1
|
Zhai X, Xue Y, Song W, Sun Y, Shen T, Zhang X, Li Y, Ding F, Zhang D, Zhou C, Arslan M, Tahir HE, Li Z, Shi J, Huang X, Zou X. A ratiometric fluorescent electrospun film with high amine sensitivity and stability for visual monitoring of livestock meat freshness. Food Chem X 2024; 24:101801. [PMID: 39290751 PMCID: PMC11406328 DOI: 10.1016/j.fochx.2024.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Ratiometric fluorescent films with high amine sensitivity and stability were developed to monitor the freshness of beef and pork. Fluorescein isothiocyanate (FITC) and red carbon quantum dots (R-CQD) were used as the amine-responsive indicator and internal reference, respectively. The electrospun films prepared by immobilizing FITC and R-CQD complex (F-R) into polyvinylidene fluoride (PVDF) under 35 %, 55 % and 75 % of relative humidity (RH) were named F-R@PVDF-1, F-R@PVDF-2 and F-R@PVDF-3, respectively. In comparison, the F-R@PVDF-2 film exhibited the highest sensitivity to trimethylamine (TMA), demonstrating a limit of detection (LOD) value of 1.59 μM, and meanwhile high stability during storage with ΔE value of 1.99 after 14 days of storage at 4 °C. The F-R@PVDF-2 film also showed a significant fluorescent red-to-brown color change during meat freshness monitoring at 4 °C. Conclusively, this study reported a new ratiometric fluorescent film that can be used to track the freshness of meats in food packaging.
Collapse
Affiliation(s)
- Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
- Institute of Modern Agriculture and Health Care Industry, Wencheng, 325300, China
| | - Yuhong Xue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Wenjun Song
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Yue Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yanxiao Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haroon E Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| |
Collapse
|
2
|
Fan L, Chen Y, Zeng Y, Yu Z, Dong Y, Li D, Zhang C, Ye C. Application of visual intelligent labels in the assessment of meat freshness. Food Chem 2024; 460:140562. [PMID: 39059324 DOI: 10.1016/j.foodchem.2024.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
With the increasing demand for meat products, the evaluation and real-time monitoring of its freshness has become one of the focuses of related industry research. Conventional freshness detection methods, including sensory evaluation, microbial experiments, and determination of physicochemical indicators, are time-consuming, low sensitivity, and destructive, so there is an urgent need to develop a convenient, intuitive, and inexpensive detection method. As a representative of smart packaging, visual intelligent labels can realize real-time perception and monitoring of meat freshness by measuring the temperature, pH value or other indicators of meat and converting them into visual signals. This paper first summarizes the common types, basic principles and research progress of visual intelligent labels, then introduces its application in livestock, poultry and seafood freshness monitoring, finally looks forward to the development prospect of visual smart labels.
Collapse
Affiliation(s)
| | - Yihan Chen
- Naval Medical University, Shanghai 200433, PR China
| | - Yiwen Zeng
- Naval Medical University, Shanghai 200433, PR China
| | - Zhumin Yu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai 200433, PR China.
| | - Chunhong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Sabu Mathew S, Jaiswal AK, Jaiswal S. Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydr Polym 2024; 342:122267. [PMID: 39048183 DOI: 10.1016/j.carbpol.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024]
Abstract
This article explores the use of carrageenan-based biomaterials in developing sustainable and efficient intelligent food packaging solutions. The research in this field has seen a notable surge, evident from >1000 entries in databases such as Web of Science, PubMed and Science Direct between 2018 and 2023. Various film preparation techniques are explored, including solvent casting, layer-by-layer (LbL) assembly, and electrospinning. Solvent casting is commonly used to incorporate active compounds, while LbL assembly and electrospinning are favored for enhancing mechanical properties and solubility. Carrageenan's film-forming characteristics enable the production of transparent films, ideal for indicator films that facilitate visual inspection for color changes indicative of pH variations, crucial for detecting food spoilage. Surface properties can be modified using additives like plant extracts to regulate moisture interaction, affecting shelf life and food safety. These materials' antioxidant and antimicrobial attributes are highlighted, demonstrating their efficacy against pathogens such as E. coli.
Collapse
Affiliation(s)
- Sneha Sabu Mathew
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
4
|
Guo C, Li Y, Zhang H, Zhang Q, Wu X, Wang Y, Sun F, Shi S, Xia X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr Rev Food Sci Food Saf 2024; 23:e13390. [PMID: 39031881 DOI: 10.1111/1541-4337.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.
Collapse
Affiliation(s)
- Chang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Rindhe S, Khan A, Priyadarshi R, Chatli M, Wagh R, Kumbhar V, Wankar A, Rhim JW. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024; 23:e13333. [PMID: 38571439 DOI: 10.1111/1541-4337.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.
Collapse
Affiliation(s)
- Sandeep Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Manish Chatli
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Goats (CIRG), Makhdoom, India
| | - Rajesh Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana, India
| | - Vishal Kumbhar
- Department of Animal Husbandry, State Government, Maharashtra, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Asadzadeh N, Ghorbanpour M, Sayyah A. Effects of filler type and content on mechanical, thermal, and physical properties of carrageenan biocomposite films. Int J Biol Macromol 2023; 253:127551. [PMID: 37865375 DOI: 10.1016/j.ijbiomac.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study investigates the influence of various fillers on the properties of carrageenan, a natural polymer derived from red seaweed. Despite its potential for enhanced biocomposite film development, carrageenan faces challenges related to strength. The incorporation of nanoclay into the carrageenan film resulted in a significant increase in film thickness from 0.026 to 0.068 mm. The UV light transmission value for the carrageenan film alone was measured at 30.9 %, whereas films containing 5 wt% of Tetraethyl orthosilicate (TEOS), 3-Aminopropyltriethoxysilane (APTES), and nanoclay exhibited reduced transmission values of 23 %, 18 %, and 1 %, respectively. Notably, the tensile strength of the unfilled carrageenan film was 38.4 MPa, which increased to 38.6, 57, and 60 MPa upon the addition of 3 wt% of nanoclay, APTES, and TEOS fillers, respectively. All fillers contributed to improved tensile strength, with TEOS demonstrating the highest enhancement. The optimal filler content was determined to be 3 wt%. Regarding thermal properties, films containing TEOS displayed higher thermal stability compared to those with APTES, while films incorporating nanoclay exhibited the lowest stability. Findings provide insights into the effects of different fillers on the mechanical, physical and thermal properties of carrageenan films, supporting the development of improved biocomposite materials suitable for application in food packaging.
Collapse
Affiliation(s)
- Naser Asadzadeh
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Mohammad Ghorbanpour
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Ali Sayyah
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| |
Collapse
|
7
|
Raghuvanshi S, Khan H, Saroha V, Sharma H, Gupta HS, Kadam A, Dutt D. Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging- A review. Int J Biol Macromol 2023; 253:127420. [PMID: 37852398 DOI: 10.1016/j.ijbiomac.2023.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
In food packaging, biopolymer films are biodegradable films made from biomacromolecule-based natural materials, while biocomposite films are hybrids of two or more materials, with at least one being biodegradable. Bionanocomposites are different than the earlier ones, as they consist of various nanofillers (both natural and inorganic) in combination with biomacromolecule-based biodegradable materials to make good compostable bionanocomposites. In this regard, a new type of material known as bionanocomposite has been recently introduced to improve the properties and performance of biocomposite films. Bionanocomposites are primarily developed for active packaging, but their use in intelligent packaging is also noteworthy. For example, bionanocomposites developed using a hybrid of anthocyanin and carbon dots as intelligent materials have shown their high pH-sensing properties. The natural nanofillers (like nanocellulose, nanochitosan, nanoliposome, cellulose nanocrystals, cellulose nanofibers, etc.) are being employed to promote the sustainability, degradability and safety of bionanocomposites. Overall, this article comprehensively reviews the latest innovations in bionanocomposite films for intelligent food packaging over the past five years. In addition to packaging aspects, the role of nanofillers, the importance of life cycle assessment (LCA) and risk assessment, associated challenges, and future perspectives of bionanocomposite intelligent films are also discussed.
Collapse
Affiliation(s)
- Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Hina Khan
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Harish Sharma
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Hariome Sharan Gupta
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Ashish Kadam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
8
|
Alizadeh S, Pirsa S, Amiri S. Development of a colorimetric sensor based on nanofiber cellulose film modified with ninhydrin to measure the formalin index of fruit juice. Int J Biol Macromol 2023; 253:127035. [PMID: 37742890 DOI: 10.1016/j.ijbiomac.2023.127035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In this research, a color sensor based on nanofiber cellulose film modified with ninhydrin was designed to measure amino acids and formalin index in fruit juice. For this purpose, three types of cellulose films with porosity of 5, 30 and 125 μm were used. These films were treated with standard solution of ninhydrin. The characteristics of modified films were investigated using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray Diffraction (XRD) tests. The color factors of the sensors (a and b) changed in the presence of amino acids and juice with different levels of formalin index. Therefore, the modified films with ninhydrin as a colorimetric sensor were calibrated using 7 types of amino acids and based on the formalin index of 4 types of juice. Then the sensors were used to measure the formalin index in 4 types of juice. The results showed that the sensors have relative selectivity towards methionine amino acid. The formalin index values calculated in the juices by the sensor were compared with the titration method as a reference method. All three types of sensors were able to detect formalin index. The results of the sensor performance verification showed that the sensors can measure formalin index in different juices with 95-98 % accuracy. These sensors showed fast sensitivity and selectivity to the amino acids in juice, also these sensors are safe and the measurement method is fast and simple.
Collapse
Affiliation(s)
- Samira Alizadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Chen MM, Li BH, Wu Y, He Z, Xiong XB, Han WD, Liu B, Yang SB. Intelligent biogenic pH-sensitive and amine-responsive color-changing label for real-time monitoring of shrimp freshness. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7798-7808. [PMID: 37463295 DOI: 10.1002/jsfa.12856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND This study developed an intelligent, pH-sensitive and amine-responsive colorimetric label based on chitosan, whey protein and thymol blue by controlling the pH value of the film-forming solution. The obtained label was used to monitor shrimp freshness in real time. The results of this study offer a new approach for developing highly intelligent biogenic labels for freshness monitoring during seafood preservation and processing. RESULTS The pH 2.0 chitosan-whey protein-thymol blue (CWT-pH 2.0) label exhibited remarkable properties, including the highest tensile strength (5.90 MPa), excellent thermal stability, low water solubility (27.80%) and highly sensitive color responsiveness. The characterization techniques of scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy confirmed the effective immobilization of thymol blue within the film-forming matrix through hydrogen bonding. Furthermore, the CWT-pH 2.0 label demonstrated visible color changes in the presence of volatile ammonia concentrations ranging from 25 to 25 000 ppm. Consequently, the label successfully facilitated real-time monitoring of shrimp freshness during storage at 4 °C. Importantly, the release rate of thymol blue from the label in food simulants was minimal, measuring only 2.53%. CONCLUSION The CWT-pH 2.0 label exhibits significant potential as a highly intelligent biogenic label for freshness monitoring in seafood preservation and processing. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Bing-Hang Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Ze He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Xiao-Bing Xiong
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Wei-Dong Han
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| | - Shan-Bin Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
11
|
Ranjbar M, Azizi Tabrizzad MH, Asadi G, Ahari H. Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon 2023; 9:e18879. [PMID: 37609408 PMCID: PMC10440462 DOI: 10.1016/j.heliyon.2023.e18879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
The current trend in the production of smart films involves the use of pH-responsive color indicators derived from natural sources. In line with this trend, the aim of this research is to produce edible films from sodium alginate (A) and chitosan (Ch) incorporating red beet anthocyanin (Ac) extract, and to assess the properties of these films and their use as coatings for chicken fillets. The study employed a factorial design to evaluate the effects of treatments C (control), A25%-ch75% (films consisting of 25% sodium alginate and 75% chitosan), and A25%-ch75%-Ac (films consisting of 25% sodium alginate, 75% chitosan, and red beet anthocyanin). The findings indicate that the inclusion of red beet anthocyanin extract did not result in any discernible differences in the FTIR spectra of the film samples. Analysis of the XRD results revealed that the addition of the extract led to a reduction in the crystal structure of the film. Moreover, SEM results demonstrated that the extract caused alterations in the polymer chains and an increase in the porosity of the film matrix. With regard to the chicken fillet samples coated with the film, over time, there was an increase in microbial analysis (total microorganism count and Staphylococcus aureus coagulase-positive) and chemical properties (pH, peroxide, thiobarbituric acid, and nitrogen compounds) for all samples. However, this trend was significantly lower in the samples coated with the Ac extract (P < 0.05). Texture analysis results revealed that the hardness parameter of all samples decreased over the storage period, while the samples containing the Ac extract demonstrated a significant increase in this parameter (P < 0.05). Additionally, the color changes of the pH sensor corresponded to the anthocyanin structure. Based on the results, the smart film composed of sodium alginate/chitosan incorporating red beet anthocyanin extract has the potential to enhance the quality, prolong the shelf life, and decrease the microbial load of chicken fillet when used as a coating. Furthermore, red beet anthocyanin can serve as a suitable indicator for spoilage changes in packaged food products.
Collapse
Affiliation(s)
- Milad Ranjbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Gholamhassan Asadi
- Assistant Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
13
|
Han B, Chen P, Guo J, Yu H, Zhong S, Li D, Liu C, Feng Z, Jiang B. A Novel Intelligent Indicator Film: Preparation, Characterization, and Application. Molecules 2023; 28:molecules28083384. [PMID: 37110618 PMCID: PMC10143919 DOI: 10.3390/molecules28083384] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of intelligent indicator film that can detect changes in food quality is a new trend in the food packaging field. The WPNFs-PU-ACN/Gly film was prepared based on whey protein isolate nanofibers (WPNFs). Anthocyanin (ACN) and glycerol (Gly) were used as the color indicator and the plasticizer, respectively, while pullulan (PU) was added to enhance mechanical properties of WPNFs-PU-ACN/Gly edible film. In the study, the addition of ACN improved the hydrophobicity and oxidation resistance of the indicator film; with an increase in pH, the color of the indicator film shifted from dark pink to grey, and its surface was uniform and smooth. Therefore, the WPNFs-PU-ACN/Gly edible film would be suitable for sensing the pH of salmon, which changes with deterioration, as the color change of ACN was completely consistent with fish pH. Furthermore, the color change after being exposed to grey was evaluated in conjunction with hardness, chewiness, and resilience of salmon as an indication. This shows that intelligent indicator film made of WPNFs, PU, ACN, and Gly could contribute to the development of safe food.
Collapse
Affiliation(s)
- Bing Han
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shaojing Zhong
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
He X, Pu Y, Chen L, Jiang H, Xu Y, Cao J, Jiang W. A comprehensive review of intelligent packaging for fruits and vegetables: Target responders, classification, applications, and future challenges. Compr Rev Food Sci Food Saf 2023; 22:842-881. [PMID: 36588319 DOI: 10.1111/1541-4337.13093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 01/03/2023]
Abstract
Post-harvest fruits and vegetables are extremely susceptible to dramatic and accelerated quality deterioration deriving from their metabolism and adverse environmental influences. Given their vigorous physiological metabolism, monitoring means are lacking due to the extent that unnecessary waste and damage are caused. Numerous intelligent packaging studies have been hitherto carried out to investigate their potential for fruit and vegetable quality monitoring. This state-of-the-art overview begins with recent advances in target metabolites for intelligent packaging of fruits and vegetables. Subsequently, the mechanisms of action between metabolites and packaging materials are presented. In particular, the exact categorization and function of intelligent packaging of fruits and vegetables, are all extensively and comprehensively described. In addition, for the sake of further research in this field, the obstacles that impede the scaling up and commercialization of intelligent packaging for fruits and vegetables are also explored, to present valuable references.
Collapse
Affiliation(s)
- Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
15
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
16
|
Zhang Q, Zhai W, Cui L, Liu Y, Xie W, Yu Q, Luo H. Physicochemical properties and antibacterial activity of polylactic acid/starch acetate films incorporated with chitosan and tea polyphenols. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Development of active and intelligent pH food packaging composite films incorporated with litchi shell extract as an indicator. Int J Biol Macromol 2023; 226:77-89. [PMID: 36481333 DOI: 10.1016/j.ijbiomac.2022.11.325] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The anthocyanin-rich litchi shell extract (LE) was mixed with the matrix to prepare active/intelligent food packaging composite films. The microstructure and properties of composite films were characterized. The results showed that the composite films incorporated with LE had texture-oriented layered, compact, uniform cross-sections. The composite films with LE showed different degrees of red. The composite films had similar water vapor transmission rates (1.62-1.65 × 10-12 g·cm/cm2·Pa·s). However, gelatin/chitosan/polyvinyl alcohol/litchi shell extract (Gel/Csa/PVA/LE) film had better UV blocking rates (0-20 %), the best tensile strength (18.6 MPa) and elongation at break (116%). When the composite films monitored for fish freshness at 4 °C (10 d) and 25 °C (3 d), the Gel/Csa/PVA/LE film had the pH sensitivity to show an obvious color change at 25 °C, 1th day. The results suggested that the Gel/Csa/PVA/LE film could be applied to intelligent food packaging film to indicate the freshness of fish.
Collapse
|
18
|
Wypij M, Trzcińska-Wencel J, Golińska P, Avila-Quezada GD, Ingle AP, Rai M. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers' perception. Front Chem 2023; 10:1106230. [PMID: 36704616 PMCID: PMC9871319 DOI: 10.3389/fchem.2022.1106230] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Natural polymer-based nanocomposites have received significant attention in both scientific and industrial research in recent years. They can help to eliminate the consequences of application of petroleum-derived polymeric materials and related environmental concerns. Such nanocomposites consist of natural biopolymers (e.g., chitosan, starch, cellulose, alginate and many more) derived from plants, microbes and animals that are abundantly available in nature, biodegradable and thus eco-friendly, and can be used for developing nanocomposites for agriculture and food industry applications. Biopolymer-based nanocomposites can act as slow-release nanocarriers for delivering agrochemicals (fertilizers/nutrients) or pesticides to crop plants to increase yields. Similarly, biopolymer-based nanofilms or hydrogels may be used as direct product coating to extend product shelf life or improve seed germination or protection from pathogens and pests. Biopolymers have huge potential in food-packaging. However, their packaging properties, such as mechanical strength or gas, water or microbial barriers can be remarkably improved when combined with nanofillers such as nanoparticles. This article provides an overview of the strategic applications of natural polymer nanocomposites in food and agriculture as nanocarriers of active compounds, polymer-based hydrogels, nanocoatings and nanofilms. However, the risk, challenges, chances, and consumers' perceptions of nanotechnology applications in agriculture and food production and packaging have been also discussed.
Collapse
Affiliation(s)
- Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Avinash P. Ingle
- Department of Agricultural Botany, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, India
| | - Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
| |
Collapse
|
19
|
Zhao R, Chen J, Yu S, Niu R, Yang Z, Wang H, Cheng H, Ye X, Liu D, Wang W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Pirsa S, Hafezi K. Hydrocolloids: Structure, preparation method, and application in food industry. Food Chem 2023; 399:133967. [DOI: 10.1016/j.foodchem.2022.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
|
21
|
Synthesis of a new hydrophobic coating film from stearic acid of buffalo fat. Sci Rep 2022; 12:18465. [PMID: 36323708 PMCID: PMC9630542 DOI: 10.1038/s41598-022-23003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022] Open
Abstract
This experiment involved the chemical conversion of pure stearic acid from buffalo adipose tissue to a waxy stearyl stearate, which was subsequently applied as a coating film to extend the shelf life of recently harvested fruits. Fat was extracted from minced adipose tissue using the dry rendering procedure, and it was then characterized. The extracted fat was hydrolyzed into a mixture of free fatty acids and glycerol. The supercritical CO2 extractor was used for stearic acid individual extraction in pure form from the free fatty acid mixture, and it was confirmed according to its melting point (69.2-70.0 °C), elemental analysis, GC-MS for esterified fatty acids. The isolated stearic acid was used for the synthesis of a new hydrophobic wax named stearyl stearate. The chemical structure of the prepared compound was established according to its elemental analysis and spectral data. The new hydrophobic wax was used as a coating film to enhance the shelf life of freshly harvested tomato fruits. Therefore, stearyl stearate solution (2.00% w/v diethyl ether) was used for tomato coating and compared to chitosan-coated tomatoes, where weight loss, pH, fruit firmness, ascorbic acid concentration, and total soluble solids were studied for a period of 15 days at 23 ± 1.0 °C and 65 ± 2.0% relative humidity. The results revealed that coating with stearyl stearate solution (2.00% w/v diethyl ether) could delay tomatoes' ripening during the experiment condition. A sensory evaluation of the coated tomatoes was carried out and showed acceptable taste for the tomatoes that were coated with stearyl stearate. On the other hand, the acute oral toxicity of stearyl stearate using albino mice showed complete safety up to 25 g/kg mice weight.
Collapse
|
22
|
Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 2022; 405:134964. [DOI: 10.1016/j.foodchem.2022.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
23
|
Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development. Foods 2022; 11:foods11213361. [PMID: 36359975 PMCID: PMC9653633 DOI: 10.3390/foods11213361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
The development of biodegradable packaging materials has become a widely addressed topic in recent years. Microparticles generated from Brassica oleracea var. capitata f. rubra (red cabbage, RC) and Beta vulgaris L. var. conditiva (beetroot, BR) which contained anthocyanins or betalains, were included in the formulation of edible films based on cassava starch (CS) giving origin to films CSRC, CSBR, or CSBC (mixture of both particles). The inclusion of the filler determined an increase in the stress at rupture from 0.8 MPa (CS) to 1.2 MPa (CSRC) or 1.0 MPa (CSBC), of the contact angle from 2.6° to 13.8° (CSBR) or 19.6° (CSBC). The use of these films for developing a smart label for hake packaging and the study of the TBV-N content, the microbiological characteristics of the muscle, and the color changes of the label with time, allowed us to conclude that the films CSRC and CSBC would be suitable for sensing the deterioration of packaged and chilled hake and that the color change of the label CSBC was completely consistent with fish muscle deterioration. As the microparticles can be obtained from by-products of the production and industrialization of plant tissues, the composite films and the smart labels developed can contribute not only to the development of safe food but also to the addition of value to those residues and to environmental protection.
Collapse
|
24
|
Ab initio investigation of substituent effects on the excited electronic states of flavylium cation analogues of anthocyanin pigments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Pirsa S, Mahmudi M, Ehsani A. Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: Physicochemical properties and lutein controlled release. Int J Biol Macromol 2022; 224:1588-1599. [DOI: 10.1016/j.ijbiomac.2022.10.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
26
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
27
|
Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation /CeO2 nanoparticles/graphite carbon quantum dots: Investigating fluorescence, photocatalytic and antimicrobial properties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
An ultra-sensitive smartphone-integrated digital colorimetric and electrochemical Camellia sinensis polyphenols encapsulated CuO nanoparticles-based ammonia biosensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|
31
|
Smart films fabricated from natural pigments for measurement of total volatile basic nitrogen (TVB-N) content of meat for freshness evaluation: A systematic review. Food Chem 2022; 396:133674. [PMID: 35905557 DOI: 10.1016/j.foodchem.2022.133674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022]
Abstract
Major databases were searched from January 2012 to August 2021 and 54 eligible studies were included in the meta-analysis to estimate the overall mean of total volatile basic nitrogen (TVB-N) in meat. The mean of TVB-N was 24.96 mg/100 g (95 % CI:23.10-26.82). The pooled estimate of naphthoquinone, curcumin, anthocyanins, alizarin and betalains were 25.98 mg/100 g (95 %CI:19.63-32.33), 30.03 mg/100 g (95 %CI: 24.15-35.91), 24.92 mg/100 g (95 %CI: 22.55-27.30), 23.37 mg/100 g (95 %CI:19.42-27.33) and 19.50 mg/100 g (95 %CI:17.87-21.12), respectively. Meanwhile, subgroups based on meat types showed that smart film was most used in aquatic products at 27.19 mg/100 g (95 %CI:24.97-29.42), followed by red meat at 19.69 mg/100 g (95 %CI:17.44-21.94). Furthermore, 4 °C was the most storage temperature used for testing the performance of smart films at 25.48 mg/100 g (95 %CI:23.05-27.90), followed by storage at 25 °C of 25.65 mg/100 g (95 %CI:22.17-29.13). Substantial heterogeneity was found across the eligible studies (I2 = 99 %, p = 0.00). The results of the trim-and-fill method demonstrated publication bias was well controlled.
Collapse
|
32
|
Green Tea Extract Enrichment: Mechanical and Physicochemical Properties Improvement of Rice Starch-Pectin Composite Film. Polymers (Basel) 2022; 14:polym14132696. [PMID: 35808739 PMCID: PMC9268978 DOI: 10.3390/polym14132696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The effects of green tea extract (GTE) at varying concentrations (0.000, 0.125, 0.250, 0.500, and 1.000%, w/v) on the properties of rice-starch-pectin (RS-P) blend films were investigated. The results showed that GTE addition enhanced (p < 0.05) the antioxidation properties (i.e., total phenolic content, DPPH radical scavenging activity, and ferric reducing antioxidant power) and thickness of the RS-P composite film. The darker appearance of the RS-T-GTE blend films was obtained in correspondence to the lower L* values. However, the a* and b* values were higher toward red and yellow as GTE increased. Though GTE did not significantly alter the film solubility, the moisture content and the water vapor permeability (WVP) of the resulting films were reduced. In addition, the GTE enrichment diminished the light transmission in the UV-Visible region (200−800 nm) and the transparency of the developed films. The inclusion of GTE also significantly (p < 0.05) lowered the tensile strength (TS) and elongation at break (EAB) of the developed film. The FT-IR spectra revealed the interactions between RS-P films and GTE with no changes in functional groups. The antimicrobial activity against Staphylococcus aureus (TISTR 764) was observed in the RS-P biocomposite film with 1% (w/v) GTE. These results suggested that the RS-P-GTE composite film has considerable potential for application as active food packaging.
Collapse
|
33
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Res Int 2022; 155:111096. [DOI: 10.1016/j.foodres.2022.111096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
35
|
A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers’ mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets’ quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
|