1
|
Tanikawa R, Sakaguchi H, Ishikawa T, Hihara Y. Accumulation of acyl plastoquinol and triacylglycerol in six cyanobacterial species with different sets of genes encoding type-2 diacylglycerol acyltransferase-like proteins. PLANT & CELL PHYSIOLOGY 2025; 66:15-22. [PMID: 39581854 DOI: 10.1093/pcp/pcae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Recently, acyl plastoquinol (APQ) and plastoquinone-B (PQ-B), which are fatty acid esters of plastoquinol and plastoquinone-C respectively, have been identified as the major neutral lipids in cyanobacteria. In Synechocystis sp. PCC 6803, Slr2103 having homology with the eukaryotic enzyme for triacylglycerol (TAG) synthesis, diacylglycerol acyltransferase 2 (DGAT2), was identified as responsible for the synthesis of these plastoquinone-related lipids. On the other hand, TAG synthesis in cyanobacteria remains controversial due to the low accumulation level within cyanobacterial cells together with the high contamination level from the environment. In this study, to quantify more precisely and elucidate the relationship between the accumulation of neutral lipids and the presence or absence of DGAT2-like genes, plastoquinone-related lipids and TAG were analyzed directly from total lipids of six cyanobacterial species with different sets of genes encoding DGAT2-like proteins belonging to two distinct subclades. The results showed that the synthesis of these neutral lipids is highly dependent on clade A DGAT2-like proteins under the culture conditions used in this study, although accumulation level of TAG was quite low. In contrast to APQ highly abundant in saturated fatty acids, the fatty acid composition of TAG was species-specific and partly reflected the total lipid composition. Gloeobacter violaceus PCC 7421, which lacks a DGAT2-like gene, accumulated APQ with a high proportion of C18:0, suggesting APQ synthesis by an unidentified acyltransferase.
Collapse
Affiliation(s)
- Riko Tanikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Haruna Sakaguchi
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Lapoot L, Jabeen S, Durantini AM, Greer A. Role of curvature in acridone for 1 O 2 oxidation of a natural product homoallylic alcohol: A novel iso-hydroperoxide intermediate. Photochem Photobiol 2024; 100:455-464. [PMID: 37602967 DOI: 10.1111/php.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
A density functional theoretical (DFT) study is presented, implicating a 1 O2 oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and an iso-hydroperoxide intermediate [R(H)O+ -O- ] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a 1 O2 'ene' reaction. Instead, the dihydrobenzofuran arises by 1 O2 oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidal N-methyl group. This curvature facilitates the formation of the iso-hydroperoxide, which is analogous to the iso species CH2 I+ -I- and CHI2 + -I- formed by UV photolysis of CH2 I2 and CHI3 . The iso-hydroperoxide is also structurally reminiscent of carbonyl oxides (R2 C=O+ -O- ) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which the iso-hydroperoxide's fate relates to O-transfer and H2 O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés M Durantini
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Hammerschick T, Graf J, Vetter W. LC-Orbitrap-HRMS Determination of Two Novel Plastochromanol Homologues. Mol Nutr Food Res 2023; 67:e2300333. [PMID: 37888832 DOI: 10.1002/mnfr.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Indexed: 10/28/2023]
Abstract
SCOPE The antioxidant plastochromanol-8 (PC-8) is a tocochromanol which differs from γ-tocotrienol in having an unsaturated side chain of eight instead of three isoprene units. The recent isolation of PC-8 from flaxseed oil indicates the additional presence of lower shares of two previously unknown homologues, plastochromanol-7 (PC-7) and plastochromanol-9 (PC-9), which feature seven and nine isoprenoid units respectively on the γ-chromanol backbone. Here, a fast LC-Orbitrap-HRMS method is applied for the determination of PC-7 and PC-9 in seven plant oils and a plant extract. METHODS AND RESULTS The presence of PC-7, PC-8, and PC-9 is confirmed in all eight investigated samples by LC-Orbitrap-HRMS analysis after saponification. PC-8 amounts of ≈315-350 mg kg-1 in two flaxseed oils, ≈75 mg kg-1 in rapeseed oil, ≈38 mg kg-1 in camelina oil, ≈80-120 mg kg-1 in two mustard oils, ≈90 mg kg-1 in candle nut oil, and ≈900 mg kg-1 dry weight in Cecropia leaves are determined by quantification. Semi-quantification of PC-7 and PC-9 indicated the presence of ≈0.1-1% of PC-7 and PC-9 in varied relative ratios. CONCLUSION The novel plastochromanol homologues are of particular interest to researchers with focus on vitamin E and other tocochromanols because of their unexplored bioactivity.
Collapse
Affiliation(s)
- Tim Hammerschick
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, D-70593, Stuttgart, Germany
| | - Jana Graf
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, D-70593, Stuttgart, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, D-70593, Stuttgart, Germany
| |
Collapse
|
4
|
López-Pozo M, Fernández-Marín B, García-Plazaola J, Seal CE, Ballesteros D. Ageing kinetics of fern chlorophyllous spores during dry storage is determined by its antioxidant potential and likely induced by photosynthetic machinery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111870. [PMID: 37722506 DOI: 10.1016/j.plantsci.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Ageing in dry chlorophyllous propagules is leaded by photooxidation through the photosynthetic machinery, but why species differ in longevity and the ageing mechanisms of when light and oxygen are absent are unknown. We hypothesize that the cellular antioxidant capacity is key for the inter- and intra-specific differences in the ageing process. We have tested this hypothesis in chlorophyllous spores of two ferns. They were subjected to four different storage regimes resulting from light/dark and normoxia/hypoxia combinations. Lipophilic and hydrophilic antioxidants, reactive oxygen species (ROS), and photosynthetic pigments were analysed in parallel to germination and the recovery of Fv/Fm over a storage period of up to 22-months. We show that light and oxygen accelerate the ageing process, but their mechanisms (ROS, increase, antioxidant capacity decrease, loss of efficiency of the photosystem II, pigment degradation) appear the same under all conditions tested. The end of the asymptomatic phase of longevity, when a sudden drop of germination occurs, seems to be determined by a threshold in the depletion of antioxidants. Our results support the hypothesis that ageing kinetics in dry plant propagules is determined by the antioxidant system, but also suggests an active role of the photosynthetic machinery during ageing, even in darkness and hypoxia.
Collapse
Affiliation(s)
- M López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain.
| | - B Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - J García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Vizcaya, Spain
| | - C E Seal
- Royal Botanic Gardens Kew, Wakehurst, Ardingly, West Sussex, UK
| | - D Ballesteros
- Royal Botanic Gardens Kew, Wakehurst, Ardingly, West Sussex, UK; Department of Botany and Geology, Universitat de Valencia, Burjassot, Spain
| |
Collapse
|
5
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
6
|
Connock GT, Liu XL. Tocopherols and associated derivatives track the phytoplanktonic response to evolving pelagic redox conditions spanning Oceanic Anoxic Event 2. GEOBIOLOGY 2023; 21:743-757. [PMID: 37563988 DOI: 10.1111/gbi.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Tocopherols serve a critical role as antioxidants inhibiting lipid peroxidation in photosynthetic organisms, yet are seldom used in geobiological investigations. The ubiquity of tocopherols in all photosynthetic lifeforms is often cited as an impediment to any diagnostic paleoenvironmental potential, while the inability to readily analyze these compounds via conventional methods, such as gas chromatography-mass spectrometry, further diminishes the capacity to serve as useful 'biomarkers'. Here, we analyzed an exceptionally preserved black shale sequence from the Demerara Rise that spans Oceanic Anoxic Event 2 (OAE-2) to reexamine the significance of tocopherols and associated derivatives (i.e. tocol derivatives) in ancient sediments. Tocol derivatives were analyzed via liquid chromatography-quadrupole time-of-flight-mass spectrometry and included tocopherols, a methyltrimethyltridecylchroman, and the first reported detection of tocopherol quinones and methylphytylbenzoquinones in the geologic record. Strong correlations between tocol derivatives were observed over the studied interval. Tocol derivative concentrations and ratios, which normalized tocopherols to potential derivatives, revealed absolute and relative increases in tocopherols as exclusive features of OAE-2 that can be explained by two possible mechanisms related to tocopherol production and preservation. The development of photic zone euxinia during OAE-2 likely forced an upward migration of oxygenic photoautotrophs, increasing oxidative stress that elicited heightened tocopherol biosynthesis. However, shoaling euxinic conditions may have simultaneously acted to enhance tocopherol preservation given the relatively high lability of tocopherols in the water column. Both scenarios could produce the observed stratigraphic distribution of tocol derivatives in this study, although the elevated tocopherol concentrations that define OAE-2 at the Demerara Rise are primarily attributed to enhanced tocopherol production by shoaling phytoplanktonic communities. Thus, the occurrence of tocopherols and associated derivatives in sediments and rocks of marine origin is likely indicative of shallow-water anoxia, tracking the phytoplanktonic response to the abiotic stresses associated with vertical fluctuations in pelagic redox.
Collapse
Affiliation(s)
- Gregory T Connock
- School of Geosciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Xiao-Lei Liu
- School of Geosciences, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
7
|
Faizan M, Alam P, Rajput VD, Shareen, Kaur K, Faraz A, Minkina T, Maqbool Ahmed S, Rajpal VR, Hayat S. Potential role of tocopherol in protecting crop plants against abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1563-1575. [PMID: 38076764 PMCID: PMC10709276 DOI: 10.1007/s12298-023-01354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
The changing global climate have given rise to abiotic stresses that adversely affect the metabolic activities of plants, limit their growth, and agricultural output posing a serious threat to food production. The abiotic stresses commonly lead to production of reactive oxygen species (ROS) that results in cellular oxidation. Over the course of evolution, plants have devised efficient enzymatic and non-enzymatic anti-oxidative strategies to counteract harmful effects of ROS. Among the emerging non-enzymatic anti-oxidative technologies, the chloroplast lipophilic antioxidant vitamin A (Tocopherol) shows great promise. Working in coordination with the other cellular antioxidant machinery, it scavenges ROS, prevents lipid peroxidation, regulates stable cellular redox conditions, simulates signal cascades, improves membrane stability, confers photoprotection and enhances resistance against abiotic stresses. The amount of tocopherol production varies based on the severity of stress and its proposed mechanism of action involves arresting lipid peroxidation while quenching singlet oxygen species and lipid peroxyl radicals. Additionally, studies have demonstrated its coordination with other cellular antioxidants and phytohormones. Despite its significance, the precise mechanism of tocopherol action and signaling coordination are not yet fully understood. To bridge this knowledge gap, the present review aims to explore and understand the biosynthesis and antioxidant functions of Vitamin E, along with its signal transduction and stress regulation capacities and responses. Furthermore, the review delves into the light harvesting and photoprotection capabilities of tocopherol. By providing insights into these domains, this review offers new opportunities and avenues for using tocopherol in the management of abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032 India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia 344090
| | - Shareen
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037 China
| | - Khushdeep Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Ahmad Faraz
- School of Life Sciences, Glocal University, Saharanpur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia 344090
| | - S. Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032 India
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, Delhi University, Delhi, 110007 India
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
8
|
Kruk J, Szymańska R. Synthesis of natural polyprenols for the production of biological prenylquinones and tocochromanols. RSC Adv 2023; 13:23122-23129. [PMID: 37529360 PMCID: PMC10388336 DOI: 10.1039/d3ra02872k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
We elaborate the chemical synthesis of polyprenols by chain lengthening, which is considerably less time-consuming than the other previously described methods. Our method eliminates critical steps requiring low temperature and toxic chemicals, which are difficult to perform in ordinary laboratories. The critical step of acetylene addition in liquid ammonia was replaced by a new approach, namely, the use of sodium acetylide in dimethoxyethane at room temperature, where the reaction is completed within one hour. This method is of general significance as it can also be applied to the synthesis of any other acetylides. Our method provides reasonable yields and can be scaled depending on the requirements. All the reactions were followed by high-performance liquid chromatography, allowing the formation of undesired isomers and other side-products to be controlled. The resulting polyprenols were further used in the synthesis of plastoquinones, although a variety of biological prenylquinones can be synthesized this way. Moreover, we found a new method for the direct formation of tocochromanols (plastochromanols, tocochromanols) from polyprenols and aromatic head groups.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland +48 126646361
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Reymonta 19 30-059 Kraków Poland
| |
Collapse
|
9
|
Hammerschick T, Wagner T, Deser C, Vetter W. Isolation of plastochromanol-8 from flaxseed oil by countercurrent separation methods. Food Chem 2023; 409:135345. [PMID: 36592601 DOI: 10.1016/j.foodchem.2022.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The naturally occurring antioxidant plastochromanol-8 (PC-8) is a member of the tocochromanol (vitamin E) family which features eight unsaturated isoprene units in the side chain compared to three in the case of γ-tocotrienol. Due to the lack of a commercially available PC-8 standard, we developed a route to gain relevant amounts of highly pure PC-8. Specifically, ∼320 g flaxseed oil was saponified and the bulky PC-8 was enriched by gel permeation chromatography. It followed countercurrent chromatography using the solvent system n-hexane/benzotrifluoride/acetonitrile (20:7:13, v/v/v). The final purification was achieved by centrifugal partition chromatography using the novel solvent system hexamethyldisiloxane/acetonitrile (1:1, v/v). This step provided ∼26 mg PC-8 (>99.5 %, according to HPLC, GC and NMR analysis). Two further, hitherto unknown minor tocochromanols (<1 % of PC-8) were detected and could be identified to be plastochromanol-7 (PC-7) and plastochromanol-9 (PC-9), i.e. tocochromanols with seven and nine unsaturated isoprene units, respectively, in the side chain.
Collapse
Affiliation(s)
- Tim Hammerschick
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70593 Stuttgart, Germany
| | - Tim Wagner
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70593 Stuttgart, Germany
| | - Christina Deser
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70593 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Department of Food Chemistry (170b), D-70593 Stuttgart, Germany.
| |
Collapse
|
10
|
Zheng L, Zhu M, Zhang F, Jin J, Jin Q, Guo H. Activity and Characterization of Tocopherol Oxidase in Corn Germs and Its Relationship with Oil Color Reversion. Molecules 2023; 28:molecules28062659. [PMID: 36985631 PMCID: PMC10056654 DOI: 10.3390/molecules28062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Color reversion has long been a major problem for the vegetable oil industry, and the enzymatic oxidation of γ-tocopherol is thought to trigger this phenomenon. In this study, first, the extraction, purification, and detailed characterization of tocopherol oxidase from fresh corn germs were performed. Then, the relationship between the enzyme reaction of γ-tocopherol and oil color reversion was verified. The results showed that the membrane-free extracts of raw corn germ performed specific catalysis of tocopherol in the presence of lecithin. In terms of the oxidation product, tocored (the precursor of color reversion) was detected in the mixture after the catalytic reactions, indicating that this anticipated enzyme reaction was probably correlated with the color reversion. Furthermore, the optimal pH and temperature for the tocopherol oxidase enzyme were 4.6 and 20 °C, respectively. In addition, ascorbic acid at 1.0 mM completely inhibited the enzymatic reaction.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (L.Z.)
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (L.Z.)
| | - Fei Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (L.Z.)
- Correspondence:
| |
Collapse
|
11
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
12
|
Havaux M. Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants. Methods Mol Biol 2023; 2642:111-128. [PMID: 36944875 DOI: 10.1007/978-1-0716-3044-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, Bioscience and Biotechnology Institute of Aix-Marseille, CEA/Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
13
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
14
|
Havaux M, Ksas B. Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots. Antioxidants (Basel) 2022; 11:antiox11071333. [PMID: 35883824 PMCID: PMC9312247 DOI: 10.3390/antiox11071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.
Collapse
|
15
|
Trela-Makowej A, Leśkiewicz M, Kruk J, Żądło A, Basta-Kaim A, Szymańska R. Antioxidant and Neuroprotective Activity of Vitamin E Homologues: In Vitro Study. Metabolites 2022; 12:metabo12070608. [PMID: 35888732 PMCID: PMC9315808 DOI: 10.3390/metabo12070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Here we present comparative data on the inhibition of lipid peroxidation by a variety of tocochromanols in liposomes. We also show for the first time the potential neuroprotective role of all the vitamin E homologues investigated on the neuronally differentiated human neuroblastoma SH-SY5Y cell line. α-Tocopherol had nearly no effect in the inhibition of lipid peroxidation, while β-, γ-, and δ-tocopherols inhibited the reaction completely when it was initiated in a lipid phase. Similar effects were observed for tocotrienol homologues. Moreover, in this respect plastochromanol-8 was as effective as β-, γ-, and δ-tocochromanols. When the prenyllipids were investigated in a 1,1-diphenyl-2-picrylhydrazyl (DPPH) test and incorporated into different lipid carriers, the radical oxidation was most pronounced in liposomes, followed by mixed micelles and the micellar system. When the reaction of tocochromanols was examined in niosomes, the oxidation was most pronounced for α-tocopherol and plastochromanol-8, followed by α-tocotrienol. Next, using retinoic acid-differentiated SH-SY5Y cells, we tested the protective effects of the compounds investigated on hydrogen peroxide (H2O2)-induced cell damage. We showed that tocotrienols were more active than tocopherols in the oxidative stress model. Plastochromanol-8 had a strong inhibitory effect on H2O2-induced lactate dehydrogenase (LDH) release and H2O2-induced decrease in cell viability. The water-soluble α-tocopherol phosphate had neuroprotective effects at all the concentrations analyzed. The results clearly indicate that structural differences between vitamin E homologues reflect their different biological activity and indicate their potential application in pharmacological treatments for neurodegenerative diseases. In this respect, the application of optimal tocochromanol-carrying structures might be critical.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Cracow, Poland;
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland; (M.L.); (A.B.-K.)
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland;
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland;
- Department of Biophysics, Jagiellonian University Medical College, św. Łazarza 16, 31-530 Cracow, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland; (M.L.); (A.B.-K.)
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Cracow, Poland;
- Correspondence: ; Tel.: +48-126-175-688
| |
Collapse
|
16
|
Kim I, Kim EH, Choi YR, Kim HU. Fibrillin2 in chloroplast plastoglobules participates in photoprotection and jasmonate-induced senescence. PLANT PHYSIOLOGY 2022; 189:1363-1379. [PMID: 35404409 PMCID: PMC9237730 DOI: 10.1093/plphys/kiac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Fibrillins (FBNs) are the major structural proteins of plastoglobules (PGs) in chloroplasts. PGs are associated with defense against abiotic and biotic stresses, as well as lipid storage. Although FBN2 is abundant in PGs, its independent function under abiotic stress has not yet been identified. In this study, the targeting of FBN2 to PGs was clearly demonstrated using an FBN2-YFP fusion protein. FBN2 showed higher expression in green photosynthetic tissues and was upregulated at the transcriptional level under high-light stress. The photosynthetic capacity of fbn2 knockout mutants generated using CRISPR/Cas9 technology decreased rapidly compared with that of wild-type (WT) plants under high-light stress. In addition to the photoprotective function of FBN2, fbn2 mutants had lower levels of plastoquinone-9 and plastochromanol-8. The fbn2 mutants were highly sensitive to methyl jasmonate (MeJA) and exhibited root growth inhibition and a pale-green phenotype due to reduced chlorophyll content. Consistently, upon MeJA treatment, the fbn2 mutants showed faster leaf senescence and more rapid chlorophyll degradation with decreased photosynthetic ability compared with the WT plants. The results of this study suggest that FBN2 is involved in protection against high-light stress and acts as an inhibitor of jasmonate-induced senescence in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, South Korea
| | - Yu-ri Choi
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | | |
Collapse
|
17
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
19
|
High Light Acclimation Mechanisms Deficient in a PsbS-Knockout Arabidopsis Mutant. Int J Mol Sci 2022; 23:ijms23052695. [PMID: 35269832 PMCID: PMC8910700 DOI: 10.3390/ijms23052695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022] Open
Abstract
The photosystem II PsbS protein of thylakoid membranes is responsible for regulating the energy-dependent, non-photochemical quenching of excess chlorophyll excited states as a short-term mechanism for protection against high light (HL) stress. However, the role of PsbS protein in long-term HL acclimation processes remains poorly understood. Here we investigate the role of PsbS protein during long-term HL acclimation processes in wild-type (WT) and npq4-1 mutants of Arabidopsis which lack the PsbS protein. During long-term HL illumination, photosystem II photochemical efficiency initially dropped, followed by a recovery of electron transport and photochemical quenching (qL) in WT, but not in npq4-1 mutants. In addition, we observed a reduction in light-harvesting antenna size during HL treatment that ceased after HL treatment in WT, but not in npq4-1 mutants. When plants were adapted to HL, more reactive oxygen species (ROS) were accumulated in npq4-1 mutants compared to WT. Gene expression studies indicated that npq4-1 mutants failed to express genes involved in plastoquinone biosynthesis. These results suggest that the PsbS protein regulates recovery processes such as electron transport and qL during long-term HL acclimation by maintaining plastoquinone biosynthetic gene expression and enhancing ROS homeostasis.
Collapse
|
20
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Trela-Makowej A, Kruk J, Jemioła-Rzemińska M, Szymańska R. Acylserotonins - a new class of plant lipids with antioxidant activity and potential pharmacological applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159044. [PMID: 34450265 DOI: 10.1016/j.bbalip.2021.159044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
During analysis of components of baobab (Adansonia digitata) seed oil, several new fluorescent compounds were detected in HPLC chromatograms that were not found previously in any seed oils investigated so far. After preparative isolation of these compounds, structural analysis by NMR spectroscopy, UHPLC-HR-MS, GC-FID and spectroscopic methods were applied and allowed identification of these substances as series of N-acylserotonins containing saturated C22 to C26 fatty acids with minor contribution of C27 to C30 homologues. The main component was N-lignocerylserotonin and the content of odd carbon-atom-number fatty acids was unusually high among the homologues. The suggested structure of the investigated compounds was additionally confirmed by their chemical synthesis. Synthetic N-acylserotonins showed pronounced inhibition of membrane lipid peroxidation of liposomes prepared from chloroplast lipids, especially when the peroxidation was initiated by a water-soluble azo-initiator, AIPH. Comparative studies of the reaction rate constants of the N-acylserotonins and tocopherols with a stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in solvents of different polarity revealed that N-acylserotonins showed similar activity to δ-tocopherol in this respect. The described compounds have been not reported before either in plants or in animals. This indicates that we have identified a new class of plant lipids with antioxidant properties that could have promising pharmacological activities.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Małgorzata Jemioła-Rzemińska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
22
|
Nowicka B, Trela-Makowej A, Latowski D, Strzalka K, Szymańska R. Antioxidant and Signaling Role of Plastid-Derived Isoprenoid Quinones and Chromanols. Int J Mol Sci 2021; 22:2950. [PMID: 33799456 PMCID: PMC7999835 DOI: 10.3390/ijms22062950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| |
Collapse
|
23
|
Kruk J, Szymańska R. Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112148. [PMID: 33556703 DOI: 10.1016/j.jphotobiol.2021.112148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Singlet oxygen (1O2) is the major reactive oxygen species ROS causing photooxidative stress in plants which is formed predominantly in the reaction center of photosystem II during photosynthesis. To avoid deleterious effects of 1O2 oxygen on photosynthetic membrane components, plant synthesize a variety of 1O2 quenchers of lipophilic character, such as carotenoids or phenolic prenyllipids (tocopherols, plastochromanol-8, plastoquinol). In the process of chemical quenching of 1O2 by the antioxidants, both short-lived products, such as oxidized carotenoids, or relative long-lived compounds, such as oxidized phenolic prenyllipids are formed. The other target of 1O2 are unsaturated fatty acids of membrane lipids that undergo peroxidation as a result of the reaction. Some of the 1O2 oxidation products, like β-cyclocitral can be components of 1O2-signallingsignaling pathway leading to acclimatory responses of plants, while some others further fulfill antioxidant functions, like hydroxy-plastochromanol or hydroxy-plastoquinol. As most of the 1O2 oxidation products are specific compounds formed only as a results of 1O2 action, they can be very useful, specific molecular markers of 1O2-dependent oxidative stress in vivo.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| |
Collapse
|
24
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
25
|
Maltodextrin-α-tocopherol conjugates of vitamin E: Influence of degree of derivatization on physicochemical properties and biological evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Havaux M. Plastoquinone In and Beyond Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:1252-1265. [PMID: 32713776 DOI: 10.1016/j.tplants.2020.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 05/13/2023]
Abstract
Plastoquinone-9 (PQ-9) is an essential component of photosynthesis that carries electrons in the linear and alternative electron transport chains, and is also a redox sensor that regulates state transitions and gene expression. However, a large fraction of the PQ pool is located outside the thylakoid membranes, in the plastoglobules and the chloroplast envelopes, reflecting a wider range of functions beyond electron transport. This review describes new functions of PQ in photoprotection, as a potent antioxidant, and in chloroplast metabolism as a cofactor in the biosynthesis of chloroplast metabolites. It also focuses on the essential need for tight environmental control of PQ biosynthesis and for active exchange of this compound between the thylakoid membranes and the plastoglobules. Through its multiple functions, PQ connects photosynthesis with metabolism, light acclimation, and stress tolerance.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7265, Biosciences and Biotechnologies Institute of Aix-Marseille, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
27
|
Kasprzak M, Rudzińska M, Przybylski R, Kmiecik D, Siger A, Olejnik A. The degradation of bioactive compounds and formation of their oxidation derivatives in refined rapeseed oil during heating in model system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
29
|
Pralon T, Collombat J, Pipitone R, Ksas B, Shanmugabalaji V, Havaux M, Finazzi G, Longoni P, Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6 Phenotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:337. [PMID: 32269582 PMCID: PMC7109304 DOI: 10.3389/fpls.2020.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Collapse
Affiliation(s)
- Thibaut Pralon
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Joy Collombat
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Ksas
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | | | - Michel Havaux
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agromique (INRA), Interdisciplinary Research Institute of Grenoble - Cell and Plant Physiology Laboratory (IRIG-LPCV), Grenoble, France
| | - Paolo Longoni
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Paolo Longoni,
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Felix Kessler,
| |
Collapse
|
30
|
Pérez-Llorca M, Casadesús A, Munné-Bosch S, Müller M. Contrasting patterns of hormonal and photoprotective isoprenoids in response to stress in Cistus albidus during a Mediterranean winter. PLANTA 2019; 250:1409-1422. [PMID: 31286198 DOI: 10.1007/s00425-019-03234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
Seasonal accumulation of hormonal and photoprotective isoprenoids, particularly α-tocopherol, carotenoids and abscisic acid, indicate their important role in protecting Cistus albidus plants from environmental stress during a Mediterranean winter. The high diurnal amounts of α-tocopherol and xanthophylls 3 h before maximum light intensity suggest a photoprotective response against the prevailing diurnal changes. The timing to modulate acclimatory/defense responses under changing environmental conditions is one of the most critical points for plant fitness and stress tolerance. Here, we report seasonal and diurnal changes in the contents of isoprenoids originated from the methylerythritol phosphate pathway, including chlorophylls, carotenoids, tocochromanols, and phytohormones (abscisic acid, cytokinins, and gibberellins) in C. albidus during a Mediterranean winter. Plants were subjected not only to typically low winter temperatures but also to drought, as shown by a mean plant water status of 54% during the experimental period. The maximum PSII efficiency, however, remained consistently high (Fv/Fm > 0.8), proving that C. albidus had efficient mechanisms to tolerate combined stress conditions during winter. While seasonal α-tocopherol contents remained high (200-300 µg/g DW) during the experimental period, carotenoid contents increased during winter attaining maximum levels in February (minimum air temperature ≤ 5 °C for 13 days). Following the initial transient increases of bioactive trans-zeatin (about fivefold) during winter, the increased abscisic acid contents proved its important role during abiotic stress tolerance. Diurnal amounts of α-tocopherol and xanthophylls, particularly lutein, zeaxanthin and neoxanthin including the de-epoxidation state, reached maximum levels as early as 2 h after dawn, when solar intensity was 68% lower than the maximum solar radiation at noon. It is concluded that (1) given their proven antioxidant properties, both α-tocopherol and carotenoids seem to play a crucial role protecting the photosynthetic apparatus under severe stress conditions; (2) high seasonal amounts of abscisic acid indicate its important role in abiotic stress tolerance within plant hormones, although under specific environmental conditions, accumulation of bioactive cytokinins appears to be involved to enhance stress tolerance; (3) the concerted diurnal adjustment of α-tocopherol and xanthophylls as early as 3 h before maximum light intensity suggests that plants anticipated the predictable diurnal changes in the environment to protect the photosynthetic apparatus.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
31
|
Muñoz P, Munné-Bosch S. Vitamin E in Plants: Biosynthesis, Transport, and Function. TRENDS IN PLANT SCIENCE 2019; 24:1040-1051. [PMID: 31606282 DOI: 10.1016/j.tplants.2019.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 05/21/2023]
Abstract
Vitamin E, which includes both tocopherols and tocotrienols, comprises lipid-soluble antioxidants that modulate lipid peroxidation. Recently, significant advances have been made in our understanding of vitamin E biosynthesis, transport, and function. The phytyl moiety from chlorophyll degradation is used for tocopherol biosynthesis. An α-tocopherol-binding protein (TBP) has been identified in tomato (SlTBP) serving in intraorganellar vitamin E transport in plants. Moreover, α-tocopherol not only scavenges free radicals through flip-flop movements in the lipid bilayer, but may also contribute to fine-tuning the transmission of specific signals outside chloroplasts. Vitamin E, and α-tocopherol in particular, appear to be essential for plant development and help to provide the most suitable response to a number of environmental stresses.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
32
|
Trela A, Szymańska R. Less widespread plant oils as a good source of vitamin E. Food Chem 2019; 296:160-166. [PMID: 31202300 DOI: 10.1016/j.foodchem.2019.05.185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 01/22/2023]
Abstract
Vitamin E is a family of related compounds with different vitamin E activities and antioxidant properties that includes tocopherols, tocotrienols and plastochromanol-8. Plant oils could serve as an industrial source not only of tocopherols, but also tocotrienols and plastochromanol-8, which exhibit much stronger antioxidant activities than tocopherols. The aim of this study was a quantitative and qualitative analysis of vitamin E in certain plant oils. We demonstrated the presence of vitamin E derivatives in all the plant oils tested. The highest tocopherol contents were in pomegranate, wheat germ and raspberry seed oils. In general, γ-tocopherol was the predominant tocopherol homologue. Tocotrienols were also identified in most of the oils, but their content was much lower. The highest concentration of tocotrienols was in coriander seed oil. Plastochromanol-8 was present in most of the oils, but wheat germ oil was the richest source.
Collapse
Affiliation(s)
- Agnieszka Trela
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Reymonta 19, 30-059 Krakow, Poland
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Reymonta 19, 30-059 Krakow, Poland.
| |
Collapse
|
33
|
Borisova-Mubarakshina MM, Vetoshkina DV, Ivanov BN. Antioxidant and signaling functions of the plastoquinone pool in higher plants. PHYSIOLOGIA PLANTARUM 2019; 166:181-198. [PMID: 30706486 DOI: 10.1111/ppl.12936] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
The review covers data representing the plastoquinone pool as the component integrated in plant antioxidant defense and plant signaling. The main goal of the review is to discuss the evidence describing the plastoquinone-involved biochemical reactions, which are incorporated in maintaining the sustainability of higher plants to stress conditions. In this context, the analysis of the reactions of various redox forms of plastoquinone with oxygen species is presented. The review describes how these reactions can constitute both the antioxidant and signaling functions of the pool. Special attention is paid to the reaction of superoxide anion radicals with plastohydroquinone molecules, producing hydrogen peroxide as signal molecules. Attention is also given to the processes affecting the redox state of the plastoquinone pool because the redox state of the pool is of special importance for antioxidant defense and signaling.
Collapse
Affiliation(s)
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
34
|
Balanco JMF, Sussmann RAC, Verdaguer IB, Gabriel HB, Kimura EA, Katzin AM. Tocopherol biosynthesis in Leishmania ( L.) amazonensis promastigotes. FEBS Open Bio 2019; 9:743-754. [PMID: 30984548 PMCID: PMC6443866 DOI: 10.1002/2211-5463.12613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by a trypanosomatid protozoan of the genus Leishmania. Most drugs used to treat leishmaniasis are highly toxic, and the emergence of drug‐resistant strains has been observed. Therefore, new therapeutic targets against leishmaniasis are required. Several isoprenoid compounds, including dolichols or ubiquinones, have been shown to be important for cell viability and proliferation in various trypanosomatid species. Here, we detected the biosynthesis of tocopherol in Leishmania (L.) amazonensis promastigotes in vitro through metabolic labelling with [1‐(n)‐3H]‐phytol. Subsequently, we confirmed the presence of vitamin E in the parasite by gas chromatography–mass spectrometry. Treatment with usnic acid or nitisinone, inhibitors of precursors of vitamin E synthesis, inhibited growth of the parasite in a concentration‐dependent manner. This study provides the first evidence of tocopherol biosynthesis in a trypanosomatid and suggests that inhibitors of the enzyme 4‐hydroxyphenylpyruvate dioxygenase may be suitable for use as antileishmanial compounds. Database The amino acid sequence of a conserved hypothetical protein [Leishmania mexicana MHOM/GT/2001/U1103] has been deposited in GenBank (CBZ28005.1)
Collapse
Affiliation(s)
- José Mário F Balanco
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Ignasi B Verdaguer
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Heloisa B Gabriel
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Emilia A Kimura
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Alejandro M Katzin
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| |
Collapse
|
35
|
Mukai K, Ohara A, Ito J, Hirata M, Kobayashi E, Nakagawa K, Nagaoka SI. Kinetic Study of the Quenching Reaction of Singlet Oxygen by Eight Vegetable Oils in Solution. J Oleo Sci 2019; 68:21-31. [DOI: 10.5650/jos.ess18179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University
| | - Ayaka Ohara
- Department of Chemistry, Faculty of Science, Ehime University
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Masayuki Hirata
- Department of Chemistry, Faculty of Science, Ehime University
| | - Eri Kobayashi
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | | |
Collapse
|
36
|
de Sena Pereira VS, da Silva Emery F, Lobo L, Nogueira F, Oliveira JIN, Fulco UL, Albuquerque EL, Katzin AM, de Andrade-Neto VF. In vitro antiplasmodial activity, pharmacokinetic profiles and interference in isoprenoid pathway of 2-aniline-3-hydroxy-1.4-naphthoquinone derivatives. Malar J 2018; 17:482. [PMID: 30567541 PMCID: PMC6300878 DOI: 10.1186/s12936-018-2615-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background Plasmodium falciparum has shown multidrug resistance, leading to the necessity for the development of new drugs with novel targets, such as the synthesis of isoprenic precursors, which are excellent targets because the pathway is different in several steps when compared with the human host. Naphthoquinone derivatives have been described as potentially promising for the development of anti-malarial leader molecules. In view of that, the focus in this work is twofold: first, evaluate the in vitro naphthoquinone antiplasmodial activity and cytotoxicity; secondly, investigate one possible action mechanism of two derivatives of hydroxy-naphthoquinones. Results The two hydroxy-naphthoquinones derivatives have been tested against P. falciparum in vitro, using strains of parasites chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2), causing 50% inhibition of parasite growth with concentrations that varied from 7 to 44.5 μM. The cell viability in vitro against RAW Cell Line displayed IC50 = 483.5 and 714.9 μM, whereas, in primary culture tests using murine macrophages, IC50 were 315.8 and 532.6 μM for the two selected compounds, causing no haemolysis at the doses tested. The in vivo acute toxicity assays exhibited a significant safety margin indicated by a lack of systemic and behavioural toxicity up to 300 mg/kg. It is suggested that this drug seems to inhibit the biosynthesis of isoprenic compounds, particularly the menaquinone and tocopherol. Conclusions These derivatives have a high potential for the development of new anti-malarial drugs since they showed low toxicity associated to a satisfactory antiplasmodial activity and possible inhibition of a metabolic pathway distinct from the pathways found in the mammalian host.
Collapse
Affiliation(s)
- Valeska S de Sena Pereira
- Laboratório de Biologia da Malária e Toxoplasmose - LABMAT, Departmento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.,Post-graduate Program in Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Flávio da Silva Emery
- Departmento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lis Lobo
- Global Health and Tropical Medicine-GHTM, Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa - UNL, Lisbon, Portugal
| | - Fátima Nogueira
- Global Health and Tropical Medicine-GHTM, Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa - UNL, Lisbon, Portugal
| | - Jonas I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Alejandro M Katzin
- Departmento de Parasitologia, Centro de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Valter F de Andrade-Neto
- Laboratório de Biologia da Malária e Toxoplasmose - LABMAT, Departmento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil. .,Post-graduate Program in Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
37
|
Ksas B, Légeret B, Ferretti U, Chevalier A, Pospíšil P, Alric J, Havaux M. The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers. PLANT, CELL & ENVIRONMENT 2018; 41:2277-2287. [PMID: 29601642 DOI: 10.1111/pce.13202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 05/05/2023]
Abstract
The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC-8). When exposed to excess light energy, vte1 produced more singlet oxygen (1 O2 ) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ-9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ-9 can replace tocopherol and PC-8 in photoprotection. High total PQ-9 levels were associated with a noticeable decrease in 1 O2 production and higher levels of Hydroxyplastoquinone (PQ-C), a 1 O2 -specific PQ-9 oxidation product. The extra PQ-9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ-C was found almost exclusively in the thylakoid membranes. Upon exposure of wild-type plants to high light, the thylakoid PQ-9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ-9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ-C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ-9 pool acts as a 1 O2 scavenger and is replenished from the extrathylakoid stock.
Collapse
Affiliation(s)
- Brigitte Ksas
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108, Saint-Paul-lez-Durance, France
| | - Ursula Ferretti
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Anne Chevalier
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jean Alric
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
38
|
Khorobrykh S, Tyystjärvi E. Plastoquinol generates and scavenges reactive oxygen species in organic solvent: Potential relevance for thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1119-1131. [PMID: 30030981 DOI: 10.1016/j.bbabio.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/28/2022]
Abstract
The present work reports reactions of plastoquinol (PQH2-9) and plastoquinone (PQ-9) in organic solvents and summarizes the literature to understand similar reactions in thylakoids. In thylakoids, PQH2-9 is oxidized by the cytochrome b6/f complex (Cyt b6/f) but some PQH2-9 is also oxidized by reactions in which oxygen acts as an electron acceptor and is converted to reactive oxygen species (ROS). Furthermore, PQH2-9 reacts with ROS. Light enhances oxygen-dependent oxidation of PQH2-9. We examined the oxidation of PQH2-9 via dismutation of PQH2-9 and PQ-9 and scavenging of the superoxide anion radical (O2-) and hydrogen peroxide (H2O2) by PQH2-9. Oxidation of PQH2-9 via dismutation to semiquinone was slow and independent of pH in organic solvents and in solvent/buffer systems, suggesting that intramembraneous oxidation of PQH2-9 in darkness mainly proceeds via reactions catalyzed by the plastid terminal oxidase and cytochrome b559. In the light, oxidation of PQH2-9 by singlet oxygen and by O2- formed in PSI contribute significantly. In addition, Cyt b6/f forms H2O2 with a PQH2-9 dependent mechanism. Measurements of the reaction of O2- with PQH2-9 and PQ-9 in acetonitrile showed that O2- oxidizes PQH2-9, forming PQ-9 and several PQ-9-derived products. The rate constant of the reaction between PQH2-9 and O2- was found to be 104 M-1 s-1. H2O2 was found to oxidize PQH2-9 to PQ-9, but failed to oxidize all PQH2-9, suggesting that the oxidation of PQH2-9 by H2O2 proceeds via deprotonation mechanisms producing PQH--9, PQ2--9 and the protonated hydrogen peroxide cation, H3O2+.
Collapse
Affiliation(s)
- Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
39
|
Siger A, Michalak M, Lembicz J, Nogala-Kałucka M, Cegielska-Taras T, Szała L. Genotype × environment interaction on tocochromanol and plastochromanol-8 content in seeds of doubled haploids obtained from F1 hybrid black × yellow seeds of winter oilseed rape (Brassica napus L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3263-3270. [PMID: 29230831 DOI: 10.1002/jsfa.8829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aim of the study was to determine the effect of genotype × environment interaction on the levels of α-, β-, γ- and δ-tocopherol (α-T, β-T, γ-T and δ-T, respectively) and plastochromanol-8 (PC-8) in seeds of 17 doubled haploids (DHs) obtained from the F1 hybrid derived from crossing black (DH H2 -26) × yellow (DH Z-114) seeds of winter oilseed rape. RESULTS The content of tocopherols in the tested DH lines ranged from 415.6 to 540.1 mg kg-1 seeds, while PC-8 content ranged from 56.3 to 89.0 mg kg-1 seeds. The α-T/γ-T ratio reached a level of 0.78-1.29. Studies have shown that heritability for α-T, β-T, γ-T, total-T and PC-8 is mainly due to genotypic variation. For the δ-T homologue the level was dependent on environmental effect. CONCLUSION The obtained DH lines population of oilseed rape is characterized by high heritability coefficients for α-T, β-T, γ-T, total-T and PC-8 levels, which indicates a greater influence of genotype than the environment on the content of these compounds. Among all studied doubled haploids, seven DHs were selected which were characterized by stable contents of α-T, β-T, γ-T, δ-T and total-T with the simultaneous stable content of PC-8. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aleksander Siger
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Poznań, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Lembicz
- Department of Biochemistry and Food Analysis, Poznan University of Life Sciences, Poznań, Poland
| | | | - Teresa Cegielska-Taras
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute - National Research Institute, Poznań, Poland
| | - Laurencja Szała
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute - National Research Institute, Poznań, Poland
| |
Collapse
|
40
|
Ferretti U, Ciura J, Ksas B, Rác M, Sedlářová M, Kruk J, Havaux M, Pospíšil P. Chemical quenching of singlet oxygen by plastoquinols and their oxidation products in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:848-861. [PMID: 29901834 DOI: 10.1111/tpj.13993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 05/27/2023]
Abstract
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1 O2 ) formed during high light stress in higher plants. Although quenching of 1 O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1 O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol-9 (PQH2 -9) in chemical quenching of 1 O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2 -9 and plastochromanol-8 biosynthesis. In this work, direct evidence for chemical quenching of 1 O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1 O2 was associated with consumption of PQH2 -9 and formation of its various oxidized forms. Oxidation of PQH2 -9 by 1 O2 leads to plastoquinone-9 (PQ-9), which is subsequently oxidized to hydroxyplastoquinone-9 [PQ(OH)-9]. We provide here evidence that oxidation of PQ(OH)-9 by 1 O2 results in the formation of trihydroxyplastoquinone-9 [PQ(OH)3 -9]. It is concluded here that PQH2 -9 serves as an efficient 1 O2 chemical quencher in Arabidopsis, and PQ(OH)3 -9 can be considered as a natural product of 1 O2 reaction with PQ(OH)-9. The understanding of the mechanisms underlying 1 O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.
Collapse
Affiliation(s)
- Ursula Ferretti
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Joanna Ciura
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - Brigitte Ksas
- Laboratoire d'Écophysiologie Moléculaire des Plantes, CEA, CNRS, UMR 7265 BVME, Aix-Marseille Université, CEA/Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - Michel Havaux
- Laboratoire d'Écophysiologie Moléculaire des Plantes, CEA, CNRS, UMR 7265 BVME, Aix-Marseille Université, CEA/Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| |
Collapse
|
41
|
Mukai K, Ishikawa E, Ouchi A, Nagaoka SI, Abe K, Suzuki T, Izumisawa K. Measurements of Singlet Oxygen-Quenching Activity of Vitamin E Homologs and Palm Oil and Soybean Extracts in a Micellar Solution. Lipids 2018; 53:601-613. [PMID: 30152870 DOI: 10.1002/lipd.12053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/07/2022]
Abstract
Recently, a new assay method that can quantify the singlet oxygen-absorption capacity (SOAC) of antioxidants (AO) and food extracts in homogeneous organic solvents has been proposed. In the present study, second-order rate constants (kQ ) for the reaction of singlet oxygen (1 O2 ) with vitamin E homologs (α-, β-, γ-, and δ-tocopherols [Toc] and α-, β-, γ-, and δ-tocotrienols [Toc-3]) were measured in an aqueous Triton X-100 (5.0 wt%) micellar solution (pH 7.4). Toc-3 showed kQ values larger than those of Toc in a micellar solution, although Toc and Toc-3 showed the same kQ values in a homogeneous solution. Similar measurements were performed for 5 palm oil extracts 1-5 and one soybean extract 6, which contained different concentrations of Toc, Toc-3, and carotenoids. It has been clarified that the 1 O2 -quenching rates (kQ ) (that is, the relative SOAC value) obtained for extracts 3-6 may be explained as the sum of the product Σ k Q AO - i AO - i / 100 of the rate constant ( k Q AO - i ) and the concentration ([AO-i]/100) of AO-i contained. The UV-vis absorption spectra of Toc and Toc-3 were measured in a micellar solution and chloroform. The results obtained demonstrated that the kQ values of AO in homogeneous and heterogeneous solutions vary notably depending on (1) polarity (dielectric constant [ε]) of the reaction field between 1 O2 and AO, (2) the local concentration of AO, and (3) the mobility of AO in solution. The results suggest that the SOAC method is applicable to the measurement of 1 O2 -quenching activity of general food extracts in a heterogeneous micellar solution.
Collapse
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Eri Ishikawa
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Aya Ouchi
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Shin-Ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Koichi Abe
- SSCI Laboratories, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-Shi, Tokyo, 202-0023, Japan
| | - Tomomi Suzuki
- Product Development Department, Consumer hhc Business Division, Eisai Company, Ltd., Koishikawa 5-5-5, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Katsuhiro Izumisawa
- Product Development Department, Consumer hhc Business Division, Eisai Company, Ltd., Koishikawa 5-5-5, Bunkyo-ku, Tokyo, 112-8088, Japan
| |
Collapse
|
42
|
Mukai K, Bandoh Y, Ito J, Kobayashi E, Nakagawa K, Nagaoka SI. Kinetic Study of the Scavenging Reaction of the Aroxyl Radical by Eight Kinds of Vegetable Oils in Solution. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science; Ehime University, Bunkyo-cho 2-5; Matsuyama 790-8577 Japan
| | - Yuki Bandoh
- Department of Chemistry, Faculty of Science; Ehime University, Bunkyo-cho 2-5; Matsuyama 790-8577 Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science; Tohoku University, 1 - 1 Tsutsumidori-Amamiyamachi, Aobaku; Sendai 980-0845 Japan
| | - Eri Kobayashi
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science; Tohoku University, 1 - 1 Tsutsumidori-Amamiyamachi, Aobaku; Sendai 980-0845 Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science; Tohoku University, 1 - 1 Tsutsumidori-Amamiyamachi, Aobaku; Sendai 980-0845 Japan
| | - Shin-ichi Nagaoka
- Department of Chemistry, Faculty of Science; Ehime University, Bunkyo-cho 2-5; Matsuyama 790-8577 Japan
| |
Collapse
|
43
|
Szymańska R, Kruk J. Novel and rare prenyllipids - Occurrence and biological activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:1-9. [PMID: 29169080 DOI: 10.1016/j.plaphy.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The data presented indicate that there is a variety of unique prenyllipids, often of very limited taxonomic distribution, whose origin, biosynthesis, metabolism and biological function deserves to be elucidated. These compounds include tocoenols, tocochromanol esters, tocochromanol acids, plastoquinones and ubiquinones. Additionally, based on the available data, it can be assumed that there are still unrecognized prenyllipids, like prenylquinols fatty acid esters of the hydroquinone ring, including prenylquinol phosphates, and others, whose biological function might be of great importance. Our knowledge of these compounds is not only important from the scientific point of view, but may also be of practical significance to medicine, pharmacy or cosmetics.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
44
|
Spicher L, Almeida J, Gutbrod K, Pipitone R, Dörmann P, Glauser G, Rossi M, Kessler F. Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5845-5856. [PMID: 29186558 PMCID: PMC5854125 DOI: 10.1093/jxb/erx356] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 05/19/2023]
Abstract
In a changing environment, plants need to cope with the impact of rising temperatures together with high light intensity. Here, we used lipidomics in the tomato model system to identify lipophilic molecules that enhance tolerance to combined high-temperature and high-light stress. Among several hundred metabolites, the two most strongly up-regulated compounds were α-tocopherol and plastoquinone/plastoquinol. Both are well-known lipid antioxidants and contribute to the protection of photosystem II (PSII) against photodamage under environmental stress. To address the protective function of tocopherol, an RNAi line (vte5) with decreased expression of VTE5 and reduced levels of α-tocopherol was selected. VTE5 encodes phytol kinase, which acts in the biosynthetic pathway of tocopherols. vte5 suffered strong photoinhibition and photobleaching when exposed to combined high-light and high-temperature stress, but neither stress alone produced a visible phenotype. As vte5 had plastoquinone levels similar to those of the wild type under combined stress, the strong phenotype could be attributed to the lack of α-tocopherol. These findings suggest that VTE5 protects against combined high-light and high-temperature stress and does so by supporting α-tocopherol production.
Collapse
Affiliation(s)
- Livia Spicher
- Laboratory of Plant Physiology, University of Neuchâtel, Switzerland
| | - Juliana Almeida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Rosa Pipitone
- Laboratory of Plant Physiology, University of Neuchâtel, Switzerland
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Switzerland
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, Switzerland
| |
Collapse
|
45
|
Koscielniak A, Serafin M, Duda M, Oles T, Zadlo A, Broniec A, Berdeaux O, Gregoire S, Bretillon L, Sarna T, Pawlak A. Oxidation-Induced Increase In Photoreactivity of Bovine Retinal Lipid Extract. Cell Biochem Biophys 2017; 75:443-454. [PMID: 29098642 PMCID: PMC5691103 DOI: 10.1007/s12013-017-0832-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022]
Abstract
The mammalian retina contains a high level of polyunsaturated fatty acids, including docosahexaenoic acid (22:6) (DHA), which are highly susceptible to oxidation. It has been shown that one of the products of DHA oxidation-carboxyethylpyrrole (CEP), generated in situ, causes modifications of retinal proteins and induces inflammation response in the outer retina. These contributing factors may play a role in the development of age-related macular degeneration (AMD). It is also possible that some of the lipid oxidation products are photoreactive, and upon irradiation with blue light may generate reactive oxygen species. Therefore, in this work we analysed oxidation-induced changes in photoreactivity of lipids extracted from bovine neural retinas. Lipid composition of bovine neural retinas closely resembles that of human retinas making the bovine tissue a convenient model for studying the photoreactivity and potential phototoxicity of oxidized human retinal lipids. Lipid composition of bovine neural retinas Folch' extracts (BRex) was determined by gas chromatography (GC) and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS) analysis. Liposomes prepared from BRex, equilibrated with air, were oxidized in the dark at 37 °C for up to 400 h. The photoreactivity of BRex at different stages of oxidation was studied by EPR-oximetry and EPR-spin trapping. Photogeneration of singlet oxygen (1O2, 1Δg) by BRex was measured using time-resolved detection of the characteristic phosphorescence at 1270 nm. To establish contribution of lipid components to the analysed photoreactivity of Folch' extract of bovine retinas, a mixture of selected synthetic lipids in percent by weight (w/w %) ratio resembling that of the BRex has been also studied. Folch's extraction of bovine neural retinas was very susceptible to oxidation despite the presence of powerful endogenous antioxidants such as α-tocopherol and zeaxanthin. Non-oxidized and oxidized BRex photogenerated singlet oxygen with moderate quantum yield. Blue-light induced generation of superoxide anion by Folch' extract of bovine neural retinas strongly depended on the oxidation time. The observed photoreactivity of the studied extract gradually increased during its in vitro oxidation.
Collapse
Affiliation(s)
- A Koscielniak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH-University of Science and Technology, Kraków, Poland
| | - M Serafin
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - M Duda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - T Oles
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Broniec
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - O Berdeaux
- INRA, Centre des Sciences du Gout et de l'Alimentation, Universite de Bourgogne, Dijon, France
| | - S Gregoire
- INRA, Centre des Sciences du Gout et de l'Alimentation, Universite de Bourgogne, Dijon, France
| | - L Bretillon
- INRA, Centre des Sciences du Gout et de l'Alimentation, Universite de Bourgogne, Dijon, France
| | - T Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
46
|
Fleta-Soriano E, Munné-Bosch S. Enhanced plastochromanol-8 accumulation during reiterated drought in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:283-289. [PMID: 28119116 DOI: 10.1016/j.plaphy.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 05/13/2023]
Abstract
Plastochromanol-8 (PC-8) belongs to the group of tocochromanols, and together with tocopherols and carotenoids, might help protect photosystem II from photoinhibition during environmental stresses. Here, we aimed to unravel the time course evolution of PC-8 together with that of vitamin E compounds, in maize (Zea mays L.) plants exposed to reiterated drought. Measurements were performed in plants grown in a greenhouse subjected to two consecutive cycles of drought-recovery. PC-8 contents, which accounted for more than 25% of tocochromanols in maize leaves, increased progressively in response to reiterated drought stress. PC-8 contents paralleled with those of vitamin E, particularly α-tocopherol. Profiling of the stress-related phytohormones (ABA, jasmonic acid and salicylic acid) was consistent with a role of ABA in the regulation of PC-8 and vitamin E biosynthesis during drought stress. Results also suggest that PC-8 may help tocopherols prevent damage to the photosynthetic apparatus. A better knowledge of the ABA-dependent regulation of PC-8 may help us manipulate the contents of this important antioxidant in crops.
Collapse
Affiliation(s)
- Eva Fleta-Soriano
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
47
|
Mukai K, Ouchi A, Azuma N, Takahashi S, Aizawa K, Nagaoka SI. Development of a Singlet Oxygen Absorption Capacity (SOAC) Assay Method. Measurements of the SOAC Values for Carotenoids and α-Tocopherol in an Aqueous Triton X-100 Micellar Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:784-792. [PMID: 28060496 DOI: 10.1021/acs.jafc.6b04329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, a new assay method for the quantification of the singlet oxygen absorption capacity (SOAC) of antioxidants (AOs) and food extracts in homogeneous organic solvents was proposed. In this study, second-order rate constants (kQ) for the reaction of singlet oxygen (1O2) with eight different carotenoids (Cars) and α-tocopherol (α-Toc) were measured in an aqueous Triton X-100 (5.0 wt %) micellar solution (pH 7.4, 35 °C), which was used as a simple model of biomembranes. The kQ and relative SOAC values were measured using ultraviolet-visible (UV-vis) spectroscopy. The UV-vis absorption spectra of Cars and α-Toc were measured in both a micellar solution and chloroform, to investigate the effect of solvent on the kQ and SOAC values. Furthermore, decay rates (kd) of 1O2 were measured in 0.0, 1.0, 3.0, and 5.0 wt % micellar solutions (pH 7.4), using time-resolved near-infrared fluorescence spectroscopy, to determine the absolute kQ values of the AOs. The results obtained demonstrate that the kQ values of AOs in homogeneous and heterogeneous solutions vary notably depending on (i) the polarity [dielectric constant (ε)] of the reaction field between AOs and 1O2, (ii) the local concentration of AOs, and (iii) the mobility of AOs in solution. In addition, the kQ and relative SOAC values obtained for the Cars in a heterogeneous micellar solution differ remarkably from those in homogeneous organic solvents. Measurements of kQ and SOAC values in a micellar solution may be useful for evaluating the 1O2 quenching activity of AOs in biological systems.
Collapse
Affiliation(s)
- Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Aya Ouchi
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Nagao Azuma
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| | - Shingo Takahashi
- Research & Development Division, Kagome Company Ltd. , Nasushiobara-shi, Tochigi 329-2762, Japan
| | - Koichi Aizawa
- Research & Development Division, Kagome Company Ltd. , Nasushiobara-shi, Tochigi 329-2762, Japan
| | - Shin-Ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University , Matsuyama 790-8577, Japan
| |
Collapse
|
48
|
Abramova I, Rudshteyn B, Liebman JF, Greer A. Computed Regioselectivity and Conjectured Biological Activity of Ene Reactions of Singlet Oxygen with the Natural Product Hyperforin. Photochem Photobiol 2017; 93:626-631. [PMID: 28052331 DOI: 10.1111/php.12706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023]
Abstract
Hyperforin is a constituent of St. John's wort and coexists with the singlet oxygen sensitizer hypericin. Density functional theory, molecular mechanics and Connolly surface calculations show that accessibility in the singlet oxygen "ene" reaction favors the hyperforin "southwest" and "southeast" prenyl (2-methyl-2-butenyl) groups over the northern prenyl groups. While the southern part of hyperforin is initially more susceptible to oxidation, up to 4 "ene" reactions of singlet oxygen can take place. Computational results assist in predicting the fate of adjacent hydroperoxides in hyperforin, where the loss of hydrogen atoms may lead to the formation of a hydrotrioxide and a carbonyl instead of a Russell reaction.
Collapse
Affiliation(s)
- Inna Abramova
- Department of Chemistry, Graduate Center, City University of New York, Brooklyn College, Brooklyn, NY
| | - Benjamin Rudshteyn
- Department of Chemistry, Graduate Center, City University of New York, Brooklyn College, Brooklyn, NY
| | - Joel F Liebman
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD
| | - Alexander Greer
- Department of Chemistry, Graduate Center, City University of New York, Brooklyn College, Brooklyn, NY
| |
Collapse
|
49
|
Nowicka B, Pluciński B, Kuczyńska P, Kruk J. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:133-145. [PMID: 27104807 DOI: 10.1016/j.ecoenv.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Acclimation to heavy metal-induced stress is a complex phenomenon. Among the mechanisms of heavy metal toxicity, an important one is the ability to induce oxidative stress, so that the antioxidant response is crucial for providing tolerance to heavy metal ions. The effect of chronic stress induced by ions of five heavy metals, Ag, Cu, Cr (redox-active metals) Cd, Hg (nonredox-active metals) on the green microalga Chlamydomonas reinhardtii was examined at two levels - the biochemical (content of photosynthetic pigments and prenyllipid antioxidants, lipid peroxidation) and the physiological (growth rate, photosynthesis and respiration rates, induction of nonphotochemical quenching of chlorophyll fluorescence). The expression of the genes which encode the enzymes participating in the detoxification of reactive oxygen species (APX1, CAT1, FSD1, MSD1) was measured. The other gene measured was one required for plastoquinone and α-tocopherol biosynthesis (VTE3). The application of heavy metal ions partly inhibited growth and biosynthesis of chlorophyll. The growth inhibition was accompanied by enhanced lipid peroxidation. An increase in the content of prenyllipid antioxidants was observed in cultures exposed to Cr2O7(2-), Cd(2+) (α- and γ-tocopherol and plastoquinone) and Cu(2+) (only tocopherols). The induction of nonphotochemical quenching was enhanced in cultures exposed to Cu(2+), Cr2O7(2-) and Cd(2+), as compared to the control. Chronic heavy metal-induced stress led to changes in gene expression dependent on the type and concentration of heavy metal ions. The up-regulation of antioxidant enzymes was usually accompanied by the up-regulation of the VTE3 gene.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Bartosz Pluciński
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Paulina Kuczyńska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
50
|
Szymańska R, Kołodziej K, Ślesak I, Zimak-Piekarczyk P, Orzechowska A, Gabruk M, Żądło A, Habina I, Knap W, Burda K, Kruk J. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:957-965. [PMID: 27060280 DOI: 10.1016/j.envpol.2016.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/20/2023]
Abstract
In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 μg/ml.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland.
| | - Karolina Kołodziej
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland
| | - Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
| | - Paulina Zimak-Piekarczyk
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
| | - Aleksandra Orzechowska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland
| | - Michał Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Iwona Habina
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland
| | - Wiesław Knap
- Department of Hydrogeology and Geological Engineering, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Květoslava Burda
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|