1
|
Gonçalves B, Aires A, Oliveira I, Baltazar M, Cosme F, Afonso S, Pinto T, Anjos MR, Inês A, Morais MC, Vilela A, Silva AP. From Orchard to Wellness: Unveiling the Health Effects of Sweet Cherry Nutrients. Nutrients 2024; 16:3660. [PMID: 39519493 PMCID: PMC11547742 DOI: 10.3390/nu16213660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper explores the multifaceted relationship between sweet cherry nutrients and human health, aiming to uncover the comprehensive impact of these bioactive compounds from orchard to wellness. Furthermore, it highlights how advanced crop techniques can be pivotal in optimizing these beneficial compounds. Synthesizing existing literature, the paper examines the diverse bioactive nutrients in sweet cherries, including antioxidants, polyphenols, vitamins, and minerals, and elucidating their mechanisms of action and potential health benefits. From antioxidant properties to anti-inflammatory effects, the paper elucidates how these nutrients may mitigate chronic diseases such as cardiovascular disorders, diabetes, and neurodegenerative conditions. Additionally, it explores their role in promoting gastrointestinal health, enhancing exercise recovery, and modulating sleep patterns. The review discusses emerging research on the potential anti-cancer properties of sweet cherry compounds, highlighting their promising role in cancer prevention and treatment. Furthermore, it delves into the impact of sweet cherry consumption on metabolic health, weight management, and skin health. By providing a comprehensive overview of the current understanding of sweet cherry nutrients and their health effects, this paper offers valuable insights for researchers, healthcare professionals, and consumers interested in utilizing nature's bounty for holistic wellness.
Collapse
Affiliation(s)
- Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Maria Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| |
Collapse
|
2
|
Najeeb HA, Sanusi T, Saldanha G, Brown K, Cooke MS, Jones GD. Redox modulation of oxidatively-induced DNA damage by ascorbate enhances both in vitro and ex-vivo DNA damage formation and cell death in melanoma cells. Free Radic Biol Med 2024; 213:309-321. [PMID: 38262545 DOI: 10.1016/j.freeradbiomed.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Elevated genomic instability in cancer cells suggests a possible model-scenario for their selective killing via the therapeutic delivery of well-defined levels of further DNA damage. To examine this scenario, this study investigated the potential for redox modulation of oxidatively-induced DNA damage by ascorbate in malignant melanoma (MM) cancer cells, to selectively enhance both DNA damage and MM cell killing. DNA damage was assessed by Comet and ɣH2AX assays, intracellular oxidising species by dichlorofluorescein fluorescence, a key antioxidant enzymatic defence by assessment of catalase activity and cell survival was determined by clonogenic assay. Comet revealed that MM cells had higher endogenous DNA damage levels than normal keratinocytes (HaCaT cells); this correlated MM cells having higher intracellular oxidising species and lower catalase activity, and ranked with MM cell melanin pigmentation. Comet also showed MM cells more sensitive towards the DNA damaging effects of exogenous H2O2, and that ascorbate further enhanced this H2O2-induced damage in MM cells; again, with MM cell sensitivity to induced damage ranking with degree of cell pigmentation. Furthermore, cell survival data indicated that ascorbate enhanced H2O2-induced clonogenic cell death selectively in MM cells whilst protecting HaCaT cells. Finally, we show that ascorbate serves to enhance the oxidising effects of the MM therapeutic drug Elesclomol in both established MM cells in vitro and primary cell cultures ex vivo. Together, these results suggest that ascorbate selectively enhances DNA damage and cell-killing in MM cells. This raises the option of incorporating ascorbate into clinical oxidative therapies to treat MM.
Collapse
Affiliation(s)
- Hishyar A Najeeb
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Timi Sanusi
- Leicester Medical School, University of Leicester, UK
| | - Gerald Saldanha
- University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, UK
| | - Karen Brown
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, USA.
| | - George Dd Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK.
| |
Collapse
|
3
|
Cui J, Zhai Z, Wang S, Song X, Qiu T, Yu L, Zhai Q, Zhang H. The role and impact of abnormal vitamin levels in autism spectrum disorders. Food Funct 2024; 15:1099-1115. [PMID: 38221882 DOI: 10.1039/d3fo03735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder with a predominance of social behavioral disorders, has increased dramatically in various countries in recent decades. The interplay between genetic and environmental factors is believed to underlie ASD pathogenesis. Recent analyses have shown that abnormal vitamin levels in early life are associated with an increased risk of autism. As essential substances for growth and development, vitamins have been shown to have significant benefits for the nervous and immune systems. However, it is unknown whether certain vitamin types influence the emergence or manifestation of ASD symptoms. Several studies have focused on vitamin levels in children with autism, and neurotypical children have provided different insights into the types of vitamins and their intake. Here, we review the mechanisms and significance of several vitamins (A, B, C, D, E, and K) that are closely associated with the development of ASD in order to prevent, mitigate, and treat ASD. Efforts have been made to discover and develop new indicators for nutritional assessment of children with ASD to play a greater role in the early detection of ASD and therapeutic remission after diagnosis.
Collapse
Affiliation(s)
- Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zidan Zhai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| | - Ting Qiu
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| |
Collapse
|
4
|
Zhao F, Tang X, Guo D, Liu Y, Chen J. An electrochemical microsensor based on a specific recognition element for the simultaneous detection of hydrogen peroxide and ascorbic acid in the live rat brain. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4289-4295. [PMID: 37602411 DOI: 10.1039/d3ay00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A novel electrochemical microsensor was developed for the ratiometric and simultaneous determination of hydrogen peroxide (H2O2) and ascorbic acid (AA) based on the borate-phenol "switch" recognition mechanism and carbon nanotube (CNT) catalytic characteristics. First of all, a carbon fiber microelectrode (CFME) was coated with CNTs. Then, a specific probe, 9-anthraceneboronic acid pinacol ester (9-AP), was screened and decorated on CNTs through π-π stacking for the recognition of H2O2 based on the transformation of boric acid ester into electroactive phenols. CNTs not only served as the amplifiers of current signals, but also as catalysts facilitating AA oxidation. Meanwhile, ferrocenecarboxylic acid (Fc), inert to H2O2 and AA, was modified on another amino-functionalized CNT microelectrode via an amide bond as an internal reference channel for avoiding errors caused by environmental discrepancies. The two-channel ratiometric microsensor enabled the sensitive and accurate detection of H2O2 and AA simultaneously, and the detection limits were estimated to be 0.09 μM and 4.12 μM, respectively. The developed microsensor with remarkable analytical performance was finally applied for the simultaneous detection of H2O2 and AA in the live rat brain.
Collapse
Affiliation(s)
- Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Xuan Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Dongqing Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Yunxi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Jing Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| |
Collapse
|
5
|
Gonzalez T, Peiretti F, Defoort C, Borel P, Govers R. 2',7'-dichlorofluorescin-based analysis of Fenton chemistry reveals auto-amplification of probe fluorescence and albumin as catalyst for the detection of hydrogen peroxide. Biochem J 2020; 477:BCJ20200602. [PMID: 33216850 DOI: 10.1042/bcj20200602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Fluorophore 2',7'-dichlorofluorescin (DCF) is the most frequently used probe for measuring oxidative stress in cells, but many aspects of DCF remain to be revealed. Here, DCF was used to study the Fenton reaction in detail, which confirmed that in a cell-free system, the hydroxyl radical was easily measured by DCF, accompanied by the consumption of H2O2 and the conversion of ferrous iron into ferric iron. DCF fluorescence was more specific for hydroxyl radicals than the measurement of thiobarbituric acid (TBA)-reactive 2-deoxy-D-ribose degradation products, which also detected H2O2. As expected, hydroxyl radical-induced DCF fluorescence was inhibited by iron chelation, anti-oxidants, and hydroxyl radical scavengers and enhanced by low concentrations of ascorbate. Remarkably, due to DCF fluorescence auto-amplification, Fenton reaction-induced DCF fluorescence steadily increased in time even when all ferrous iron was oxidized. Surprisingly, the addition of bovine serum albumin rendered DCF sensitive to H2O2 as well. Within cells, DCF appeared not to react directly with H2O2 but indirect via the formation of hydroxyl radicals, since H2O2-induced cellular DCF fluorescence was fully abolished by iron chelation and hydroxyl radical scavenging. Iron chelation in H2O2-stimulated cells in which DCF fluorescence was already increasing did not abrogate further increases in fluorescence, suggesting DCF fluorescence auto-amplification in cells. Collectively, these data demonstrate that DCF is a very useful probe to detect hydroxyl radicals and hydrogen peroxide and to study Fenton chemistry, both in test tubes as well as in intact cells, and that fluorescence auto-amplification is an intrinsic property of DCF.
Collapse
|
6
|
Yu L, Zhao J, Tricard S, Wang Q, Fang J. Efficient detection of ascorbic acid utilizing molybdenum Oxide@Prussian Blue/Graphite felt composite electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Differentiation of Promonocytic U937 Cells to Monocytes Is Associated with Reduced Mitochondrial Transport of Ascorbic Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4194502. [PMID: 29576847 PMCID: PMC5822789 DOI: 10.1155/2018/4194502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
Growth of promonocytic U937 cells in the presence of DMSO promotes their differentiation to monocytes. After 4 days of culture in differentiating medium, these cells ceased to proliferate, displayed downregulated ryanodine receptor expression, and responded to specific stimuli with enhanced NADPH-oxidase-derived superoxide formation or cytosolic phospholipase A2-dependent arachidonic acid release. We found that the 4-day differentiation process is also associated with downregulated SVCT2 mRNA expression, in the absence of apparent changes in SVCT2 protein expression and transport rate of ascorbic acid (AA). Interestingly, under the same conditions, these cells accumulated lower amounts of the vitamin in their mitochondria, with an ensuing reduced response to external stimuli sensitive to the mitochondrial fraction of AA. Further analyses demonstrated an unexpected increase in mitochondrial SVCT2 protein expression, however, associated with reduced SVCT2-dependent AA uptake in isolated mitochondria. A decrease in the transporter Vmax, with no change in affinity, was found to account for this response. Differentiation of promonocytic cells to monocytes is therefore characterized by decreased SVCT2 mRNA expression that, even prior to the onset of SVCT2 protein downregulation or apparent changes in plasma membrane transport activity, impacts on the mitochondrial accumulation of the vitamin through a decreased Vmax of the transporter.
Collapse
|
8
|
Guidarelli A, Cerioni L, Fiorani M, Cantoni O. Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca 2+-Independent Mechanism. Int J Mol Sci 2017; 18:ijms18081686. [PMID: 28767071 PMCID: PMC5578076 DOI: 10.3390/ijms18081686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/30/2017] [Accepted: 07/30/2017] [Indexed: 01/04/2023] Open
Abstract
Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy.
| | - Liana Cerioni
- Dipartimento di Scienze Biomolecolari Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy.
| | - Mara Fiorani
- Dipartimento di Scienze Biomolecolari Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy.
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy.
| |
Collapse
|
9
|
Gao G, Zhang N, Wang YQ, Wu Q, Yu P, Shi ZH, Duan XL, Zhao BL, Wu WS, Chang YZ. Mitochondrial Ferritin Protects Hydrogen Peroxide-Induced Neuronal Cell Damage. Aging Dis 2017; 8:458-470. [PMID: 28840060 PMCID: PMC5524808 DOI: 10.14336/ad.2016.1108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and iron accumulation are tightly associated with neurodegenerative diseases. Mitochondrial ferritin (FtMt) is identified as an iron-storage protein located in the mitochondria, and its role in regulation of iron hemeostasis in neurodegenerative diseases has been reported. However, the role of FtMt in hydrogen peroxide (H2O2)-induced oxidative stress and iron accumulation in neuronal cells has not been studied. Here, we overexpressed FtMt in neuroblastoma SH-SY5Y cells and induced oxidative stress by treating with extracellular H2O2. We found that overexpression of FtMt significantly prevented cell death induced by H2O2, particularly the apoptosis-dependent cell death. The protective effects involved inhibiting the generation of cellular reactive oxygen species, sustaining mitochondrial membrane potential, maintaining the level of anti-apoptotic protein Bcl-2, and inhibiting the activation of pro-apoptotic protein caspase 3. We further explored the mechanism of these protective effects and found that FtMt expression markedly altered iron homeostasis of the H2O2 treated cells as compared to that of controls. The FtMt overexpression significantly reduced cellular labile iron pool (LIP) and protected H2O2-induced elevation on LIP. While in H2O2 treated SH-SY5Y cells, the increased iron uptake and reduced iron release, in correlation with levels of DMT1(-IRE) and ferroportin 1, resulted in heavy iron accumulation, the FtMt overexpressing cells didn’t show any significant changes in levels of iron transport proteins and in the level of LIP. These results implicate a neuroprotective role of FtMt on H2O2-induced oxidative stress, which may provide insights into the treatment of iron accumulation associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Guofen Gao
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Nan Zhang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yue-Qi Wang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qiong Wu
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Peng Yu
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhen-Hua Shi
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiang-Lin Duan
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Bao-Lu Zhao
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wen-Shuang Wu
- 2The 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yan-Zhong Chang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
10
|
Cardioprotective effect of KR-33889, a novel PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cells and isolated rat hearts. Arch Pharm Res 2017; 40:640-654. [PMID: 28378219 DOI: 10.1007/s12272-017-0912-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 01/29/2023]
Abstract
Oxidative stress plays a critical role in cardiac injury during ischemia/reperfusion (I/R). Despite a potent cardioprotective activity of KR-33889, a novel poly (ADP-ribose) polymerase inhibitor, its underlying mechanism remains unresolved. This study was designed to investigate the protective effects of KR-33889 against oxidative stress-induced apoptosis in rat cardiomyocytes H9c2 cells and isolated rat hearts. H2O2 caused severe injury to H9c2 cells, mainly due to apoptosis, as revealed by TUNEL assay. However, KR-33889 pretreatment significantly attenuated H2O2-induced apoptosis of H9c2 cells, which was accompanied by decrease in expression of both cleaved caspase-3 and Bax and increase in Bcl-2 expression and the ratio of Bcl-2/Bax. KR-33889 also significantly enhanced the expression of anti-oxidant enzymes including heme oxygenase-1, Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase, thereby inhibiting production of intracellular ROS. Furthermore, KR-33889 reversed H2O2-induced decrease in phosphorylation of Akt, GSK-3β, ERK1/2, p38 MAPK, and SAPK/JNK during most H2O2 exposure time. In globally ischemic rat hearts, KR-33889 inhibited both I/R-induced decrease in cardiac contractility and apoptosis by increasing Bcl-2, decreasing both cleaved caspase-3 and Bax expression, and enhancing expression of anti-oxidant enzymes. Taken together, these results suggest that KR-33889 may have therapeutic potential to prevent I/R-induced heart injury in ischemic heart diseases mainly by reducing oxidative stress-mediated myocardial apoptosis.
Collapse
|
11
|
New cofactors and inhibitors for a DNA-cleaving DNAzyme: superoxide anion and hydrogen peroxide mediated an oxidative cleavage process. Sci Rep 2017; 7:378. [PMID: 28336968 PMCID: PMC5428237 DOI: 10.1038/s41598-017-00329-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Herein, we investigated the effects of new cofactors and inhibitors on an oxidative cleavage of DNA catalysis, known as a pistol-like DNAzyme (PLDz), to discuss its catalytic mechanism. PLDz performed its catalytic activity in the presence of ascorbic acid (AA), in which Cu2+ promoted, whereas Fe2+ significantly inhibited the catalytic function. Since Fe2+/AA-generated hydroxyl radicals are efficient on DNA damage, implying that oxidative cleavage of PLDz had no relation with hydroxyl radical. Subsequently, we used Fe2+/H2O2 and Cu2+/H2O2 to identify the role of hydroxyl radicals in PLDz catalysis. Data showed that PLDz lost its activity with Fe2+/H2O2, but exhibited significant cleavage with Cu2+/H2O2. Because Fe2+/H2O2 and Cu2+/H2O2 are popular reagents to generate hydroxyl radicals and the latter also produces superoxide anions, we excluded the possibility that hydroxyl radical participated in oxidative cleavage and confirmed that superoxide anion was involved in PLDz catalysis. Moreover, pyrogallol, riboflavin and hypoxanthine/xanthine oxidase with superoxide anion and hydrogen peroxide generation also induced self-cleavage of PLDz, where catalase inhibited but superoxide dismutase promoted the catalysis, suggesting that hydrogen peroxide played an essential role in PLDz catalysis. Therefore, we proposed a catalytic mechanism of PLDz in which superoxide anion and hydrogen peroxide mediated an oxidative cleavage process.
Collapse
|
12
|
Chen Y, Li J, Wei J, Kawan A, Wang L, Zhang X. Vitamin C modulates Microcystis aeruginosa death and toxin release by induced Fenton reaction. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:888-895. [PMID: 27745956 DOI: 10.1016/j.jhazmat.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Cyanobacterial blooms and their associated toxins pose a great threat to human beings. The situation is even worse for those whose drinking water source is a cyanotoxin-polluted water body. Therefore, efficient and safe treatments urgently need to be developed. The present study verified the application of vitamin C on the inhibition of toxic Microcystis aeruginosa. Our results showed that vitamin C drove the Fenton reaction and significantly sterilized cultures of M. aeruginosa. The algicidal activity of vitamin C was dependent on its involvement in iron (Fe) metabolism. Vitamin C enhanced iron absorption leading to high ferrous ion levels. The ferrous ion increased production of reactive oxygen species (ROS) by Fenton reaction, which play a crucial role in the killing process. Interestingly, vitamin C also dramatically decreased the release of microcystins. This study highlights the possible benefits of using a vitamin C-induced Fenton reaction to remove M. aeruginosa and microcystins from drinking water sources.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Jian Li
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Jin Wei
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Atufa Kawan
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
13
|
Horniblow RD, Henesy D, Iqbal TH, Tselepis C. Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. Mol Nutr Food Res 2016; 61. [PMID: 27794191 DOI: 10.1002/mnfr.201600692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
SCOPE Excess free-iron is detrimental to health through its ability to participate in free radical generation and amplification of oncogenic pathways. The study aims were to identify polyphenols with iron-chelating potential. METHODS AND RESULTS Of four polyphenols tested quercetin demonstrated potent iron binding with the physiological outcome dictated by the location of interaction. In the presence of extracellular iron and quercetin, ferritin expression and cellular iron concentrations decreased suggesting the resulting quercetin-iron complex is not internalised. However, in the relative absence of extracellular iron, quercetin becomes internalised and complexes with both intracellular iron, and iron which subsequently becomes absorbed as indicated by increased cellular 59 Fe post pre-culture with quercetin. This increased intracellular iron complexed to quercetin does not associate with the labile iron pool and cells behave as though they are iron deficient (increased transferrin receptor-1 and iron regulatory protein-2 expression and low ferritin expression). Additionally, a suppression in reactive oxygen species was observed. CONCLUSION Quercetin, an exogenous iron chelator, is able to render the cell functionally iron-deficient which not only provides a therapeutic platform for chelating excess free luminal iron but also may be of use in limiting processes such as cancer-cell growth, inflammation and bacterial infections, which all require iron.
Collapse
Affiliation(s)
- Richard D Horniblow
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England, UK
| | - Daisy Henesy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England, UK
| | - Tariq H Iqbal
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England, UK
| | - Chris Tselepis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
14
|
Huang CY, Ting WJ, Huang CY, Yang JY, Lin WT. Resveratrol attenuated hydrogen peroxide-induced myocardial apoptosis by autophagic flux. Food Nutr Res 2016; 60:30511. [PMID: 27211317 PMCID: PMC4876196 DOI: 10.3402/fnr.v60.30511] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022] Open
Abstract
Background Resveratrol is a Sirt-1-specific activator, which also exerts cardioprotective effects that regulate redox signalling during oxidative stress and autophagy during cardiovascular disease (CVD). Objective This study investigated the protective effects of resveratrol against hydrogen peroxide-induced damage in cardiomyocytes. Design In this article, hydrogen peroxide-induced autophagy and apoptosis in H9c2 cardiomyoblasts were studied at an increasing concentration from 0 to 100 µM. Results Resveratrol pretreatment with concentrations of 10, 20, and 50 µM inhibits autophagic apoptosis by increasing p-Akt and Bcl-2 protein levels in H9c2 cells. Interestingly, resveratrol treatment activates the Beclin-1, LC3, p62, and the lysosome-associated protein LAMP2a within 24 h of administration. Conclusions These results suggest that resveratrol-regulated autophagy may play a role in degrading damaged organelles in H9c2 cells rather than causing apoptosis, and this may be a possible mechanism by which resveratrol protects the heart during CVD.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Jen Ting
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Yi Yang
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan;
| |
Collapse
|
15
|
Wang Q, Wu S, Zhao X, Zhao C, Zhao H, Huo L. Mechanisms of Dihydroartemisinin and Dihydroartemisinin/Holotransferrin Cytotoxicity in T-Cell Lymphoma Cells. PLoS One 2015; 10:e0137331. [PMID: 26502166 PMCID: PMC4621048 DOI: 10.1371/journal.pone.0137331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/15/2015] [Indexed: 12/26/2022] Open
Abstract
The validated therapeutic effects of dihydroartemisinin (DHA) in solid tumors have encouraged us to explore its potential in treating T-cell lymphoma. We found that Jurkat cells (a T-cell lyphoma cell line) were sensitive to DHA treatment with a IC50 of dihydroartemisinin. The cytotoxic effect of DHA in Jurkat cells showed a dose- and time- dependent manner. Interestingly, the cytotoxic effect of DHA was further enhanced by holotransferrin (HTF) due to the high expression of transferrin receptors in T-cell lymphoma. Mechanistically, DHA significantly increased the production of intracellular reactive oxygen species, which led to cell cycle arrest and apoptosis. The DHA treatment also inhibited the expression of protumorgenic factors including VEGF and telomerase catalytic subunit. Our results have proved the therapeutic effect of DHA in T-cell lymphoma. Especially in combination with HTF, DHA may provide a novel efficient approach in combating the deadly disease.
Collapse
Affiliation(s)
- Qiuyan Wang
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| | - Shaoling Wu
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
- * E-mail:
| | - Xindong Zhao
- Department of Hematology, Medical College of Qingdao University, Qingdao, Shandong, P.R. China
| | - Chunting Zhao
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| | - Hongguo Zhao
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| | - Lanfen Huo
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| |
Collapse
|
16
|
Klungsupya P, Suthepakul N, Muangman T, Rerk-Am U, Thongdon-A J. Determination of Free Radical Scavenging, Antioxidative DNA Damage Activities and Phytochemical Components of Active Fractions from Lansium domesticum Corr. Fruit. Nutrients 2015; 7:6852-73. [PMID: 26287238 PMCID: PMC4555151 DOI: 10.3390/nu7085312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 11/29/2022] Open
Abstract
Lansium domesticum Corr. or “long-kong” is one of the most popular fruits in Thailand. Its peel (skin, SK) and seeds (SD) become waste unless recycled or applied for use. This study was undertaken to determine the bioactivity and phytochemical components of L. domesticum (LD) skin and seed extracts. Following various extraction and fractionation procedures, 12 fractions were obtained. All fractions were tested for antioxidant capacity against O2−• and OH•. It was found that the peel of L. domesticum fruits exhibited higher O2−• and OH• scavenging activity than seeds. High potential antioxidant activity was found in two fractions of 50% ethanol extract of peel followed by ethyl acetate (EA) fractionation (LDSK50-EA) and its aqueous phase (LDSK50-H2O). Therefore, these two active fractions were selected for further studies on their antioxidative activity against DNA damage by hydrogen peroxide (H2O2) in human TK6 cells using comet assay. The comet results revealed DNA-protective activity of both LDSK50-EA and LDSK50-H2O fractions when TK6 human lymphoblast cells were pre-treated at 25, 50, 100, and 200 μg/mL for 24 h prior to H2O2 exposure. The phytochemical analysis illustrated the presence of phenolic substances, mainly scopoletin, rutin, and chlorogenic acid, in these two active fractions. This study generates new information on the biological activity of L. domesticum. It will promote and strengthen the utilization of L. domesticum by-products.
Collapse
Affiliation(s)
- Prapaipat Klungsupya
- Department of Pharmaceuticals and Natural Products, Thailand Institute of Scientific and Technological Research (TISTR), 35 Mu 3 Techno Polis, Khlong Luang, Pathum Thani 12120, Thailand; E-Mails: (T.M.); (U.R.-A.); (J.T.-A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +66-25779109; Fax: +66-25779110
| | - Nava Suthepakul
- The Government Pharmaceutical Organization (GPO), Rama VI Road, Bangkok 10400, Thailand; E-Mail:
| | - Thanchanok Muangman
- Department of Pharmaceuticals and Natural Products, Thailand Institute of Scientific and Technological Research (TISTR), 35 Mu 3 Techno Polis, Khlong Luang, Pathum Thani 12120, Thailand; E-Mails: (T.M.); (U.R.-A.); (J.T.-A.)
| | - Ubon Rerk-Am
- Department of Pharmaceuticals and Natural Products, Thailand Institute of Scientific and Technological Research (TISTR), 35 Mu 3 Techno Polis, Khlong Luang, Pathum Thani 12120, Thailand; E-Mails: (T.M.); (U.R.-A.); (J.T.-A.)
| | - Jeerayu Thongdon-A
- Department of Pharmaceuticals and Natural Products, Thailand Institute of Scientific and Technological Research (TISTR), 35 Mu 3 Techno Polis, Khlong Luang, Pathum Thani 12120, Thailand; E-Mails: (T.M.); (U.R.-A.); (J.T.-A.)
| |
Collapse
|
17
|
Wu H, Cao L, Li F, Lian P, Zhao J. Multiple biomarkers of the cytotoxicity induced by BDE-47 in human embryonic kidney cells. CHEMOSPHERE 2015; 126:32-39. [PMID: 25697951 DOI: 10.1016/j.chemosphere.2015.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame-retardants in a variety of industrial products. Among these PBDEs, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) is one of the most predominant congeners inducing multiple toxicities, including hepatotoxicity, neurotoxicity, cytotoxicity, genotoxicity, carcinogenecity and immunotoxicity in human body. In this study, the cytotoxicity of BDE-47 in human embryonic kidney cells (HEK293) was investigated by a set of bioassays, including cell proliferation, apoptosis, oxidative stress and metabolic responses as well as gene expressions related to apoptosis. Results showed that BDE-47 induced an inverted U-shaped curve of cell proliferation in HEK293 cells from 10(-6) to 10(-4) M. Cell apoptosis and ROS overproduction were detected at 10(-5) M of BDE-47 (p<0.05). In addition, the expressions of Bcl-2 family-encoding genes (Bad, Hrk and Bcl-2) increased significantly in 10(-4)M group (p<0.05). Metabolic responses indicated that BDE-47 mainly caused disturbance in energy metabolism marked by differentially altered ethanol, glutathione, creatine, aspartate, UDP-glucose and NAD(+). The increased lactate/alanine ratios indicated the higher reductive state induced by BDE-47 in all exposures confirmed by the overproduction of ROS.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China
| | - Lulu Cao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China.
| | - Peiwen Lian
- Department of Center Laboratory, Yantai Yuhuangding Hospital, Yuhuangdingdong Road 20, Yantai 264000, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China
| |
Collapse
|
18
|
Domijan AM, Gajski G, Novak Jovanović I, Gerić M, Garaj-Vrhovac V. In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B1 could be prevented by sodium copper chlorophyllin – Implication to their genotoxic mechanism. Food Chem 2015; 170:455-62. [DOI: 10.1016/j.foodchem.2014.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
19
|
Low energy and carbohydrate intake associated with higher total antioxidant capacity in apparently healthy adults. Nutrition 2014; 30:1349-54. [DOI: 10.1016/j.nut.2014.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 11/22/2022]
|
20
|
Zhuang T, Han H, Yang Z. Iron, oxidative stress and gestational diabetes. Nutrients 2014; 6:3968-80. [PMID: 25255832 PMCID: PMC4179198 DOI: 10.3390/nu6093968] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/27/2014] [Accepted: 09/09/2014] [Indexed: 01/01/2023] Open
Abstract
Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans) can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium) for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily) on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily) for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.
Collapse
Affiliation(s)
- Taifeng Zhuang
- Department of Neonatal Intensive Care Unit (NICU), Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| | - Huijun Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Zhenyu Yang
- Key Laboratory of Trace Element Nutrition of the Ministry of Health, National Institute of Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, No. 27 Nanwei Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
21
|
Galicka A, Krętowski R, Nazaruk J, Cechowska-Pasko M. Anethole prevents hydrogen peroxide-induced apoptosis and collagen metabolism alterations in human skin fibroblasts. Mol Cell Biochem 2014; 394:217-24. [PMID: 24898780 PMCID: PMC4118036 DOI: 10.1007/s11010-014-2097-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
Abstract
The collagen metabolism alterations triggered by reactive oxygen species are involved in the development of various connective tissue diseases and skin aging. This study was designed to examine whether (E)-anethole possesses a protective effect on H2O2-induced alterations in collagen metabolism as well as whether it can prevent apoptosis in human skin fibroblasts. In cells treated with 300 µM H2O2, a decrease in collagen biosynthesis of 54 % was observed. Pretreatment of cells with 0.5 µM anethole for 1 h completely prevented this alteration. Changes at the protein level positively correlated with alterations of type I collagen mRNA expression. We have shown that H2O2 caused increase in the activity of MMP-2 and MMP-9 as well as that an increase in MMP-2 activity can contribute to the 8 % decrease in the amount of collagen secreted into the medium. The most efficient suppression of these changes was observed in the presence of 0.5 µM of anethole. At 10 µM, in addition to suppression, an inhibitory effect of anethole on MMP-9 activity was documented. Additionally, the 60 % H2O2-induced decrease in cell viability was suppressed by 1 µM of anethole and a 4-fold increase in cell apoptosis was suppressed by 0.5 µM of anethole. Our results suggest that anethole, which is a small lipophilic and non-toxic molecule with the ability to prevent H2O2-induced collagen metabolism alterations and apoptosis in human skin fibroblasts, would prove useful in the development of effective agents in pharmacotherapy of oxidative stress-related skin diseases.
Collapse
Affiliation(s)
- Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Białystok, Poland,
| | | | | | | |
Collapse
|
22
|
Fiorani M, Azzolini C, Guidarelli A, Cerioni L, Cantoni O. A novel biological role of dehydroascorbic acid: Inhibition of Na(+)-dependent transport of ascorbic acid. Pharmacol Res 2014; 84:12-7. [PMID: 24769194 DOI: 10.1016/j.phrs.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/01/2022]
Abstract
A U937 cell clone, in which low micromolar concentrations of ascorbic acid (AA) and dehydroascorbic acid (DHA) are taken up at identical rates, was used to investigate possible interactions between transport systems mediating cellular uptake of the two forms of the vitamin. Results obtained with different experimental approaches showed that DHA potently and reversibly inhibits AA uptake through Na(+)-AA cotransporters. Hence, a progressive increase in extracellular DHA concentrations in the presence of a fixed amount of AA caused an initial decrease in the net amount of vitamin C accumulated, and eventually, at higher levels, it caused an accumulation of the vitamin solely based on DHA uptake through hexose transporters. DHA-dependent inhibition of AA uptake was also detected in various other cell types. Taken together, our results provide evidence of a novel biological effect mediated by concentrations of DHA compatible with those produced at inflammatory sites.
Collapse
Affiliation(s)
- Mara Fiorani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Catia Azzolini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Liana Cerioni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino 61029, Italy.
| |
Collapse
|
23
|
Higgins JA, Zainol M, Brown K, Jones GDD. Anthocyans as tertiary chemopreventive agents in bladder cancer: anti-oxidant mechanisms and interaction with mitomycin C. Mutagenesis 2014; 29:227-35. [PMID: 24743948 DOI: 10.1093/mutage/geu009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer is associated with high rates of recurrence making tertiary chemoprevention an attractive intervention strategy. Anthocyanins have been shown to possess chemopreventive properties and are detectable in urine after oral ingestion, with higher concentrations achievable via intravesical administration alongside current chemotherapeutic regimens. Yet their apparent ability to protect against certain DNA damage may in turn interfere with cancer treatments. Our aim was therefore to determine the potential of anthocyanins as chemopreventive agents in bladder cancer, their mode of action and effects, both alone and in combination with mitomycin C (MMC). In this study we showed that mirtoselect, a standardised mixture of anthocyanins, possesses significant anti-proliferative activity, causing growth inhibition and apoptosis in bladder cancer cell lines. The anti-oxidative potential of mirtoselect was examined and revealed significantly fewer H2O2-induced DNA strand breaks, as well as oxidised DNA bases in pre-treated cells. In contrast, endogenous levels of oxidised DNA bases were unaltered. Investigations into the possible protective mechanisms associated with these anti-oxidant properties revealed that mirtoselect chelates metal ions. In mirtoselect/MMC combination studies, no adverse effects on measures of DNA damage were observed compared to treatment with MMC alone and there was evidence of enhanced cell death. Consistent with this, significantly more DNA crosslinks were formed in cells treated with the combination. These results show that mirtoselect exerts effects consistent with chemopreventive properties in bladder cancer cell lines and most importantly does so without adversely affecting the effects of drugs used in current treatment regimens. We also provide evidence that mirtoselect's anti-oxidative mechanism of action is via metal ion chelation. Overall these results suggest that mirtoselect could be an effective chemopreventive agent in bladder cancer and provides the necessary pre-clinical data for future in vivo animal studies and clinical trials.
Collapse
Affiliation(s)
- Jennifer A Higgins
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Murizal Zainol
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
24
|
Guidarelli A, Cerioni L, Fiorani M, Azzolini C, Cantoni O. Mitochondrial ascorbic acid is responsible for enhanced susceptibility of U937 cells to the toxic effects of peroxynitrite. Biofactors 2014; 40:236-46. [PMID: 24105898 DOI: 10.1002/biof.1139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/05/2022]
Abstract
Otherwise nontoxic levels of peroxynitrite promote toxicity in U937 cells pre-exposed to low micromolar concentrations of l-ascorbic acid (AA). This event was associated with the mitochondrial accumulation of the vitamin and with the early formation of secondary reactive oxygen species and DNA single-strand breaks. The same concentrations of peroxynitrite, however, failed to elicit detectable effects in cells pre-exposed to dehydroascorbic acid (DHA), in which mitochondrial accumulation of vitamin C did not occur despite the identical cytosolic levels. Coherently, oxidation of extracellular AA failed to affect the intracellular concentration of the vitamin, but nevertheless prevented its mitochondrial localization as well as the enhanced response to peroxynitrite. Furthermore, in cells postincubated in vitamin C-free medium, time-dependent loss of mitochondrial AA was paralleled by a progressive decline of susceptibility to peroxynitrite, under the same conditions in which cells retained about half of the initial AA. Using different experimental approaches, we finally showed that the enhancing effects of AA are mediated by events associated with peroxynitrite-dependent superoxide/H2 O2 formation in the mitochondrial respiratory chain. Collectively, these results indicate that mitochondria actively take up vitamin C as AA and respond to otherwise inactive concentrations of peroxynitrite with the mitochondrial formation of secondary species responsible for DNA damage and toxicity. DHA preloading, while leading to the accumulation of identical levels of vitamin C, fails to produce these effects because of the poor mitochondrial accumulation of the vitamin.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo,", 61029, Italy
| | | | | | | | | |
Collapse
|
25
|
Xu P, Lin Y, Porter K, Liton PB. Ascorbic acid modulation of iron homeostasis and lysosomal function in trabecular meshwork cells. J Ocul Pharmacol Ther 2014; 30:246-53. [PMID: 24552277 DOI: 10.1089/jop.2013.0183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To investigate the antioxidant properties and biological functions of ascorbic acid (AA) on trabecular meshwork (TM) cells. METHODS Primary cultures of porcine TM cells were supplemented for 10 days with increasing concentrations of AA. Antioxidant properties against cytotoxic effect of H2O2 were evaluated by monitoring cell viability. Redox-active iron was quantified using calcein-AM. Intracellular reactive oxygen species (iROS) production was quantified using H2DCFDA. Ferritin and cathepsin protein levels were analyzed by Western blot. Autophagy was evaluated by monitoring lipidation of LC3-I to LC3-II. Lysosomal proteolysis and cathepsins activities were quantified using specific fluorogenic substrates. RESULTS AA exerts a dual effect against oxidative stress in TM cells, acting as an anti-oxidant or a pro-oxidant, depending on the concentration used. The pro-oxidant effect of AA was mediated by free intracellular iron and correlated with increased protein levels of ferritin and elevated iROS. In contrast, antioxidant properties correlated with lower ferritin and basal iROS content. Ascorbic acid supplementation also caused induction of autophagy, as well as increased lysosomal proteolysis, with the latter resulting from higher proteolytic activation of lysosomal cathepsins in treated cultures. CONCLUSIONS Our results suggest that the reported decrease of AA levels in plasma and aqueous humor can compromise lysosomal degradation in the outflow pathway cells with aging and contribute to the pathogenesis of glaucoma. Restoration of physiological levels of vitamin C inside the cells might improve their ability to degrade proteins within the lysosomal compartment and recover tissue function.
Collapse
Affiliation(s)
- Ping Xu
- Department of Ophthalmology, Duke University , Durham, North Carolina
| | | | | | | |
Collapse
|
26
|
Słaba M, Gajewska E, Bernat P, Fornalska M, Długoński J. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3423-34. [PMID: 23132407 DOI: 10.1007/s11356-012-1281-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/23/2012] [Indexed: 05/05/2023]
Abstract
The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.
Collapse
Affiliation(s)
- Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | | | | | | | | |
Collapse
|
27
|
Azqueta A, Costa S, Lorenzo Y, Bastani NE, Collins AR. Vitamin C in cultured human (HeLa) cells: lack of effect on DNA protection and repair. Nutrients 2013; 5:1200-17. [PMID: 23571651 PMCID: PMC3705343 DOI: 10.3390/nu5041200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022] Open
Abstract
AIMS Dietary antioxidants, including vitamin C, may be in part responsible for the cancer-preventive effects of fruits and vegetables. Human intervention trials with clinical endpoints have failed to confirm their protective effects, and mechanistic studies have given inconsistent results. Our aim was to investigate antioxidant/ pro-oxidant effects of vitamin C at the cellular level. EXPERIMENTAL APPROACH We have used the comet assay to investigate effects of vitamin C on DNA damage, antioxidant status, and DNA repair, in HeLa (human tumor) cells, and HPLC to measure uptake of vitamin C into cells. RESULTS Even at concentrations in the medium as high as 200 μM, vitamin C did not increase the background level of strand breaks or of oxidized purines in nuclear DNA. Vitamin C is taken up by HeLa cells and accumulates to mM levels. Preincubation of cells with vitamin C did not render them resistant to strand breakage induced by H2O2 or to purine oxidation by photosensitizer plus light. Vitamin C had no effect on the rate of repair of strand breaks or oxidized bases by HeLa cells. However, vitamin C at a concentration of less than 1 μM, or extract from cells preincubated for 6 h with vitamin C, was able to induce damage (strand breaks) in lysed, histone-depleted nuclei (nucleoids). CONCLUSION In these cultured human cells, vitamin C displays neither antioxidant nor pro-oxidant properties; nor does it affect DNA strand break or base excision repair.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway; E-Mails: (S.C.); (Y.L.); (N.E.B.); (A.R.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-653 (ext. 806574); Fax: +34-948-425-652
| | - Solange Costa
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway; E-Mails: (S.C.); (Y.L.); (N.E.B.); (A.R.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Yolanda Lorenzo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway; E-Mails: (S.C.); (Y.L.); (N.E.B.); (A.R.C.)
| | - Nasser E. Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway; E-Mails: (S.C.); (Y.L.); (N.E.B.); (A.R.C.)
| | - Andrew R. Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PB 1046 Blindern, 0316 Oslo, Norway; E-Mails: (S.C.); (Y.L.); (N.E.B.); (A.R.C.)
| |
Collapse
|
28
|
Fiorani M, Azzolini C, Cerioni L, Guidarelli A, Cantoni O. Superoxide dictates the mode of U937 cell ascorbic acid uptake and prevents the enhancing effects of the vitamin to otherwise nontoxic levels of reactive oxygen/nitrogen species. J Nutr Biochem 2013; 24:467-74. [DOI: 10.1016/j.jnutbio.2012.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/09/2011] [Accepted: 01/17/2012] [Indexed: 01/08/2023]
|
29
|
Abstract
It is common knowledge that thalassemic patients are under significant oxidative stress. Chronic hemolysis, frequent blood transfusion, and increased intestinal absorption of iron are the main factors that result in iron overload with its subsequent pathophysiologic complications. Iron overload frequently associates with the generation of redox-reactive labile iron, which in turn promotes the production of other reactive oxygen species (ROS). If not neutralized, uncontrolled production of ROS often leads to damage of various intra- and extracellular components such as DNA, proteins, lipids, and small antioxidant molecules among others. A number of endogenous and exogenous defense mechanisms can neutralize and counteract the damaging effects of labile iron and the reactive substances associated with it. Endogenous antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and ferroxidase, may directly or sequentially terminate the activities of ROS. Nonenzymatic endogenous defense mechanisms include metal binding proteins (ceruloplasmin, haptoglobin, albumin, and others) and endogenously produced free radical scavengers (glutathione (GSH), ubiquinols, and uric acid). Exogenous agents that are known to function as antioxidants (vitamins C and E, selenium, and zinc) are mostly diet-derived. In this review, we explore recent findings related to various antioxidative mechanisms operative in thalassemic patients with special emphasis on protein antioxidants.
Collapse
Affiliation(s)
- Samir Awadallah
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
30
|
Kishimoto Y, Saito N, Kurita K, Shimokado K, Maruyama N, Ishigami A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem Biophys Res Commun 2012; 430:579-84. [PMID: 23228664 DOI: 10.1016/j.bbrc.2012.11.110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 11/30/2022]
Abstract
Ascorbic acid (AA) is essential for collagen biosynthesis as a cofactor for prolyl and lysyl hydroxylase and as a stimulus for collagen gene expression. Many studies have evaluated the relationship between AA and collagen expression in short- and long-term effects on cells after a single administration of AA into the culture medium. However, no such study has monitored in detail the stability of AA in medium or the alterations of intracellular AA levels during a protracted interval. Therefore, we examined here intracellular AA levels and stability throughout its exposure to human skin fibroblasts in vitro. Moreover, we determined the effects on type 1 and type 4 collagen and sodium-dependent vitamin C transporter (SVCT) gene expression when medium containing 100 μM AA was replaced every 24h for 5 days to avoid depletion of AA. Throughout this long-term culture, intracellular AA levels remained constant; the expression of type 1 and type 4 collagens and SVCT2 mRNA was enhanced, and type 1 procollagen synthesis increased. Thus, these results indicate that human skin fibroblasts exposed to AA over time had rising levels of type 1/type 4 collagens and SVCT2 mRNA expression and type 1 procollagen synthesis.
Collapse
Affiliation(s)
- Yuki Kishimoto
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Treatment, Skokie, IL 60077, USA.
| |
Collapse
|
32
|
Chan E, Wong CYK, Wan CW, Kwok CY, Wu JH, Ng KM, So CH, Au ALS, Poon CCW, Seto SW, Kwan YW, Yu PHF, Chan SW. Evaluation of Anti-Oxidant Capacity of Root of Scutellaria baicalensis Georgi, in Comparison with Roots of Polygonum multiflorum Thunb and Panax ginseng CA Meyer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:815-27. [DOI: 10.1142/s0192415x10008263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In Chinese communities, regular consumption of Chinese-medicated diets (CMD) (usually in the form of soup) is a traditional practice to promote health and prevent disease development. The overall improvement of health conditions is believed to be correlated with the anti-oxidant potentials of these herbs. Huangqin, roots of Scutellaria baicalensis Georgi (Lamiaceae), is one of the herbs commonly used in CMD. In this study, the anti-oxidant capacities of Huangqin extracts (water, ethanol and ether extracts) were evaluated and compared to commonly used CMD herbs, Heshouwu, roots of Polygonum multiflorum Thunb (Polygonaceae) and Renshen (or Ginseng), roots of Panax ginseng CA Meyer (Araliaceae). The anti-oxidant capacities were measured by using both cell-free assay [ferric reducing/anti-oxidant power (FRAP)] and biological methods [2,2'-azobis–(2-amidinopropane) (AAPH)-induced haemolysis assay and H2O2 -induced cell damage on H9C2 cells]. Additionally, the total phenolic content was measured using Folin-Ciocalteu methods. Water extract of Huangqin has the highest anti-oxidant activities compared to the ethanol and ether extracts. A positive relationship between the anti-oxidant effects and total phenolic contents of extracts was demonstrated. This shows that Huangqin could be an effective dietary anti-oxidant that can be consumed regularly as a functional food for the prevention of oxidant/free radical-related diseases.
Collapse
Affiliation(s)
- Enoch Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Cynthia Ying-Kat Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chun-Wai Wan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ching-Yee Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jian-Hong Wu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Kar-Man Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi-Hang So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Alice Lai-Shan Au
- Institute of Vascular Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christina Chui-Wa Poon
- Institute of Vascular Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sai-Wang Seto
- Institute of Vascular Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yiu-Wa Kwan
- Institute of Vascular Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter Hoi-Fu Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| |
Collapse
|
33
|
Bergstrom T, Ersson C, Bergman J, Moller L. Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--alone or in synergism with metals. Mutagenesis 2012; 27:511-7. [DOI: 10.1093/mutage/ges013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Ryu B, Himaya SWA, Qian ZJ, Lee SH, Kim SK. Prevention of hydrogen peroxide-induced oxidative stress in HDF cells by peptides derived from seaweed pipefish, Syngnathus schlegeli. Peptides 2011; 32:639-47. [PMID: 21262307 DOI: 10.1016/j.peptides.2011.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/27/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
Abstract
Two new peptides derived from seaweed pipefish Syngnathus schlegeli, SPP-1(QLGNLGV) and SPP-2 (SVMPVVA) were assessed for their ability to prevent hydrogen peroxide induced oxidative stress in human dermal fibroblasts (HDFs). Both peptides showed a significant hydroxyl radical scavenging activity when tested by ESR technique. And also the peptides effectively suppressed the hydrogen peroxide induced ROS production and DNA damage in HDF cells. Furthermore the two peptides increase the protein expression levels of intracellular antioxidant enzymes SOD1, GSH and catalase in hydrogen peroxide stressed HDF cells. At the cellular signaling level, SPPs block the NF-κB activation which may lead to the reduction of oxidative stress mediated damage of HDF cells. These finding indicate the potential antioxidant effects of SPPs as response to H(2)O(2) stimulation.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem J 2010; 432:123-32. [PMID: 20819077 DOI: 10.1042/bj20101317] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Astrocytes are central to iron and ascorbate homoeostasis within the brain. Although NTBI (non-transferrin-bound iron) may be a major form of iron imported by astrocytes in vivo, the mechanisms responsible remain unclear. The present study examines NTBI uptake by cultured astrocytes and the involvement of ascorbate and DMT1 (divalent metal transporter 1). We demonstrate that iron accumulation by ascorbate-deficient astrocytes is insensitive to both membrane-impermeant Fe(II) chelators and to the addition of the ferroxidase caeruloplasmin. However, when astrocytes are ascorbate-replete, as occurs in vivo, their rate of iron accumulation is doubled. The acquisition of this additional iron depends on effluxed ascorbate and can be blocked by the DMT1 inhibitor ferristatin/NSC306711. Furthermore, the calcein-accessible component of intracellular labile iron, which appears during iron uptake, appears to consist of only Fe(III) in ascorbate-deficient astrocytes, whereas that of ascorbate-replete astrocytes comprises both valencies. Our data suggest that an Fe(III)-uptake pathway predominates when astrocytes are ascorbate-deficient, but that in ascorbate-replete astrocytes, at least half of the accumulated iron is initially reduced by effluxed ascorbate and then imported by DMT1. These results suggest that ascorbate is intimately involved in iron accumulation by astrocytes, and is thus an important contributor to iron homoeostasis in the mammalian brain.
Collapse
|
36
|
Pygmalion MJ, Ruiz L, Popovic E, Gizard J, Portes P, Marat X, Lucet-Levannier K, Muller B, Galey JB. Skin cell protection against UVA by Sideroxyl, a new antioxidant complementary to sunscreens. Free Radic Biol Med 2010; 49:1629-37. [PMID: 20826208 DOI: 10.1016/j.freeradbiomed.2010.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress resulting from photosensitized ROS production in skin is widely accepted as the main contributor to the deleterious effects of UVA exposure. Among the mechanisms known to be involved in UVA-induced oxidative damage, iron plays a central role. UVA radiation of skin cells induces an immediate release of iron, which can then act as a catalyst for uncontrolled oxidation reactions of cell components. Such site-specific damage can scarcely be counteracted by classical antioxidants. In contrast, iron chelators potentially offer an effective way to protect skin against UVA insults. However, iron chelation is very difficult to achieve without disturbing iron homeostasis or inducing iron depletion. A novel compound was developed to avoid these potentially harmful side effects. Sideroxyl was designed to acquire its strong chelating capability only during oxidative stress according to an original process of intramolecular hydroxylation. Herein, we describe in vitro results demonstrating the protective efficiency of Sideroxyl against deleterious effects of UVA at the molecular, cellular, and tissular levels. First, the Sideroxyl diacid form protects a model protein against UVA-induced photosensitized carbonylation. Second, intracellular ROS are dose-dependently decreased in the presence of Sideroxyl in both human cultured fibroblasts and human keratinocytes. Third, Sideroxyl protects normal human fibroblasts against UVA-induced DNA damage as measured by the comet assay and MMP-1 production. Finally, Sideroxyl provides protection against UVA-induced alterations in human reconstructed skin. These results suggest that Sideroxyl may prevent UVA-induced damage in human skin as a complement to sunscreens, especially in the long-wavelength UVA range.
Collapse
|
37
|
Barbosa KBF, Costa NMB, Alfenas RDCG, De Paula SO, Minim VPR, Bressan J. Estresse oxidativo: conceito, implicações e fatores modulatórios. REV NUTR 2010. [DOI: 10.1590/s1415-52732010000400013] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
O estresse oxidativo decorre de um desequilíbrio entre a geração de compostos oxidantes e a atuação dos sistemas de defesa antioxidante. A geração de radicais livres e/ou espécies reativas não radicais é resultante do metabolismo de oxigênio. A mitocôndria, por meio da cadeia transportadora de elétrons, é a principal fonte geradora. O sistema de defesa antioxidante tem a função de inibir e/ou reduzir os danos causados pela ação deletéria dos radicais livres e/ou espécies reativas não radicais. Esse sistema, usualmente, é dividido em enzimático (superóxido dismutase, catalase e glutationa peroxidase) e não-enzimático. No último caso, é constituído por grande variedade de substâncias antioxidantes, que podem ter origem endógena ou dietética. Objetivou-se revisar os principais mecanismos de geração de radicais livres, bem como a ação dos agentes mais relevantes do sistema de defesa antioxidante, ressaltando suas implicações sobre os marcadores do estresse oxidativo. Também serão abordados os principais fatores exógenos moduladores do estresse oxidativo.
Collapse
|
38
|
Koike K, Kondo Y, Sekiya M, Sato Y, Tobino K, Iwakami SI, Goto S, Takahashi K, Maruyama N, Seyama K, Ishigami A. Complete lack of vitamin C intake generates pulmonary emphysema in senescence marker protein-30 knockout mice. Am J Physiol Lung Cell Mol Physiol 2010; 298:L784-92. [DOI: 10.1152/ajplung.00256.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin C (VC) is a potent antioxidant and plays an essential role in collagen synthesis. As we previously reported, senescence marker protein-30 (SMP30) knockout (KO) mice cannot synthesize VC due to the genetic disruption of gluconolactonase (i.e., SMP30). Here, we utilized SMP30 KO mice deprived of VC and found that VC depletion caused pulmonary emphysema due to oxidative stress and a decrease of collagen synthesis by the third month of age. We grew SMP30 KO mice and wild-type (WT) mice on VC-free chow and either VC water [VC(+)] or plain water [VC(−)] after weaning at 4 wk of age. Morphometric findings and reactive oxygen species (ROS) in the lungs were evaluated at 3 mo of age. No VC was detected in the lungs of SMP30 KO VC(−) mice, but their ROS increased 50.9% over that of the VC(+) group. Moreover, their collagen content in the lungs markedly decreased, and their collagen I mRNA decreased 82.2% compared with that of the WT VC(−) group. In the SMP30 KO VC(−) mice, emphysema developed [21.6% increase of mean linear intercepts (MLI) and 42.7% increase of destructive index compared with VC(+) groups], and the levels of sirtuin 1 (Sirt1) decreased 16.8%. However, VC intake increased the MLI 16.2% and thiobarbituric acid reactive substances 22.2% in WT mice, suggesting that an excess of VC can generate oxidative stress and may be harmful during this period of lung development. These results suggest that VC plays an important role in lung development through affecting oxidant-antioxidant balance and collagen synthesis.
Collapse
Affiliation(s)
- Kengo Koike
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Yoshitaka Kondo
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo
| | - Mitsuaki Sekiya
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Yasunori Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba
| | - Kazunori Tobino
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Shin-iciro Iwakami
- Department of Respiratory Medicine, Juntendo University Shizuoka Hospital, Shizuoka; and
| | - Sataro Goto
- Juntendo University Graduate School, Institute of Health and Sports Science and Medicine, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Naoki Maruyama
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University School of Medicine, and
| | - Akihito Ishigami
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba
| |
Collapse
|
39
|
Asare GA, Ntombini B, Kew MC, Kahler-Venter CP, Nortey EN. Possible adverse effect of high δ-alpha-tocopherol intake on hepatic iron overload: Enhanced production of vitamin C and the genotoxin, 8-hydroxy-2′- deoxyguanosine. Toxicol Mech Methods 2010; 20:96-104. [DOI: 10.3109/15376510903572888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Geoditin A induces oxidative stress and apoptosis on human colon HT29 cells. Mar Drugs 2010; 8:80-90. [PMID: 20161972 PMCID: PMC2817924 DOI: 10.3390/md8010080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/16/2022] Open
Abstract
Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA), and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH), but suppressed by N-acetylcysteine (NAC), a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.
Collapse
|
41
|
Abstract
Intracellular vitamin C acts to protect cells against oxidative stress by intercepting reactive oxygen species (ROS) and minimising DNA damage. However, rapid increases in intracellular vitamin C may induce ROS with subsequent DNA damage priming DNA repair processes. Herein, we examine the potential of vitamin C and the derivative ascorbate-2-phosphate (2-AP) to induce a nucleotide excision repair (NER) response to DNA damage in a model of peripheral blood mononuclear cells. Exposure of cells to elevated levels of vitamin C induced ROS activity, resulting in increased levels of deoxycytidine glyoxal (gdC) and 8-oxo-2'-deoxyguanosine (8-oxodG) adducts in DNA; a stress response was also induced by 2-AP, but was delayed in comparison to vitamin C. Evidence of gdC repair was also apparent. Measurement of cyclobutane thymine-thymine dimers (T < >T) in DNA and culture supernatant were included as a positive marker for NER activity; this was evidenced by a reduction in DNA and increases in culture supernatant levels of T < >T for vitamin C-treated cells. Genomics analysis fully supported these findings confirming that 2-AP, in particular, induced genes associated with stress response, cell cycle arrest, DNA repair and apoptosis, and additionally provided evidence for the involvement of vitamin C in the mobilisation of intracellular catalytic Fe.
Collapse
|
42
|
Huang CH, Chen HW, Tsai MS, Hsu CY, Peng RH, Wang TD, Chang WT, Chen WJ. Antiapoptotic cardioprotective effect of hypothermia treatment against oxidative stress injuries. Acad Emerg Med 2009; 16:872-80. [PMID: 19673708 DOI: 10.1111/j.1553-2712.2009.00495.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The effect of hypothermia on cardiomyocyte injury induced by oxidative stress remains unclear. The authors investigated the effects of hypothermia on apoptosis and mitochondrial dysfunction in cardiomyocytes exposed to oxidative stress. METHODS Cardiomyocytes (H9c2) derived from embryonic rat heart cell culture were exposed to either normothermic (37 degrees C) or hypothermic (31 degrees C) environments before undergoing oxidative stress via treatment with hydrogen peroxide (H(2)O(2)). The degree of apoptosis was determined by annexin V and terminal deoxynucleotidyl transferase (TUNEL) staining. The amount of reactive oxygen species (ROS) was compared after H(2)O(2) exposure between normo- and hypothermic-pretreated groups. Mitochondrial dysfunction in both groups was measured by differential reductase activity and transmembrane potential (DeltaPsim). RESULTS Hydrogen peroxide induced significant apoptosis in both normothermic and hypothermic cardiomyocytes. Hypothermia ameliorated apoptosis as demonstrated by decreased annexin V staining (33 +/- 1% vs. 49 +/- 4%; p < 0.05) and TUNEL staining (27 +/- 17% vs. 80 +/-25%; p < 0.01). The amount of intracellular ROS increased after H(2)O(2) treatment and was higher in the hypothermic group than that in the normothermic group (237.9 +/- 31.0% vs. 146.6 +/- 20.6%; p < 0.05). In the hypothermic group, compared with the normothermic group, after H(2)O(2) treatment mitochondrial reductase activity was greater (72.0 +/- 17.9% vs. 27.0 +/- 13.3%; p < 0.01) and the mitochondria DeltaPsim was higher (101.0 +/- 22.6% vs. 69.7 +/- 12.9%; p < 0.05). Pretreatment of cardiomyocytes with the antioxidant ascorbic acid diminished the hypothermia-induced increase in intracellular ROS and prevented the beneficial effects of hypothermia on apoptosis and mitochondrial function. CONCLUSIONS Hypothermia at 31 degrees C can protect cardiomyocytes against oxidative stress-induced injury by decreasing apoptosis and mitochondrial dysfunction through intracellular ROS-dependent pathways.
Collapse
Affiliation(s)
- Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro. Food Chem Toxicol 2009; 47:1569-76. [DOI: 10.1016/j.fct.2009.03.044] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/06/2009] [Accepted: 03/31/2009] [Indexed: 02/07/2023]
|
44
|
Alderman BW, Ratliff AE, Wirgau JI. A mechanistic study of ferrioxamine B reduction by the biological reducing agent ascorbate in the presence of an iron(II) chelator. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Lee TI, Kao YH, Chen YC, Chen YJ. Proinflammatory cytokine and ligands modulate cardiac peroxisome proliferator-activated receptors. Eur J Clin Invest 2009; 39:23-30. [PMID: 19067734 DOI: 10.1111/j.1365-2362.2008.02062.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPAR) mediate inflammatory processes and alter cardiac function. However, it is not clear whether inflammatory cytokines or PPAR ligands regulate PPARs in the cardiomyocytes to modulate cardiac functions. We investigated the effects of tumour necrosis factor-alpha (TNF-alpha) and PPAR ligands on the expression of PPARs in HL-1 cardiomyocytes. MATERIALS AND METHODS HL-1 cardiomyocytes were incubated with and without TNF-alpha (1, 10, 25 and 50 ng mL(-1)) or PPAR ligands (rosiglitazone, pioglitazone and fenofibrate) at concentrations of 0.1, 1 and 10 microM for 24 h. The cells also received SN-50 (NF-kappaB inhibitor, 50 microg mL(-1)), ascorbic acid (100 microM) and coenzyme Q10 (10 microM) alone or combined with TNF-alpha. RESULTS Using reverse transcriptase-polymerase chain reaction and Western blot, we found that incubation of TNF-alpha (50 ng mL(-1)) for 24 h decreased PPAR-alpha, but increased PPAR-gamma without altering PPAR-delta. These effects were not changed by co-administration of SN-50. However, co-administration of ascorbic acid prevented the effect of TNF-alpha both on PPAR-alpha and PPAR-gamma. Coenzyme Q10 partially attenuated the effect of TNF-alpha on PPAR-gamma but did not alter its effect on PPAR-alpha. The administration of rosiglitazone (10 microM) and pioglitazone (10 microM) for 24 h increased PPAR-gamma mRNA, but did not alter PPAR-alpha or PPAR-delta. Moreover, fenofibrate (0.1, 1 and 10 microM) increased PPAR-gamma without any effects on PPAR-alpha or PPAR-delta. CONCLUSIONS Oxidative stress causes the regulations of PPAR-alpha and PPAR-gamma in the TNF-alpha-treated cardiomyocytes. The up-regulation of PPAR-gamma by PPAR ligands may contribute to their anti-inflammation effects.
Collapse
Affiliation(s)
- T-I Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
46
|
Song R, Duarte TL, Almeida GM, Farmer PB, Cooke MS, Zhang W, Sheng G, Fu J, Jones GDD. Cytotoxicity and gene expression profiling of two hydroxylated polybrominated diphenyl ethers in human H295R adrenocortical carcinoma cells. Toxicol Lett 2008; 185:23-31. [PMID: 19095052 DOI: 10.1016/j.toxlet.2008.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants in a variety of commercial and household products. They have been detected in the environment and accumulate in mammalian tissues and fluids. PBDE toxicity is thought to be associated with endocrine disruption, developmental neurotoxicity and changes in fetal development. Although humans are exposed to PBDEs, our knowledge of the effects of PBDE metabolites on human cells with respect to health risk is insufficient. Two hydroxylated PBDEs (OH-PBDEs), 2-OH-BDE47 and 2-OH-BDE85, were investigated for their effects on cell viability/proliferation, DNA damage, cell cycle distribution and gene expression profiling in H295R adrenocortical carcinoma cells. We show that the two agents are cytotoxic in a dose-dependent manner only at micromolar concentrations, with 2-OH-BDE85 being more toxic than 2-OH-BDE47. However, no DNA damage was observed for either chemical, suggesting that the biological effects of OH-PBDEs occur primarily via non-genotoxic routes. Furthermore, no evidence of aryl hydrocarbon receptor (AHR)-mediated, dioxin-like toxicity was observed. Instead, we report that a micromolar concentration of OH-PBDEs induces transcriptional changes associated with endoplasmic reticulum stress and the unfolded protein response. We discuss whether OH-PBDE bioaccumulation could result in impairment of the adrenocortical secretory function.
Collapse
Affiliation(s)
- Renfang Song
- Department of Cancer Studies & Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Verrax J, Calderon PB. The controversial place of vitamin C in cancer treatment. Biochem Pharmacol 2008; 76:1644-52. [PMID: 18938145 DOI: 10.1016/j.bcp.2008.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 12/22/2022]
Abstract
In 2008, we celebrate the 80th anniversary of the discovery of vitamin C. Since then, we know that vitamin C possesses few pharmacological actions although it is still perceived by the public as a "miracle-pill" capable to heal a variety of illnesses. Cancer is one of the most common diseases for which a beneficial role of vitamin C has been claimed. Thus, its dietary use has been proposed in cancer prevention for several years. Apart from this nutritional aspect, an extensive and often confusing literature exists about the use of vitamin C in cancer that has considerably discredited its use. Nevertheless, recent pharmacokinetic data suggest that pharmacologic concentrations of vitamin C can be achieved by intravenous injections. Since these concentrations exhibit anticancer activities in vitro, this raises the controversial question of the re-evaluation of vitamin C in cancer treatment. Therefore, the purpose of this commentary is to make a critical review of our current knowledge of vitamin C, focusing on the rationale that could support its use in cancer therapy.
Collapse
Affiliation(s)
- J Verrax
- Unité de Pharmacocinétique, Métabolisme, Nutrition, et Toxicologie (PMNT), Département des sciences pharmaceutiques, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
48
|
Kim HJ, Park MK, Rhee KH, Youn HS, Ko SH, Kim HS, Chung MH. Long-Term Intake of High Doses of Vitamin C Down-regulates Anti-oxidant Enzymes in Human Erythrocytes. Prev Nutr Food Sci 2008. [DOI: 10.3746/jfn.2008.13.3.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Lane DJR, Lawen A. Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells. J Biol Chem 2008; 283:12701-8. [PMID: 18347019 DOI: 10.1074/jbc.m800713200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
K562 erythroleukemia cells import non-transferrin-bound iron (NTBI) by an incompletely understood process that requires initial iron reduction. The mechanism of NTBI ferrireduction remains unknown but probably involves transplasma membrane electron transport. We here provide evidence for a novel mechanism of NTBI reduction and uptake by K562 cells that utilizes transplasma membrane ascorbate cycling. Incubation of cells with dehydroascorbic acid, but not ascorbate, resulted in (i) accumulation of intracellular ascorbate that was blocked by the glucose transporter inhibitor, cytochalasin B, and (ii) subsequent release of micromolar concentrations of ascorbate into the external medium via a route that was sensitive to the anion channel inhibitor, 4,4'-diisothiocyanatostilbene-2,2'-disulfonate. Ascorbate-deficient control cells demonstrated low levels of ferric citrate reduction. However, incubation of the cells with dehydroascorbic acid resulted in a dose-dependent stimulation of both iron reduction and uptake from radiolabeled [(55)Fe]ferric citrate. This stimulation was abrogated by ascorbate oxidase treatment, suggesting dependence on direct chemical reduction by ascorbate. These results support a novel model of NTBI reduction and uptake by K562 cells in which uptake is preceded by reduction of iron by extracellular ascorbate, the latter of which is subsequently regenerated by transplasma membrane ascorbate cycling.
Collapse
Affiliation(s)
- Darius J R Lane
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|