1
|
Tanaka SI, Fujioka Y, Tsujino T, Ishida T, Hirata KI. Increased Red Cell Superoxide Dismutase Activity Is Associated with Cancer Risk: A Hidaka Cohort Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:2868-2876. [PMID: 39417633 DOI: 10.1158/2767-9764.crc-24-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Superoxide dismutase (SOD) catalyzes the highly reactive superoxide anion to form hydrogen peroxide, which facilitates cell proliferation and death. We investigated whether red cell SOD (R-SOD) activity is associated with an increased risk of cancer in a Japanese general population. We prospectively analyzed data from 1,921 participants (800 men and 1,121 women; age, 58.7 ± 14.7 years) in a Hidaka cohort study. After a median follow-up period of 10.9 years, 160 participants had developed cancer. The Cox proportional hazards model was used to estimate quartile-specific HRs and 95% confidential intervals (CI) for cancer risk. After adjustment for potential cancer risk factors including age, sex, current smoking habit, alcohol use, physical activities, body mass index, plasma immunoreactive insulin, and non-high-density lipoprotein cholesterol levels, we found a significant association between R-SOD activity and an increased risk of cancer (HR, 1.61; 95% CI, 1.03-2.52; P = 0.037). In analyses conducted separately by sex, a significant association was found in men (HR, 2.49; 95% CI, 1.35-4.59; P = 0.003) but not women (HR, 1.46; 95% CI, 0.70-3.05; P = 0.320). After excluding participants who developed cancer within 5 years of the baseline survey, the association was more evident in men (HR, 4.64; 95% CI, 1.88-11.45; P = 0.001). We found no association with cancer risk in women (HR, 1.01; 95% CI, 0.39-2.65; P = 0.983). Increased R-SOD activities were associated with an increased risk of cancer, particularly in men in this population. SIGNIFICANCE Our study is the first to show that increased R-SOD activity is associated with a significantly higher cancer risk in men but not in women. Antioxidative enzymes such as SOD are essential for maintaining cellular redox balance. Their roles in cancer development and prevention are yet to be fully elucidated.
Collapse
Affiliation(s)
- Shin-Ichiro Tanaka
- Department of Internal Medicine, Toyooka Hospital Hidaka Clinic, Hyogo, Japan
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Takeshi Tsujino
- Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Tatsuro Ishida
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Rhazi Y, Sghyar R, Deak N, Es-Sounni B, Rossafi B, Soran A, Laghmari M, Arzine A, Nakkabi A, Hammani K, Chtita S, M. Alanazi M, Nemes G, El. Yazidi M. New Quinazolin-4(3H)-One Derivatives Incorporating Isoxazole Moiety as Antioxidant Agents: Synthesis, Structural Characterization, and Theoretical DFT Mechanistic Study. Pharmaceuticals (Basel) 2024; 17:1390. [PMID: 39459029 PMCID: PMC11510333 DOI: 10.3390/ph17101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: This research centers on the development and spectroscopic characterization of new quinazolin-4(3H)-one-isoxazole derivatives (5a-e). The aim was to investigate the regioselectivity of the 1,3-dipolar cycloaddition involving arylnitriloxides and N-propargylquinazolin-4(3H)-one, and to assess the antioxidant properties of the synthesized compounds. The synthetic approach started with the alkylation of quinazolin-4(3H)-one using propargyl bromide, followed by a 1,3-dipolar cycloaddition reaction. Methods: The structural identification of the products was performed using various spectroscopic methods, such as IR, 1H, 13C, and HMBC NMR, HRMS, and single-crystal X-ray diffraction. To further examine the regioselectivity of the cycloaddition, Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level were employed. Additionally, the antioxidant potential of the compounds was tested in vitro using DPPH (2,2-Diphenyl-1-picrylhydrazyl)radical scavenging assays. The reaction selectively produced 3,5-disubstituted isoxazoles, with the regiochemical outcome being independent of the substituents on the phenyl ring. Results: Theoretical calculations using DFT were in agreement with the experimental results, revealing activation energies of -81.15 kcal/mol for P-1 and -77.32 kcal/mol for P-2, favoring the formation of P-1. An analysis of the Intrinsic Reaction Coordinate (IRC) confirmed that the reaction proceeded via a concerted but asynchronous mechanism. The antioxidant tests demonstrated that the synthesized compounds exhibited significant radical scavenging activity, as shown in the DPPH assay. The 1,3-dipolar cycloaddition of arylnitriloxides with N-propargylquinazolin-4(3H)-one successfully resulted in novel 3,5-disubstituted isoxazoles. Conclusions: The experimental findings were well-supported by theoretical predictions, and the antioxidant assays revealed strong activity, indicating the potential for future biological applications of these compounds.
Collapse
Affiliation(s)
- Yassine Rhazi
- Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania; (N.D.); (G.N.)
| | - Riham Sghyar
- Laboratory of Applied Organic Chemistry, Faculty of Science and Techniques, Sidi Mohamed Ben Abdellah University, Routed ‘Imouzzer, P.O. Box 2202, Fez 30050, Morocco;
| | - Noemi Deak
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania; (N.D.); (G.N.)
| | - Bouchra Es-Sounni
- Laboratory of Innovative Materials and Biotechnologies of Natural Resources, Faculty of Sciences, Moulay Ismail University, P.O. Box 11201, Meknes 50000, Morocco;
| | - Bouchra Rossafi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca 20023, Morocco; (B.R.); (S.C.)
| | - Albert Soran
- Supramolecular Organic and Organometallic Chemistry Centre, Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania;
| | - Mustapha Laghmari
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, P.O. Box 1223, Taza-Gare, Taza 30050, Morocco; (M.L.); (K.H.)
| | - Azize Arzine
- Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
| | - Asmae Nakkabi
- Laboratory of Materials Engineering for the Environment and Natural Resources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknes, P.O. Box 509, Boutalamine, Errachidia 52000, Morocco;
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, P.O. Box 1223, Taza-Gare, Taza 30050, Morocco; (M.L.); (K.H.)
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca 20023, Morocco; (B.R.); (S.C.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gabriela Nemes
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania; (N.D.); (G.N.)
| | - Mohamed El. Yazidi
- Engineering Laboratory of Organometallic, Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
| |
Collapse
|
3
|
Ashique S, Faruk A, Ahmad FJ, Khan T, Mishra N. It Is All about Probiotics to Control Cervical Cancer. Probiotics Antimicrob Proteins 2024; 16:979-992. [PMID: 37880560 DOI: 10.1007/s12602-023-10183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Cervical cancer (CC) is the fourth most common malignancy in female patients. "Human papillomavirus" (HPV) contamination is a leading cause of all forms of cervical cancer, accounting for an expected 570,000 reported incidents in 2018. Two HPV strains (16 and 18) are responsible for 70% of CC and pre-cancerous cervical abnormalities. CC is one of the foremost reasons for the malignancy death rate in India among women ranging from 30 to 69 years of age in India, responsible for 17% of all cancer deaths. Currently approved cervical cancer treatments are associated with adverse reactions that might harm the lives of women affected by this disease. Consequently, probiotics can play a vital role in the treatment of CC. It is reflected from various studies regarding the role of probiotics in the diagnosis, prevention or treatment of cancer. In this review article, we have discussed the rationale of probiotics for treatment of CC, the role of probiotics as effective adjuvants in anti-cancer therapy and the combined effect of the anti-cancer drug along with probiotics to minimize the side effects due to chemotherapy.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| |
Collapse
|
4
|
Jain D, Meena M, Janmeda P, Seth CS, Arora J. Analysis of Quantitative Phytochemical Content and Antioxidant Activity of Leaf, Stem, and Bark of Gymnosporia senegalensis (Lam.) Loes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1425. [PMID: 38891234 PMCID: PMC11174610 DOI: 10.3390/plants13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
To the best of our knowledge, there was no prior report providing valuable preliminary data through a demonstration of the quantitative phytochemical and antioxidant activity of Gymnosporia senegalensis. The total contents of phenols, flavonoid, flavanol, tannin, and saponin were evaluated from different fractions extracted from the leaf, stem, and bark of G. senegalensis by using standards such as gallic acid, quercetin, rutin, tannic acid, and saponin quillaja. The antioxidant potential was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide scavenging (H2O2), superoxide anion radical scavenging, metal chelating ferrous ion, ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC). Data were subjected to half-inhibitory concentration (IC50) and one-way analysis of variance (ANOVA) at p < 0.05 as a significant value. The total phenol content was found to be highest in the chloroform extract of stem at 97.7 ± 0.02 mg GAE/g. The total flavonoid and flavonol contents in the aqueous extract were 97.1 ± 0.03 mg QE/g and 96.7 ± 0.07 mg RE/g, respectively. The total tannin content in the ethyl acetate extract of leaf was 97.5 ± 0.01 mg TAE/g, and the total saponin content in the methanol extract of stem was 79.1 ± 0.06 mg SQE/g. The antioxidant analysis indicated that IC50 and percentage (%) inhibition were dose-dependent and showed the highest antioxidant activity (40.9 ± 0.9 µg/mL) in methanol extract of leaf for DPPH, (88.8 ± 1.12 µg/mL) in the chloroform extract of stem for H2O2, (43.9 ± 0.15 µg/mL) in the aqueous extract of bark for superoxide anion radical scavenging activity, (26.9 ± 0.11 µg/mL) in the chloroform extract of leaf for the metal chelating ferrous ion activity, (7.55 ± 0.10 mg/mL) in the benzene extract of leaf for FRAP, and (2.97 ± 0.01 mg/mL) in the methanol extract of bark for TAC. These results show that G. senegalensis has great potential in antioxidant activities. The isolation and characterization of specific bioactive compounds and the in vivo applicability of such activity await further extensive studies for drug discovery and development.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | | | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| |
Collapse
|
5
|
Ma L, Zheng JJ, Zhou N, Zhang R, Fang L, Yang Y, Gao X, Chen C, Yan X, Fan K. A natural biogenic nanozyme for scavenging superoxide radicals. Nat Commun 2024; 15:233. [PMID: 38172125 PMCID: PMC10764798 DOI: 10.1038/s41467-023-44463-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Biominerals, the inorganic minerals of organisms, are known mainly for their physical property-related functions in modern living organisms. Our recent discovery of the enzyme-like activities of nanomaterials, coined as nanozyme, inspires the hypothesis that nano-biominerals might function as enzyme-like catalyzers in cells. Here we report that the iron cores of biogenic ferritins act as natural nanozymes to scavenge superoxide radicals. Through analyzing eighteen representative ferritins from three living kingdoms, we find that the iron core of prokaryote ferritin possesses higher superoxide-diminishing activity than that of eukaryotes. Further investigation reveals that the differences in catalytic capability result from the iron/phosphate ratio changes in the iron core, which is mainly determined by the structures of ferritins. The phosphate in the iron core switches the iron core from single crystalline to amorphous iron phosphate-like structure, resulting in decreased affinity to the hydrogen proton of the ferrihydrite-like core that facilitates its reaction with superoxide in a manner different from that of ferric ions. Furthermore, overexpression of ferritins with high superoxide-diminishing activities in E. coli increases the resistance to superoxide, whereas bacterioferritin knockout or human ferritin knock-in diminishes free radical tolerance, highlighting the physiological antioxidant role of this type of nanozymes.
Collapse
Affiliation(s)
- Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100408, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ning Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Fang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Yang
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou, Jiangsu, 225316, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100408, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100408, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China.
| |
Collapse
|
6
|
Dos Santos AV, Kaul AJ, Dos Santos GT, Dal Berto M, Manfroi LM, Rizzotto G, Roehe AV, Alves RCS, Lutz A, Beck P, Alves RJV, Cruz IBM, Bica CG. The impact of the association between Val16Ala-SOD2 SNP and SOD2 immunohistochemistry expression in the prognosis of patients with esophageal cancer. Pathol Res Pract 2024; 253:154965. [PMID: 38039740 DOI: 10.1016/j.prp.2023.154965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Esophageal cancer is an extensive public health issue worldwide, warranting the search for biomarkers related to its risk and progression. Previous studies have indicated an association between Val16AlaSOD2 single nucleotide polymorphism in the gene encoding the enzyme superoxide dismutase 2 and esophageal cancer. However, further investigations are needed to clarify its role in disease risk and progression. OBJECTIVE To investigate the role of Val16AlaSOD2-SNP in esophageal cancer progression and in the survival of patients METHODS: Tumor samples were utilized for Val16Ala-SNP genotyping, while SOD2 expression levels in tissue were assessed using immunohistochemistry. A SOD2 Val16Ala-SNP database was used to obtain information on the genotype of healthy individuals. Risk and overall survival analyzes were performed. RESULTS The Val16Ala SNP was associated with an increased risk of esophageal cancer (RR 2.18, 95%CI 1.23-3.86), regardless of age and gender, but did not have a significant effect on patient survival. In contrast, weak SOD2 expression demonstrated a significantly associated with poor overall survival after treatment, independent of other clinicopathological variables (HR, 0.41; 95% CI, 0.22-0.79 P = 0.007). CONCLUSIONS Val16Ala SNP was positively associated with esophageal cancer, and the expression of SOD2 was an independent prognostic marker.
Collapse
Affiliation(s)
- A V Dos Santos
- Graduate Program in Pathology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - A J Kaul
- Biomedice School, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - G T Dos Santos
- Graduate Program in Pathology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - M Dal Berto
- Graduate Program in Pathology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - L M Manfroi
- Medical School, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - G Rizzotto
- Laboratory of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - A V Roehe
- Graduate Program in Pathology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - R C S Alves
- Graduate Program in Pathology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - A Lutz
- Clinical Oncology Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - P Beck
- Clinical Oncology Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - R J V Alves
- Clinical Oncology Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Department of Internal Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - I B M Cruz
- Biogenomics Laboratory, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - C G Bica
- Graduate Program in Pathology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
8
|
Adachi Y, Nojima M, Mori M, Yamano HO, Sasaki Y, Nakase H, Lin Y, Wakai K, Tamakoshi A. Association of serum superoxide dismutase activity and the incidence of colorectal cancer in a nested case-control study. Cancer Epidemiol 2023; 87:102455. [PMID: 37748209 DOI: 10.1016/j.canep.2023.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Superoxide dismutase (SOD) is an antioxidant enzyme that degrades superoxide, a major causative factor in carcinogenesis. We assessed associations between serum SOD activities and incidence of colorectal carcinoma (CRC) in a case-control study nested in the Japan Collaborative Cohort (JACC) study. METHODS At baseline, 39,242 subjects donated serum samples. Participants diagnosed with CRC during follow-up were regarded as cases. Odds ratios (ORs) for CRC incidence associated with SOD were evaluated with conditional logistic regression models. In the current study, 176 cases and 524 controls were analyzed. RESULTS For the overall cohort, a decreasing trend in risk of CRC with increasing SOD was observed (P for trend=0.054) and the fourth quartile of SOD level showed the lowest risk compared to the first (OR=0.52, 95% confidence interval [CI]=0.29-0.93). This was significant in men (P for trend=0.001), with the fourth quartile of SOD level showing the lowest risk compared to the first (OR, 0.23; 95%CI, 0.09-0.60). It was also exclusively observed for rectal cancer and left-sided CRC (P for trend, 0.037 and 0.020, respectively), with the fourth quartile again showing the lowest risk compared to the first (OR, 0.28 and 0.38; 95%CI, 0.09-0.84 and 0.16-0.91, respectively). Limiting subjects to those followed-up over 2 years, all trends remained unchanged. CONCLUSIONS Our findings suggest that serum SOD activity correlates inversely with risk of CRC, particularly in men and individuals with rectal cancer/left-sided CRC.
Collapse
Affiliation(s)
- Yasushi Adachi
- Division of Gastroenterology, Department of Internal Medicine, Sapporo Shirakaba-dai Hospital, Sapporo, Japan; Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan.
| | - Masanori Nojima
- The Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Mitsuru Mori
- Hokkaido Chitose College of Rehabilitation, Chitose, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan
| | - Yasushi Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan
| | - Yingsong Lin
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
10
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
11
|
Characterization and Investigation of Antioxidant and Antimicrobial activity of zinc oxide nanoparticles prepared using leaves extract of Nyctanthes arbor-tristis. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Polymorphisms of Antioxidant Enzymes SOD2 (rs4880) and GPX1 (rs1050450) Are Associated with Bladder Cancer Risk or Its Aggressiveness. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010131. [PMID: 36676755 PMCID: PMC9860962 DOI: 10.3390/medicina59010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
Background and Objectives: Oxidative stress induced by increased reactive oxygen species (ROS) production plays an important role in carcinogenesis. The entire urinary tract is continuously exposed to numerous potentially mutagenic environmental agents which generate ROS during their biotransformation. In first line defense against free radicals, antioxidant enzymes superoxide dismutase (SOD2) and glutathione peroxidase (GPX1) both have essential roles. Altered enzyme activity and decreased ability of neutralizing free oxygen radicals as a consequence of genetic polymorphisms in genes encoding these two enzymes are well described so far. This study aimed to investigate the association of GPX1 (rs1050450) and SOD2 (rs4880) genetic variants with the urothelial bladder cancer (UBC) risk independently and in combination with smoking. Furthermore, we aimed to determine whether the UBC stage and pathological grade were influenced by GPX1 and SOD2 polymorphisms. Material and Methods: The study population included 330 patients with UBC (mean age 65 ± 10.3 years) and 227 respective controls (mean age 63.4 ± 7.9 years). Single nucleotide polymorphism (SNP) of GPX1 (rs1050450) was analyzed using the PCR-RFLP, while SOD2 (rs4880) SNP was analyzed using the q-PCR method. Results: Our results showed that UBC risk was significantly increased among carriers of at least one variant SOD2 Val allele compared to the SOD2 Ala16Ala homozygotes (OR = 1.55, p = 0.03). Moreover, this risk was even more pronounced in smokers with at least one variant SOD2 Val allele, since they have even 7.5 fold higher UBC risk (OR = 7.5, p < 0.001). Considering GPX1 polymorphism, we have not found an association with UBC risk. However, GPX1 genotypes distribution differed significantly according to the tumor stage (p ˂ 0.049) and pathohistological grade (p ˂ 0.018). Conclusion: We found that SOD2 genetic polymorphism is associated with the risk of UBC development independently and in combination with cigarette smoking. Furthermore, we showed that GPX1 genetic polymorphism is associated with the aggressiveness of the disease.
Collapse
|
13
|
Kshirsagar P, Gaikwad S, Pai S, Desai N, Bapat V. Evaluation of antioxidant capacity and phytochemical investigation of eleven Clusiaceae members from Western Ghats, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Spasov AA, Brigadirova AA, Zhukovskaya ON, Morkovnik AS, Lifanova YV. Search for compounds with antioxidant and antiradical activity among N9-substituted 2-(biphenyl-4-yl)imidazo[1,2-a]benzimidazoles. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.85498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Biphenyl and imidazobenzimidazole derivatives attract ongoing attention as a combination of these two privileged substructures with promising pharmacological activities. The aim of this study was to synthesize and investigate in vitro antioxidant activity of promising novel compounds: 2-(biphenyl-4-yl)imidazo[1,2-a]benzimidazoles.
Materials and methods: The newly synthesized compounds were characterized by IR, 1H NMR and CHBr(Cl)NO analyses. All newly synthesized compounds were screened for their in vitro antioxidant activity: inhibition of lipid peroxidation (LPO), 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical cation decolorization and inhibition of hemoglobin (Hb)-H2O2-induced luminol chemiluminescence.
Results and discussion: 2-Amino-3-[(2-biphenyl-4-yl)-2-oxo-ethyl)]-1-R-1Н-benzimidazolium bromides were synthesized, and their cyclization into functionalized imidazo[1,2-a]benzimidazole derivatives was studied. The resulting compounds showed LPO inhibitory activity comparable to that of dibunol. Compounds 1a and 1d (see graphical abstract), containing a methyl or dimethylaminoethyl substituent in the N9 position also proved to be equally highly active in the Hb-H2O2-induced luminol chemiluminescence model, while compound 1a was somewhat more active than 1d in the ABTS• radical scavenging assay.
Conclusion: The study showed that compounds 1a and 1d have the highest antioxidant activity. Thus, this new class of 2-(biphenyl-4-yl)imidazo[1,2-a]benzimidazole derivatives represents a valuable leading series with great potential for use as antioxidants and as promising candidates for further efficacy evaluation.
Graphical abstract:
Collapse
|
15
|
A multifunctional upconversion nanoparticles probe for Cu2+ sensing and pattern recognition of biothiols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Kumar S, Dhamija B, Attrish D, Sawant V, Sengar M, Thorat J, Shet T, Jain H, Purwar R. Genetic alterations and oxidative stress in T cell lymphomas. Pharmacol Ther 2022; 236:108109. [PMID: 35007658 DOI: 10.1016/j.pharmthera.2022.108109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
T cell lymphomas encompass a diverse group of Non-Hodgkin lymphomas with a wide spectrum of clinical, immunological and pathological manifestations. In the last two decades there has been a progress in our understanding of the cell of origin, genetic abnormalities and their impact on behaviour in T cell lymphomas. Genetic alterations are one of the critical drivers of the pathogenesis of T cell lymphoma. Disease progression has been correlated with multiple genetic abnormalities where malignant clones arise primarily out of the host immune surveillance arsenal. There are many cellular processes involved in disease development, and some of them are T cell signaling, differentiation, epigenetic modifications, and immune regulation. Modulation of these crucial pathways via genetic mutations and chromosomal abnormalities possessing either point or copy number mutations helps tumor cells to develop a niche favourable for their growth via metabolic alterations. Several metabolic pathways especially regulation of redox homeostasis is critical in pathogenesis of lymphoma. Disruption of redox potential and induction of oxidative stress renders malignant cells vulnerable to mitochondrial damage and triggers apoptotic pathways causing cell death. Targeting genetic abnormalities and oxidative stress along with current treatment regime have the potential for improved therapeutics and presents new combination approaches towards selective treatment of T cell lymphomas.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Diksha Attrish
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Vinanti Sawant
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Manju Sengar
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Jayashree Thorat
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Tanuja Shet
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Hasmukh Jain
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
17
|
Al-Hakkani MF, Gouda GA, Hassan SHA, Saddik MS, El-Mokhtar MA, Ibrahim MA, Mohamed MMA, Nagiub AM. Cefotaxime removal enhancement via bio-nanophotocatalyst α-Fe 2O 3 using photocatalytic degradation technique and its echo-biomedical applications. Sci Rep 2022; 12:11881. [PMID: 35831423 PMCID: PMC9279508 DOI: 10.1038/s41598-022-14922-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 01/01/2023] Open
Abstract
The present paper evaluates the photocatalytic degradation (PCD) performance of the biofabricated hematite nanoparticles (α-HNPs) for the degradation approach of the Cefotaxime (Cfm). The optimum pH of the solution to achieve the best PCD was found to be 10.5. The kinetics study for the PCD of the Cfm via α-HNPs has been investigated and the reaction was found to be fellow pseudo-first-order at R2 = 0.992. The mass loading impact of α-HNPs was investigated and estimated for the maximum degradation of Cfm 0.4 mg/mL. UV-Vis confirmed that α-HNPs had a direct transition bandgap at 3.78 eV at a maximum absorption wavelength of 362 nm with suspension stability for 7 days. The probable mechanism of the Cfm PCD via α-HNPs and the degradation pathway was conducted. The validation of the suspension stability of the α-HNPs (-68.6 ± 11.8 mV) was determined using the zeta potential investigation test. XRD investigation was conducted after Cfm PCD showing an average crystallite size of 27.0 nm. XRD, TEM, SEM, EDX, and FT-IR analyses have been conducted for the α-HNPs before and after Cfm PCD confirming the high efficiency for the reusability of the current biocatalyst α-HNPs for further use. TEM results of the particle sizes of α-HNPs were found at 19.2 ± 4.4 and 20.6 ± 7.4 nm respectively before and after Cfm PCD. The efficiency of the Cfm PCD was found to be 99.1% after 6 h. High potent as an antibacterial agent of α-HNPs was investigated either α-HNPs alone or after its PCD activity against Cfm. The antibacterial activity revealed high sensitivity, especially toward Gram-positive species indicating its promising ability against pathogenic issues. Interestingly, Cfm@α-HNPs showed superior anti-proliferative activity as tested by MTT assay and were able to induce apoptosis in MCF7 and HepG2 cell lines using the flow cytometry technique at 20.7% and 17% respectively. Also, The IC50 of hydrogen peroxide scavenging was estimated and it was manifested that 635.8 and 665.6 μg/mL of α-HNPs before and after the PCD process of Cfm respectively.
Collapse
Affiliation(s)
- Mostafa F Al-Hakkani
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sedky H A Hassan
- Department of Biology, College of Science, Sultan Qaboos University, 123, Muscat, Oman
- Department of Botany and Microbiology, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Mohammed S Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maggie A Ibrahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Adham M Nagiub
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
18
|
Pan T, Wang Y, Xue X, Zhang C. Rational design of allosteric switchable catalysts. EXPLORATION (BEIJING, CHINA) 2022; 2:20210095. [PMID: 37323883 PMCID: PMC10191014 DOI: 10.1002/exp.20210095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/01/2021] [Indexed: 06/16/2023]
Abstract
Allosteric regulation, in many cases, involves switching the activities of natural enzymes, which further affects the enzymatic network and cell signaling in the living systems. The research on the construction of allosteric switchable catalysts has attracted broad interests, aiming to control the progress and asymmetry of catalytic reactions, expand the chemical biology toolbox, substitute unstable natural enzymes in the biological detection and biosensors, and fabricate the biomimetic cascade reactions. Thus, in this review, we summarize the recent outstanding works in switchable catalysts based on the allosterism of single molecules, supramolecular complexes, and self-assemblies. The concept of allosterism was extended from natural proteins to polymers, organic molecules, and supramolecular systems. In terms of the difference between these building scaffolds, a variety of design methods that tailor biological and synthetic molecules into controllable catalysts were introduced with emphasis.
Collapse
Affiliation(s)
- Tiezheng Pan
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yaling Wang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| |
Collapse
|
19
|
Joksimović N, Petronijević J, Milović E, Janković N, Kosanić M, Petrović N. Antioxidant and Antimicrobial Potential, BSA and DNA Binding Properties of Some 3-Hydroxy-3-Pyrrolin-2-Ones Bearing Thenoyl Fragment. Med Chem 2022; 18:784-790. [DOI: 10.2174/1573406418666220304230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Background:
It is known that pyrrolidinone derivates belong to a class of biologically active compounds with broad spectrum of biological actions. Nowadays, many scientists are making effort in the discovery of the more effective way to eliminate reactive oxygen species (ROS) which cause oxidative stress or to eliminate the harmful microorganisms from the organism in humans. Therefore, pyrrolidinones seem to be great candidates for the investigations this field.
Methods:
The antimicrobial activity of tested compounds was estimated by the determination of the minimal inhibitory concentration by the broth micro-dilution method against four species of bacteria and five species of fungi. The antioxidant activity was evaluated by free radical scavenging and reducing power.
Results:
Among the tested compounds, P22 showed marked antibacterial activity on Staphylococcus aureus with a MIC value of 0.312 mg/mL. Maximum antifungal activity with MIC value 0.625 mg/mL was shown by P23 and P25 compounds against Trichophyton mentagrophytes. Tested samples showed a relatively strong scavenging activity on DPPH radical (IC50 ranged from 166.75-727.17 µg/mL). The strongest DPPH radical scavenging activity was shown by the P3 compound with an IC50 value of 166.75 µg/mL. Moreover, the tested compounds had effective reducing power. Compounds P3, P10, and P13 showed the highest reducing power than those from the other samples. Results of the interactions between DNA or BSA and P3 indicated that P3 had the affinity to displace EB from the EB-DNA complex through intercalation [Ksv = (1.4 ± 0.1) × 105 M-1], while Ka values obtained via titration of BSA with P23 or P25 [Ka = (6.2 ± 0.2) and (5.0 ± 0.2) × 105 M-1] indicate that the notable quantity of the drug can be transmitted to the cells.
Conclusion:
Achieved results indicate that our compounds are potential candidates for use as medicaments.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Emilija Milović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marijana Kosanić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Petrović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
20
|
Shoaib S, Islam N, Yusuf N. Phytocompounds from the medicinal and dietary plants: Multi-target agents for cancer prevention and therapy. Curr Med Chem 2022; 29:4481-4506. [PMID: 35232338 DOI: 10.2174/0929867329666220301114251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Cervical cancer is the fourth leading cause of cancer death among women worldwide. Due to cervical cancer's high incidence and mortality, there is an unmet demand for effective diagnostic, therapeutic, and preventive agents. At present, the preferred treatment strategies for advanced metastatic cervical cancer include surgery, radiotherapy, and chemotherapy. However, cervical cancer is gradually developing resistance to chemotherapy, thereby reducing its efficacy. Over the last several decades, phytochemicals, a general term for compounds produced from plants, have gained attention for their role in preventing cervical cancer. This role in cervical cancer prevention has garnered attention on the medicinal properties of fruits and vegetables. Phytochemicals are currently being evaluated for their ability to block proteins involved in carcinogenesis and chemoresistance against cervical cancer. Chemoresistance to cancer drugs like cisplatin, doxorubicin, and 5-fluorouracil has become a significant limitation of drug-based chemotherapy. However, the combination of cisplatin with other phytochemicals has been identified as a promising alternative to subjugate cisplatin resistance. Phytochemicals are promising chemo-preventive and chemotherapeutic agents as they possess antioxidant, anti-inflammatory, and anti-proliferative potential against many cancers, including cervical cancer. Furthermore, the ability of the phytochemicals to modulate cellular signaling pathways through up and down regulation of various proteins has been claimed for their therapeutic potential. Phytochemicals also display a wide range of biological functions, including cell cycle arrest, apoptosis induction, inhibition of invasion, and migration in cervical cancer cells. Numerous studies have revealed the critical role of different signaling proteins and their signaling pathways in the pathogenesis of cervical cancer. Here, we review the ability of several dietary phytochemicals to alter carcinogenesis by modulating various molecular targets.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham AL 35294, United States
| |
Collapse
|
21
|
Dubey R, Verma P, Kumar S. Cr (III) genotoxicity and oxidative stress: An occupational health risk for leather tannery workers of South Asian developing countries. Toxicol Ind Health 2022; 38:112-126. [DOI: 10.1177/07482337211055131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the leather industry, Cr (III) is used as a basic tanning agent. The wastewater discharged from the tannery industry contains a high concentration of chromium. Recent studies indicate the genotoxic effects especially DNA damage and oxidative stress of Cr (III) in tannery workers. Cr (III) interacts with DNA to form DNA cross-links and DNA strand breaks. It also modifies the oxidative DNA base through the Haber–Weiss reaction. The present study is based on an overview of scientific literature and previous observations regarding the effects of tannery chromium effluents on exposed workers and the population in the vicinity. This study strongly suggests for use of a non-toxic substitute of chromium to be used for the tanning process and placement of tannery industries on the outskirts of the city. In South Asian developing countries like India, Pakistan and Bangladesh where the economy is strongly dependent on leather manufacturing industries, there is a need to spread proper information regarding the harmful effects of chromium toxicity to the workforce employed in the tannery and also to the people living in the surrounding area. Workers should be provided with the required safety protections like gloves, aprons, foot/shoe covers, masks, etc. Last but most important on an immediate basis is the installation of the proper efficient waste treatment plant, so that, waste should be treated before moving out of the industry.
Collapse
Affiliation(s)
- Ramji Dubey
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Pragya Verma
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
22
|
Curti RRDJ, Castilha EP, Bonaldo ALL, Okuyama NCM, Trugilo KP, Guembarovski RL, Couto-Filho JD, Watanabe MAE, de Oliveira KB. Development of cervical intraepithelial lesions and cervical cancer is not influenced by SOD2 RS4880 polymorhism. Pathol Res Pract 2021; 230:153742. [PMID: 34959097 DOI: 10.1016/j.prp.2021.153742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
Some of the more than 200 known HPV types are essential for cervical cancer development, the third type of cancer most incident in the female population. However, for the malignant transformation occur, some cofactors are needed, as the reactive oxygen species (ROS), which can be neutralized by the antioxidant system. The SOD2 enzyme, encoded by the same name gene, is found in mitochondria and is part of the first line of defense against oxidative stress damage. Genetic polymorphisms can act by altering the efficiency of the enzyme, among which the most studied is the rs4880. Thus, the purpose of the present study was to evaluate the association of this polymorphism with HPV infection and the development of low and high grade squamous intraepithelial lesions (LSIL and HSIL) and cervical cancer, in 407 women attended by the public health system in Brazil. HPV detection in cervical secretion samples was carried out by polymerase chain reaction (PCR) and blood samples were used for polymorphism genotyping through PCR followed by restriction fragment length polymorphism (RFLP). PCR and restriction products were subjected to 10% polyacrylamide gel electrophoresis. HPV negative group (control) included 158 women and the HPV positive group (case) 249 women. The infected group was divided into No Lesion (n = 90), LSIL (n = 20), HSIL (n = 67) and cervical cancer (n = 72). The data found on socio-epidemiological characteristics and habits corroborated with data found in the literature. The distribution of genotypes in the control group was 51.9% women TC, 29.8% TT and 18.3% CC. In the case group, the distribution was 55.0% women TC, 26.1% TT and 18.9% CC. This is the first study evaluating the influence of SOD2 rs4880 polymorphism on HPV infection, the development of cervical intraepithelial lesions and cervical cancer in a Brazilian population, although additional studies are needed to corroborate the results.
Collapse
Affiliation(s)
- Rafaela Roberta de Jaime Curti
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Ana Luiza Labbate Bonaldo
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Nádia Calvo Martins Okuyama
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Roberta Losi Guembarovski
- Laboratory of Mutagenesis and Oncogenetics, Molecular Genetics and Immunology, Department of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | | | - Maria Angelica Ehara Watanabe
- Laboratory of Study and Application of DNA Polymorphism, Department of Pathological Science, Londrina State University, Londrina, Paraná, Brazil
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil.
| |
Collapse
|
23
|
Sarabandi S, Effatpanah H, Sereshki N, Samavarchi Tehrani S, Moradi-Sardareh H. 50-bp insertion/deletion polymorphism of the superoxide dismutase-1 is associated with bladder cancer risk in an Iranian population. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:154-165. [PMID: 34903144 DOI: 10.1080/15257770.2021.2014521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Bladder cancer (BC) is considered the sixth prevalent malignancy in men and the ninth leading cause of malignancy-related worldwide. Superoxide dismutase (SOD) is an antioxidant enzyme in the defense system against oxidative stress. Hence, we aimed to investigate whether the 50 bp Insertion/Deletion(Ins/Del) polymorphism of the SOD1 associated with the risk of BC. The study was conducted on 158 BC patients and 153 age-matched healthy subjects. Genomic DNA from all individuals was screened for the 50-bp SOD1 promoter deletion using PCR assay. Our results demonstrated an association between SOD1 Ins/Del (45% vs. 32%) genotype and risk of BC and this genotype elevated the susceptibility to BC (OR = 1.80, 95% CI: (1.10-2.90), P = 0.01). In addition, the Del allele of the SOD1 variation was detected to be more prevalent in the BC patients with the frequency of 28% and 20% in cases and healthy groups, correspondingly (OR = 1.61, 95% CI: (1.10-2.36), P = 0.01). It seems that SOD1 50-bp Ins/Del genotype, as well as Del, allele, is associated with an increased risk of BC in an Iranian population. However, further investigations in more diverse populations are necessary to assess the value of the novel biomarkers as a risk stratification biomarker for BC.
Collapse
Affiliation(s)
- Sahel Sarabandi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Synthesis, characterization, biological evaluation, BSA binding properties, density functional theory and molecular docking study of Schiff bases. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Impact of EcSOD Perturbations in Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10081219. [PMID: 34439467 PMCID: PMC8388922 DOI: 10.3390/antiox10081219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023] Open
Abstract
Reactive oxygen species (ROS) are a normal byproduct of cellular metabolism and are required components in cell signaling and immune responses. However, an imbalance of ROS can lead to oxidative stress in various pathological states. Increases in oxidative stress are one of the hallmarks in cancer cells, which display an altered metabolism when compared to corresponding normal cells. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide anion (O2−) in the extracellular environment. By doing so, this enzyme provides the cell with a defense against oxidative damage by contributing to redox balance. Interestingly, EcSOD expression has been found to be decreased in a variety of cancers, and this loss of expression may contribute to the development and progression of malignancies. In addition, recent compounds can increase EcSOD activity and expression, which has the potential for altering this redox signaling and cellular proliferation. This review will explore the role that EcSOD expression plays in cancer in order to better understand its potential as a tool for the detection, predicted outcomes and potential treatment of malignancies.
Collapse
|
26
|
Wang LT, Lv MJ, An JY, Fan XH, Dong MZ, Zhang SD, Wang JD, Wang YQ, Cai ZH, Fu YJ. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: a review. Food Funct 2021; 12:1432-1451. [PMID: 33533385 DOI: 10.1039/d0fo02603d] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the growing global population, reduction in arable land and effects of climate change, incongruity between food supply and demand has become increasingly severe. Nowadays, with awareness of the elementary nutrients required for human growth, increasing attention is being paid to the health and medical functions of food. Along with increased food production achieved by modern agricultural techniques, underutilised functional foods are an important strategy for solving food security problems and maintaining the nutritional quality of the human diet. Rosa roxburghii Tratt (RRT) is a natural fruit that contains unique functional and nutritional constituents, which are characterised by a high anti-oxidant potential. This review summarises the biological characteristics, chemical composition, health-promoting properties and development status of RRT products to inspire investigations on the use of RRT fruit as a functional food, dietary supplement and pharmaceutical additive. The nutrients and functional ingredients of RRT fruit are described in detail to provide more reference information for nutritionists and pharmacists.
Collapse
Affiliation(s)
- Li-Tao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mu-Jie Lv
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Juan-Yan An
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Xiao-Hong Fan
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Ming-Zhu Dong
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Sun-Dong Zhang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yan-Qiu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Zi-Hui Cai
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China. and Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China and Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, PR China
| |
Collapse
|
27
|
Tian R, Geng Y, Guo H, Yang C, Seim I, Yang G. Comparative analysis of the superoxide dismutase gene family in Cetartiodactyla. J Evol Biol 2021; 34:1046-1060. [PMID: 33896059 DOI: 10.1111/jeb.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
Cetacea, whales, dolphins and porpoises form an order of mammals adapted to aquatic life. Their transition to an aquatic habitat resulted in exceptional protection against cellular insults, including oxidative and osmotic stress. Here, we considered the structure and molecular evolution of the superoxide dismutase (SOD) gene family, which encodes essential enzymes in the mammalian antioxidant system, in the superorder Cetartiodactyla. To this end, we juxtaposed cetaceans and their closest extant relatives (order Artiodactyla). We identified 94 genes in 23 species, of which 70 are bona fide intact genes. Although the SOD gene family is conserved in Cetartiodactyla, lineage-specific gene duplications and deletions were observed. Phylogenetic analyses show that the SOD2 subfamily diverged from a clade containing SOD1 and SOD3, suggesting that cytoplasmic, extracellular and mitochondrial SODs have started down independent evolutionary paths. Specific-amino acid changes (e.g. K130N in SOD2) that may enhance ROS elimination were identified in cetaceans. In silico analysis suggests that the core transcription factor repertoire of cetartiodactyl SOD genes may include Sp1, NF-κB, Nrf2 and AHR. Putative transcription factors binding sites responding to hypoxia were (e.g. Suppressor of Hairless; Su(H)) found in the cetacean SOD1 gene. We found significant evidence for positive selection in cetaceans using codon models. Cetaceans with different diving abilities also show divergent evolution of SOD1 and SOD2. Our genome-wide analysis of SOD genes helps clarify their relationship and evolutionary trajectory and identify putative functional changes in cetaceans.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Guo
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chen Yang
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.,School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
28
|
Dehimat A, Azizi I, Barragan-Montero V, Khettal B. Cytotoxicity and antioxidant activities of leaf extracts of Varthemia sericea (Batt. et Trab.) Diels. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Limonin modulated immune and inflammatory responses to suppress colorectal adenocarcinoma in mice model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1907-1915. [PMID: 34009457 DOI: 10.1007/s00210-021-02101-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022]
Abstract
Inflammation and compromised immune responses often increase colorectal cancer (CRC) risk. The immune-modulating effects of limonin on carcinogen/inflammation-induced colorectal cancer (CRC) were studied in mice. Male Balb/c mice were randomly assorted into three groups (n = 6): healthy control, non-treated CRC-induced (azoxymethane/dextran-sulfate-sodium AOM/DSS) control, and CRC-induced + 50 mg limonin/kg body weight. The CRC developments were monitored via macroscopic, histopathological, ELISA, and mRNA expression analyses. Limonin downregulated inflammation (TNF-α, tumor necrosis factor-α), enhanced the adaptive immune responses (CD8, CD4, and CD19), and upregulated antioxidant defense (Nrf2, SOD2) mRNA expressions. Limonin reduced serum malondialdehyde (MDA, lipid peroxidation biomarker), prostaglandin E2, and histopathology inflammation scores, while increasing reduced glutathione (GSH) in CRC-induced mice. Limonin significantly (p < 0.05) increased T cells (CD4 and CD8) and B cells (CD19) in spleen tissues. The CD335 (natural killer cells) were increased in the CRC-induced mice and limonin treatment restored them to normal levels suggesting reinstatement to normal colon conditions. Limonin apparently mitigated CRC development, by ameliorating adaptive immune responses (CD8, CD4, and CD19), reducing inflammation (serum prostaglandin E2; TNF-α, innate immune responses) and oxidative stress, and enhancing the endogenous anti-oxidation defense reactions (GSH) in CRC-induced mice.
Collapse
|
30
|
Talarico MCR, Nunes RAL, Silva GÁF, da Costa LBE, Cardoso MR, Esteves SCB, Zanatta Sarian LO, Zeferino LC, Termini L. High Expression of SOD2 Protein Is a Strong Prognostic Factor for Stage IIIB Squamous Cell Cervical Carcinoma. Antioxidants (Basel) 2021; 10:antiox10050724. [PMID: 34062984 PMCID: PMC8147985 DOI: 10.3390/antiox10050724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
High superoxide dismutase 2 (SOD2) expression is associated with a poor prognosis at many cancer sites, the presence of metastases, and more advanced cervical cancer. This study aims to determine whether SOD2 protein expression is associated with the prognosis of stage IIIB cervical carcinoma. Methods: sixty-three patients with stage IIIB squamous cell cervical carcinoma were included. The evaluation of SOD2 expression by immunohistochemistry was based on a positive cell ratio score and the staining intensity score. Taking disease recurrence and death as endpoints, receiver operating characteristic curves were used to discriminate between high and low SOD2 expression. Results: high SOD2 expression was associated with recurrence (p = 0.001), distant recurrence (p = 0.002), and death (p = 0.005). A multivariate analysis showed that patients with high SOD2 expression had a threefold increased risk for recurrence (HR = 3.16; 1.33–7.51) and death (HR = 2.98; 1.20–7.40) compared with patients who had low SOD2 expression. Patients with high SOD2 expression had shorter disease-free survival (p = 0.001) and overall survival (p = 0.003) than patients with low SOD2 expression. Conclusion: high SOD2 expression is a strong prognostic factor for stage IIIB squamous cell carcinoma of the cervix and could be used as a prognostic marker in women with cervical carcinoma.
Collapse
Affiliation(s)
- Maria Cecília Ramiro Talarico
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, State University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas, São Paulo 13081970, Brazil; (M.C.R.T.); (M.R.C.); (L.O.Z.S.)
| | - Rafaella Almeida Lima Nunes
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403911, Brazil; (R.A.L.N.); (G.Á.F.S.)
| | - Gabriela Ávila Fernandes Silva
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403911, Brazil; (R.A.L.N.); (G.Á.F.S.)
| | - Larissa Bastos Eloy da Costa
- Department of Pathology, State University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas, São Paulo 13083887, Brazil;
| | - Marcella Regina Cardoso
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, State University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas, São Paulo 13081970, Brazil; (M.C.R.T.); (M.R.C.); (L.O.Z.S.)
| | - Sérgio Carlos Barros Esteves
- Department of Radiotherapy, Division of Gynecologic and Breast Oncology, Women’s Hospital Professor Doutor José Aristodemo Pinotti—Centro de Atenção Integral à Saúde da Mulher (CAISM), State University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas, São Paulo 13083881, Brazil;
| | - Luis Otávio Zanatta Sarian
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, State University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas, São Paulo 13081970, Brazil; (M.C.R.T.); (M.R.C.); (L.O.Z.S.)
| | - Luiz Carlos Zeferino
- Department of Obstetrics and Gynecology, Division of Gynecologic and Breast Oncology, School of Medical Sciences, State University of Campinas (UNICAMP—Universidade Estadual de Campinas), Campinas, São Paulo 13081970, Brazil; (M.C.R.T.); (M.R.C.); (L.O.Z.S.)
- Correspondence: (L.C.Z.); (L.T.); Tel.: +55-19-3521-9516 (L.C.Z.)
| | - Lara Termini
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403911, Brazil; (R.A.L.N.); (G.Á.F.S.)
- Correspondence: (L.C.Z.); (L.T.); Tel.: +55-19-3521-9516 (L.C.Z.)
| |
Collapse
|
31
|
Tahir KA, Miskad UA, Djawad K, Djide S, Khaerani K, Indrisari M. Evaluation of Antioxidant Activity of Botto-Botto Leaf Fraction (Chromolaena Odorata L.) Using DPPH and ABTS Methods. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Antioxidants are substances that can inhibit the oxidation process, so that they have a protective effect on cells from the dangers of free radicals. One of the plants that has activity as natural antioxidants is Botto-Botto leaves (Chromolaena odorata L.).
AIM: This study aims to determine the antioxidant activity of the Botto-Botto leaf fraction using the DPPH and ABTS methods.
METHODS: The leaves of Botto-Botto (Chromolaena odorata L.) obtained from Takalar District, South Sulawesi are sorted, dried and pollinated. The powder was immersed in 70% ethanol solvent and sonicated. Furthermore, the extraction was carried out by maceration method with 70% ethanol solvent and fractionated using water, n-hexane, and n-butanol as solvents and dried. The fractionation results were continued for antioxidant testing using the DPPH and ABTS methods.
RESULTS: The n-butanol fraction of Botto-Botto leaves had the highest antioxidant activity, namely the strong active category. In the DPPH and ABTS methods, the n-butanol fraction has IC50 values of 33.535 μg / mL and 60.885 μg / mL, respectively.
CONCLUSION: The DPPH and ABTS methods, the n-butanol fraction of botto-botto leaves have strong antioxidant activity compared to other fractions, namely the water fraction and the n-hexane fraction.
Collapse
|
32
|
Abu Almaaty AH, Abd El-Aziz YM, Omar NA, Abdeen AM, Afifi H, Ibrahim TS, Elhady SS, Khedr AIM. Antioxidant Property of the Egyptian Propolis Extract Versus Aluminum Silicate Intoxication on a Rat's Lung: Histopathological Studies. Molecules 2020; 25:molecules25245821. [PMID: 33321768 PMCID: PMC7764379 DOI: 10.3390/molecules25245821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated the inflammatory responses induced by aluminum silicate (AS) cytotoxicity in rat lungs. The prophylactic effect of propolis extract was evaluated in 60 adult male albino rats. The rats were divided into six groups: (1) a normal, healthy control group; (2) a normal group fed with 200 mL of propolis extract/Kg; (3) a low-dose positive control group injected with 5 mg/kg of AS; (4) a treated group given propolis and a low dose of AS; (5) a high-dose positive control group injected with 20 mg/kg of AS; and (6) a treated group given propolis with a high-dose of AS. At the end of the two-month experiment, the rats’ lungs were removed. For each pair of lungs, one portion was subjected to biochemical analysis and the other underwent hematoxylin and eosin (H&E) staining in order to study its histology. The rats that received AS doses displayed significant disorders in their antioxidant contents as well as in their enzymatic activities and their histopathological structures revealed severe damage to their lung tissues. Upon the rats being treated with propolis, the enzymatic and antioxidant contents improved and partial improvements in the lung structures appeared, including minimized congestion, a reduced hemorrhage of blood vessels and preserved bronchioles, alveolar ducts, and alveoli. The prophylactic effectiveness of propolis extract on the cytotoxicity of AS, owing to the antioxidant properties of propolis, were studied.
Collapse
Affiliation(s)
- Ali H. Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; (A.H.A.A.); (Y.M.A.E.-A.)
| | - Yasmin M. Abd El-Aziz
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; (A.H.A.A.); (Y.M.A.E.-A.)
| | - Nahed A. Omar
- Department of Zoology, Faculty of Science, Damietta University, Damietta 34511, Egypt;
| | - Ahmed M. Abdeen
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Hala Afifi
- Pharmacy Department, College of Health Sciences, City University College of Ajman, Ajman 18484, UAE;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amgad I. M. Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Correspondence: ; Tel.: +20-0100-1659997; Fax: +20-066-3400344
| |
Collapse
|
33
|
Campos-Shimada LB, Hideo Gilglioni E, Fernandes Garcia R, Rizato Martins-Maciel E, Luiza Ishii-Iwamoto E, Luzia Salgueiro-Pagadigorria C. Superoxide dismutase: a review and a modified protocol for activities measurements in rat livers. Arch Physiol Biochem 2020; 126:292-299. [PMID: 30372625 DOI: 10.1080/13813455.2018.1520891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Superoxide dismutase (SOD) enzymes are considered the first line of Defence against reactive oxygen species. Among the intracellular isoforms of SOD, Cu,ZnSOD is widely distributed, and the MnSOD is localised in the mitochondria. The SOD activities have been measured indirectly by inhibiting oxidation reactions. Most techniques assessing the hepatic SOD activity are adaptations of classical methods and differ significantly from each other. This work assessed the hepatic Cu,ZnSOD activity in the supernatants of two different centrifugations, using two isotonic medium and the pyrogallol method. In most studies conducted in rat liver, only the Cu,Zn or total SOD activities were assessed and sometimes the Cu,ZnSOD activity was calculated based on the inhibition by cyanide. But, as demonstrated here, this inhibition is not complete. Besides, the novelty of this work is that we presented a method for the evaluating the Cu,ZnSOD and MnSOD activities separately and from the same liver.
Collapse
Affiliation(s)
- Lilian Brites Campos-Shimada
- Laboratory of Experimental Steatosis Department of Biochemistry, State University of Maringá, Maringá, Brazil
- Department of Biomedicine, Centro Universitário Integrado, Campo Mourão, Brazil
| | - Eduardo Hideo Gilglioni
- Laboratory of Experimental Steatosis Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | | | | | - Emy Luiza Ishii-Iwamoto
- Laboratory of Experimental Steatosis Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | | |
Collapse
|
34
|
AlBasher G, Abdel-Daim MM, Almeer R, Ibrahim KA, Hamza RZ, Bungau S, Aleya L. Synergistic antioxidant effects of resveratrol and curcumin against fipronil-triggered oxidative damage in male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6505-6514. [PMID: 31873888 DOI: 10.1007/s11356-019-07344-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Fipronil (FPN), a phenylpyrazole insecticide, has been receiving increased attention owing to its toxicity, which is largely mediated through its effects on antioxidant systems. The present study was undertaken to assess the effects of resveratrol (RSV) and curcumin (CUR) on oxidative damage induced by FPN. Forty mature male Wistar rats were randomized into five groups (n = 8 per group): the first group was the control; the second was administered FPN (10 mg/kg); and the third, fourth, and fifth were co-treated with RSV (10 mg/kg), CUR (200 mg/kg), and their combination, respectively, 2 h prior to FPN administration. All animals were dosed via oral gavage for 4 weeks. FPN significantly (p < 0.05) elevated the sera of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyl transferase (GGT), urea, creatinine, and cholesterol levels, whereas serum total protein, albumin, and triglyceride levels were significantly (p < 0.05) decreased, compared to those of the control group. Reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were decreased (p < 0.05) in the FPN-treated group compared to those in the control group; however, malondialdehyde (MDA) and nitric oxide (NO) levels were markedly increased (p < 0.05) in the hepatic, renal, and brain tissues. Co-treatment with RSV or CUR alleviated (p ˂ 0.05) the increased lipid peroxidation and changes in enzymatic/nonenzymatic antioxidants induced by FPN; all these variables mostly returned to normal levels with the combined of RSV and CUR treatment. In conclusion, RSV and/or CUR relieved and synergistically reversed the FPN-induced tissue oxidative injury, probably by improving the antioxidant defenses via their free radical scavenging and antioxidant characteristics.
Collapse
Affiliation(s)
- Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Reham Z Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| |
Collapse
|
35
|
Wang QQ, Fang ZQ, Wu YT, Zhang M, Shi G. A single-component yet multifunctional tongue-mimicking sensor array for upconversion fluorescence biosensing. Analyst 2020; 145:7191-7196. [DOI: 10.1039/d0an01641a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel single-component nanoprobe has been created for the pattern recognition of antioxidants in a “turn on” manner by integrating with the prevention of PDA formation with an antioxidant.
Collapse
Affiliation(s)
- Qian-Qian Wang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Zheng-Qi Fang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Ya-Ting Wu
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Min Zhang
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration
- Engineering Research Center for Nanophotonics and Advanced Instrument
- Ministry of Education
- East China Normal University
| |
Collapse
|
36
|
Antioxidant status following postprandial challenge of two different doses of tocopherols and tocotrienols. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 18:68-79. [PMID: 31812339 DOI: 10.1016/j.joim.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/14/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Tocotrienols (T3s) have been hypothesized to have greater antioxidant capacity than tocopherols (Ts) due to differences in biokinetics that affect their absorption and function. The present trial compares the antioxidant effectiveness following postprandial challenge of two different doses of α-T or palm T3-rich fraction (TRF) treatments and evaluates their dose-response effects on antioxidant status. METHODS Ten healthy volunteers were given four different doses of vitamin E formulations (268 mg α-T, 537 mg α-T, 263 mg TRF or 526 mg TRF) in a cross-over postprandial trial. Blood was sampled at 0, 2, 4, 5, 6 and 8 hours after meal consumption and plasma antioxidant status including total glutathione, superoxide dismutase, malondialdehyde (MDA), ferric reducing antioxidant potential and trolox-equivalent antioxidant capacity, was analyzed. RESULTS Supplementation with the different doses of either α-T or TRF did not significantly improve overall antioxidant status. There was no significant difference in overall antioxidant status among treatments at the different doses compared. However, a significant dose-response effect was observed for plasma MDA throughout the 8-hour postprandial period. MDA was significantly lower after the 537 mg α-T treatment, compared to the 268 mg α-T treatment; it was also lower after the 526 mg TRF treatment compared to the 263 mg TRF treatment (P < 0.05). CONCLUSION T3 and α-T demonstrated similar antioxidant capacity, despite markedly lower levels of T3 in blood and lipoproteins, compared to α-T.
Collapse
|
37
|
Syed Ali Fathima S, Mohamed Sahul Meeran M, Nagarajan E. Design and synthesis of novel pyrazolone based coordination compounds: DNA synergy, biological screening, apoptosis, molecular docking and in-silico ADMET profile. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP 5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100490. [PMID: 31627290 PMCID: PMC6826590 DOI: 10.3390/antiox8100490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
Clear-cell renal carcinoma (ccRCC) is the most common type of renal cancer. The importance of oxidative stress in the context of this disease has been described, although there is only little information concerning the role of superoxide dismutase (SOD) enzymes. The importance of SOD in different pathological conditions promoted the development of SOD mimics (SODm). As such, manganese(III) porphyrins can mimic the natural SOD enzymes and scavenge different reactive oxygen species (ROS), thus modulating the cellular redox status. In this study, the exposure of 786-O human renal cancer cells to MnTnHex-2-PyP5+ (MnP), a very promising SODm, led to a concentration and time-dependent decrease in cell viability and in the cell proliferation indices, as well as to an increase in apoptosis. No relevant effects in terms of micronuclei formation were observed. Moreover, the exposure to MnP resulted in a concentration-dependent increase in intracellular ROS, presumably due to the generation of H2O2 by the inherent redox mechanisms of MnP, along with the limited ability of cancer cells to detoxify this species. Although the MnP treatment did not result in a reduction in the collective cell migration, a significant decrease in chemotactic migration was observed. Overall, these results suggest that MnP has a beneficial impact on reducing renal cancer cell viability and migration and warrant further studies regarding SODm-based therapeutic strategies against human renal cancer.
Collapse
Affiliation(s)
- João G Costa
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno Saraiva
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana S Fernandes
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| |
Collapse
|
39
|
Abstract
Jernang resin is secretion of jernang rattan (Daemonorops draco, Arecaceae family) fruits which is endemic in Southeast Asia. This resin has various biological activities and empirically used as wound healing, headache medicines, and fever remedies by Anak Dalam ethnic group from Jambi. This study was performed to evaluate the antioxidant activity of nonpolar fraction of D. draco resin which collected from Jambi Province, Sumatera, Indonesia. Resin was extracted with n-hexane, ethyl acetate, and methanol respectively. The antioxidant properties of the extracts were then evaluated using 1,1-diphenyl-2picryl-hidrazyl radical scavenging assay. The most active extract was further fractionated using n-hexane and methanol and separated using column chromatography and preparative thin layer chromatography. Separation of the extract was conducted through antioxidant assay-guided fractionation. Characterization of the active fraction was carried out by infrared spectroscopy. The result shows that ethyl acetate extract provides higher antioxidant activity (IC50 = 27.61 µg/mL) compare to methanol and n-hexane extracts. N-hexane fraction of ethyl acetate extract used for further separation using column and preparative thin layer chromatography due to its antioxidant activity. Separation using column chromatography resulting in 9 fractions (F.1-9). Fraction F.5 provide high antioxidant activity (IC50 = 17.27 µg/mL) and further separated using preparative thin layer chromatography resulting two fractions with lower antioxidant activity F.5.1 (IC50 = 85.18 µg/mL) and F.5.2 (IC50 = 34.94 µg/mL). Characterization of fraction F.5.2 using infrared spectroscopy showed that component in fraction F.5.2 contains NH-substituted benzene.
Collapse
|
40
|
Ibrahim KA, Khwanes SA, El-Desouky MA, Elhakim HKA. Propolis relieves the cardiotoxicity of chlorpyrifos in diabetic rats via alleviations of paraoxonase-1 and xanthine oxidase genes expression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:127-135. [PMID: 31400774 DOI: 10.1016/j.pestbp.2019.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Pesticides cardiotoxicity in case of diabetic-induced cardiac complications is unidentified. The probable amelioration role of propolis is gauged against the cardiotoxic effects of chlorpyrifos in the diabetic rats through paraoxonase-1 (PON1) and xanthine oxidase (XO) genes dysregulation. Fifty-six male rats were distributed (n = 7) into eight groups. The first one saved as control whereas the 2nd, 3rd, and 4th were kept for propolis aqueous extract (100 mg/kg), diabetes (60 mg/kg streptozotocin) and chlorpyrifos (2.5 mg/kg), respectively. The 5th was diabetes/chlorpyrifos combination, while 6th, 7th, and 8th were intubated with propolis for four weeks after diabetic induction, chlorpyrifos intoxication, and their combination, respectively. The plasma glucose, lipid profiles, cardiac enzymes and interleukin-6 (IL-6) significantly elevated, while insulin decreased in the diabetic and combination groups. Although the cardiac acetylcholinesterase, total thiols, and PON1 significantly reduced after diabetic and/or chlorpyrifos gavage, the protein carbonyl, superoxide dismutase, catalase, and XO significantly elevated. The mRNA genes expression of PON1 and XO have also confirmed the enzymatic activities. Interestingly, propolis significantly restored the hyperglycemia, hypoinsulinemia, hyperlipidemia, IL-6 elevations, and antioxidant defense system disorder. These records revealed that the immunomodulatory, anti-diabetic and antioxidant tasks are fine pointers for the cardiovascular defender of propolis especially during diabetes and/or pesticides exposure.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | | | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
41
|
Karthika K, Gargi G, Jamuna S, Paulsamy S, Ajmal Ali M, Al-Hemaid F, Soliman Elshikh M, Lee J. The potential of antioxidant activity of methanolic extract of Coscinium fenestratum (Goetgh.) Colebr (Menispermaceae). Saudi J Biol Sci 2019; 26:1037-1042. [PMID: 31303838 PMCID: PMC6601032 DOI: 10.1016/j.sjbs.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 01/01/2023] Open
Abstract
To explore the possible bioactive compounds and to study the antioxidant capacity of Coscinium fenestratum (Goetgh.) Colebr (Menispermaceae), the qualitative and quantitative phytochemical screening for various secondary metabolites were evaluated. Using the GC-MS analysis, a total number of 30 phytochemical compounds were predicted with their retention time, molecular weight, molecular formula, peak area, structure and activities. The most prevailing heterocyclic compound was Bis(2,4,6- triisopropylphenyl) phosphinicazide (6.70%). The antioxidant activity was evaluated by spectrophotometric methods using the reducing power assay and the DPPH• and ABTS•+ scavenging assays. The activity was determined to be increased in all the test samples with the increase in the volume of the extract. C. fenestratum possess a good source of many bioactive compounds that are used to prevent diseases linked with oxidative stress.
Collapse
Affiliation(s)
- Krishnamoorthy Karthika
- Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Gangadharan Gargi
- Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Senguttuvan Jamuna
- Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Subramaniyam Paulsamy
- Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Batinic-Haberle I, Tome ME. Thiol regulation by Mn porphyrins, commonly known as SOD mimics. Redox Biol 2019; 25:101139. [PMID: 31126869 PMCID: PMC6859569 DOI: 10.1016/j.redox.2019.101139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 01/27/2023] Open
Abstract
Superoxide dismutases play an important role in human health and disease. Three decades of effort have gone into synthesizing SOD mimics for clinical use. The result is the Mn porphyrins which have SOD-like activity. Several clinical trials are underway to test the efficacy of these compounds in patients, particularly as radioprotectors of normal tissue during cancer treatment. However, aqueous chemistry data indicate that the Mn porphyrins react equally well with multiple redox active species in cells including H2O2, O2•-, ONOO-, thiols, and ascorbate among others. The redox potential of the Mn porphyrins is midway between the potentials for the oxidation and reduction of O2•-. This positions them to react equally well as oxidants and reductants in cells. The result of this unique chemistry is that: 1) the species the Mn porphyrins react with in vivo will depend on the relative concentrations of the reactive species and Mn porphyrins in the cell of interest, and 2) the Mn porphyrins will act as catalytic (redox cycling) agents in vivo. The ability of the Mn porphyrins to catalyze protein S-glutathionylation means that Mn porphyrins have the potential to globally modulate cellular redox regulatory signaling networks. The purpose of this review is to summarize the data that indicate the Mn porphyrins have diverse reactions in vivo that are the basis of the observed biological effects. The ability to catalyze multiple reactions in vivo expands the potential therapeutic use of the Mn porphyrins to disease models that are not SOD based.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Margaret E Tome
- Departments of Pathology and Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
43
|
Degola F, Marzouk B, Gori A, Brunetti C, Dramis L, Gelati S, Buschini A, Restivo FM. Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts. Toxins (Basel) 2019; 11:toxins11050286. [PMID: 31121811 PMCID: PMC6563254 DOI: 10.3390/toxins11050286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Citrullus colocynthis L. Schrader is an annual plant belonging to the Cucurbitaceae family, widely distributed in the desert areas of the Mediterranean basin. Many pharmacological properties (anti-inflammatory, anti-diabetic, analgesic, anti-epileptic) are ascribed to different organs of this plant; extracts and derivatives of C. colocynthis are used in folk Berber medicine for the treatment of numerous diseases-such as rheumatism arthritis, hypertension bronchitis, mastitis, and even cancer. Clinical studies aimed at confirming the chemical and biological bases of pharmacological activity assigned to many plant/herb extracts used in folk medicine often rely on results obtained from laboratory preliminary tests. We investigated the biological activity of some C. colocynthis stem, leaf, and root extracts on the mycotoxigenic and phytopathogenic fungus Aspergillus flavus, testing a possible correlation between the inhibitory effect on aflatoxin biosynthesis, the phytochemical composition of extracts, and their in vitro antioxidant capacities.
Collapse
Affiliation(s)
- Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Belsem Marzouk
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000 Monastir, Tunisia.
| | - Antonella Gori
- Tree and Timber Institute (IVALSA), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Cecilia Brunetti
- Tree and Timber Institute (IVALSA), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Department of Agriculture, Environment, Food and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy.
| | - Lucia Dramis
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Stefania Gelati
- Department of Packaging, Experimental Station for the Food Preserving Industry (SSICA), Viale Tanara 31/A, 43121 Parma, Italy.
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
- Center for Molecular and Translational Oncology, Parco Area delle Scienze, 43124 Parma, Italy.
| | - Francesco M Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
44
|
Li J, Lei J, He L, Fan X, Yi F, Zhang W. Evaluation and Monitoring of Superoxide Dismutase (SOD) Activity and its Clinical Significance in Gastric Cancer: A Systematic Review and Meta-Analysis. Med Sci Monit 2019; 25:2032-2042. [PMID: 30886134 PMCID: PMC6436205 DOI: 10.12659/msm.913375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background This systematic review of the literature and meta-analysis aimed to review the evaluation and monitoring of superoxide dismutase (SOD) activity and its clinical significance in gastric cancer. Material/Methods Systematic review involved searching the PubMed, Embase, Ovid, and the China National Knowledge Infrastructure (CNKI) databases. Search terms included ‘superoxide dismutase,’ and ‘gastric cancer.’ Studies that included measurements of SOD activity in peripheral blood samples in patients with SOD activity compared with healthy controls. The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results Ten controlled clinical studies were identified that included six studies that measured SOD in serum, three in erythrocytes, and one study that measured SOD on whole blood. Meta-analysis, using the standardized mean difference (SMD) and the 95% confidence interval (CI), showed that patients with gastric cancer had significantly decreased SOD activity when compared with the healthy controls (SMD, −0.840; 95% CI, −1.463 to −0.218; p=0.008). Subgroup analysis was conducted on SOD distribution in the blood (erythrocyte: SMD, −1.773; 95% CI, −2.504 to −1.042; p=0.000) (serum SMD, −0.322; 95% CI, −1.006−0.361; p=0.355) (whole blood: SMD, −1.251; 95% CI, −1.731 to −0.771; p=0.000) and for male subjects (SMD, −2.090; 95% CI, −2.725 to −1.456; p<0.001). Conclusions Meta-analysis showed that SOD measurements from blood samples, especially in erythrocytes, had potential as a diagnostic and monitoring parameter in patients with gastric cancer.
Collapse
Affiliation(s)
- Jine Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Jun Lei
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Liyun He
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiude Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
45
|
Phenolic profiling and antioxidant capacity of Morchella esculenta L. by chemical and electrochemical methods at multiwall carbon nanotube paste electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Sato Y. [Study of Formulation Development Based on the Pharmacokinetic Properties of Functional Food Components]. YAKUGAKU ZASSHI 2019; 139:341-347. [PMID: 30828009 DOI: 10.1248/yakushi.18-00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preventive medicine and anti-aging medicine have received much attention recently due to an increase in the proportion of elderly people in the population, and to an increase in patients with lifestyle diseases. Oxidative stress is involved in the onset of lifestyle diseases, and various antioxidant supplements and antioxidant-fortified functional foods have recently become available. Many epidemiological studies have shown relationships between the consumption of polyphenol and carotenoid-rich foods and the prevention of lifestyle diseases. We have focused on the absorption mechanism of these food components that show low bioavailability, and have made efforts to improve their poor absorption based on their pharmacokinetic properties. In this report, as examples, we describe the enhancement of the absorption of coenzyme Q10 (CoQ10) and lutein. To improve the absorption of CoQ10, we focused on the component of emulsion. We found that a higher plasma concentration of CoQ10 could be obtained by creating an emulsion containing a surfactant with a higher hydrophile-lipophile balance (HLB) value. For the improvement of lutein absorption, we prepared a solid dispersion and self-emulsifying drug delivery system. It was shown that the plasma concentrations of lutein in these two formulation groups were increased compared with that in the powder group. The absorption of lutein was also evaluated by its cumulative amount in the lymph system. Our data showed that lutein is transferred from the small intestine into the lymph stream, rather than into the blood stream. Further investigations to improve the absorption of these components are in progress.
Collapse
Affiliation(s)
- Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
47
|
Expatiating biological excellence of aminoantipyrine derived novel metal complexes: Combined DNA interaction, antimicrobial, free radical scavenging studies and molecular docking simulations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Novanna M, Ethiraj K, Kannadasan S. An Overview of Synthesis of Indole Alkaloids and Biological Activities of Secondary Metabolites Isolated from Hyrtios Species. Mini Rev Med Chem 2019; 19:194-205. [DOI: 10.2174/1389557518666181102110537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022]
Abstract
Marine sponges are a rich source of more than 50% of marine natural compounds that have
been isolated from marine organisms. This review article is focused on the importance of biologically
active and pharmaceutically important secondary metabolites extracted from one of the important
classes of marine sponge Hyrtios sp. This review also deals with reported synthetic routes of some indole
alkaloids extracted from the marine sponge Hyrtios sp. A range of bioactivities displayed by
indole-based alkaloids is described.
Collapse
Affiliation(s)
- M. Novanna
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
| | - K.R. Ethiraj
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
| | - S. Kannadasan
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
49
|
Yen HC, Lin CL, Chen BS, Chen CW, Wei KC, Yang ML, Hsu JC, Hsu YH. Alterations of the levels of primary antioxidant enzymes in different grades of human astrocytoma tissues. Free Radic Res 2019; 52:856-871. [PMID: 29862858 DOI: 10.1080/10715762.2018.1483580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Malignant astrocytoma is the most commonly occurring brain tumour in humans. Oxidative stress is implicated in the development of cancers. Superoxide dismutase 2 (SOD2) was found to exert tumour suppressive effect in basic research, but increased SOD2 protein level was associated with higher aggressiveness of human astrocytomas. However, studies reporting alterations of antioxidant enzymes in human astrocytomas often employed less accurate methods or included different types of tumours. Here we analysed the mRNA levels, activities, and protein levels of primary antioxidant enzymes in control brain tissues and various grades of astrocytomas obtained from 40 patients. SOD1 expression, SOD1 activity, and SOD1 protein level were lower in Grade IV astrocytomas. SOD2 expression was lower in low-grade (Grades I and II) and Grade III astrocytomas than in controls, but SOD2 expression and SOD2 protein level were higher in Grade IV astrocytomas than in Grade III astrocytomas. Although there was no change in SOD2 activity and a lower activity of citrate synthase (CS), the MnSOD:CS ratio increased in Grade IV astrocytomas compared with controls and low-grade astrocytomas. Furthermore, SOD1 activity, CS activity, SOD1 expression, GPX4 expression, and GPX4 protein level were inversely correlated with the malignancy, whereas catalase activity, catalase protein, SOD2 protein level, and the SOD2:CS ratio were positively correlated with the degree of malignancy. Lower SOD2:CS ratio was associated with poor outcomes for Grade IV astrocytomas. This is the first study to quantify changes of various primary antioxidant enzymes in different grades of astrocytomas at different levels concurrently in human astrocytomas.
Collapse
Affiliation(s)
- Hsiu-Chuan Yen
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,b Department of Nephrology , Linkou Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Chih-Lung Lin
- c Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan.,d Department of Neurosurgery , Asia University Hospital , Taichuang , Taiwan.,e Department of Occupational Therapy , Asia University , Taichuang , Taiwan
| | - Bing-Shian Chen
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Chih-Wei Chen
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Kuo-Chen Wei
- c Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan
| | - Mei-Lin Yang
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Jee-Ching Hsu
- f Department of Anesthesiology , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan.,g Department of Anesthesiology , Lotung Poh-Ai Hospital , Yilan , Taiwan
| | - Yung-Hsing Hsu
- c Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan.,d Department of Neurosurgery , Asia University Hospital , Taichuang , Taiwan
| |
Collapse
|
50
|
Silva GÁF, Nunes RAL, Morale MG, Boccardo E, Aguayo F, Termini L. Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics (Sao Paulo) 2018; 73:e548s. [PMID: 30540121 PMCID: PMC6257060 DOI: 10.6061/clinics/2018/e548s] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress results from an imbalance between the generation and elimination of oxidant species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus types is associated with inflammatory responses and reactive oxygen species production. In this context, oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic strategies for cancer treatment has attracted the attention of the scientific community. This review discusses specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives for cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Ávila Fernandes Silva
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Rafaella Almeida Lima Nunes
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Enrique Boccardo
- Laboratorio de Oncovirologia, Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Francisco Aguayo
- Centro Avanzado de Enfermedades Cronicas (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Oncologia Basico Clinica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lara Termini
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|