1
|
Xu G, Li W, Zhao Y, Fan T, Gao Q, Wang Y, Zhang F, Gao M, An Z, Yang Z. Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation. Biol Trace Elem Res 2024; 202:2797-2811. [PMID: 37804446 DOI: 10.1007/s12011-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3'-untranslated region (3'-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Weibing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Ting Fan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yongbin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Mingjing Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
2
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Ding N, Zeng Z, Luo J, Li K. The cross-sectional relationship between vitamin C and high-sensitivity C-reactive protein levels: insights from NHANES database. Front Nutr 2023; 10:1290749. [PMID: 38024382 PMCID: PMC10675847 DOI: 10.3389/fnut.2023.1290749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ascorbic acid or vitamin C has antioxidant and anti-inflammatory properties that may impact markers of inflammation like C-reactive protein (CRP). However, studies specifically on vitamin C and high-sensitivity CRP (hs-CRP) have been scarce. Methods We conducted a cross-sectional analysis of the National Health and Nutrition Examination Survey 2017-2018 dataset including 5,380 U.S. adults aged ≥20 years. Multiple regression models examined the relationship between plasma vitamin C and serum hs-CRP while adjusting for potential confounders. Stratified analyses and curve fitting assessed effect modification and nonlinearity. Results An inverse association was found between plasma vitamin C and serum hs-CRP overall (β = -0.025, 95% CI: -0.033 to -0.017, p < 0.00001) and in subgroups except for the "other Hispanic" subgroup in model II (β = -0.009, 95% CI: (-0.040, 0.023), p = 0.5885). The relationship was nonlinear, with the greatest hs-CRP reduction observed up to a plasma vitamin C level of 53.1 μmol/L. Conclusion The results showed a non-linear negative correlation between vitamin C levels and hs-CRP in adults. These results suggest vitamin C intake may reduce inflammation and cardiovascular risk, but only up to 53.1 μmol/L plasma vitamin C.
Collapse
Affiliation(s)
- Ning Ding
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhao Zeng
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ju Luo
- Department of Geriatrics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Keng Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
4
|
Xu G, Zhao Y, Tao Y, Xiong C, Lv M, Gao Q, Zhang F, An Z, Wu W. Lias overexpression alleviates pulmonary injury induced by fine particulate matter in mice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6585-6603. [PMID: 37341891 DOI: 10.1007/s10653-023-01651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Oxidative stress and inflammation are mechanisms underlying toxicity induced by fine particulate matter (PM2.5). The antioxidant baseline of the human body modulates the intensity of oxidative stress in vivo. This present study aimed to evaluate the role of endogenous antioxidants in alleviating PM2.5-induced pulmonary injury using a novel mouse model (LiasH/H) with an endogenous antioxidant capacity of approximately 150% of its wild-type counterpart (Lias+/+). LiasH/H and wild-type (Lias+/+) mice were randomly divided into control and PM2.5 exposure groups (n = 10), respectively. Mice in the PM2.5 group and the control group were intratracheally instilled with PM2.5 suspension and saline, respectively, once a day for 7 consecutive days. The metal content, major pathological changes in the lung, and levels of oxidative stress and inflammation biomarkers were examined. The results showed that PM2.5 exposure induced oxidative stress in mice. Overexpression of the Lias gene significantly increased the antioxidant levels and decreased inflammatory responses induced by PM2.5. Further study found that LiasH/H mice exerted their antioxidant function by activating the ROS-p38MAPK-Nrf2 pathway. Therefore, the novel mouse model is useful for the elucidation of the mechanisms of pulmonary injury induced by PM2.5.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Mengdi Lv
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
5
|
Pekas EJ, Allen MF, Park SY. Prolonged sitting and peripheral vascular function: potential mechanisms and methodological considerations. J Appl Physiol (1985) 2023; 134:810-822. [PMID: 36794688 PMCID: PMC10042610 DOI: 10.1152/japplphysiol.00730.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Sitting time is associated with increased risks for subclinical atherosclerosis and cardiovascular disease development, and this is thought to be partially due to sitting-induced disturbances in macro- and microvascular function as well as molecular imbalances. Despite surmounting evidence supporting these claims, contributing mechanisms to these phenomena remain largely unknown. In this review, we discuss evidence for potential mechanisms of sitting-induced perturbations in peripheral hemodynamics and vascular function and how these potential mechanisms may be targeted using active and passive muscular contraction methods. Furthermore, we also highlight concerns regarding the experimental environment and population considerations for future studies. Optimizing prolonged sitting investigations may allow us to not only better understand the hypothesized sitting-induced transient proatherogenic environment but to also enhance methods and devise mechanistic targets to salvage sitting-induced attenuations in vascular function, which may ultimately play a role in averting atherosclerosis and cardiovascular disease development.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Michael F Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| |
Collapse
|
6
|
Bender C, Candi I, Rogel E. Efficacy of Hydroxytyrosol-Rich Food Supplements on Reducing Lipid Oxidation in Humans. Int J Mol Sci 2023; 24:ijms24065521. [PMID: 36982623 PMCID: PMC10054451 DOI: 10.3390/ijms24065521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
In the present study we report the efficacy of two food supplements derived from olives in reducing lipid oxidation. To this end, 12 healthy volunteers received a single dose (25 mL) of olive phenolics, mainly hydroxytyrosol (HT), provided as a liquid dietary supplement (30.6 or 61.5 mg HT), followed by an investigation of two reliable markers of oxidative stress. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h post-intake. Plasma-oxidized low-density lipoprotein (oxLDL) cholesterol levels were measured with ELISA using a monoclonal antibody, while F2-isoprostanes (F2-IsoPs) were quantified in urine with UHPLC-DAD-MS/MS. Despite the great variability observed between individuals, a tendency to reduce lipoxidation reactions was observed in the blood in response to a single intake of the food supplements. In addition, the subgroup of individuals with the highest baseline oxLDL level showed a significant (p < 0.05) decrease in F2-IsoPs at 0.5 and 12 h post-intervention. These promising results suggest that HT supplementation could be a useful aid in preventing lipoxidation. Additionally, people with a redox imbalance could benefit even more from supplementing with bioavailable HT.
Collapse
Affiliation(s)
- Cecilia Bender
- Institut Kurz GmbH, 50829 Köln, Germany
- Istituto Kurz Italia S.R.L., 43126 Parma, Italy
- Correspondence: ; Tel.:+39-0521712675
| | | | - Eva Rogel
- Institut Kurz GmbH, 50829 Köln, Germany
| |
Collapse
|
7
|
Husain S, Hillmann K, Hengst K, Englert H. Effects of a lifestyle intervention on the biomarkers of oxidative stress in non-communicable diseases: A systematic review. FRONTIERS IN AGING 2023; 4:1085511. [PMID: 36970730 PMCID: PMC10034086 DOI: 10.3389/fragi.2023.1085511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Oxidative stress plays a critical role in the pathogenesis of chronic diseases. Therefore, improvement of oxidative stress status through lifestyle intervention can play a vital role in preventing and treating chronic diseases. This systematic review aims to provide an overview of articles published in the last decade examining the association between lifestyle intervention and oxidative stress biomarkers in the context of non-communicable diseases. The electronic databases PubMed and Web of Science were searched for relevant studies, following the PRISMA (Preferred Reporting of Systematic Reviews and Meta-Analyses) guidelines. This systematic review focused on the four important oxidative stress biomarkers; glutathione (GSH), superoxide dismutase (SOD), catalase, and malondialdehyde. 671 articles were identified, of which nine met the inclusion criteria. A trend emerged, showing that lifestyle modifications that focus on diet and physical health can improve oxidative stress in the form of an increase in superoxide dismutase and CAT levels and a decrease in Malondialdehyde levels in participants with non-communicable diseases (NCDs), GSH levels were not affected. However, the results are difficult to compare because of the heterogeneity of the methods of the biomarkers studied. Our review indicates that oxidative stress can be influenced by lifestyle modifications and may be an effective tool for the prevention and management of non-communicable diseases. This review also elucidated the importance of analyzing multiple oxidative stress biomarkers to evaluate oxidative stress, it further highlights the need to conduct long-term lifestyle intervention studies on oxidative stress biomarkers to understand the connection between oxidative stress biomarkers, NCDs and Lifestyle intervention.
Collapse
Affiliation(s)
- Sarah Husain
- Faculty of Medicine, University of Muenster (WWU), Münster, Germany
- Department of Food, Nutrition and Facilities, University of Applied Sciences Muenster, Münster, Germany
- *Correspondence: Sarah Husain,
| | | | - Karin Hengst
- Department of medicine, University hospital Muenster (UKM), Münster, Germany
| | - Heike Englert
- Faculty of Medicine, University of Muenster (WWU), Münster, Germany
- Department of Food, Nutrition and Facilities, University of Applied Sciences Muenster, Münster, Germany
| |
Collapse
|
8
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
9
|
McKeegan K, Mason SA, Trewin AJ, Keske MA, Wadley GD, Della Gatta PA, Nikolaidis MG, Parker L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol 2021; 44:102005. [PMID: 34049222 PMCID: PMC8167146 DOI: 10.1016/j.redox.2021.102005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for their role in insulin resistance and the development of cardiometabolic disease including type 2 diabetes mellitus (T2D). Conversely, evidence supports the notion that ROS are a necessary component for glucose cell transport and adaptation to physiological stress including exercise and muscle contraction. Although genetic rodent models and cell culture studies indicate antioxidant treatment to be an effective strategy for targeting ROS to promote health, human findings are largely inconsistent. In this review we discuss human research that has investigated antioxidant treatment and glycemic control in the context of health (healthy individuals and during exercise) and disease (insulin resistance and T2D). We have identified key factors that are likely to influence the effectiveness of antioxidant treatment: 1) the context of treatment including whether oxidative distress or eustress is present (e.g., hyperglycemia/lipidaemia or during exercise and muscle contraction); 2) whether specific endogenous antioxidant deficiencies are identified (redox screening); 3) whether antioxidant treatment is specifically designed to target and restore identified deficiencies (antioxidant specificity); 4) and the bioavailability and bioactivity of the antioxidant which are influenced by treatment dose, duration, and method of administration. The majority of human research has failed to account for these factors, limiting their ability to robustly test the effectiveness of antioxidants for health promotion and disease prevention. We propose that a modern "redox screening" and "personalized antioxidant treatment" approach is required to robustly explore redox regulation of human physiology and to elicit more effective antioxidant treatment in humans.
Collapse
Affiliation(s)
- Kathryn McKeegan
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
10
|
Bedlack R, Barkhaus P, Carter G, Crayle J, Mcdermott C, Pattee G, Polak M, Salmon K, Wicks P. ALSUntangled #62: vitamin C. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:476-479. [PMID: 34187257 DOI: 10.1080/21678421.2021.1946088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vitamin C is one of the most common supplements taken by people with ALS. As an antioxidant, it has a plausible mechanism for slowing disease progression and there are some flawed pre-clinical studies and case reports suggesting benefit. However, a small human trial showed no benefit. Given this negative trial, we do not currently advise vitamin C as an ALS treatment.
Collapse
Affiliation(s)
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Greg Carter
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jesse Crayle
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Christopher Mcdermott
- Department of Neuroscience, The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Gary Pattee
- Department of Neurology, Neurology Associates, Lincoln, NE, USA
| | - Meraida Polak
- Department of Neurology, Emory Healthcare, Atlanta, GA, USA
| | - Kristiana Salmon
- Department of Neurology, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Paul Wicks
- UIndependent Consultant, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Determinants of Resting Oxidative Stress in Middle-Aged and Elderly Men and Women: WASEDA'S Health Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5566880. [PMID: 34211629 PMCID: PMC8205570 DOI: 10.1155/2021/5566880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Previous studies have not investigated the determinants of resting oxidative stress, including physical fitness, as it relates to redox regulation. The present study therefore was aimed at identifying lifestyle and biological factors that determine resting oxidative stress, including objectively measured physical fitness. In 873 middle-aged and elderly men and women, age and anthropometric parameters, lifestyle-related parameters, medication and supplementation status, physical fitness, biochemical parameters, and nutritional intake status, as well as three plasma oxidative stress markers: protein carbonyl (PC), F2-isoprostane (F2-IsoP), and thiobarbituric acid reactive substances (TBARS), were surveyed and measured. The determinants of PC, F2-IsoP, and TBARS in all participants were investigated using stepwise multiple regression analysis. In PC, age (β = −0.11, P = 0.002), leg extension power (β = −0.12, P = 0.008), BMI (β = 0.12, P = 0.004), and HDL-C (β = 0.08, P = 0.040) were included in the regression model (adjusted R2 = 0.018). In the F2-IsoP, smoking status (β = 0.07, P = 0.060), BMI (β = 0.07, P = 0.054), and HbA1c (β = −0.06, P = 0.089) were included in the regression model (adjusted R2 = 0.006). In TBARS, glucose (β = 0.18, P < 0.001), CRF (β = 0.16, P < 0.001), age (β = 0.15, P < 0.001), TG (β = 0.11, P = 0.001), antioxidant supplementation (β = 0.10, P = 0.002), and HbA1c (β = −0.13, P = 0.004) were included in the regression model (adjusted R2 = 0.071). In conclusion, the present study showed that age, anthropometric index, lifestyle-related parameters, medication and supplementation status, objectively measured physical fitness, biochemical parameters, and nutritional intake status explain less than 10% of oxidative stress at rest.
Collapse
|
12
|
Henning T, Weber D. Redox biomarkers in dietary interventions and nutritional observation studies - From new insights to old problems. Redox Biol 2021; 41:101922. [PMID: 33756398 PMCID: PMC8020480 DOI: 10.1016/j.redox.2021.101922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The purpose of this review is to give an overview on recently published articles investigating the associations of diet and dietary interventions with biomarkers of oxidative stress with special emphasis on different categories of redox biomarkers. Findings Intervention and observational studies both in healthy participants and patients that investigated associations of dietary habits, foodstuffs or isolated nutrients with biomarkers of oxidative stress were included in this review. Recently published observation studies confirm the inverse association between fruit and vegetable intake and oxidative stress markers. Studies investigating the effect of vitamin D and vitamin E, magnesium, zinc, chromium, selenium, probiotic supplementation and several phytochemicals reported consistent changes in redox biomarkers. Of 88 articles included in this review, only seven studies measured biomarkers from the three categories: oxidative damage, endogenous antioxidants, and exogenous antioxidants. Many studies rely on controversial assays for total antioxidant capacity, thus there is potential in many studies to improve biomarker repertoire to cover all three categories of biomarkers and to turn away from such assays. Oxidative stress can be assessed by specific biomarker categories. Three biomarker categories: oxidative damage, endogenous, exogenous antioxidants. Only seven studies performed measurements of all three biomarker categories. TAC, TRAP, FRAP, ORAC should not be used as stand-alone redox marker. Several interventions reported improvements in markers of oxidative stress.
Collapse
Affiliation(s)
- Thorsten Henning
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558, Nuthetal, Germany.
| |
Collapse
|
13
|
Decker KP, Feliciano PG, Kimmel MT, Hogwood AC, Weggen JB, Darling AM, Richardson JW, Garten RS. Examining sex differences in sitting-induced microvascular dysfunction: Insight from acute vitamin C supplementation. Microvasc Res 2021; 135:104147. [PMID: 33610562 DOI: 10.1016/j.mvr.2021.104147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Lower limb microvascular dysfunction resulting from prolonged sitting (PS) bouts has been revealed to occur independent of sex. Although acute antioxidant supplementation has been reported to blunt conduit artery dysfunction following PS in young males, it is unknown if this protective effect extends to the microvasculature or is relevant in young females, who possess intrinsic vascular protective mechanisms specific to antioxidant defense. Therefore, this study employed an acute antioxidant supplementation to further examine sex differences during PS with a specific focus on microvascular function. METHODS On two separate visits, 14 females (23 ± 3 years) and 12 males (25 ± 4 years) had leg microvascular function (LMVF) assessed (via the passive leg movement technique) before and after 1.5 h of sitting. Prior to each visit, one gram of vitamin C (VC) or placebo (PL) was consumed. RESULTS PS significantly reduced LMVF [PL: (M: -34 ± 20; F: -23 ± 18%; p < 0.01) independent of sex (p = 0.7)], but the VC condition only blunted this reduction in males (VC: -3 ± 20%; p < 0.01), but not females (VC: -18 ± 25%; p = 0.5). CONCLUSION Young males and females reported similar reductions LMVF following PS, but only the young males reported a preservation of LMVF following the VC supplementation. This finding in young females was highlighted by substantial variability in LMVF measures in response to the VC condition that was unrelated to changes in the potential contributors to sitting-induced reductions in LMVF (e.g. lower limb venous pooling, reduced arterial shear rate). NEW AND NOTEWORTHY In this study, we employed an acute Vitamin C (VC) supplementation to examine sex differences in leg microvascular function (LMVF) following a bout of prolonged sitting. This study revealed that prolonged sitting reduced LMVF independent of sex, but only young males reported an attenuation to this lowered LMVF following VC supplementation. The young females revealed substantial variability in sitting-induced changes to LMVF that could not be explained by the potential contributors to sitting-induced reductions in LMVF (e.g. lower limb venous pooling, reduced arterial shear rate).
Collapse
Affiliation(s)
- Kevin P Decker
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick G Feliciano
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Morgan T Kimmel
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jacob W Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Margaritelis NV, Chatzinikolaou PN, Bousiou FV, Malliou VJ, Papadopoulou SK, Potsaki P, Theodorou AA, Kyparos A, Geladas ND, Nikolaidis MG, Paschalis V. Dietary Cysteine Intake is Associated with Blood Glutathione Levels and Isometric Strength. Int J Sports Med 2020; 42:441-447. [PMID: 33124012 DOI: 10.1055/a-1255-2863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glutathione is the most abundant cellular antioxidant and regulates redox homeostasis. Healthy individuals with certain antioxidant inadequacies/deficiencies exhibit impairments in physiological functions. The aim was to investigate whether low levels of dietary cysteine intake are associated with a) lower erythrocyte glutathione, b) increased plasma F2-isoprostanes, and c) impaired muscle function. Towards this aim, we recorded the dietary intake of the three amino acids that synthesize glutathione (i. e., glutamic acid, cysteine, and glycine) in forty-one healthy individuals, and subsequently measured erythrocyte glutathione levels. Maximal isometric strength and fatigue index were also assessed using an electronic handgrip dynamometer. Our findings indicate that dietary cysteine intake was positively correlated with glutathione levels (r=0.765, p<0.001). In addition, glutathione levels were negatively correlated with F2-isoprostanes (r=- 0.311, p=0.048). An interesting finding was that glutathione levels and cysteine intake were positively correlated with maximal handgrip strength (r=0.416, p=0.007 and r=0.343, p=0.028, respectively). In conclusion, glutathione concentration is associated with cysteine intake, while adequate cysteine levels were important for optimal redox status and muscle function. This highlights the importance of proper nutritional intake and biochemical screening with the goal of personalized nutrition.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece.,Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Flora V Bousiou
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki J Malliou
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Panagiota Potsaki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | | | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece
| | - Nikos D Geladas
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Asbaghi O, Sadeghian M, Nazarian B, Sarreshtedari M, Mozaffari-Khosravi H, Maleki V, Alizadeh M, Shokri A, Sadeghi O. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: a systematic review and meta-analysis of randomized clinical trials. Sci Rep 2020; 10:17234. [PMID: 33057114 PMCID: PMC7560744 DOI: 10.1038/s41598-020-73741-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The previous meta-analysis of clinical trials revealed a beneficial effect of vitamin E supplementation on serum C-reactive protein (CRP) concentrations; however, it is unknown whether this vitamin has the same influence on other inflammatory biomarkers. Also, several clinical trials have been published since the release of earlier meta-analysis. Therefore, we aimed to conduct a comprehensive meta-analysis to summarize current evidence on the effects of vitamin E supplementation on inflammatory biomarkers in adults. We searched the online databases using relevant keywords up to November 2019. Randomized clinical trials (RCTs) investigating the effect of vitamin E, compared with the placebo, on serum concentrations of inflammatory cytokines were included. Overall, we included 33 trials with a total sample size of 2102 individuals, aged from 20 to 70 years. Based on 36 effect sizes from 26 RCTs on serum concentrations of CRP, we found a significant reduction following supplementation with vitamin E (− 0.52, 95% CI − 0.80, − 0.23 mg/L, P < 0.001). Although the overall effect of vitamin E supplementation on serum concentrations of interleukin-6 (IL-6) was not significant, a significant reduction in this cytokine was seen in studies that used α-tocopherol and those trials that included patients with disorders related to insulin resistance. Moreover, we found a significant reducing effect of vitamin E supplementation on tumor necrosis factor-α (TNF-α) concentrations at high dosages of vitamin E; such that based on dose–response analysis, serum TNF-α concentrations were reduced significantly at the dosages of ≥ 700 mg/day vitamin E (Pnon-linearity = 0.001). Considering different chemical forms of vitamin E, α-tocopherol, unlike other forms, had a reducing effect on serum levels of CRP and IL-6. In conclusion, our findings revealed a beneficial effect of vitamin E supplementation, particularly in the form of α-tocopherol, on subclinical inflammation in adults. Future high-quality RCTs should be conducted to translate this anti-inflammatory effect of vitamin E to the clinical setting.
Collapse
Affiliation(s)
- Omid Asbaghi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behzad Nazarian
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azad Shokri
- Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Gerash University of Medical Sciences, Gerash, Iran
| | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran.
| |
Collapse
|
16
|
de Brito E, Teixeira ADO, Righi NC, Paulitcth FDS, da Silva AMV, Signori LU. Vitamins C and E Associated With Cryotherapy in the Recovery of the Inflammatory Response After Resistance Exercise: A Randomized Clinical Trial. J Strength Cond Res 2020; 36:135-141. [PMID: 33021585 DOI: 10.1519/jsc.0000000000003342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
de Brito, E, Teixeira, AdO, Righi, NC, Paulitcth, FdS, da Silva, AMV, and Signori, LU. Vitamins C and E associated with cryotherapy in the recovery of the inflammatory response after resistance exercise: A randomized clinical trial. J Strength Cond Res XX(X): 000-000, 2019-The objective of this research was to compare the effects of cryotherapy associated with vitamins (C and E) on the recovery of the inflammatory response from the resistance exercise (RE) session of untrained volunteers. Fourteen subjects (26.2 ± 5 years old, 25.8 ± 3 kg·m) underwent 4 sessions of RE with different forms of recovery. The RE consisted of 4 sets of 10 maximal repetitions for each exercise (extensor bench, squat, and leg press). The recoveries were randomized and comprised the passive (control), with vitamins C (1 g) and E (800 UI) supplementation 40 minutes before exercise, with cryotherapy (immersion in water 15° C for 10 minutes), and the association (vitamins and cryotherapy). Hemogram, inflammatory markers (C-reactive protein and creatine kinase [CK]), and parameters of oxidative stress (lipid peroxidation [LPO] and antioxidant capacity against radical peroxyl) were evaluated before (baseline) and after (0, 30, and 120 minutes) the RE sessions. Muscle pain (primary outcome) was evaluated 24 hours after exercise. C-reactive protein (p = 0.010) and LPO (p < 0.001) increased (120 minutes) only in passive recovery. Recovery with cryotherapy (30 minutes), with vitamins and the association (0 and 30 minutes) delayed increases in CK (p < 0.001). Antioxidant capacity against radical peroxyl increased (30 minutes) only in recovery with the association (p < 0.011). The pain decreased in the recoveries with cryotherapy and association (p < 0.001). The association of vitamins (C and E) with cryotherapy attenuated the inflammatory response and pain, favoring recovery after an acute RE session.
Collapse
Affiliation(s)
- Edineia de Brito
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - André de Oliveira Teixeira
- Health Sciences Graduate Program, School of Medicine, Federal University of Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Natiele Camponogara Righi
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - Felipe da Silva Paulitcth
- Health Sciences Graduate Program, School of Medicine, Federal University of Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Antonio Marcos Vargas da Silva
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - Luis Ulisses Signori
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
17
|
Influence of Long-Term Fasting on Blood Redox Status in Humans. Antioxidants (Basel) 2020; 9:antiox9060496. [PMID: 32517172 PMCID: PMC7346198 DOI: 10.3390/antiox9060496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Fasting is increasingly practiced to improve health and general well-being, as well as for its cytoprotective effects. Changes in blood redox status, linked to the development of a variety of metabolic diseases, have been recently documented during calorie restriction and intermittent fasting, but not with long-term fasting (LF). We investigated some parameters of the blood redox profile in 109 subjects before and after a 10-day fasting period. Fasting resulted in a significant reduction in body weight, improved well-being and had a beneficial modulating effect on blood lipids and glucose regulation. We observed that fasting decreased lipid peroxidation (TBARS) and increased total antioxidant capacity (TAC) in plasma, concomitant with a uric acid elevation, known to be associated with fasting and did not cause gout attacks. Reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase in erythrocytes did not show significant changes. In addition, reduction in body weight, waist circumference, and glucose levels were associated to a reduced lipid peroxidation. Similar results were obtained by grouping subjects on the basis of the changes in their GSH levels, showing that a period of 10 days fasting improves blood redox status regardless of GSH status in the blood.
Collapse
|
18
|
Safabakhsh M, Emami MR, Zeinali Khosroshahi M, Asbaghi O, Khodayari S, Khorshidi M, Alizadeh S, Viri EH. Vitamin C supplementation and C-reactive protein levels: Findings from a systematic review and meta-analysis of clinical trials. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:/j/jcim.ahead-of-print/jcim-2019-0151/jcim-2019-0151.xml. [PMID: 32229693 DOI: 10.1515/jcim-2019-0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Background and purpose C-reactive protein (CRP) is an inflammatory biomarker which prognosticates cardiovascular disease. Previous studies have reached mixed conclusions regarding the effect of vitamin C on reducing CRP or hs-CRP level. The present systematic review and meta-analysis was conducted to resolve these inconsistencies. Materials and methods: Related articles published up to August 2018 were searched through PubMed, Scopus, Ovid, ISI web of science, Embase, and Cochrane databases by relevant keywords. Clinical trials which examined the effect of either vitamin C supplementation or vitamin C-enriched foods on CRP and hs-CRP levels were included. A total of 11 studies with 14 data sets involving 818 subjects were included. Results Overall, the pooled analysis revealed that vitamin C could decrease CRP level relative to placebo group (Weighted mean difference [WMD]=-0.73 mg/L: 95% CI: -1.30 to -0.15, p=0.013) with a considerable heterogeneity (I2=98%, p<0.001). Moreover, subgroup analyses revealed that the beneficial effect of vitamin C on CRP level alternation only was found in male (p=0.003), non-smoker (p=0.041), healthy (p=0.029) and younger participants (p=0.010). Vitamin C could improve CRP level only at doses of less than 500 mg/day (p=0.009). Regarding hs-CRP changes, the pooled analysis did not show any significant effect of vitamin C (WMD=-0.65 mg/L: 95% CI: -2.03 to 0.72, p=0.35). This finding was confirmed by all subgroup analyses expect for high quality articles in which hs-CRP level was elevated after vitamin C supplementation (p=0.026). Conclusion In conclusion, supplementation with vitamin C might have a significant effect only on CRP reduction. Further studies are needed to confirm this effect.
Collapse
Affiliation(s)
- Maryam Safabakhsh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Emami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Omid Asbaghi
- Lorestan University, Khurramabad, Lorestan, Iran
| | | | - Masoud Khorshidi
- School of Nutrition and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elmira Heidari Viri
- Department of Nutrition & Dietetic, Faculty of Medicine Islamic Azad University, Science & Research Branch, Tehran, Iran
| |
Collapse
|
19
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
20
|
High dietary vitamin C intake reduces glucocorticoid-induced immunosuppression and measures of oxidative stress in vitamin C-deficient senescence marker protein 30 knockout mice. Br J Nutr 2019; 122:1120-1129. [PMID: 31647039 DOI: 10.1017/s0007114519001922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin C (VC) is a vital micronutrient for humans and some other mammals and also has antioxidant activity. Stress-induced elevation of glucocorticoid production is well known to cause immunosuppression. The present study evaluated the effect of high VC intake on glucocorticoid-induced immune changes in mice. Senescence marker protein 30 knockout mice with genetic VC deficiency were fed a diet containing the recommended VC content (20 mg/kg per d; 0·02 %VC group) or a high VC content (200 mg/kg per d; 0·2 %VC group) for 2 months, then dexamethasone was given by intraperitoneal injection. After administration of dexamethasone, the plasma ascorbic acid concentration decreased significantly in the 0·02 %VC group and was unchanged in wild-type C57BL/6 mice on a VC-deficient diet (wild-type group), while it was significantly higher in the 0·2 %VC group compared with the other two groups. In the 0·02 %VC and wild-type groups, dexamethasone caused a significant decrease in the cluster of differentiation (CD)4+ and CD8+ T cells among splenocytes as well as a significant decrease in IL-2, IL-12p40 and interferon-γ protein production by splenocytes and a significant decrease in T-cell proliferation among splenocytes. In the 0·2 %VC group, these dexamethasone-induced immunosuppression improved when compared with the other two groups. In addition, reduction in the intracellular levels of ascorbic acid, superoxide dismutase and glutathione in splenocytes by dexamethasone as well as elevation in thiobarbituric acid-reactive substances were significantly suppressed in the 0·2 %VC group. These findings suggest that high dietary VC intake reduces glucocorticoid-induced T-cell dysfunction by maintaining intracellular antioxidant activity.
Collapse
|
21
|
Park FS, Kay VL, Sprick JD, Rosenberg AJ, Anderson GK, Mallet RT, Rickards CA. Hemorrhage simulated by lower body negative pressure provokes an oxidative stress response in healthy young adults. Exp Biol Med (Maywood) 2019; 244:272-278. [PMID: 30727766 DOI: 10.1177/1535370219828706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT We characterize the systemic oxidative stress response in young, healthy human subjects with exposure to simulated hemorrhage via application of lower body negative pressure (LBNP). Prior work has demonstrated that LBNP and actual blood loss evoke similar hemodynamic and immune responses (i.e. white blood cell count), but it is unknown whether LBNP elicits oxidative stress resembling that produced by blood loss. We show that LBNP induces a 29% increase in F2-isoprostanes, a systemic marker of oxidative stress. The findings of this investigation may have important implications for the study of hemorrhage using LBNP, including future assessments of targeted interventions that may reduce oxidative stress, such as novel fluid resuscitation approaches.
Collapse
Affiliation(s)
- Flora S Park
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Victoria L Kay
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Justin D Sprick
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA.,2 Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander J Rosenberg
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Garen K Anderson
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Robert T Mallet
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| | - Caroline A Rickards
- 1 Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA
| |
Collapse
|
22
|
Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support? Res Sports Med 2018; 27:147-165. [PMID: 30596287 DOI: 10.1080/15438627.2018.1563899] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.
Collapse
Affiliation(s)
- Ambra Antonioni
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Cristina Fantini
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Ivan Dimauro
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Daniela Caporossi
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| |
Collapse
|
23
|
Resveratrol prevents high-fat diet-induced obesity and oxidative stress in rabbits. PATHOPHYSIOLOGY 2018; 25:359-364. [DOI: 10.1016/j.pathophys.2018.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/25/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022] Open
|
24
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants in Personalized Nutrition and Exercise. Adv Nutr 2018; 9:813-823. [PMID: 30256898 PMCID: PMC6247356 DOI: 10.1093/advances/nmy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox profile.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece,Address correspondence to NVM (e-mail: )
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
25
|
Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3053704. [PMID: 30405875 PMCID: PMC6201335 DOI: 10.1155/2018/3053704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022]
Abstract
Eccentric exercise is a well-studied modality that induces oxidative stress and muscle damage. Furthermore, it promotes inflammatory response in which peripheral blood mononuclear cells (PBMCs) are the major mediators. Although free radicals are necessary in a specific range of concentrations, yet unknown, it remains unclear whether reductive redox status (i.e., increased antioxidant defenses and impaired free radical generation) is beneficial or not. Thus, the aim of the present investigation was to examine the effects of reductive stress and the impact of reduced glutathione (GSH) baseline values on the ability of PBMCs to counteract oxidative stress induced by a potent oxidative agent. PBMCs were isolated from the blood of subjects who performed eccentric exercise and treated with t-BOOH for 24 h. The subjects were clustered in the reductive and the oxidative group on the basis of increased or decreased GSH concentration postexercise compared to preexercise values, respectively. According to our results in PBMCs, lipid peroxidation levels as depicted by thiobarbituric acid reactive substances (TBARS) remained unchanged in the reductive group contrary to the observed enhancement in the oxidative group. In addition, GSH concentration and catalase activity increased in the reductive group, whereas they were not affected in the oxidative group. In conclusion, the effects of an oxidizing agent on the redox status of PBMCs isolated from the blood of athletes after acute eccentric exercise are dependent on the baseline values of GSH in erythrocytes. Otherwise, reductive stress defined by increased GSH levels is a protective mechanism, at least when followed by an oxidative stimulus.
Collapse
|
26
|
Chin KY, Ima-Nirwana S. The Role of Vitamin E in Preventing and Treating Osteoarthritis - A Review of the Current Evidence. Front Pharmacol 2018; 9:946. [PMID: 30186176 PMCID: PMC6113565 DOI: 10.3389/fphar.2018.00946] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
Osteoarthritis is a debilitating disease of the joint involving cartilage degeneration and chondrocytes apoptosis. Oxidative stress is one of the many proposed mechanisms underpinning joint degeneration in osteoarthritis. The current pharmacotherapies emphasize pain and symptomatic management of the patients but do not alter the biological processes underlying the cartilage degeneration. Vitamin E is a potential agent to prevent or treat osteoarthritis due to its antioxidant and anti-inflammatory effects. This review aims to summarize the current evidence on the relationship between vitamin E and osteoarthritis derived from preclinical and human studies. Cellular studies showed that vitamin E mitigated oxidative stress in cartilage explants or chondrocyte culture invoked by mechanical stress or free radicals. Animal studies suggested that vitamin E treatment prevented cartilage degeneration and improve oxidative status in animal models of osteoarthritis. Low circulating or synovial vitamin E was observed in human osteoarthritic patients compared to healthy controls. Observational studies also demonstrated that vitamin E was related to induction or progression of osteoarthritis in the general population. Vitamin E supplementation might improve the outcomes in patients with osteoarthritis, but negative results were also reported. Different isomers of vitamin E might possess distinct anti-osteoarthritic effects. As a conclusion, vitamin E may retard the progression of osteoarthritis by ameliorating oxidative stress and inflammation of the joint. Further studies are warranted to develop vitamin E as an anti-osteoarthritis agent to reduce the global burden of this disease.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Rad EY, Falahi E, Djalali M, Abbasnezhad A, Birjandi M, Saboori S. Effect of Vitamin E Supplementation on Plasma and Urine Levels of Isoprostane F2α in Randomized Controlled Clinical Trials: A Systematic Review and Meta-Analysis. INT J VITAM NUTR RES 2018; 87:314-321. [PMID: 30010514 DOI: 10.1024/0300-9831/a000488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin E can reduce the level of lipid peroxidation and the related markers such as urine and plasma levels of isoprostanes. However, effects of vitamin E supplementation on plasma and urine level of isoprostane F2α as markers of lipid peroxidation were conflicting in various clinical trials. The current meta-analysis was carried out to determine the effects of vitamin E supplementation on plasma and urine levels of isoprostanes F2α in randomized clinical trials. A systematic search of RCTs was carried out in PubMed, Scopus, Science Direct and Cochrane Library databases. OF 889 relevantly founded articles, only four articles with five arms met the criteria for meta-analysis of plasma level of isoprostanes F2α. For the urine level of isoprostane F2α, three studies with 14 arms were included in the meta-analysis. After pooled analyzing, a significant reduction of 6.98 ng / l was seen in plasma level of isoprostane F2α in vitamin E receiving group (95% CI = -11.2, -2.76; P < 0.001) while no significant heterogeneity was seen between the studies included in this meta-analysis (P = 0.81 and I2 = 0.0%). However, the pooled effect of vitamin E supplementation on urine level of isoprostane F2α was not statistically significant (-11.31 pg / mg creatinine (95% CI = -26.4, 3.78; P = 0.88). Results of this meta-analysis have shown that vitamin E supplementation can only reduce plasma level of isoprostane F2α and has no significant effect on reducing urine level of this biomarker.
Collapse
Affiliation(s)
- Esmaeil Yousefi Rad
- 1 Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ebrahim Falahi
- 1 Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Djalali
- 2 Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbasnezhad
- 1 Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- 1 Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Somayeh Saboori
- 1 Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
28
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
29
|
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018; 115:288-297. [PMID: 29233792 DOI: 10.1016/j.freeradbiomed.2017.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
Most of the evidence indicates that chronic antioxidant supplementation induces negative effects in healthy individuals. However, it is currently unknown whether specific redox deficiencies exist and whether targeted antioxidant interventions in deficient individuals can induce positive effects. We hypothesized that the effectiveness of antioxidant supplements to decrease oxidative stress and promote exercise performance depends on the redox status of the individuals that receive the antioxidant treatment. To this aim, we investigated whether N-acetylcysteine (NAC) supplementation would enhance exercise performance by increasing glutathione concentration and by reducing oxidative stress only in individuals with low resting levels of glutathione. We screened 100 individuals for glutathione levels and formed three groups with low, moderate and high levels (N = 36, 12 per group). After by-passing the regression to the mean artifact, by performing a second glutathione measurement, the individuals were supplemented with NAC (2 × 600mg, twice daily, for 30 days) or placebo using a double-blind cross-over design. We performed three whole-body performance tests (VO2max, time trial and Wingate), measured two systemic oxidative stress biomarkers (F2-isoprostanes and protein carbonyls) and assessed glutathione-dependent redox metabolism in erythrocytes (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and NADPH). The low glutathione group improved after NAC supplementation in VO2max, time trial and Wingate by 13.6%, 15.4% and 11.4%, respectively. Thirty days of NAC supplementation were sufficient to restore baseline glutathione concentration, reduce systemic oxidative stress and improve erythrocyte glutathione metabolism in the low glutathione group. On the contrary, the 30-day supplementation period did not affect performance and redox state of the moderate and high glutathione groups, although few both beneficial and detrimental effects in performance were observed. In conclusion, individuals with low glutathione levels were linked with decreased physical performance, increased oxidative stress and impaired redox metabolism of erythrocytes. NAC supplementation restored both performance and redox homeostasis.
Collapse
Affiliation(s)
- Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
30
|
Da Silva MS, Bilodeau JF, Julien P, Rudkowska I. Dietary fats and F 2-isoprostanes: A review of the clinical evidence. Crit Rev Food Sci Nutr 2018; 57:3929-3941. [PMID: 27438347 DOI: 10.1080/10408398.2016.1196646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evidence supports that a high dietary fat intake increases oxidative stress and the risk of diet-induced metabolic disorders such as obesity, diabetes and cardiovascular diseases. F2-isoprostanes (F2-isoP) are formed by the non-enzymatic oxidation of arachidonic acid and are widely used as reliable biomarkers of oxidative stress in clinical studies. Dietary fats may influence F2-isoP levels, as they (1) are metabolic substrates for their formation, (2) modify the lipid composition of tissues, and (3) affect the plasma lipoprotein concentrations which are involved in F2-isoP transport. This review examined the latest clinical evidence on how dietary fats can affect blood circulation and excretion of F2-isoP in individuals with healthy or deteriorated metabolic profiles. Clinical studies reported that saturated or monounsaturated fat-rich diets did not affect F2-isoP levels in adults with healthy or deteriorated metabolic profiles. Though, ω-3 polyunsaturated fatty acids decreased F2-isoP levels in numerous studies, whereas trans-fatty acids raised F2-isoP excretion. Yet, the reported heterogeneous results reveal important considerations, such as the health status of the participants, the biological fluids used to determine F2-isoP, the analytical methods employed and the specific F2-isoP isomers detected. Therefore, future clinical studies should be designed in order to consider these issues in the studies of the effects of fat intake on oxidative stress.
Collapse
Affiliation(s)
- Marine S Da Silva
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,c Department of Kinesiology, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Jean-François Bilodeau
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,b Department of Medicine, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Pierre Julien
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,b Department of Medicine, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Iwona Rudkowska
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,c Department of Kinesiology, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| |
Collapse
|
31
|
Arikawa AY, Samavat H, Gross M, Kurzer MS. Plasma F 2-isoprostanes Are Positively Associated with Glycemic Load, but Inversely Associated with Dietary Polyunsaturated Fatty Acids and Insoluble Fiber in Postmenopausal Women. J Nutr 2017; 147:1693-1699. [PMID: 28747487 PMCID: PMC5572499 DOI: 10.3945/jn.117.254631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Dietary factors, such as antioxidant nutrients, contribute significantly to the maintenance of an appropriate balance between antioxidant defense and free radical production in the body.Objective: The objective of this study was to examine the relation between oxidative stress as assessed by plasma F2-isoprostane (IsoP) concentration, glycemic load (GL), glycemic index (GI), intake of antioxidant nutrients, dietary fiber, and polyunsaturated fatty acids (PUFAs).Methods: This study was a cross-sectional secondary analysis of baseline data collected from a random sample of 269 postmenopausal women participating in the Minnesota Green Tea Trial. GL, GI, and dietary variables were calculated from the diet history questionnaire. Subjects filled out surveys about the use of anti-inflammatory drugs and physical activity. Plasma IsoP concentration was assessed by GC-mass spectrometry. IsoP concentrations were compared across quartiles of GL, GI, insoluble fiber, PUFAs, and antioxidant nutrients with the use of linear regression.Results: Antioxidant supplement intake, including zinc, copper, vitamin C and vitamin E, was reported by >60% of the participants. Mean intake of PUFAs was 12.5 g. Mean plasma IsoP concentrations increased from 34 to 36.7 pg/mL in the lowest quartiles of GL and GI, respectively, to 45.2 and 41.6 pg/mL, respectively, in the highest quartiles (P-trend = 0.0014 for GL and P-trend = 0.0379 for GI), whereas mean IsoP concentrations decreased from 41.8 pg/mL in the lowest quartile of PUFAs to 34.9 pg/mL in the highest quartile (P-trend = 0.0416). Similarly, mean IsoP concentrations decreased from 44.4 pg/mL in the lowest quartile of insoluble fiber to 36 pg/mL in the highest quartile (P-trend = 0.0243) after adjustment for potential confounders.Conclusions: We concluded that dietary PUFAs and insoluble fiber are inversely associated with oxidative stress whereas GL and GI are positively associated with oxidative stress in postmenopausal women. This trial was registered at clinicaltrials.gov as NCT00917735.
Collapse
Affiliation(s)
- Andrea Y Arikawa
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL;
| | - Hamed Samavat
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN; and
| | - Myron Gross
- Molecular Epidemiology and Biomarker Research Laboratory, University of Minnesota, Minneapolis, MN
| | - Mindy S Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN; and
| |
Collapse
|
32
|
Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Experimental verification of regression to the mean in redox biology: differential responses to exercise. Free Radic Res 2016; 50:1237-1244. [PMID: 27596985 DOI: 10.1080/10715762.2016.1233330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An important methodological threat when selecting individuals based on initial values for a given trait is the "regression to the mean" artifact. This artifact appears when a group with an extreme mean value during a first measurement tends to obtain a less extreme value (i.e. tends toward the mean) on a subsequent measurement. The main aim was to experimentally confirm the presence of this artifact in the responses of the reference oxidative stress biomarker (F2-isoprostanes) after exercise. Urine samples were collected before and immediately following acute exercise in order to determine the level of exercise-induced oxidative stress. Afterwards, participants were arranged into three groups based on their levels of exercise-induced oxidative stress (low, moderate and high oxidative stress groups; n = 12 per group). In order to verify the existence of the regression to the mean artifact, the three groups were subjected to a second exercise trial one week after the first trial. This study confirmed the regression to the mean artifact in a redox biology context and showed that this artifact can be minimized by performing a duplicate pretreatment measurement after completing a nonrandom sorting based on the first assessment. This study also indicated that different individuals experience high oxidative stress or reductive stress (or no stress) to the same exercise stimulus even after adjusting for regression to the mean. This finding substantiates the methodological choice to divide individuals based on their degree of exercise-induced oxidative stress in future experiments to investigate the role of reactive species in exercise adaptations.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece.,b Intensive Care Unit , 424 General Military Hospital of Thessaloniki , Thessaloniki , Greece
| | - Anastasios A Theodorou
- c Department of Health Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Vassilis Paschalis
- c Department of Health Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus.,d Department of Physical Education and Sport Science , University of Thessaly , Karies , Trikala , Greece
| | - Aristidis S Veskoukis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Konstantina Dipla
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Andreas Zafeiridis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - George Panayiotou
- c Department of Health Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Ioannis S Vrabas
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Antonios Kyparos
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Michalis G Nikolaidis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| |
Collapse
|
33
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
34
|
The Janus-Faced Role of Antioxidants in Cancer Cachexia: New Insights on the Established Concepts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9579868. [PMID: 27642498 PMCID: PMC5013212 DOI: 10.1155/2016/9579868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/28/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Chronic inflammation and excessive loss of skeletal muscle usually occur during cancer cachexia, leading to functional impairment and delaying the cure of cancer. The release of cytokines by tumor promotes the formation of reactive oxygen species (ROS), which in turn regulate catabolic pathways involved in muscle atrophy. ROS also exert a dual role within tumor itself, as they can either promote proliferation and vascularization or induce senescence and apoptosis. Accordingly, previous studies that used antioxidants to modulate these ROS-dependent mechanisms, in cancer and cancer cachexia, have obtained contradictory results, hence the need to gather the main findings of these studies and draw global conclusions in order to stimulate more oriented research in this field. Based on the literature reviewed in this paper, it appears that antioxidant supplementation is (1) beneficial in cancer cachectic patients with antioxidant deficiencies, (2) most likely harmful in cancer patients with adequate antioxidant status (i.e., lung, gastrointestinal, head and neck, and esophageal), and (3) not recommended when undergoing radiotherapy. At the moment, measuring the blood levels of antioxidants may help to identify patients with systemic deficiencies. This approach is simple to realize but could not be a gold standard method for cachexia, as it does not necessarily reflect the redox state in other organs, like muscle.
Collapse
|
35
|
TANG YM, WANG DG, LI J, LI XH, WANG Q, LIU N, LIU WT, LI YX. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers. INDUSTRIAL HEALTH 2016; 54:215-223. [PMID: 27087421 PMCID: PMC4939859 DOI: 10.2486/indhealth.2014-0225] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/09/2015] [Indexed: 05/30/2023]
Abstract
We aimed to examine the effect of micronutrient losses through sweat on blood pressure (BP) among heat-exposed steelworkers. A total of 224 heat-exposed male steelworkers from an ironworks facility were evaluated in July 2012. We measured the Wet Bulb Globe Temperature Index to evaluate the level of heat stress in the workplace. We collected sweat from the workers during an eight-hour work, and then we measured the micronutrients in the sweat. We also measured the BP of each worker. The results revealed that vitamin C, potassium, and calcium losses in sweat were positively correlated with systolic (SBP) and diastolic (DBP) blood pressure (all P<0.05). A linear stepwise regression analysis revealed that potassium, and calcium losses in sweat adversely affected SBP and DBP (all P<0.05). An analysis of covariance showed that SBP increased when potassium or calcium losses in sweat were >900 mg, or >100 mg, respectively. Further, DBP increased when potassium or calcium losses in sweat were >600 mg or >130 mg, respectively. Therefore, vitamin C, potassium, and calcium losses in sweat may adversely effect BP. To help steelworkers maintain healthy BP, facilities with high temperatures should try to lower environmental temperatures to reduce vitamin C, potassium, and calcium losses in sweat. Additionally, heat-exposed steelworkers may need to increase their dietary intakes of vitamin C, potassium, and calcium. Further research is needed to confirm these findings and support these recommendations.
Collapse
Affiliation(s)
- Yong-Mei TANG
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Coal Mine Health and Safety Laboratory, Tangshan, China
| | - Dao-Gang WANG
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Jun LI
- Tangshan Iron and Steel Group Corporation Hospital, Tangshan, China
| | - Xing-Hua LI
- Tangshan Iron and Steel Group Corporation Hospital, Tangshan, China
| | - Qian WANG
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Coal Mine Health and Safety Laboratory, Tangshan, China
| | - Nan LIU
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Coal Mine Health and Safety Laboratory, Tangshan, China
| | - Wei-Tian LIU
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ying-Xue LI
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
36
|
Guertin KA, Grant RK, Arnold KB, Burwell L, Hartline J, Goodman PJ, Minasian LM, Lippman SM, Klein E, Cassano PA. Effect of long-term vitamin E and selenium supplementation on urine F2-isoprostanes, a biomarker of oxidative stress. Free Radic Biol Med 2016; 95:349-56. [PMID: 27012420 PMCID: PMC4867301 DOI: 10.1016/j.freeradbiomed.2016.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cigarette smoking generates reactive oxidant species and contributes to systemic oxidative stress, which plays a role in the pathophysiology of chronic diseases. Nutrients with antioxidant properties, including vitamin E and selenium, are proposed to reduce systemic oxidative burden and thus to mitigate the negative health effects of reactive oxidant species. OBJECTIVE Our objective was to determine whether long-term supplementation with vitamin E and/or selenium reduces oxidative stress in smokers, as measured by urine 8-iso-prostaglandin F2-alpha (8-iso-PGF2α). DESIGN We measured urine 8-iso-PGF2α with competitive enzyme linked immunoassay (ELISA) in 312 male current smokers after 36 months of intervention in a randomized placebo-controlled trial of vitamin E (400IU/d all rac-α-tocopheryl acetate) and/or selenium (200µg/d L-selenomethionine). We used linear regression to estimate the effect of intervention on urine 8-iso-PGF2α, with adjustments for age and race. RESULTS Compared to placebo, vitamin E alone lowered urine 8-iso-PGF2α by 21% (p=0.02); there was no effect of combined vitamin E and selenium (intervention arm lower by 9%; p=0.37) or selenium alone (intervention arm higher by 8%; p=0.52). CONCLUSIONS Long-term vitamin E supplementation decreases urine 8-iso-PGF2α among male cigarette smokers, but we observed little to no evidence for an effect of selenium supplementation, alone or combined with vitamin E.
Collapse
Affiliation(s)
- Kristin A Guertin
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA
| | - Rachael K Grant
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA
| | | | - Lindsay Burwell
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA
| | | | | | - Lori M Minasian
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Scott M Lippman
- University of California San Diego Cancer Center, San Diego, CA, USA
| | | | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA; Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
37
|
Guo W, Huen K, Park JS, Petreas M, Crispo Smith S, Block G, Holland N. Vitamin C intervention may lower the levels of persistent organic pollutants in blood of healthy women - A pilot study. Food Chem Toxicol 2016; 92:197-204. [PMID: 27090108 DOI: 10.1016/j.fct.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 01/30/2023]
Abstract
Emerging evidence suggests that exposure to endocrine-disrupting chemicals including persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) has a long term impact on human health. The goal of this pilot study was to test whether antioxidant intervention by vitamin C supplementation may be a remedial approach to decrease body burden of POPs in humans. Using solid phase extraction coupled with a triple quadrupole mass spectrometer and a gas chromatography high resolution mass spectrometry, we measured 18 PCBs, 7 OCPs, and 5 PBDEs in the blood of 15 healthy California women (8 were obese/overweight and 7 had normal weight) before and after 2 months of vitamin C supplementation (1000 mg/day). We observed higher PBDE levels than PCBs and OCPs, but only PCB and OCP levels were strongly and positively correlated with participant's BMI and age. We also found statistically significant decreases in 6 PCBs (PCB-74, PCB-118, PCB-138, PCB-153, PCB-180, and PCB-187), and 2 OCPs (4,4'-DDE, and 4,4'-DDT), but not PBDEs after vitamin C supplementation. Pending confirmation of this pilot finding in a larger study of both sexes, vitamin C intervention may have important public health implications in protecting health by reducing body burdens of POPs.
Collapse
Affiliation(s)
- Weihong Guo
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Ave, S. 100, Berkeley, CA 94710, USA.
| | - Karen Huen
- School of Public Health, 50 University Hall, University of California, Berkeley, CA 94720, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Ave, S. 100, Berkeley, CA 94710, USA
| | - Myrto Petreas
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Ave, S. 100, Berkeley, CA 94710, USA
| | - Sabrina Crispo Smith
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Ave, S. 100, Berkeley, CA 94710, USA; Sequoia Foundation, 2166 Avenida De La Playa, La Jolla, CA 92037, USA
| | - Gladys Block
- School of Public Health, 50 University Hall, University of California, Berkeley, CA 94720, USA
| | - Nina Holland
- School of Public Health, 50 University Hall, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Santilli F, D'Ardes D, Davì G. Oxidative stress in chronic vascular disease: From prediction to prevention. Vascul Pharmacol 2015; 74:23-37. [DOI: 10.1016/j.vph.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
|
39
|
Ramezanipour M, Jalali M, Sadrzade-Yeganeh H, Keshavarz SA, Eshraghian MR, Bagheri M, Emami SS. The effect of weight reduction on antioxidant enzymes and their association with dietary intake of vitamins A, C and E. ACTA ACUST UNITED AC 2015; 58:744-9. [PMID: 25372584 DOI: 10.1590/0004-2730000003206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/06/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Our goal was to assess the effects of weight loss on antioxidant enzymes of red blood cells and it's relation with vitamins A, E and C intake in 30 obese women. SUBJECTS AND METHODS General information, anthropometric measurements, 3-day food recall, and fasting blood samples were collected from 30 obese women at the beginning of the study and after 3 months intervention. Weight loss was set at about 10% of their weight before the intervention. RESULTS Glutathione reductase and catalase activities showed a significant increase (P < 0.01) after weight reduction, but no significant changes were seen in the superoxide dismutase and glutathione peroxidase activities. There was a positive linear correlation between daily vitamin C intake with superoxide dismutase enzyme after intervention (P = 0.004, r = 0.507). There was a negative linear correlation between vitamin E intake and glutathione peroxidase activity before intervention (P = 0.005, r = -0.5). A negative correlation was found between daily vitamin A intake and glutathione reductase enzyme before and after intervention (r = -0.385, r = -0.397, P < 0.05) respectively. No significant correlation was observed between vitamins A, C, E amounts and catalase activity. CONCLUSIONS Ten percent weight reduction can have a significant role in increasing antioxidant enzymes activities, especially glutathione reductase, and catalase enzymes in obese women. However, it is important to take into consideration a balanced amount of certain nutrients while administering a diet with limited energy.
Collapse
Affiliation(s)
- Masoud Ramezanipour
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetic, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetic, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Sadrzade-Yeganeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetic, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetic, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
40
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr 2014; 55:45-53. [DOI: 10.1007/s00394-014-0821-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/10/2014] [Indexed: 11/25/2022]
|
42
|
Margaritelis NV, Kyparos A, Paschalis V, Theodorou AA, Panayiotou G, Zafeiridis A, Dipla K, Nikolaidis MG, Vrabas IS. Reductive stress after exercise: The issue of redox individuality. Redox Biol 2014; 2:520-8. [PMID: 24634834 PMCID: PMC3953955 DOI: 10.1016/j.redox.2014.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/17/2022] Open
Abstract
Exercise has been consistently used as an oxidant stimulus in redox biology studies. However, previous studies have focused on group differences and did not examine individual differences. As a result, it remains untested whether all individuals experience oxidative stress after acute exercise. Therefore, the main aim of the present study was to investigate whether some individuals exhibit unexpected responses after an acute eccentric (i.e., muscle-damaging) exercise session. Ninety eight (N = 98) young men performed an isokinetic eccentric exercise bout with the knee extensors. Plasma, erythrocytes and urine samples were collected immediately before and 2 days post-exercise. Three commonly used redox biomarkers (F2-isoprostanes, protein carbonyls and glutathione) were assayed. As expected, the two oxidant biomarkers (F2-isoprostanes and protein carbonyls) significantly increased 2 days after exercise (46% and 61%, respectively); whereas a significant decrease in glutathione levels (by −21%) was observed after exercise. A considerable number of the participants exhibited changes in the levels of biomarkers in the opposite, unexpected direction than the group average. More specifically, 13% of the participants exhibited a decrease in F2-isoprostanes and protein carbonyls and 10% of the participants exhibited an increase in glutathione levels. Furthermore, more than 1 out of 3 individuals exhibited either unexpected or negligible (from 0% to ± 5%) responses to exercise in at least one redox biomarker. It was also observed that the initial values of redox biomarkers are important predictors of the responses to exercise. In conclusion, although exercise induces oxidative stress in the majority of individuals, it can induce reductive stress or negligible stress in a considerable number of people. The data presented herein emphasize that the mean response to a redox stimulus can be very misleading. We believe that the wide variability (including the cases of reductive stress) described is not limited to the oxidant stimulus used and the biomarkers selected. Exercise may induce reductive stress instead of the expected oxidative stress. The initial values of biomarkers are major predictors of the responses to exercise. The mean response of a group to a redox stimulus can be misleading.
Collapse
Affiliation(s)
- N V Margaritelis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - A Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - V Paschalis
- Department of Physical Education and Sports Science, University of Thessaly, Karies, Trikala 42100, Greece ; Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - A A Theodorou
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece ; Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - G Panayiotou
- Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - A Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - K Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - M G Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - I S Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| |
Collapse
|
43
|
Petrosino T, Serafini M. Antioxidant Modulation of F2-Isoprostanes in Humans: A Systematic Review. Crit Rev Food Sci Nutr 2014; 54:1202-21. [DOI: 10.1080/10408398.2011.630153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Murer SB, Aeberli I, Braegger CP, Gittermann M, Hersberger M, Leonard SW, Taylor AW, Traber MG, Zimmermann MB. Antioxidant supplements reduced oxidative stress and stabilized liver function tests but did not reduce inflammation in a randomized controlled trial in obese children and adolescents. J Nutr 2014; 144:193-201. [PMID: 24353344 DOI: 10.3945/jn.113.185561] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and low-grade systemic inflammation may contribute to the pathogenesis of obesity-induced comorbidities, including nonalcoholic fatty liver disease. Increasing intake of dietary antioxidants might be beneficial, but there are few data in obese children. To examine the effect of antioxidant supplementation on biomarkers of oxidative stress, inflammation, and liver function, we randomly assigned overweight or obese children and adolescents (n = 44; mean ± SD age: 12.7 ± 1.5 y) participating in a lifestyle modification program to a 4-mo intervention with daily antioxidants (vitamin E, 400 IU; vitamin C, 500 mg; selenium, 50 μg) or placebo. We measured anthropometrics, antioxidant status, oxidative stress (F(2)-isoprostanes, F(2)-isoprostane metabolites), inflammation, liver enzymes, fasting insulin and glucose, and lipid profile at baseline and endpoint. There was a significant treatment effect of antioxidant supplementation on antioxidant status [α-tocopherol, β = 23.2 (95% CI: 18.0, 28.4); ascorbic acid, β = 70.6 (95% CI: 51.7, 89.4); selenium, β = 0.07 (95% CI: 0.01, 0.12)] and oxidative stress [8-iso-prostaglandin F2α, β = -0.11 (95% CI: -0.19, -0.02)] but not on any of the inflammatory markers measured. There was a significant treatment effect on alanine aminotransferase [β = -0.13 (95% CI: -0.23, -0.03)], a trend toward a significant effect on aspartate aminotransferase [β = -0.04 (95% CI: -0.09, 0.01)], and no significant effect on γ-glutamyltransferase [β = -0.03 (95% CI: -0.11, 0.06)]. In summary, antioxidant supplementation for 4 mo improved antioxidant-oxidant balance and modestly improved liver function tests; however, it did not reduce markers of systemic inflammation despite significant baseline correlations between oxidative stress and inflammation. The study was registered at clinicaltrials.gov as NCT01316081.
Collapse
Affiliation(s)
- Stefanie B Murer
- Human Nutrition Laboratory, Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
GARCIA-DIAZ DF, LOPEZ-LEGARREA P, QUINTERO P, MARTINEZ JA. Vitamin C in the Treatment and/or Prevention of Obesity. J Nutr Sci Vitaminol (Tokyo) 2014; 60:367-79. [DOI: 10.3177/jnsv.60.367] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Pablo QUINTERO
- Department of Gastroenterology, School of Medicine, Pontifical Catholic University of Chile
| | - Jose Alfredo MARTINEZ
- CIBERobn. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III
- Department of Food Sciences and Physiology, University of Navarra
| |
Collapse
|
46
|
Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid Redox Signal 2013; 19:2084-104. [PMID: 23642093 DOI: 10.1089/ars.2013.5382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Despite continuous advances in the prevention of cardiovascular disease (CVD), critical issues associated with an unhealthy lifestyle remain an increasing cause of morbidity and mortality in industrialized countries. RECENT ADVANCES A growing body of literature supports a specific role for vitamin C in a number of reactions that are associated with vascular function and control including, for example, nitric oxide bioavailability, lipid metabolism, and vascular integrity. CRITICAL ISSUES A large body of epidemiological evidence supports a relationship between poor vitamin C status and increased risk of developing CVD, and the prevalence of deficiency continues to be around 10%-20% of the general Western population although this problem could easily and cheaply be solved by supplementation. However, large intervention studies using vitamin C have not found a beneficial effect of supplementation. This review outlines the proposed mechanism by which vitamin C deficiency worsens CVD progression. In addition, it discusses problems with the currently available literature, including the discrepancies between the large intervention studies and the experimental and epidemiological literature. FUTURE DIRECTIONS Increased insights into vitamin C deficiency-mediated CVD progression will enable the design of future randomized controlled trials that are better suited to test the efficacy of vitamin C in disease prevention as well as the identification of high-risk individuals which could possibly benefit from supplementation.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg, Denmark
| | | |
Collapse
|
47
|
|
48
|
Bekhit AEDA, Hopkins DL, Fahri FT, Ponnampalam EN. Oxidative Processes in Muscle Systems and Fresh Meat: Sources, Markers, and Remedies. Compr Rev Food Sci Food Saf 2013; 12:565-597. [DOI: 10.1111/1541-4337.12027] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023]
Affiliation(s)
| | - David L. Hopkins
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; PO Box 129; Cowra; NSW; Australia
| | - Fahri T. Fahri
- Australian Meat Processor Corp. Ltd., 460 Pacific Highway; St Leonards; NSW 2065; Australia
| | - Eric N. Ponnampalam
- Future Farming Systems Research Div.; Dept. of Primary Industries; Werribee; Victoria 3030; Australia
| |
Collapse
|
49
|
Abstract
The term 'antioxidant paradox' is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's 'total antioxidant capacity' seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
50
|
de la Villehuchet AM, Brack M, Dreyfus G, Oussar Y, Bonnefont-Rousselot D, Chapman M, Kontush A. A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease. Redox Rep 2013; 14:23-33. [DOI: 10.1179/135100009x392449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|