1
|
Gao W, Zhang L, Li Z, Wu T, Lang C, Mulholland MW, Zhang W. Nuclear Acly protects the liver from ischemia-reperfusion injury. Hepatology 2024; 80:1087-1103. [PMID: 37983829 PMCID: PMC11102925 DOI: 10.1097/hep.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (IR) injury is the most common complication that occurs in liver surgery and hemorrhagic shock. ATP citrate lyase (Acly) plays a pivotal role in chromatin modification via generating acetyl-CoA for histone acetylation to influence biological processes. We aim to examine the roles of Acly, which is highly expressed in hepatocytes, in liver IR injury. APPROACH AND RESULTS The functions of Acly in hepatic IR injury were examined in the mouse model with a hepatocyte-specific knockout of Acly . The Acly target genes were analyzed by CUT&RUN assay and RNA sequencing. The relationship between the susceptibility of the steatotic liver to IR and Acly was determined by the gain of function studies in mice. Hepatic deficiency of Acly exacerbated liver IR injury. IR induced Acly nuclear translocation in hepatocytes, which spatially fueled nuclear acetyl-CoA. This alteration was associated with enhanced acetylation of H3K9 and subsequent activation of the Foxa2 signaling pathway. Nuclear localization of Acly enabled Foxa2-mediated protective effects after hypoxia-reperfusion in cultured hepatocytes, while cytosolic Acly demonstrated no effect. The presence of steatosis disrupted Acly nuclear translocation. In the steatotic liver, restoration of Acly nuclear localization through overexpression of Rspondin-1 or Rspondin-3 ameliorated the IR-induced injury. CONCLUSIONS Our results indicate that Acly regulates histone modification by means of nuclear AcCoA production in hepatic IR. Disruption of Acly nuclear translocation increases the vulnerability of the steatotic liver to IR. Nuclear Acly thus may serve as a potential therapeutic target for future interventions in hepatic IR injury, particularly in the context of steatosis.
Collapse
Affiliation(s)
- Wenbin Gao
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Zhan M, Liu D, Yao L, Wang W, Zhang R, Xu Y, Wang Z, Yan Q, Fang Q, Du J, Chen L. Gas6/AXL Alleviates Hepatic Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via the PI3K/AKT Pathway. Transplantation 2024; 108:e357-e369. [PMID: 38725107 PMCID: PMC11495534 DOI: 10.1097/tp.0000000000005036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 10/24/2024]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is a major cause of complications in clinical liver surgery. AXL receptor tyrosine kinase (AXL) is a member of the TAM receptor tyrosine kinase family (TYRO3, AXL, and MERTK). Our previous study has shown that AXL expression was markedly upregulated in liver transplantation patients. However, the underlying mechanism of AXL in hepatic I/R injury remains unclear. METHODS A mouse liver warm I/R model and a primary hepatocyte hypoxia/reoxygenation model were established to investigate the role of AXL activation and ferroptosis in hepatic I/R injury by pretreating with recombinant mouse growth arrest-specific protein 6 (AXL activator) or R428 (AXL inhibitor). Moreover, we used LY294002 (phosphatidylinositol 3-kinase [PI3K] inhibitor) to evaluate the relationship between the PI3K/AKT (the Ser and Thr kinase AKT) pathway and ferroptosis in hepatic I/R injury. RESULTS Hepatic I/R injury decreased phosphorylation AXL expression and enhanced ferroptosis in liver transplantation patients and hepatic I/R-subjected mice. AXL activation attenuated lipid peroxidation and ferroptosis in hepatic I/R injury in vivo and in vitro. Inhibition of AXL activation exacerbated liver pathological damage and liver dysfunction, as well as iron accumulation and lipid peroxidation in hepatic I/R injury. Mechanistically, activated growth arrest-specific protein 6/AXL and its downstream PI3K/AKT signaling pathway inhibited ferroptosis during hepatic I/R injury. CONCLUSIONS AXL activation protects against hepatic I/R injury by preventing ferroptosis through the PI3K/AKT pathway. This study is the first investigation on the AXL receptor and ferroptosis, and activating AXL to mitigate ferroptosis may be an innovative therapeutic strategy to combat hepatic I/R injury.
Collapse
Affiliation(s)
- Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lei Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weizhi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruixin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yaru Xu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Infectious Disease Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Suzuki Y, Yamada T, Enoki Y, Matsumoto K, Komatsu T, Taguchi K. Hydrosulphide-methaemoglobin-albumin cluster: a hydrogen sulphide donor. J Mater Chem B 2024. [PMID: 39415591 DOI: 10.1039/d4tb01621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Methaemoglobin (metHb) possesses inherent characteristics that facilitate reversible binding to hydrogen sulphide. Exogenous hydrogen sulphide supplementation imparts beneficial bioactive effects, including antioxidant and anti-inflammatory; hence, we hypothesized that the metHb-hydrogen sulphide complex could act as a hydrogen sulphide donor for medication. In this study, we prepared a hydrosulphide-metHb-albumin (H2S-metHb-albumin) cluster and examined its applicability as a hydrogen sulphide donor in the mice model of hepatic ischemia-reperfusion injury. Structural analysis revealed that the H2S-metHb-albumin cluster exhibited a nanostructure wherein one metHb was wrapped by an average of three albumins, and hydrogen sulphide was bound to the haem. Additionally, the H2S-metHb-albumin cluster exhibited low-pH responsiveness, leading to sustained release of hydrogen sulphide. Owing to these structural and pharmaceutical characteristics, the severity of hepatic ischemia-reperfusion injury was alleviated via antioxidant and anti-inflammatory effects of the H2S-metHb-albumin cluster treatment. The protective effects were more potent in the H2S-metHb-albumin cluster compared to that in a conventional hydrogen sulphide donor (sodium hydrogen sulphide). No abnormal signs of toxic and biological responses were observed after the H2S-metHb-albumin cluster administration, confirming high biological compatibility. These results successfully establish the proof of concept that the H2S-metHb-albumin cluster is a promising hydrogen sulphide donor. To the best of our knowledge, this is the first report demonstrating the remarkable potential of metHb as a biomaterial for hydrogen sulphide donors.
Collapse
Affiliation(s)
- Yuto Suzuki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
4
|
Concors SJ, Hernandez PT, O'Brien C, DePaolo J, Murken DR, Aufhauser DD, Wang Z, Xiong Y, Krumeich L, Ge G, Beier UH, Bhatti TR, Kozikowski AP, Avelar LAA, Kurz T, Hancock WW, Levine MH. Differential Effects of HDAC6 Inhibition Versus Knockout During Hepatic Ischemia-Reperfusion Injury Highlight Importance of HDAC6 C-terminal Zinc-finger Ubiquitin-binding Domain. Transplantation 2024; 108:2084-2092. [PMID: 38685198 DOI: 10.1097/tp.0000000000005042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) causes significant morbidity in liver transplantation among other medical conditions. IRI following liver transplantation contributes to poor outcomes and early graft loss. Histone/protein deacetylases (HDACs) regulate diverse cellular processes, play a role in mediating tissue responses to IRI, and may represent a novel therapeutic target in preventing IRI in liver transplantation. METHODS Using a previously described standardized model of murine liver warm IRI, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were assessed at 24 and 48 h after reperfusion to determine the effect of different HDAC inhibitors. RESULTS Broad HDAC inhibition with trichostatin-A (TSA) was protective against hepatocellular damage ( P < 0.01 for AST and P < 0.05 for ALT). Although HDAC class I inhibition with MS-275 provided statistically insignificant benefit, tubastatin-A (TubA), an HDAC6 inhibitor with additional activity against HDAC10, provided significant protection against liver IRI ( P < 0.01 for AST and P < 0.001 for ALT). Surprisingly genetic deletion of HDAC6 or -10 did not replicate the protective effects of HDAC6 inhibition with TubA, whereas treatment with an HDAC6 BUZ-domain inhibitor, LakZnFD, eliminated the protective effect of TubA treatment in liver ischemia ( P < 0.01 for AST and P < 0.01 for ALT). CONCLUSIONS Our findings suggest TubA, a class IIb HDAC inhibitor, can mitigate hepatic IRI in a manner distinct from previously described class I HDAC inhibition and requires the HDAC6 BUZ-domain activity. Our data corroborate previous findings that HDAC targets for therapeutic intervention of IRI may be tissue-specific, and identify HDAC6 inhibition as a possible target in the treatment of liver IRI.
Collapse
Affiliation(s)
- Seth J Concors
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Paul T Hernandez
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Ciaran O'Brien
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - John DePaolo
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Douglas R Murken
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | | | - Zhonglin Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lauren Krumeich
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Guanghui Ge
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Pennsylvania and University of Pennsylvania, Philadelphia, PA
| | - Tricia R Bhatti
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Leandro A Alves Avelar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Matthew H Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
5
|
Whalen C, Verma A, Kurashima K, Carter J, Nazzal H, Jain A. Novel Models for Assessing and Pathophysiology of Hepatic Ischemia-Reperfusion Injury Mechanisms. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1507. [PMID: 39336548 PMCID: PMC11434406 DOI: 10.3390/medicina60091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major cause of postoperative hepatic dysfunction and liver failure involving cellular damage to previously ischemic tissues to which blood flow is restored. The reestablishment of blood flow is essential for salvaging ischemic tissues. The reperfusion itself, however, can paradoxically lead to further cellular damage, which involves a multi-factorial process resulting in extensive tissue damage, which can threaten the function and viability of the liver and other organ systems. The following review outlines multiple models for in-lab analysis of the various hepatic IRI mechanisms, including murine, porcine, cell lines, and machine perfusion models.
Collapse
Affiliation(s)
- Connor Whalen
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Arun Verma
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kento Kurashima
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jasmine Carter
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Hala Nazzal
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ajay Jain
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
6
|
Esser H, Kilpatrick AM, Man TY, Aird R, Rodrigo-Torres D, Buch ML, Boulter L, Walmsley S, Oniscu GC, Schneeberger S, Ferreira-Gonzalez S, Forbes SJ. Primary cilia as a targetable node between biliary injury, senescence and regeneration in liver transplantation. J Hepatol 2024:S0168-8278(24)02302-X. [PMID: 38879173 DOI: 10.1016/j.jhep.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND & AIMS Biliary complications are a major cause of morbidity and mortality in liver transplantation. Up to 25% of patients that develop biliary complications require additional surgical procedures, re-transplantation or die in the absence of a suitable regraft. Here, we investigate the role of the primary cilium, a highly specialised sensory organelle, in biliary injury leading to post-transplant biliary complications. METHODS Human biopsies were used to study the structure and function of primary cilia in liver transplant recipients that develop biliary complications (n = 7) in comparison with recipients without biliary complications (n = 12). To study the biological effects of the primary cilia during transplantation, we generated murine models that recapitulate liver procurement and cold storage, and assessed the elimination of the primary cilia in biliary epithelial cells in the K19CreERTKif3afl/fl mouse model. To explore the molecular mechanisms responsible for the observed phenotypes we used in vitro models of ischemia, cellular senescence and primary cilia ablation. Finally, we used pharmacological and genetic approaches to target cellular senescence and the primary cilia, both in mouse models and discarded human donor livers. RESULTS Prolonged ischemic periods before transplantation result in ciliary shortening and cellular senescence, an irreversible cell cycle arrest that blocks regeneration. Our results indicate that primary cilia damage results in biliary injury and a loss of regenerative potential. Senescence negatively impacts primary cilia structure and triggers a negative feedback loop that further impairs regeneration. Finally, we explore how targeted interventions for cellular senescence and/or the stabilisation of the primary cilia improve biliary regeneration following ischemic injury. CONCLUSIONS Primary cilia play an essential role in biliary regeneration and we demonstrate that senolytics and cilia-stabilising treatments provide a potential therapeutic opportunity to reduce the rate of biliary complications and improve clinical outcomes in liver transplantation. IMPACT AND IMPLICATIONS Up to 25% of liver transplants result in biliary complications, leading to additional surgery, retransplants, or death. We found that the incidence of biliary complications is increased by damage to the primary cilium, an antenna that protrudes from the cell and is key to regeneration. Here, we show that treatments that preserve the primary cilia during the transplant process provide a potential solution to reduce the rates of biliary complications.
Collapse
Affiliation(s)
- Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Alastair Morris Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Madita Lina Buch
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh EH4 2XU, UK
| | - Sarah Walmsley
- Centre for Inflammation Research (CIR), University of Edinburgh. The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Gabriel Corneliu Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh; 51 Little France Crescent, Edinburgh EH16 4SA, UK; Division of Transplantation, CLINTEC, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Centre for Inflammation Research (CIR), University of Edinburgh. The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Stuart John Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
7
|
Zhang Y, Lv J, Bai J, Zhang X, Wu G, Lei X, Li W, Zhang Z. METTL3 Modulates TXNIP Expression to Affect the Activation of NLRP3 Inflammasome in Hepatic Cells Under Oxygen-Glucose Deprivation/Reperfusion Injury. Inflammation 2024; 47:1028-1040. [PMID: 38236385 DOI: 10.1007/s10753-023-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is still a major risk factor and unsolved problem in hepatic surgery. Methyltransferase-like 3 (METTL3), an important m6A-modified methylase, regulates inflammation and cellular stress response. In this study, we demonstrated the special role of METTL3 and its underlying mechanism in hepatic I/R injury. In the mouse model of hepatic I/R and in the oxygen-glucose deprivation and reoxygenation (OGD/R)-induced AML12 and NCTC 1469 cells, the expression of METTL3 was significantly upregulated. Inhibition of METTL3 in OGD/R-induced AML12 and NCTC 1469 cells both increased the cell viability, declined the cell apoptosis, and decreased the reactive oxygen species (ROS) and the release levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), diminishing NLRP3 and Caspase1-p20 expressions. Moreover, METTL3 positively modulated TXNIP expression in an m6A manner. TXNIP overexpression reversed the effects of METTL3 knockdown on OGD/R-induced injury in AML12 cells. Furthermore, inhibition of NLRP3 inflammasome activity contributed to the protective effects of TXNIP knockdown in OGD/R-induced AML12 cells. In conclusion, METTL3 knockdown alleviated OGD/R-induced hepatocyte injury, and the specific mechanism was associated with the inhibition of NLRP3 inflammasome activation, which was attributed to the reduction of TXNIP in an m6A-dependent manner.
Collapse
Affiliation(s)
- Yong Zhang
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province, 710004, China
| | - Jianrui Lv
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province, 710004, China
| | - Jian Bai
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gang Wu
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province, 710004, China
| | - Xiaoming Lei
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province, 710004, China
| | - Wei Li
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province, 710004, China
| | - Zhenni Zhang
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province, 710004, China.
| |
Collapse
|
8
|
Yao S, Kasargod A, Chiu R, Torgerson TR, Kupiec-Weglinski JW, Dery KJ. The Coming Age of Antisense Oligos for the Treatment of Hepatic Ischemia/Reperfusion (IRI) and Other Liver Disorders: Role of Oxidative Stress and Potential Antioxidant Effect. Antioxidants (Basel) 2024; 13:678. [PMID: 38929116 PMCID: PMC11200799 DOI: 10.3390/antiox13060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Imbalances in the redox state of the liver arise during metabolic processes, inflammatory injuries, and proliferative liver disorders. Acute exposure to intracellular reactive oxygen species (ROS) results from high levels of oxidative stress (OxS) that occur in response to hepatic ischemia/reperfusion injury (IRI) and metabolic diseases of the liver. Antisense oligonucleotides (ASOs) are an emerging class of gene expression modulators that target RNA molecules by Watson-Crick binding specificity, leading to RNA degradation, splicing modulation, and/or translation interference. Here, we review ASO inhibitor/activator strategies to modulate transcription and translation that control the expression of enzymes, transcription factors, and intracellular sensors of DNA damage. Several small-interfering RNA (siRNA) drugs with N-acetyl galactosamine moieties for the liver have recently been approved. Preclinical studies using short-activating RNAs (saRNAs), phosphorodiamidate morpholino oligomers (PMOs), and locked nucleic acids (LNAs) are at the forefront of proof-in-concept therapeutics. Future research targeting intracellular OxS-related pathways in the liver may help realize the promise of precision medicine, revolutionizing the customary approach to caring for and treating individuals afflicted with liver-specific conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Ma R, Xie N, Shu Y, Wu Y, He P, Xiang Y, Zhou Y, Wang Y. Cannabidiol alleviates carbon tetrachloride-induced liver fibrosis in mice by regulating NF-κB and PPAR-α pathways. Exp Biol Med (Maywood) 2024; 249:10141. [PMID: 38711461 PMCID: PMC11070938 DOI: 10.3389/ebm.2024.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 05/08/2024] Open
Abstract
Liver fibrosis has become a serious public health problem that can develop into liver cirrhosis and hepatocellular carcinoma and even lead to death. Cannabidiol (CBD), which is an abundant nonpsychoactive component in the cannabis plant, exerts cytoprotective effects in many diseases and under pathological conditions. In our previous studies, CBD significantly attenuated liver injury induced by chronic and binge alcohol in a mouse model and oxidative bursts in human neutrophils. However, the effects of CBD on liver fibrosis and the underlying mechanisms still need to be further explored. A mouse liver fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and used to explore the protective properties of CBD and related molecular mechanisms. After the injection protocol, serum samples and livers were used for molecular biology, biochemical and pathological analyses. The results showed that CBD could effectively improve liver function and reduce liver damage and liver fibrosis progression in mice; the expression levels of transaminase and fibrotic markers were reduced, and histopathological characteristics were improved. Moreover, CBD inhibited the levels of inflammatory cytokines and reduced the protein expression levels of p-NF-κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB and activating PPAR-α. In conclusion, these results suggest that the hepatoprotective effects of CBD may be due to suppressing the inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-α signaling pathways might be involved in this process.
Collapse
Affiliation(s)
- Run Ma
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Na Xie
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanhui Shu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yafeng Wu
- Clinical Laboratory, The Fourth People’s Hospital of Ya’an City, Ya’an, Sichuan, China
| | - Ping He
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yining Xiang
- Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Zhou
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuping Wang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
An W, Xu W, Zhou Y, Huang C, Huang W, Huang J. Renal-clearable nanoprobes for optical imaging and early diagnosis of diseases. Biomater Sci 2024; 12:1357-1370. [PMID: 38374725 DOI: 10.1039/d3bm01776a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Optical imaging has played an indispensable role in clinical diagnostics and fundamental biomedical research due to its high sensitivity, high spatiotemporal resolution, cost-effectiveness, and easy accessibility. However, the issues of light scattering and low tissue penetration make them effective only for superficial imaging. To overcome these issues, renal-clearable optical nanoprobes have recently emerged, which are activated by abnormal disease-associated biomarkers and initiate a pharmacokinetic switch by undergoing degradation and eventually releasing signal reporters into urine, for simple imaging and sensitive optical in vitro urinalysis. In this review, we focus on the advancements of renal-clearable organic nanoprobes for optical imaging and remote urinalysis. The versatile design strategies of these nanoprobes are discussed along with their sensing mechanisms toward biomolecules of interest as well as their unique biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation renal-clearable nanoprobes for in vivo imaging and in vitro urinalysis.
Collapse
Affiliation(s)
- Wei An
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiping Xu
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ya Zhou
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Changwen Huang
- General surgery department, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaguo Huang
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Liss KHH, Mousa M, Bucha S, Lutkewitte A, Allegood J, Cowart LA, Finck BN. Dynamic changes in the mouse hepatic lipidome following warm ischemia reperfusion injury. Sci Rep 2024; 14:3584. [PMID: 38351300 PMCID: PMC10864394 DOI: 10.1038/s41598-024-54122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Liver failure secondary to metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common cause for liver transplantation in many parts of the world. Moreover, the prevalence of MASLD not only increases the demand for liver transplantation, but also limits the supply of suitable donor organs because steatosis predisposes grafts to ischemia-reperfusion injury (IRI). There are currently no pharmacological interventions to limit hepatic IRI because the mechanisms by which steatosis leads to increased injury are unclear. To identify potential novel mediators of IRI, we used liquid chromatography and mass spectrometry to assess temporal changes in the hepatic lipidome in steatotic and non-steatotic livers after warm IRI in mice. Our untargeted analyses revealed distinct differences between the steatotic and non-steatotic response to IRI and highlighted dynamic changes in lipid composition with marked changes in glycerophospholipids. These findings enhance our knowledge of the lipidomic changes that occur following IRI and provide a foundation for future mechanistic studies. A better understanding of the mechanisms underlying such changes will lead to novel therapeutic strategies to combat IRI.
Collapse
Affiliation(s)
- Kim H H Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Mousa
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shria Bucha
- Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Lutkewitte
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian N Finck
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
He J, Tang MY, Liu LX, Kong CX, Chen W, Wang L, Zhi SB, Sun HW, Huang YC, Chen GY, Xin HB, Deng KY. Myeloid Deletion of Cdc42 Protects Liver From Hepatic Ischemia-Reperfusion Injury via Inhibiting Macrophage-Mediated Inflammation in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:965-981. [PMID: 38342302 PMCID: PMC11047801 DOI: 10.1016/j.jcmgh.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.
Collapse
Affiliation(s)
- Jing He
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Meng-Yu Tang
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Li-Xin Liu
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Chen-Xian Kong
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wen Chen
- College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Lu Wang
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Shao-Bin Zhi
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hong-Wei Sun
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yu-Chun Huang
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China
| | - Guo-Yu Chen
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and Technology, Institution of Translation Medicine, Nanchang University, Nanchang, Jiangxi, PR China; College of Life Science, Nanchang University, Nanchang, Jiangxi, PR China; College of Pharmacy, Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
13
|
Liu S, Xiao X, Zhang L, Wang J, Zhao W, Liu H, Liao R, Li Z, Xu M, Guo J, Zhou B, Du C, Peng Q, Jiang N. Reprogramming Exosomes to Escape from Immune Surveillance for Mitochondrial Protection in Hepatic Ischemia-Reperfusion Injury. Theranostics 2024; 14:116-132. [PMID: 38164154 PMCID: PMC10750206 DOI: 10.7150/thno.88061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Therapeutic interventions such as synthetic drugs and microRNA (miR) modulators have created opportunities for mitigating hepatic ischemia/reperfusion injury (HIRI) by alleviating mitochondrial dysfunction. However, delivering multi-therapeutic ingredients with low toxicity to hepatocytes still lags behind its development. Methods: In this study, we endowed exosomes with delivery function to concentrate on hepatocytes for multidimensionally halting mitochondria dysfunction during HIRI. Concretely, exosomes were reprogrammed with a transmembrane protein CD47, which acted as a "camouflage cloak" to mimic the "don't eat me" mechanism to escape from immune surveillance. Besides, HuR was engineered bridging to the membrane by fusing with CD47 and located in the cytoplasm for miR loading. Results: This strategy successfully delivered dual payloads to hepatocytes and efficiently protected mitochondria by inhibiting the opening of mitochondrial permeability transition pore (mPTP) and upregulating mitochondrial transcription factor A (TFAM), respectively. Conclusions: The reprogramming of exosomes with CD47 and HuR for targeted delivery of CsA and miR inhibitors represents a promising therapeutic strategy for addressing HIRI. This approach shows potential for safe and effective clinical applications in the treatment of HIRI.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - La Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Haichuan Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zhi Li
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, People's Republic of China
| | - Mengxia Xu
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, People's Republic of China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
- Bijie Municipal Health Bureau, Guizhou province, 551700, People's Republic of China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, P. R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
14
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
15
|
Morales-Carrizales DA, Gopar-Cuevas Y, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Garcia-Garcia A, Rodriguez-Rocha H. A neuroprotective dose of trehalose is harmless to metabolic organs: comprehensive histopathological analysis of liver, pancreas, and kidney. Daru 2023; 31:135-144. [PMID: 37393413 PMCID: PMC10624785 DOI: 10.1007/s40199-023-00468-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Trehalose is a non-reducing disaccharide synthesized by lower organisms. It has recently received special attention because of its neuroprotective properties by stimulating autophagy in Parkinson's disease (PD) models. Therefore, evaluating whether trehalose affects metabolic organs is vital to determine its neurotherapeutic safety. METHODS We validated the trehalose neuroprotective dosage in a PD model induced with intraperitoneal paraquat administration twice weekly for 7 weeks. One week before paraquat administration, mice were treated with trehalose in the drinking water and continued along with paraquat treatment. Histological and morphometrical analyses were conducted on the organs involved in trehalose metabolism, including the liver, pancreas, and kidney. RESULTS Paraquat-induced dopaminergic neuronal loss was significantly decreased by trehalose. After trehalose treatment, the liver morphology, the mononucleated/binucleated hepatocytes percentage, and sinusoidal diameter remained unchanged in each liver lobes. Endocrine and exocrine pancreas's histology was not affected, nor was any fibrotic process observed. The islet of Langerhans's structure was preserved when analyzing the area, the largest and smallest diameter, and circularity. Renal morphology remained undamaged, and no changes were identified within the glomerular basement membrane. The renal corpuscle structure did not suffer alterations in the Bowman's space, area, diameter, circularity, perimeter, and cellularity. Besides, the renal tubular structures's luminal area and internal and external diameter were preserved. CONCLUSION Our study demonstrates that systemic trehalose administration preserved the typical histological architecture of the organs involved in its metabolism, supporting its safety as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Diego Armando Morales-Carrizales
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Yareth Gopar-Cuevas
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
16
|
Sandoval C, Reyes C, Rosas P, Godoy K, Souza-Mello V, Farías J. Effectiveness of Cerium Oxide Nanoparticles in Non-Alcoholic Fatty Liver Disease Evolution Using In Vivo and In Vitro Studies: A Systematic Review. Int J Mol Sci 2023; 24:15728. [PMID: 37958712 PMCID: PMC10648767 DOI: 10.3390/ijms242115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of liver abnormalities, from benign steatosis to nonalcoholic steatohepatitis (NASH). Because of their antioxidant capabilities, CeNPs have sparked a lot of interest in biological applications. This review evaluated the effectiveness of CeNPs in NAFLD evolution through in vivo and in vitro studies. Databases such as MEDLINE, EMBASE, Scopus, and Web of Science were looked for studies published between 2012 and June 2023. Quality was evaluated using PRISMA guidelines. We looked at a total of nine primary studies in English carried out using healthy participants or HepG2 or LX2 cells. Quantitative data such as blood chemical markers, lipid peroxidation, and oxidative status were obtained from the studies. Our findings indicate that NPs are a possible option to make medications safer and more effective. In fact, CeNPs have been demonstrated to decrease total saturated fatty acids and foam cell production (steatosis), reactive oxygen species production and TNF-α (necrosis), and vacuolization in hepatic tissue when used to treat NAFLD. Thus, CeNP treatment may be considered promising for liver illnesses. However, limitations such as the variation in durations between studies and the utilization of diverse models to elucidate the etiology of NAFLD must be considered. Future studies must include standardized NAFLD models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolina Reyes
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Pamela Rosas
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 22775-000, Brazil;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
17
|
Radovskiy AM, Bautin AE, Marichev AO, Osovskikh VV, Semenova NY, Artyukhina ZE, Murashova LA, Zinserling VA. NO Addition during Gas Oxygenation Reduces Liver and Kidney Injury during Prolonged Cardiopulmonary Bypass. PATHOPHYSIOLOGY 2023; 30:484-504. [PMID: 37873857 PMCID: PMC10594502 DOI: 10.3390/pathophysiology30040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Objective. To evaluate the effect of NO added to the sweep gas of the oxygenator during cardiopulmonary bypass (CPB) on the liver and kidneys in pigs. Methods. An experiment was carried out on 10 pigs undergoing cardiac surgery using CPB. NO was added to the sweep gas of the oxygenator at a concentration of 100 ppm for the animals in the experimental group (CPB-NO, n = 5). Animals in the control group (CPB-contr, n = 5) did not receive NO in the sweep gas of the oxygenator. The CPB lasted 4 h, followed by postoperative monitoring for 12 h. To assess the injury to the liver and kidneys, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) were determined initially, at weaning from the CPB, and 6 and 12 h after weaning from the CPB. The glomerular filtration rate (GFR) was evaluated initially, at weaning from the CPB, and 6 and 12 h after weaning from the CPB. A pathomorphological study of the liver and kidneys was performed using semiquantitative morphometry. Results. The long four-hour period of CPB deliberately used in our experiment caused liver and kidney injury. In the CPB-contr group, an increase in the ALT concentration was found: 43 (34; 44) U/L at baseline to 82 (53; 99) U/L 12 h after CPB, p < 0.05. The AST concentration in the CPB-contr group increased from 25 (17; 26) U/L at baseline to 269 (164; 376) U/L 12 h after CPB, p < 0.05. We found no significant increase in the ALT and AST concentrations in the CPB-NO group. There were no significant differences in ALT and AST concentrations between the CPB-NO and CPB-contr groups at all the study time-points. In the CPB-contr group, an increase in the creatinine level was found from 131 (129; 133) µmol/L at baseline to 273 (241; 306) µmol/L 12 h after CPB, p < 0.05. We found no significant increase in creatinine level in the CPB-NO group. Creatinine levels in the CPB-NO group were significantly lower than in the CPB-contr group 12 h after weaning from CPB: 183 (168; 196) vs. 273 (241; 306) µmol/L; p = 0.008. The GFR in the CPB-NO group was significantly higher than in the CPB-contr group 6 h after weaning from CPB: 78.9 (77.8; 82.3) vs. 67.9 (62.3; 69.2) mL/min; p = 0.016. GFR was significantly higher in the CPB-NO group than in the CPB-contr group 12 h after weaning from CPB: 67.7 (65.5; 68.0) vs. 50.3 (48.7; 54.9) mL/min; p = 0.032. We found no significant differences between the study groups in the level of NGAL. We found several differences between the groups in the pathomorphological study. Conclusions. NO added to the sweep gas of the oxygenator reduces creatinine levels and increases GFR during prolonged CPB injury. Further research is required.
Collapse
|
18
|
Cao Q, Wang R, Niu Z, Chen T, Azmi F, Read SA, Chen J, Lee VW, Zhou C, Julovi S, Huang Q, Wang YM, Starkey MR, Zheng G, Alexander SI, George J, Wang Y, Harris DC. Type 2 innate lymphoid cells are protective against hepatic ischaemia/reperfusion injury. JHEP Rep 2023; 5:100837. [PMID: 37691688 PMCID: PMC10482753 DOI: 10.1016/j.jhepr.2023.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 09/12/2023] Open
Abstract
Background and Aims Although type 2 innate lymphoid cells (ILC2s) were originally found to be liver-resident lymphocytes, the role and importance of ILC2 in liver injury remains poorly understood. In the current study, we sought to determine whether ILC2 is an important regulator of hepatic ischaemia/reperfusion injury (IRI). Methods ILC2-deficient mice (ICOS-T or NSG) and genetically modified ILC2s were used to investigate the role of ILC2s in murine hepatic IRI. Interactions between ILC2s and eosinophils or macrophages were studied in coculture. The role of human ILC2s was assessed in an immunocompromised mouse model of hepatic IRI. Results Administration of IL-33 prevented hepatic IRI in association with reduction of neutrophil infiltration and inflammatory mediators in the liver. IL-33-treated mice had elevated numbers of ILC2s, eosinophils, and regulatory T cells. Eosinophils, but not regulatory T cells, were required for IL-33-mediated hepatoprotection in IRI mice. Depletion of ILC2s substantially abolished the protective effect of IL-33 in hepatic IRI, indicating that ILC2s play critical roles in IL-33-mediated liver protection. Adoptive transfer of ex vivo-expanded ILC2s improved liver function and attenuated histologic damage in mice subjected to IRI. Mechanistic studies combining genetic and adoptive transfer approaches identified a protective role of ILC2s through promoting IL-13-dependent induction of anti-inflammatory macrophages and IL-5-dependent elevation of eosinophils in IRI. Furthermore, in vivo expansion of human ILC2s by IL-33 or transfer of ex vivo-expanded human ILC2s ameliorated hepatic IRI in an immunocompromised mouse model of hepatic IRI. Conclusions This study provides insight into the mechanisms of ILC2-mediated liver protection that could serve as therapeutic targets to treat acute liver injury. Impact and Implications We report that type 2 innate lymphoid cells (ILC2s) are important regulators in a mouse model of liver ischaemia/reperfusion injury (IRI). Through manipulation of macrophage and eosinophil phenotypes, ILC2s mitigate liver inflammation and injury during liver IRI. We propose that ILC2s have the potential to serve as a therapeutic tool for protecting against acute liver injury and lay the foundation for translation of ILC2 therapy to human liver disease.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Farhana Azmi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Vincent W.S. Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chunze Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuan Min Wang
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C.H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Zhang Y, Zhang L, Zhao Y, He J, Zhang Y, Zhang X. PGC-1α inhibits M2 macrophage polarization and alleviates liver fibrosis following hepatic ischemia reperfusion injury. Cell Death Discov 2023; 9:337. [PMID: 37679346 PMCID: PMC10484946 DOI: 10.1038/s41420-023-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Oxidative stress can induce inflammation, promoting macrophage polarization and liver fibrosis following hepatic ischemia-reperfusion (I/R). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has anti-oxidant and anti-inflammatory activity. However, how PGC-1α regulates macrophage polarization following hepatic I/R remains largely unknown. Male C57BL/6 wild-type mice were pre-treated with vehicle or trichostatin A (TSA) for 2 days and subjected to surgical induction of I/R. Liver injury and fibrosis in individual mice were examined longitudinally and the expression levels of IL-6, STAT3, M2-type macrophage markers, Collagen I and α-SMA in the liver of mice were analyzed by immunohistochemistry, RT-qPCR and Western blot. The potential interaction of PGC-1α with phosphorylated NF-kBp65 was determined by immunoprecipitation. The impacts of PGC-1α deficiency in hepatocytes on their IL-6 production and macrophage polarization were tested in a Transwell co-culture system. Moreover, the M2-type macrophage polarization and liver fibrosis were examined in hepatocyte-specific PGC-1α knockout mice and AAV8-mediated PGC-1α over-expressing mice following liver I/R. The down-regulated PGC-1α expression by I/R was negatively correlated with IL-6 levels in the liver of I/R mice and PGC-1α deficiency enhanced IL-6 expression, STAT3 activation and M2-type macrophage polarization in the I/R mice, which were abrogated by TSA treatment. In addition, PGC-1α directly interacted with phosphorylated NF-kBp65 in I/R livers. Hepatocyte-specific PGC-1α deficiency increased IL-6 production and promoted macrophage polarization toward M2 type when co-culture. More importantly, administration with AAV8-PGC-1α rescued the I/R-induced liver fibrosis by inhibiting the IL-6/JAK2/STAT3 signaling and M2-type macrophage polarization in the liver. These results suggest that PGC-1α may alleviate the I/R-induced liver fibrosis by attenuating the IL-6/JAK2/STAT3 signaling to limit M2-type macrophage polarization. PGC-1α may be a therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Linzhong Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Gastroenterology, Air Force Medical Center, Beijing, China
| | - Yanmian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing He
- Department of Internal Medicine, School Hospital, Communication University of China, Beijing, China
| | - Yanghao Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Ge J, Cai W, Niu N, Wen Y, Wu Q, Wang L, Wang D, Tang BZ, Zhang R. Viscosity-responsive NIR-II fluorescent probe with aggregation-induced emission features for early diagnosis of liver injury. Biomaterials 2023; 300:122190. [PMID: 37315385 DOI: 10.1016/j.biomaterials.2023.122190] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
As the primary organ for drug metabolism and detoxification, the liver is susceptible to damage and seriously impaired function. In situ diagnosing and real-time monitoring of liver damage are thus of great significance but remain limited owing to the lack of reliable in vivo visualization protocols with minimal invasion. Herein, we reported for the first time an aggregation-induced emission (AIE) probe, namely DPXBI, emitting light in the second near-infrared window (NIR-II) for early diagnosis liver injury. DPXBI featured by strong intramolecular rotations, excellent aqueous solubility and robust chemical stability, is powerfully sensitive to viscosity alteration affording rapid response and high selectivity, through NIR-Ⅱ fluorescence intensity changes. The prominent viscosity-responsive performance enables DPXBI to accurately monitor both drug-induced liver injury (DILI) and hepatic ischemia-reperfusion injury (HIRI) with excellent image contrast to the background. By using the presented strategy, the detection of liver injury in mouse model can be achieved at least several hours earlier than typical clinical assays. Moreover, DPXBI is able to dynamically track the liver improvement process in vivo in the case of DILI when the hepatotoxicity is alleviated by using hepatoprotective medication. All these results demonstrate that DPXBI is a promising probe for investigating viscosity-associated pathological and physiological processes.
Collapse
Affiliation(s)
- Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenwen Cai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yating Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen City, Guangdong, 518172, China.
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
21
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
22
|
Zhong C, Yang J, Zhang Y, Fan X, Fan Y, Hua N, Li D, Jin S, Li Y, Chen P, Chen Y, Cai X, Zhang Y, Jiang L, Yang W, Yu P, Lin H. TRPM2 Mediates Hepatic Ischemia-Reperfusion Injury via Ca 2+-Induced Mitochondrial Lipid Peroxidation through Increasing ALOX12 Expression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0159. [PMID: 37275121 PMCID: PMC10232356 DOI: 10.34133/research.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury is a serious clinical problem that complicates liver resection and transplantation. Despite recent advances in understanding of the pathophysiology of hepatic IR injury, effective interventions and therapeutics are still lacking. Here, we examined the role of transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable, non-selective cation channel, in mediating hepatic IR injury. Our data showed that TRPM2 deficiency attenuated IR-induced liver dysfunction, inflammation, and cell death in mice. Moreover, RNA sequencing analysis indicated that TRPM2-induced IR injury occurs via ferroptosis-related pathways. Consistently, as a ferroptosis inducer, (1S,3R)-RSL3 treatment induced mitochondrial dysfunction in hepatocytes and a TRPM2 inhibitor suppressed this. Interestingly, TRPM2-mediated calcium influx caused mitochondrial calcium accumulation via the mitochondrial Ca2+-selective uniporter and increased the expression level of arachidonate 12-lipoxygenase (ALOX12), which results in mitochondrial lipid peroxidation during hepatic IR injury. Furthermore, hepatic IR injury-induced ferroptosis was obviously relieved by a TRPM2 inhibitor or calcium depletion, both in vitro and in vivo. Collectively, these findings demonstrate a crucial role for TRPM2-mediated ferroptosis in hepatic IR injury via increased Ca2+-induced ALOX12 expression, indicating that pharmacological inhibition of TRPM2 may provide an effective therapeutic strategy for hepatic IR injury-related diseases, such as during liver resection and transplantation.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yang Fan
- Department of Toxicology and Department of Medical Oncology of Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ning Hua
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province,
Xinxiang Medical University, 453003 Xinxiang, Henan, P.R. China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yongle Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Xiaobo Cai
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Yi Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Linhua Jiang
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province,
Xinxiang Medical University, 453003 Xinxiang, Henan, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Peilin Yu
- Department of Toxicology and Department of Medical Oncology of Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University, Hangzhou 310020, P.R. China
- College of Biomedical Engineering and Instrument Science,
Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
23
|
Robin A, Mackowiak C, Bost R, Dujardin F, Barbarin A, Thierry A, Hauet T, Pellerin L, Gombert JM, Salamé E, Herbelin A, Barbier L. Early activation and recruitment of invariant natural killer T cells during liver ischemia-reperfusion: the major role of the alarmin interleukin-33. Front Immunol 2023; 14:1099529. [PMID: 37228593 PMCID: PMC10203422 DOI: 10.3389/fimmu.2023.1099529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Over the past thirty years, the complexity of the αβ-T cell compartment has been enriched by the identification of innate-like T cells (ITCs), which are composed mainly of invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells. Based on animal studies using ischemia-reperfusion (IR) models, a key role has been attributed to iNKT cells in close connection with the alarmin/cytokine interleukin (IL)-33, as early sensors of cell-stress in the initiation of acute sterile inflammation. Here we have investigated whether the new concept of a biological axis of circulating iNKT cells and IL-33 applies to humans, and may be extended to other ITC subsets, namely MAIT and γδ-T cells, in the acute sterile inflammation sequence occurring during liver transplant (LT). From a prospective biological collection of recipients, we reported that LT was accompanied by an early and preferential activation of iNKT cells, as attested by almost 40% of cells having acquired the expression of CD69 at the end of LT (i.e. 1-3 hours after portal reperfusion), as opposed to only 3-4% of conventional T cells. Early activation of iNKT cells was positively correlated with the systemic release of the alarmin IL-33 at graft reperfusion. Moreover, in a mouse model of hepatic IR, iNKT cells were activated in the periphery (spleen), and recruited in the liver in WT mice, as early as the first hour after reperfusion, whereas this phenomenon was virtually missing in IL-33-deficient mice. Although to a lesser degree than iNKT cells, MAIT and γδ-T cells also seemed targeted during LT, as attested by 30% and 10% of them acquiring CD69 expression, respectively. Like iNKT cells, and in clear contrast to γδ-T cells, activation of MAIT cells during LT was closely associated with both release of IL-33 immediately after graft reperfusion and severity of liver dysfunction occurring during the first three post-operative days. All in all, this study identifies iNKT and MAIT cells in connection with IL-33 as new key cellular factors and mechanisms of acute sterile inflammation in humans. Further investigations are required to confirm the implication of MAIT and iNKT cell subsets, and to precisely assess their functions, in the clinical course of sterile inflammation accompanying LT.
Collapse
Affiliation(s)
- Aurélie Robin
- Centre Hospitalier Universitaire de Poitiers, Institut National de la Santé Et de la Recherche Médicale, Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation, Université de Poitiers, Poitiers, France
| | - Claire Mackowiak
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, Poitiers, France
| | - Romain Bost
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, Poitiers, France
| | - Fanny Dujardin
- Centre Hospitalier Universitaire (CHU) Trousseau, Pathology, Tours, France
| | - Alice Barbarin
- Centre Hospitalier Universitaire de Poitiers, Institut National de la Santé Et de la Recherche Médicale, Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation, Université de Poitiers, Poitiers, France
| | - Antoine Thierry
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Nephrology, Poitiers, France
| | - Thierry Hauet
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Biochemistry, Poitiers, France
| | - Luc Pellerin
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Biochemistry, Poitiers, France
| | - Jean-Marc Gombert
- Université de Poitiers, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Centre Hospitalier Universitaire (CHU) de Poitiers, Immunology, Poitiers, France
| | - Ephrem Salamé
- Université de Tours, Centre Hospitalier Universitaire (CHU) Trousseau, Digestive Surgery and Liver Transplantation, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Tours, France
| | - André Herbelin
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, Poitiers, France
| | - Louise Barbier
- Université de Tours, Centre Hospitalier Universitaire (CHU) Trousseau, Digestive Surgery and Liver Transplantation, Institut National de la Santé Et de la Recherche Médicale (INSERM), Ischemie Reperfusion Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), Tours, France
| |
Collapse
|
24
|
Xu Y, Chen Y, Yao M, You Y, Nie B, Zeng M, Jiang H. MicroRNA-146a Improved Acute Lung Injury Induced by hepatic Ischemia-reperfusion Injury by Inhibiting PRDX1. Dose Response 2023; 21:15593258231169805. [PMID: 37063344 PMCID: PMC10103257 DOI: 10.1177/15593258231169805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI)-induced acute lung injury (ALI) is characterized by high incidence and poor prognosis. The regulatory role of microRNA-146a (miR-146a) in HIRI has been reported, but if miR-146a could affect the progression of HIRI-induced ALI has not been reported. The mice HIRI model was established by ligating left hepatic portal vein and hepatic artery for 60 minutes and then treating with reperfusion for 4 hours. Hypoxia-reoxygenation (HR) was performed to establish cell model. The binding site between miR-146a and Peroxidase 1 (PRDX1) was predicted and validated. The levels of inflammation factors and redox markers were detected with commercial kits. Significant lower expression of miR-146a and higher expression of PRDX1 in HIRI animal model were observed. miR-146a inhibited the liver injury after HIRI induction through targeting PRDX1. miR-146a inhibited the lung injury caused by HIRI via regulating PRDX1. The inhibition of cell apoptosis and inflammation factors by miR-146a were reversed by pcDNA-PRDX1. This research demonstrated that miR-146a improved ALI caused by HIRI by inhibiting apoptosis, inflammation, oxidative condition through targeting PRDX1. This study might provide a novel thought for the prevention and treatment of ALI caused by HIRI by regulating miR-146a/PRDX1 axis.
Collapse
Affiliation(s)
- Yiping Xu
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yili Chen
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mengxia Yao
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yisheng You
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Nie
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Meina Zeng
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Hui Jiang
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Hui Jiang, Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No 420 Fuma Road, 350014, Fuzhou, Fujian Province, China.
| |
Collapse
|
25
|
Yu S, Wang K, Li Q, Wei Y, Li Y, Zhang Q, Huang P, Liang H, Sun H, Peng H, Huang X, Liu C, Zhou J, Qian J, Li C. Nonalcoholic steatohepatitis critically rewires the ischemia/reperfusion-induced dysregulation of cardiolipins and sphingolipids in mice. Hepatobiliary Surg Nutr 2023; 12:3-19. [PMID: 36860242 PMCID: PMC9944537 DOI: 10.21037/hbsn-21-133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Background Lipid dysregulation plays a fundamental role in nonalcoholic steatohepatitis (NASH), which is an emerging critical risk factor that aggravates hepatic ischemia/reperfusion (I/R) injury. However, the specific lipids that mediate the aggressive I/R injury in NASH livers have not yet been identified. Methods The mouse model of hepatic I/R injury on NASH was established on C56B/6J mice by first feeding the mice with a Western-style diet to induce NASH, then the NASH mice were subjected to surgical procedures to induce hepatic I/R injury. Untargeted lipidomics were performed to determine hepatic lipids in NASH livers with I/R injury through ultra-high performance liquid chromatography coupled with mass spectrometry. The pathology associated with the dysregulated lipids was examined. Results Lipidomics analyses identified cardiolipins (CL) and sphingolipids (SL), including ceramides (CER), glycosphingolipids, sphingosines, and sphingomyelins, as the most relevant lipid classes that characterized the lipid dysregulation in NASH livers with I/R injury. CER were increased in normal livers with I/R injury, and the I/R-induced increase of CER was further augmented in NASH livers. Metabolic pathway analysis revealed that the enzymes involved in the synthesis and degradation of CER were highly upregulated in NASH livers with I/R injury, including serine palmitoyltransferase 3 (Sptlc3), ceramide synthase 2 (Cers2), neutral sphingomyelinase 2 (Smpd3), and glucosylceramidase beta 2 (Gba2) that produced CER, and alkaline ceramidase 2 (Acer2), alkaline ceramidase 3 (Acer3), sphingosine kinase 1 (Sphk1), sphingosine-1-phosphate lyase (Sgpl1), and sphingosine-1-phosphate phosphatase 1 (Sgpp1) that catalyzed the degradation of CER. CL were not affected by I/R challenge in normal livers, but CL was dramatically reduced in NASH livers with I/R injury. Consistently, metabolic pathway analyses revealed that the enzymes catalyzing the generation of CL were downregulated in NASH-I/R injury, including cardiolipin synthase (Crls1) and tafazzin (Taz). Notably, the I/R-induced oxidative stress and cell death were found to be aggravated in NASH livers, which were possibly mediated by the reduction of CL and accumulation of CER. Conclusions The I/R-induced dysregulation of CL and SL were critically rewired by NASH, which might potentially mediate the aggressive I/R injury in NASH livers.
Collapse
Affiliation(s)
- Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiran Wei
- The First Clinical College, Southern Medical University, Guangzhou, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifan Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengxiang Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Sun
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxian Peng
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- The First Clinical College, Southern Medical University, Guangzhou, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Moradi M, Farbood Y, Mard SA, Dianat M, Goudarzi G, Khorsandi L, Seyedian SS. p-Coumaric acid has pure anti-inflammatory characteristics against hepatopathy caused by ischemia-reperfusion in the liver and dust exposure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:164-175. [PMID: 36742142 PMCID: PMC9869878 DOI: 10.22038/ijbms.2022.66192.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/30/2022] [Indexed: 02/07/2023]
Abstract
Objectives Studies show that chronic injuries like air pollution or acute damage such as hepatic ischemia-reperfusion (IR) cause various cellular pathologies such as oxidative stress, apoptosis, autophagy, and inflammation in hepatocytes. p-Coumaric acid (p-CA) is known as an antioxidant with many therapeutic impacts on inflammatory-related pathologies. In this experiment, we aimed to assess the hepatoprotective effects of p-CA on liver damage induced by dust and IR injury in adult male rats. Materials and Methods Forty-eight adult male Wistar rats were divided into 6 groups; Control (CTRL); sham; DMSO+Dust+Laparotomy (LPT); DMSO+Dust+Ischemia-reperfusion (IR); p-CA+Dust+LPT; and p-CA+Dust+IR. Clean air, DMSO, p-CA, and dust were administrated 3 days a week for 6 consecutive weeks. Animals were sacrificed, the blood samples were aspirated and the liver sections were prepared for biochemical and histopathological assessments. Results Significantly (P<0.05), the results represented that dust and IR can potentially increase the levels of ALT, AST, direct and total bilirubin, triglyceride, and cholesterol in serum. Also, MDA, TNF-α , NF-κB . HMGB-1 and ATG-7 levels were increased in hepatocytes. Gene expression of Nrf2, HOX-1, IL-6, HOTAIR, and miR-34a showed an incremental trend in the liver tissue. Total antioxidant capacity (TAC) in hepatocytes was decreased following dust exposure and IR induction. Also, miR-20b-5p, MEG3, and SIRT1 in the liver were decreased in dust and dust+IR groups. Conclusion p-CA alleviated pathological changes caused by dust exposure and IR injury. p-CA protected hepatic injury induced by dust and IR by inhibition of oxidative injury, inflammation, and autophagy.
Collapse
Affiliation(s)
- Mojtaba Moradi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Seyyed Ali Mard. Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-61-33662411; Fax: +98-61-13362411;
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran, Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Seyedian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Ferreira-Gonzalez S, Man TY, Esser H, Aird R, Kilpatrick AM, Rodrigo-Torres D, Younger N, Campana L, Gadd VL, Dwyer B, Aleksieva N, Boulter L, Macmillan MT, Wang Y, Mylonas KJ, Ferenbach DA, Kendall TJ, Lu WY, Acosta JC, Kurian D, O'Neill S, Oniscu GC, Banales JM, Krimpenfort PJ, Forbes SJ. Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage. Sci Transl Med 2022; 14:eabj4375. [PMID: 36475903 DOI: 10.1126/scitranslmed.abj4375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.
Collapse
Affiliation(s)
- Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Department of Visceral, Transplant and Thoracic Surgery, Centre of Operative Medicine, Innsbruck Medical University, Anichstrasse 35, Innsbruck 6020, Austria
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alastair M Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Nicholas Younger
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Campana
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Benjamin Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark T Macmillan
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Yinmiao Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Katie J Mylonas
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David A Ferenbach
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Timothy J Kendall
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, C/ Albert Einstein 22, Santander, 39011, Spain
| | - Dominic Kurian
- Proteomic and Metabolomics Unit, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Stephen O'Neill
- Department of Transplant Surgery, Belfast City Hospital, 51 Lisburn Road, Belfast BT9 7AB, UK
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
- Department of Clinical Surgery, University of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian 20014, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | | | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
28
|
Totonchi H, Mokarram P, Karima S, Rezaei R, Dastghaib S, Koohpeyma F, Noori S, Azarpira N. Resveratrol promotes liver cell survival in mice liver-induced ischemia-reperfusion through unfolded protein response: a possible approach in liver transplantation. BMC Pharmacol Toxicol 2022; 23:74. [PMID: 36175937 PMCID: PMC9520806 DOI: 10.1186/s40360-022-00611-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ischemia-reperfusion (I/R) of the liver is a multifactorial condition that happens during transplantation and surgery. The deleterious effects of I/R result from the acute production of reactive oxygen species (ROS), which can trigger immediate tissue damage and induce a series of destructive cellular responses, including apoptosis organ failure and inflammation. The production of ROS in the I/R process can damage the antioxidant system and cause liver damage. Resveratrol has been shown to have antioxidant properties in several investigations. Here, we address the therapeutic effect of resveratrol on I/R-induced liver injury by focusing on unfolded protein response (UPR) signaling pathway. Methods Five minutes before reperfusion, resveratrol was injected into the tail vein of mice. They were ischemic for 1 h and then re-perfused for 3 h before being slaughtered (I/R). The activity of liver enzymes and the expression levels of genes involved in the unfolded protein response pathway were used to measure the hepatic damage. Results Our results revealed that the low dose of resveratrol (0.02 and 0.2 mg/kg) post-ischemic treatment significantly reduced the ALT and AST levels. In addition, compared with the control group, the expression of UPR pathway genes GRP78, PERK, IRE1α, CHOP, and XBP1 was significantly reduced in the resveratrol group. In the mice that received lower doses of resveratrol (0.02 and 0.2 mg/kg), the histopathological changes induced by I/R were significantly improved; however, the highest dose (2 mg/kg) of resveratrol could not significantly protect and solve the I/R damage. Conclusion The findings of this study suggest that hepatic ischemia occurs after liver transplantation and that receiving low-dose resveratrol treatment before reperfusion may promote graft survival through inhibition of UPR arms, especially PERK and IRE1α. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00611-4.
Collapse
Affiliation(s)
- Hamidreza Totonchi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ramazan Rezaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Morsy MA, Ibrahim YF, Abdel Hafez SMN, Zenhom NM, Nair AB, Venugopala KN, Shinu P, Abdel-Gaber SA. Paeonol Attenuates Hepatic Ischemia/Reperfusion Injury by Modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11091687. [PMID: 36139761 PMCID: PMC9495847 DOI: 10.3390/antiox11091687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: ; Tel.: +966-5496-72245
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | | | - Nagwa M. Zenhom
- Department of Biochemistry, Faculty of Medicine, Al-Baha University, Albaha 65525, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
30
|
Owen A, Patten D, Vigneswara V, Frampton J, Newsome PN. PDGFRα/Sca-1 Sorted Mesenchymal Stromal Cells Reduce Liver Injury in Murine Models of Hepatic Ischemia-Reperfusion Injury. Stem Cells 2022; 40:1056-1070. [PMID: 35999023 PMCID: PMC9707286 DOI: 10.1093/stmcls/sxac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Liver transplantation is an effective therapy, but increasing demand for donor organs has led to the use of marginal donor organs with increased complication rates. Mesenchymal stromal cells (MSC) pleiotropically modulate aberrant immune-mediated responses and represent a potential therapy to target the inflammation seen post-transplant with marginal donor livers. To avoid the confounding effects of xenotransplantation seen in studies with human MSC, a PDGFRα/Sca-1 (PaS) sorted MSC population was used which was analogous to human MSC populations (LNGFR+Thy-1+VCAM-1Hi). PaS MSC are a well-described population that demonstrate MSC properties without evidence of clonal mutation during expansion. We demonstrate their anti-inflammatory properties herein through their suppression of T-lymphocyte proliferation in vitro and secretion of anti-inflammatory cytokines (IL-10 and OPG) after stimulation (P = .004 and P = .003). The MDR2-/- model of biliary injury and hepatic ischemia-reperfusion (HIR) injury models were used to replicate the non-anastomotic biliary complications seen following liver transplantation. Systemic MSC therapy in MDR2-/- mice led to reduced liver injury with an increase in restorative macrophages (5913 ± 333.9 vs 12 597 ± 665.8, P = .002, n = 7) and a change in lymphocyte ratios (3.55 ± 0.37 vs 2.59 ± 0.139, P = .023, n = 17), whereas subcutaneous administration of MSC showed no beneficial effect. MSC also reduced cell death in the HIR model assessed by Periodic acid-Schiff (PAS) staining (91.7% ± 2.8 vs 80.1% ± 4.6, P = .03). Systemically administered quantum dot-labeled MSC were tracked using single-cell resolution CryoViz imaging which demonstrated their sequestration in the lungs alongside retention/redistribution to injured liver tissue. MSC represent a potential novel therapy in marginal organ transplantation which warrants further study.
Collapse
Affiliation(s)
| | | | | | | | - Philip N Newsome
- Corresponding author: Philip N. Newsome, Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
| |
Collapse
|
31
|
Luteolin Pretreatment Attenuates Hepatic Ischemia-Reperfusion Injury in Mice by Inhibiting Inflammation, Autophagy, and Apoptosis via the ERK/PPARα Pathway. PPAR Res 2022; 2022:8161946. [PMID: 35966821 PMCID: PMC9366205 DOI: 10.1155/2022/8161946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury is a clinically significant process that frequently occurs in liver transplantation, partial hepatectomy, and hemorrhagic shock. The aim of this study was to explore the effectiveness of luteolin in hepatic IR injury and the underlying mechanism. BALB/c mice were randomly divided into six groups, including normal controls (NC), luteolin (50 mg/kg), sham procedure, IR+25 mg/kg luteolin, and IR+50 mg/kg luteolin group. Serum and tissue samples were collected at 6 and 24 h after reperfusion to assay liver enzymes, inflammatory factors, expression of proteins associated with apoptosis and autophagy, and factors associated with the extracellular signal-regulated kinase/peroxisome proliferator-activated receptor alpha (ERK/PPARα) pathway. Luteolin preconditioning decreased hepatocyte injury caused by ischemia-reperfusion, downregulated inflammatory factors, and inhibited apoptosis and autophagy. Luteolin also inhibited ERK phosphorylation and activated PPARα.
Collapse
|
32
|
Huang J, Xian S, Liu Y, Chen X, Pu K, Wang H. A Renally Clearable Activatable Polymeric Nanoprobe for Early Detection of Hepatic Ischemia-Reperfusion Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201357. [PMID: 35436014 DOI: 10.1002/adma.202201357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Although hepatic ischemia-reperfusion injury (IRI) represents a major complication in many clinical settings, it remains a diagnostic dilemma due to its reliance on insensitive assays or invasive biopsy. The development of an activatable polymeric nanoprobe (APNSO ) for real-time in vivo near-infrared fluorescence (NIRF) imaging and urinalysis of hepatic IRI is reported here. APNSO has a backbone comprising renally clearable fluorophore fragments and self-immolative structural units. In the presence of an oxidative stress biomarker (superoxide anion, O2 •- ) during hepatic IRI, APNSO can be fluorescently activated for in vivo NIRF imaging and depolymerized to release renally clearable fluorophores for urinalysis. By virtue of its high hepatic accumulation, sensitive response toward O2 •- , and effective release of renally clearable fluorophores, APNSO -based imaging and urinalysis detect hepatic IRI at least 7 h earlier than typical clinical assays in a mouse model. This study not only provides new opportunities for noninvasive diagnosis of hepatic IRI, but also reveals guidelines for the development of optical nanosensors for early urinalysis.
Collapse
Affiliation(s)
- Jiaguo Huang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shiyun Xian
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Yi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiaona Chen
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310003, P. R. China
| |
Collapse
|
33
|
Hallett JM, Ferreira-Gonzalez S, Man TY, Kilpatrick AM, Esser H, Thirlwell K, Macmillan MT, Rodrigo-Torres D, Dwyer BJ, Gadd VL, Ashmore-Harris C, Lu WY, Thomson JP, Jansen MA, O'Duibhir E, Starkey Lewis PJ, Campana L, Aird RE, Bate TSR, Fraser AR, Campbell JDM, Oniscu GC, Hay DC, Callanan A, Forbes SJ. Human biliary epithelial cells from discarded donor livers rescue bile duct structure and function in a mouse model of biliary disease. Cell Stem Cell 2022; 29:355-371.e10. [PMID: 35245467 PMCID: PMC8900617 DOI: 10.1016/j.stem.2022.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.
Collapse
Affiliation(s)
- John M Hallett
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Kayleigh Thirlwell
- Tissues, Cells and Advanced Therapeutics Scottish National Blood and Transfusion Service (SNBTS), Research Avenue North, Edinburgh EH14 4BE, UK
| | - Mark T Macmillan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Benjamin J Dwyer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley, Perth 6102, Australia
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research (CIR), University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John P Thomson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Maurits A Jansen
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Eoghan O'Duibhir
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Philip J Starkey Lewis
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Lara Campana
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Thomas S R Bate
- Institute or Bioengineering, School of Engineering, University of Edinburgh, Faraday Building Colin Maclaurin Road, Edinburgh EH9 3DW, UK
| | - Alasdair R Fraser
- Tissues, Cells and Advanced Therapeutics Scottish National Blood and Transfusion Service (SNBTS), Research Avenue North, Edinburgh EH14 4BE, UK
| | - John D M Campbell
- Tissues, Cells and Advanced Therapeutics Scottish National Blood and Transfusion Service (SNBTS), Research Avenue North, Edinburgh EH14 4BE, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK; University of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anthony Callanan
- Institute or Bioengineering, School of Engineering, University of Edinburgh, Faraday Building Colin Maclaurin Road, Edinburgh EH9 3DW, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
34
|
Human biliary epithelial cells for regenerative medicine. Cell Stem Cell 2022; 29:345-347. [PMID: 35245462 DOI: 10.1016/j.stem.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this issue of Cell Stem Cell, Hallett et al. demonstrate the therapeutic potential of human biliary epithelial cells (hBECs) purified from discarded donor livers in a murine model of biliary disease. hBEC transplantation helped to reduce injury and repaired biliary architecture, suggesting its clinical potential for chronic liver diseases.
Collapse
|
35
|
Ni X, Wu X, Zhu XX, Li JH, Yin XY, Lu L. Carabin Deficiency Aggravates Hepatic Ischemia-Reperfusion Injury Through Promoting Neutrophil Trafficking via Ras and Calcineurin Signaling. Front Immunol 2022; 13:773291. [PMID: 35265067 PMCID: PMC8898835 DOI: 10.3389/fimmu.2022.773291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Neutrophil infiltration plays an important role in the initial phase of hepatic ischemia and reperfusion injury (HIRI). Despite many different key molecules that have been reported to meditate neutrophil trafficking in HIRI, the mechanism of this process has not been fully elucidated. In this study, we found that Carabin deficiency in myeloid cells (LysMCre : Carabinfl/fl) aggravated IRI-induced hepatic injury and apoptosis through increasing the infiltration of CD11b+Ly6G+ neutrophils. ImmGen Datasets further revealed that Carabin was expressed in bone marrow neutrophils (GM.BM) but was significantly downregulated in thio-induced peripheral neutrophils (GN.Thio.PC), which was consistently verified by comparing GM.BM and liver-infiltrating neutrophils induced by IRI. Mechanistically, up-regulation of Carabin in GM.BM in vitro reduced the expression levels of P-selectin, E-selectin, and αvβ3 integrin through inhibiting Ras-ERK and Calcineurin-NFAT signaling. Furthermore, blocking P-selectin, E-selectin, and αvβ3 integrin in LysMCre : Carabinfl/fl mice decreased the frequency and number of CD11b+Ly6G+ neutrophils and reversed hepatic ischemia−reperfusion damage. In conclusion, our results provide a new understanding of Carabin, such that it is expressed and functions not only in adaptive immune cells (T and B cells) but also in innate immune cells (neutrophils), contributing to the migration of neutrophils. These findings provide novel and promising therapeutic targets for the prevention of HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Wu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Yu Yin, ; Ling Lu,
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Yu Yin, ; Ling Lu,
| |
Collapse
|
36
|
Kong WN, Li W, Bai C, Dong Y, Wu Y, An W. Augmenter of liver regeneration-mediated mitophagy protects against hepatic ischemia/reperfusion injury. Am J Transplant 2022; 22:130-143. [PMID: 34242470 DOI: 10.1111/ajt.16757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023]
Abstract
Augmenter of liver regeneration (ALR) is an anti-apoptotic protein found mainly in mitochondria. It protects hepatocytes from ischemia-reperfusion (I/R) injury, but the underlying mechanism is not clear. We found that in rats, delivery of the ALR gene alleviated hepatic I/R injury during orthotopic liver transplantation as evidenced by reduced serum aminotransferase, oxidative stress and apoptosis, and increased expression of autophagy markers. In an in vitro hypoxia/reoxygenation (H/R) model, overexpression of the ALR gene activated autophagy and relieved defective mitophagy via the PINK1/Parkin pathway. Mechanistically, ALR transfection induced the expression of mitofusin 2 (Mfn2) in the H/R model, which led to PINK1 accumulation and mitochondrial translocation of Parkin. Deletion of Mfn2 abolished mitophagy activation induced by ALR transfection, promoted mitochondrial dysfunction, and eventually increased cell apoptosis. Mfn2 administration prevented the inhibition of mitophagy in ALR-knockout (KO) cells, thus attenuated mitochondrial dysfunction and cell apoptosis. In heterozygous ALR-knockout mice treated with a warm I/R injury, marked aggravation of liver injury was associated with mitophagy inhibition and reduction in Mfn2 expression. Taken together, our results confirm that ALR accelerated Parkin translocation and mitophagy via Mfn2, and protected hepatocytes from I/R-induced injury. Our findings provide a novel rationale for the treatment of hepatic I/R injury.
Collapse
Affiliation(s)
- Wei-Ning Kong
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Wen Li
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Chun Bai
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Dong
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Yuan Wu
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Wei An
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Li R, Xie L, Li L, Chen X, Yao T, Tian Y, Li Q, Wang K, Huang C, Li C, Li Y, Zhou H, Kaplowitz N, Jiang Y, Chen P. The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice. Acta Pharm Sin B 2022; 12:182-196. [PMID: 35127379 PMCID: PMC8799880 DOI: 10.1016/j.apsb.2021.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. Herein, we investigated the potential contribution of gut microbes to HIRI. Ischemia/reperfusion surgery was performed to establish a murine model of HIRI. 16S rRNA gene sequencing and metabolomics were used for microbial analysis. Transcriptomics and proteomics analysis were employed to study the host cell responses. Our results establish HIRI was significantly increased when surgery occurred in the evening (ZT12, 20:00) when compared with the morning (ZT0, 08:00); however, antibiotic pretreatment reduced this diurnal variation. The abundance of a microbial metabolite 3,4-dihydroxyphenylpropionic acid was significantly higher in ZT0 when compared with ZT12 in the gut and this compound significantly protected mice against HIRI. Furthermore, 3,4-dihydroxyphenylpropionic acid suppressed the macrophage pro-inflammatory response in vivo and in vitro. This metabolite inhibits histone deacetylase activity by reducing its phosphorylation. Histone deacetylase inhibition suppressed macrophage pro-inflammatory activation and diminished the diurnal variation of HIRI. Our findings revealed a novel protective microbial metabolite against HIRI in mice. The potential underlying mechanism was at least in part, via 3,4-dihydroxyphenylpropionic acid-dependent immune regulation and histone deacetylase (HDAC) inhibition in macrophages.
Collapse
Affiliation(s)
- Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojiao Chen
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tong Yao
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenyang Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yifan Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding authors.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Corresponding authors.
| |
Collapse
|
38
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
A preliminary study of the innate immune memory of Kupffer cells induced by PEGylated nanoemulsions. J Control Release 2021; 343:657-671. [PMID: 34954252 DOI: 10.1016/j.jconrel.2021.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022]
Abstract
The accelerated blood clearance (ABC) phenomenon describes a dilemma of polyethylene glycol (PEG) applied in drug delivery system (DDS) caused by its immunogenicity, that results in the enhanced blood clearance rate and increased hepatic and splenic accumulation after secondary injection of PEGylated nanocarriers. However, the ABC index, as the judgement of ABC phenomenon, only describes the accelerated blood clearance rate, but ignores the enhanced hepatic and splenic accumulation. Therefore, we proposed the hepatic accumulation (HA) index and the splenic accumulation (SA) index as supplements for assessing the ABC phenomenon, to emphasize the contribution of liver and spleen, especially the liver, possessing the most population of tissue resident macrophages. By altering the first injection site from the tail vein to the liver portal vein, there was no impact on anti-PEG IgM production, and the secondary hepatic accumulation of PEGylated nanoemulsions (PE) was observed to be proportionate to the first PE stimulation strength on the liver. We also determined that Kupffer cells (KCs) were the main contributor to this enhancement. On this basis, we revealed a definite phenomenon that PE could induce innate immune memory in KCs, by enhancing the phagocytosis of KCs toward PE during the secondary stimulation. The PE-stimulated KCs could carry this memory to the naïve rats through adoptive transfer, resulting in increased hepatic accumulation in the recipient rats without antibody production. Studies examining the phagocytosis of KCs in vivo, ex vivo and in vitro revealed that the memory of KCs against PE triggered by first-stimulated PE could be maintained independently of other cells or components until 21 days after the first stimulation, and possessing specificity to PEG, which was invalid to long-circulating GE (GM1 modified nanoemulsions). The discovery of immune memory in KCs induced by PE highlights the importance of focusing on the relationship between the innate immune system and PEGylated nanocarriers during the development of DDS to improve medication safety in the clinic.
Collapse
|
40
|
Burke RM, Dale BL, Dholakia S. The NLRP3 Inflammasome: Relevance in Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms221910721. [PMID: 34639062 PMCID: PMC8509131 DOI: 10.3390/ijms221910721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The NOD, LRR, and pyrin domain-containing 3 (NLRP3) protein has been established as a central component of the inflammasome and regulates the inflammatory response to a myriad of environmental, microbial, and endogenous danger stimuli. Assembly of the NLRP3 inflammasome results in the cleavage and activation of caspase-1, in turn causing release of the pro-inflammatory interleukins 1-beta and 18. This activation response, while crucial to coordinated innate immune defense, can be aberrantly activated by the likes of cell-free DNA, and cause significant autoimmune pathology. Complications of autoimmunity induced by aberrant NLRP3 inflammasome activation have a great degree of mechanistic crossover with alloimmune injury in solid organ transplant, and stratagems to neutralize NLRP3 inflammasome activation may prove beneficial in solid organ transplant management. This article reviews NLRP3 inflammasome biology and the pathology associated with its hyperactivation, as well as the connections between NLRP3 inflammasome activation and allograft homeostasis.
Collapse
Affiliation(s)
- Ryan M. Burke
- CareDx, Inc., Brisbane, CA 94080, USA; (R.M.B.); (B.L.D.)
| | | | - Shamik Dholakia
- CareDx, Inc., Brisbane, CA 94080, USA; (R.M.B.); (B.L.D.)
- Oxford Transplant Center, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
- Correspondence:
| |
Collapse
|
41
|
The Dietary Supplement γ-Oryzanol Attenuates Hepatic Ischemia Reperfusion Injury via Inhibiting Endoplasmic Reticulum Stress and HMGB1/NLRP3 Inflammasome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4628050. [PMID: 34512864 PMCID: PMC8433023 DOI: 10.1155/2021/4628050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The purpose of this study is to investigate the protective effect of γ-oryzanol (ORY) against hepatic ischemia reperfusion (HIR) injury and the potential protective mechanisms of ORY. ORY is an important biologically active ingredient isolated from rice bran oil, which has anti-inflammatory and antiapoptotic effects. However, it is still unknown whether ORY can protect the liver from the HIR damage. In this study, ORY was administered orally for seven days, after which the animals were subjected to liver ischemia for 60 minutes and reperfused for 6 hours. Related indicators were analyzed. The results showed that ORY pretreatment significantly reduced the levels of AST and ALT, relieved hepatocellular damage and apoptosis, and attenuated the exhaustion of SOD and GSH and accumulation of MDA and MPO. Interestingly, ORY treatment could significantly decreased ER stress. Furthermore, ORY pretreatment remarkably reduced the protein expressions of HMGB1, NLRP3, caspase-1 (p20), and IL-1β to protect the liver from I/R-induced inflammasome activation and apoptosis. In conclusion, we demonstrated the potential effect of ORY in modulating oxidative stress, endoplasmic reticulum stress, and inflammasome activation during HIR.
Collapse
|
42
|
Li S, Jin H, Sun G, Zhang C, Wang J, Xu H, Zhang D, Wang S. Dietary Inorganic Nitrate Protects Hepatic Ischemia-Reperfusion Injury Through NRF2-Mediated Antioxidative Stress. Front Pharmacol 2021; 12:634115. [PMID: 34163351 PMCID: PMC8215696 DOI: 10.3389/fphar.2021.634115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives: Hepatic ischemia-reperfusion injury (HIRI) is of common occurrence during liver surgery and liver transplantation and may cause hepatic impairment, resulting in acute liver dysfunction. Nitrate plays an important physiological regulatory role in the human body. Whether dietary nitrate could prevent HIRI is, however, unknown. Methods: A HIRI mouse model was established in that the blood supply to the median lobe and left lateral lobe was blocked for 60 min through the portal vein and related structures using an atraumatic clip. Sodium nitrate (4 mM) was administrated in advance through drinking water to compare the influence of sodium nitrate and normal water on HIRI. Results: Liver necrosis and injury aggravated after HIRI. The group treated with sodium nitrate showed the lowest activities of plasma aminotransferase and lactate dehydrogenase and improved outcomes in histological investigation and TUNEL assay. Mechanistically, sodium nitrate intake increased plasma and liver nitric oxide levels, upregulated nuclear factor erythroid 2-related factor 2 (NRF2)-related molecules to reduce malondialdehyde level, and increased the activities of antioxidant enzymes to modulate hepatic oxidative stress. Conclusions: Dietary inorganic nitrate could prevent HIRI, possibly by activating the NRF2 pathway and modulating oxidative stress. Our study provides a novel therapeutic compound that could potentially prevent HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Shaorong Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| | - Hufeng Xu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dong Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| |
Collapse
|
43
|
Yang Q, Zhao ZZ, Xie J, Wang YP, Yang K, Guo Y, Wang JF, Deng XM. Senkyunolide I attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways. Int Immunopharmacol 2021; 97:107717. [PMID: 33933846 DOI: 10.1016/j.intimp.2021.107717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Senkyunolide I (SEI)exerts considerable protective effects in various disease models, but its effect on hepatic ischemia-reperfusion (I/R) injury remains unknown. This research aimed to investigate the effect of SEI in a murine model of hepatic I/R injury. METHODS With modified liver I/R murine model, low, medium and high doses of SEI were injected intraperitoneally after operation. After 6 h of reperfusion, the blood and liver were collected. Serum ALT and AST were detected by automatic analyzer, while liver injury was evaluated by HE staining. High-dose SEI was selected to further explore its impacts on oxidative stress, inflammatory responses and apoptosis induced by hepatic I/R. The pharmacological effect of SEI was also compared with a positive control, glutathione (GSH). We used ELISA to detect serum TNF-α, IL-1 β and IL-6, special kit to explore activities of SOD and GSH-Px, and the content of MDA, and western blotting to detect HO-1, Bax and Bcl-2 levels, and to perceive expressions and phosphorylations of NF- κB p65 and p38/ERK/JNK in liver tissues. Apoptosis in liver tissue was evaluated by TUNEL. The antioxidative effect of SEI was further investigated using the HuCCT1 cells stimulated with H2O2 and the role of SEI on regulation of Nrf-2/HO-1 was determined. RESULTS 200 mg/kg of SEI was optimal dose for treating liver I/R injury. Elevated ALT, AST and histopathological injury in I/R liver was attenuated by SEI administration, similarly to GSH. Serum TNF-α, IL-1β, and IL-6 were reduced in liver I/R mice treated with SEI, and in liver tissues, phosphorylation of p65 NF-κB and MAPK kinases (p38, ERK, JNK), were inhibited. SEI reduced the MDA content, but increased HO-1 level and enhanced SOD and GSH-Px activities. Apoptosis of liver tissues was decreased, while SEI inhibited Bax and elevated Bcl-2 expression. In in vitro experiments, H2O2 reduced the survival rate of HuCCT1 cells, which was protected by SEI administration. SEI reduced the ROS and MDA content. The transportation of Nrf-2 into the nucleus was enhanced and HO-1 expression was upregulated. CONCLUSIONS SEI attenuates hepatic I/R injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Qing Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhen-Zhen Zhao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian Xie
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yun-Peng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kai Yang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Guo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Xiao-Ming Deng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
44
|
Ju C, Wang M, Tak E, Kim B, Emontzpohl C, Yang Y, Yuan X, Kutay H, Liang Y, Hall DR, Dar WA, Bynon JS, Carmeliet P, Ghoshal K, Eltzschig HK. Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance. J Clin Invest 2021; 131:140300. [PMID: 33792566 PMCID: PMC8011886 DOI: 10.1172/jci140300] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatic ischemia and reperfusion (IR) injury contributes to the morbidity and mortality associated with liver transplantation. microRNAs (miRNAs) constitute a family of noncoding RNAs that regulate gene expression at the posttranslational level through the repression of specific target genes. Here, we hypothesized that miRNAs could be targeted to enhance hepatic ischemia tolerance. A miRNA screen in a murine model of hepatic IR injury pointed us toward the liver-specific miRNA miR122. Subsequent studies in mice with hepatocyte-specific deletion of miR122 (miR122loxP/loxP Alb-Cre+ mice) during hepatic ischemia and reperfusion revealed exacerbated liver injury. Transcriptional studies implicated hypoxia-inducible factor-1α (HIF1α) in the induction of miR122 and identified the oxygen-sensing prolyl hydroxylase domain 1 (PHD1) as a miR122 target. Further studies indicated that HIF1α-dependent induction of miR122 participated in a feed-forward pathway for liver protection via the enhancement of hepatic HIF responses through PHD1 repression. Moreover, pharmacologic studies utilizing nanoparticle-mediated miR122 overexpression demonstrated attenuated liver injury. Finally, proof-of-principle studies in patients undergoing orthotopic liver transplantation showed elevated miR122 levels in conjunction with the repression of PHD1 in post-ischemic liver biopsies. Taken together, the present findings provide molecular insight into the functional role of miR122 in enhancing hepatic ischemia tolerance and suggest the potential utility of pharmacologic interventions targeting miR122 to dampen hepatic injury during liver transplantation.
Collapse
Affiliation(s)
- Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Meng Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Huban Kutay
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - David R. Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wasim A. Dar
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J. Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, and
- Center for Cancer Biology, Department of Oncology, Katholieke University Leuven, Leuven, Belgium
| | - Kalpana Ghoshal
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| |
Collapse
|
45
|
Anti-CD321 antibody immunotherapy protects liver against ischemia and reperfusion-induced injury. Sci Rep 2021; 11:6312. [PMID: 33737554 PMCID: PMC7973783 DOI: 10.1038/s41598-021-85001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
The prognosis of the liver transplant patients was frequently deteriorated by ischemia and reperfusion injury (IRI) in the liver. Infiltration of inflammatory cells is reported to play critical roles in the pathogenesis of hepatic IRI. Although T lymphocytes, neutrophils and monocytes infiltrated into the liver underwent IRI, we found that neutrophil depletion significantly attenuated the injury and serum liver enzyme levels in a murine model. Interestingly, the expression of CD321/JAM-A/F11R, one of essential molecules for transmigration of circulating leukocytes into inflammatory tissues, was significantly augmented on hepatic sinusoid endothelium at 1 h after ischemia and maintained until 45 min after reperfusion. The intraportal administration of anti-CD321 monoclonal antibody (90G4) significantly inhibited the leukocytes infiltration after reperfusion and diminished the damage responses by hepatic IRI (serum liver enzymes, inflammatory cytokines and hepatocyte cell death). Taken together, presented results demonstrated that blockade of CD321 by 90G4 antibody significantly attenuated hepatic IRI accompanied with substantial inhibition of leukocytes infiltration, particularly inhibition of neutrophil infiltration in the early phase of reperfusion. Thus, our work offers a potent therapeutic target, CD321, for preventing liver IRI.
Collapse
|
46
|
Live Confocal Imaging as a Novel Tool to Assess Liver Quality: Insights From a Murine Model. Transplantation 2021; 104:2528-2537. [PMID: 33215899 DOI: 10.1097/tp.0000000000003405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In an experimental murine liver clamping model, we aimed to investigate the efficacy of real-time confocal microscopy (RCM) in assessing viability of steatotic livers in comparison to standard assessment tools, including histopathological evaluation. METHODS C57Bl/6 mice were subjected to a methionine-choline-deficient diet causing nonalcoholic fatty liver disease or to Lieber DeCarli diet causing ethanol-induced liver injury. Untreated animals served as controls. Liver biopsies were analyzed following challenge with 45 min of warm ischemia time and either 4 h of reperfusion or 24 h of cold storage. Organ quality assessment was performed at defined time points by RCM, histological staining, measurement of serum alanine aminotransferase activity, and expression analyses of proinflammatory cytokines. Additionally, survival analysis was performed. RESULTS Cold as well as warm ischemia time resulted in a significant decrease in cell viability when compared with naive livers as well as nonischemic-challenged steatotic livers (P < 0.05) as assessed by RCM. Furthermore, RCM revealed the actual cellular damage at early time points, while established methods including H&E-staining and serum transaminase profile failed. CONCLUSIONS In a translational attempt, we demonstrate that RCM is a suitable diagnostic tool to obtain information about functional damage of the liver apart from standard approaches.
Collapse
|
47
|
Wang Y, Yang Y, Wang M, Wang S, Jeong JM, Xu L, Wen Y, Emontzpohl C, Atkins CL, Duong K, Moreno NF, Yuan X, Hall DR, Dar W, Feng D, Gao B, Xu Y, Czigany Z, Colgan SP, Bynon JS, Akira S, Brown JM, Eltzschig HK, Jacobsen EA, Ju C. Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci Transl Med 2021; 13:eabb6576. [PMID: 33536281 PMCID: PMC8167890 DOI: 10.1126/scitranslmed.abb6576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Eosinophils are a myeloid cell subpopulation that mediates type 2 T helper cell immune responses. Unexpectedly, we identified a rapid accumulation of eosinophils in 22 human liver grafts after hepatic transplantation. In contrast, no eosinophils were detectable in healthy liver tissues before transplantation. Studies with two genetic mouse models of eosinophil deficiency and a mouse model of antibody-mediated eosinophil depletion revealed exacerbated liver injury after hepatic ischemia and reperfusion. Adoptive transfer of bone marrow-derived eosinophils normalized liver injury of eosinophil-deficient mice and reduced hepatic ischemia and reperfusion injury in wild-type mice. Mechanistic studies combining genetic and adoptive transfer approaches identified a critical role of suppression of tumorigenicity (ST2)-dependent production of interleukin-13 by eosinophils in the hepatoprotection against ischemia-reperfusion-induced injury. Together, these data provide insight into a mechanism of eosinophil-mediated liver protection that could serve as a therapeutic target to improve outcomes of patients undergoing liver transplantation.
Collapse
Affiliation(s)
- Yaochun Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Meng Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shuhong Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Constance Lynn Atkins
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Duong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicolas F Moreno
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David R Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wasim Dar
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dechun Feng
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoltan Czigany
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Sean P Colgan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - J Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Jared M Brown
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|
49
|
Jiang G, Lei A, Chen Y, Yu Q, Xie J, Yang Y, Yuan T, Su D. The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food Funct 2021; 12:397-407. [PMID: 33336655 DOI: 10.1039/d0fo01873b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the protective effects of the Ganoderma atrum polysaccharide (PSG-1) on selected tissue (liver, spleen, kidneys and intestine) toxicity induced by acrylamide (AA) in SD rats were investigated. The results showed that pretreatment with PSG-1 could prevent AA-induced damage to liver and kidney functions by increasing the activities of ALT, AST and ALP and the levels of TG, BUN and CR in the serum of AA-treated rats. PSG-1 could also maintain the intestinal barrier function and permeability by preventing the reduction of the serum d-Lac and ET-1 levels in the intestine of AA-treated rats. In addition, AA-induced DNA damage, as indicated by an increase of the 8-OHdG level, was alleviated by pretreatment with PSG-1. Histological observations of the tissues confirmed the protective effects of different doses of PSG-1. Moreover, PSG-1 supplementation reduced oxidative stress and inflammation in rats by upregulating the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and IL-10 levels, and preventing the overproduction of malondialdehyde (MDA), IL-1β, IL-6, and TNF-α. Thus, these findings suggest that PSG-1 effectively prevents AA-induced damage in the liver, spleen, kidneys, and intestine of rats, partially by alleviating the inflammatory response and oxidative stress and protecting the intestinal integrity and barrier function.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Aitong Lei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ying Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Tongji Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
50
|
Liss KH, Ek SE, Lutkewitte AJ, Pietka TA, He M, Skaria P, Tycksen E, Ferguson D, Blanc V, Graham MJ, Hall AM, McGill MR, McCommis KS, Finck BN. Monoacylglycerol Acyltransferase 1 Knockdown Exacerbates Hepatic Ischemia/Reperfusion Injury in Mice With Hepatic Steatosis. Liver Transpl 2021; 27:116-133. [PMID: 32916011 PMCID: PMC7785593 DOI: 10.1002/lt.25886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.
Collapse
Affiliation(s)
- Kim H.H. Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Shelby E. Ek
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Priya Skaria
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Eric Tycksen
- Department of Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Valerie Blanc
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Angela M. Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mitchell R. McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|