox10101630. [PMID: 34679764 PMCID: PMC8533085 DOI: 10.3390/antiox10101630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
Nowadays, the potato is one of the most cultivated and consumed food crops in the world and, in recent years, its production has experienced a sharp increase. Its industrial processing generates several by-products that are wasted and cause economic and environmental problems. Among them, potato peel stands out, representing up to 10% of the total potato residues obtained in the processing. On the other hand, these wastes, in addition to presenting antioxidant compounds, are rich in interesting chemical compounds of great value in a biorefinery model. This review summarizes the main compounds present in potato skins as well as the most used and innovative extraction methods employed for their isolation, with special emphasis on the fractions with biological activities. In addition, a sustainable biorefinery proposal focused on obtaining high added-value products with potential applications in the pharmaceutical, food, nutraceutical, or cosmetic industries is included.
Collapse
|