1
|
Ben-Khemis M, Liu D, Pintard C, Song Z, Hurtado-Nedelec M, Marie JC, El-Benna J, Dang PMC. TNFα counteracts interleukin-10 anti-inflammatory pathway through the NOX2-Lyn-SHP-1 axis in human monocytes. Redox Biol 2023; 67:102898. [PMID: 37757542 PMCID: PMC10539668 DOI: 10.1016/j.redox.2023.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
TNFα-mediated signaling pathways play a pivotal role in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) by promoting phagocyte inflammatory functions, notably cytokine release and reactive oxygen species (ROS) production by NOX2. In contrast, interleukin-10 (IL-10), a powerful anti-inflammatory cytokine, potently shuts down phagocyte activation, making IL-10 an attractive therapeutic candidate. However, IL-10 therapy has shown limited efficacy in patients with inflammatory diseases. Here, we report that TNFα blocks IL-10 anti-inflammatory pathways in human monocytes, thereby prolonging inflammation. TNFα decreased IL-10-induced phosphorylation of STAT3 and consequently IL-10-induced expression of the major anti-inflammatory factor, SOCS3. Decreased STAT3 phosphorylation was due to a SHP1/2 phosphatase, as NSC-87877, a SHP1/2 inhibitor, restored STAT3 phosphorylation and prevented the TNFα-induced inhibition of IL-10 signaling. TNFα activated only SHP1 in human monocytes and this activation was NOX2-dependent, as diphenyleneiodonium, a NOX2 inhibitor, suppressed SHP1 activation and STAT3 dephosphorylation triggered by TNFα. ROS-induced activation of SHP1 was mediated by the redox-sensitive kinase, Lyn, as its inhibition impeded TNFα-induced SHP1 activation and STAT3 dephosphorylation. Furthermore, H2O2 recapitulated TNFα-inhibitory activity on IL-10 signaling. Finally, NSC-87877 dampened collagen antibody-induced arthritis (CAIA) in mice. These results reveal that TNFα disrupts IL-10 signaling by inducing STAT3 dephosphorylation through a NOX2-ROS-Lyn-SHP1 axis in human monocytes and that inhibition of SHP1/2 in vivo protects against CAIA. These new findings might explain the poor efficacy of IL-10 therapy in patients with inflammatory diseases and suggest that anti-TNFα agents and SHP1/2 inhibitors could improve the therapeutic use of IL-10.
Collapse
Affiliation(s)
- Marwa Ben-Khemis
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Dan Liu
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Coralie Pintard
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Zhuoyao Song
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Margarita Hurtado-Nedelec
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France; Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Jean-Claude Marie
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Jamel El-Benna
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université Paris-Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France.
| |
Collapse
|
2
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
3
|
WU XUELIANG, GUAN SHAOYU, LU YONGGANG, XUE JUN, YU XIANGYANG, ZHANG QI, WANG XIMO, LI TIAN. Macrophage-derived SHP-2 inhibits the metastasis of colorectal cancer via Tie2-PI3K signals. Oncol Res 2023; 31:125-139. [PMID: 37304233 PMCID: PMC10207961 DOI: 10.32604/or.2023.028657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 06/13/2023] Open
Abstract
This research aimed to explore the influence of Src homology-2 containing protein tyrosine phosphatase (SHP-2) on the functions of tyrosine kinase receptors with immunoglobulin and EGF homology domains 2 (Tie2)-expressing monocyte/macrophages (TEMs) and the influence of the angiopoietin(Ang)/Tie2-phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (Ang/Tie2-PI3K/Akt/mTOR) signaling pathway on the tumor microvascular remodeling in an immunosuppressive microenvironment. In vivo, SHP-2-deficient mice were used to construct colorectal cancer (CRC) liver metastasis models. SHP-2-deficient mice had significantly more metastatic cancer and inhibited nodules on the liver surface than wild-type mice, and the high-level expression of p-Tie2 was found in the liver tissue of the macrophages' specific SHP-2-deficient mice (SHP-2MAC-KO) + planted tumor mice. Compared with the SHP-2 wild type mice (SHP-2WT) + planted tumor group, the SHP-2MAC-KO + planted tumor group experienced increased expression of p-Tie2, p-PI3K, p-Akt, p-mTOR, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), matrix metalloproteinase 2 (MMP2), and MMP9 in the liver tissue. TEMs selected by in vitro experiments were co-cultured with remodeling endothelial cells and tumor cells as carriers. It was found that when Angpt1/2 was used for stimulation, the SHP-2MAC-KO + Angpt1/2 group displayed evident increases in the expression of the Ang/Tie2-PI3K/Akt/mTOR pathway. The number of cells passing through the lower chamber and the basement membrane and the number of blood vessels formed by cells compared with the SHP-2WT + Angpt1/2 group, while these indexes were subjected to no changes under the simultaneous stimulation of Angpt1/2 + Neamine. To sum up, the conditional knockout of SHP-2 can activate the Ang/Tie2-PI3K/Akt/mTOR pathway in TEMs, thereby strengthening tumor micro angiogenesis in the microenvironment and facilitating CRC liver metastasis.
Collapse
Affiliation(s)
- XUELIANG WU
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
| | - SHAOYU GUAN
- 93868 Troop of the Chinese People’s Liberation Army, Yinchuan, 750021, China
| | - YONGGANG LU
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, 050051, China
| | - JUN XUE
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - XIANGYANG YU
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
| | - QI ZHANG
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China
| | - XIMO WANG
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China
| | - TIAN LI
- School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
4
|
Park H, Shin JA, Lim J, Lee S, Ahn JH, Kang JL, Choi YH. Increased Caveolin-2 Expression in Brain Endothelial Cells Promotes Age-Related Neuroinflammation. Mol Cells 2022; 45:950-962. [PMID: 36572563 PMCID: PMC9794556 DOI: 10.14348/molcells.2022.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022] Open
Abstract
Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1-positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.
Collapse
Affiliation(s)
- Hyunju Park
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Jung A Shin
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Jiwoo Lim
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Seulgi Lee
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Youn-Hee Choi
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| |
Collapse
|
5
|
Wei X, Zheng L, Tian Y, Wang H, Su Y, Feng G, Wang C, Lu Z. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling. J Mol Cell Biol 2022; 14:6674768. [PMID: 36002018 PMCID: PMC9764209 DOI: 10.1093/jmcb/mjac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 08/17/2022] [Indexed: 01/14/2023] Open
Abstract
In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Lanping Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Youqiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao Wang
- Correspondence to: Chao Wang, E-mail:
| | | |
Collapse
|
6
|
Chang CJ, Lin CF, Lee CH, Chuang HC, Shih FC, Wan SW, Tai C, Chen CL. Overcoming interferon (IFN)-γ resistance ameliorates transforming growth factor (TGF)-β-mediated lung fibroblast-to-myofibroblast transition and bleomycin-induced pulmonary fibrosis. Biochem Pharmacol 2020; 183:114356. [PMID: 33285108 DOI: 10.1016/j.bcp.2020.114356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Abnormal activation of transforming growth factor (TGF)-β is a common cause of fibroblast activation and fibrosis. In bleomycin (BLM)-induced lung fibrosis, the marked expression of phospho-Src homology-2 domain-containing phosphatase (SHP) 2, phospho-signal transducer and activator of transcription (STAT) 3, and suppressor of cytokine signaling (SOCS) 3 was highly associated with pulmonary parenchymal lesions and collagen deposition. Human pulmonary fibroblasts differentiated into myofibroblasts exhibited activation of SHP2, SOCS3, protein inhibitor of activated STAT1, STAT3, interleukin (IL)-6, and IL-10. The significant retardation of interferon (IFN)-γ signaling in myofibroblasts was revealed by the decreased expression of phospho-STAT1, IFN-γ-associated genes, and IFN-γ-inducible protein (IP) 10. Microarray analysis showed an induction of fibrotic genes in TGF-β1-differentiated myofibroblasts, whereas IFN-γ-regulated anti-fibrotic genes were suppressed. Interestingly, BIBF 1120 treatment effectively inhibited both STAT3 and SHP2 phosphorylation in TGF-β1-differentiated myofibroblasts and BLM fibrotic lung tissues, which was accompanied by suppression of fibroblast-myofibroblast transition. Moreover, the combined treatment of BIBF 1120 plus IFN-γ or SHP2 inhibitor PHPS1 plus IFN-γ markedly reduced TGF-β1-induced α-smooth muscle actin and further ameliorated BLM lung fibrosis. Accordingly, myofibroblasts were hyporesponsiveness to IFN-γ, while blockade of SHP2 contributed to the anti-fibrotic efficacy of IFN-γ.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Divisions of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fu-Chia Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Wen Wan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi Tai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Lopes PH, van den Berg CW, Tambourgi DV. Sphingomyelinases D From Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Front Pharmacol 2020; 11:636. [PMID: 32477123 PMCID: PMC7237637 DOI: 10.3389/fphar.2020.00636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.
Collapse
Affiliation(s)
| | - Carmen W. van den Berg
- Centre for Medical Education, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
8
|
Miller YI, Navia-Pelaez JM, Corr M, Yaksh TL. Lipid rafts in glial cells: role in neuroinflammation and pain processing. J Lipid Res 2020; 61:655-666. [PMID: 31862695 PMCID: PMC7193960 DOI: 10.1194/jlr.tr119000468] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yury I Miller
- Departments of MedicineUniversity of California San Diego, La Jolla, CA. mailto:
| | | | - Maripat Corr
- Departments of MedicineUniversity of California San Diego, La Jolla, CA
| | - Tony L Yaksh
- Anesthesiology,University of California San Diego, La Jolla, CA
| |
Collapse
|
9
|
NLRP6 expressed in astrocytes aggravates neurons injury after OGD/R through activating the inflammasome and inducing pyroptosis. Int Immunopharmacol 2020; 80:106183. [PMID: 31927506 DOI: 10.1016/j.intimp.2019.106183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 11/22/2022]
Abstract
NLRP6, the nucleotide oligomerization domain-like receptor family pyrin domain containing 6, has a substantiable effect on inflammation and host defense against microorganisms. In our previous study, NLRP6 promotes inflammation after cerebral I/R injury in a MCAO model. However, the effect of NLRP6 in different nerve cells subjected to OGD/R needs to be further understood. Here, evidence shows that the expression of NLRP6 is increased in different nerve cells subjected to OGD/R, and mainly expressed in astrocytes. NLRP6 may up-regulate inflammation factors (IL-1β, Il-8) via the form of inflammasomes in astrocytes after OGD/R. Then, primary neuron-astrocyte co-culture model under OGD/R in vitro was performed, and we found that NLRP6 decreased the neurons viability and aggravated apoptosis of neurons. Mechanically, NLRP6 could induce pyroptosis to regulate the survival of neurons through activating caspase-1.
Collapse
|
10
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Peng L, Zhao Y, Li Y, Zhou Y, Li L, Lei S, Yu S, Zhao Y. Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury. J Mol Med (Berl) 2018; 97:189-199. [PMID: 30506316 PMCID: PMC6348070 DOI: 10.1007/s00109-018-1719-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 11/14/2022]
Abstract
Abstract Astrocytes are involved in neuroprotection, and DJ-1 is an important antioxidant protein that is abundantly expressed in reactive astrocytes. However, the role of DJ-1 in astrocytes’ neuroprotection in cerebral ischemia/reperfusion injury and its potential mechanism is unclear. Thus, to explore effects and mechanisms of DJ-1 on the neuroprotection of astrocytes, we used primary co-cultures of neurons and astrocytes under oxygen and glucose deprivation/reoxygenation in vitro and transient middle cerebral artery occlusion/reperfusion in vivo to mimic ischemic reperfusion insult. Lentiviral was used to inhibit and upregulate DJ-1 expression in astrocytes, and DJ-1 siRNA blocked DJ-1 expression in rats. Inhibiting DJ-1 expression led to decreases in neuronal viability. DJ-1 knockdown also attenuated total and nuclear Nrf2 and glutathione (GSH) levels in vitro and vivo. Similarly, loss of DJ-1 decreased Nrf2/ARE-binding activity and expression of Nrf2/ARE pathway-driven genes. Overexpression of DJ-1 yielded opposite results. This suggests that the mechanism of action of DJ-1 in astrocyte-mediated neuroprotection may involve regulation of the Nrf2/ARE pathway to increase GSH after cerebral ischemia/reperfusion injury. Thus, DJ-1 may be a new therapeutic target for treating ischemia/reperfusion injury. Key Messages Astrocytes protect neurons in co-culture after OGD/R DJ-1 is upregulated in astrocytes and plays an important physiological roles in neuronal protection under ischemic conditions DJ-1 protects neuron by the Nrf2/ARE pathway which upregulates GSH
Collapse
Affiliation(s)
- Li Peng
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yipeng Zhao
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yixin Li
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Linyu Li
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Shipeng Lei
- Department of Respiratory Medicine, Jiangjin Center Hospital, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China. .,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China. .,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| |
Collapse
|
12
|
Bowers EC, McCullough SD, Morgan DS, Dailey LA, Diaz-Sanchez D. ERK1/2 and p38 regulate inter-individual variability in ozone-mediated IL-8 gene expression in primary human bronchial epithelial cells. Sci Rep 2018; 8:9398. [PMID: 29925859 PMCID: PMC6010411 DOI: 10.1038/s41598-018-27662-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 01/28/2023] Open
Abstract
Inter-individual variability is observed in all biological responses; however this variability is difficult to model and its underlying mechanisms are often poorly understood. This issue currently impedes understanding the health effects of the air pollutant ozone. Ozone produces pulmonary inflammation that is highly variable between individuals; but reproducible within a single individual, indicating undefined susceptibility factors. Studying inter-individual variability is difficult with common experimental models, thus we used primary human bronchial epithelial cells (phBECs) collected from many different donors. These cells were cultured, exposed to ozone, and the gene expression of the pro-inflammatory cytokine IL-8 was measured. Similar to in vivo observations, we found that ozone-mediated IL-8 expression was variable between donors, but reproducible within a given donor. Recent evidence suggests that the MAP kinases ERK1/2 and p38 mediate ozone-induced IL-8 transcription, thus we hypothesized that differences in their activation may control IL-8 inter-individual variability. We observed a significant correlation between ERK1/2 phosphorylation and IL-8 expression, suggesting that ERK1/2 modulates the ozone-mediated IL-8 response; however, we found that simultaneous inhibition of both kinases was required to achieve the greatest IL-8 inhibition. We proposed a "dimmer switch" model to explain how the coordinate activity of these kinases regulate differential IL-8 induction.
Collapse
Affiliation(s)
- Emma C Bowers
- Curriculum in Toxicology, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaun D McCullough
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David S Morgan
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Lisa A Dailey
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David Diaz-Sanchez
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
13
|
Yang H, Jiang H, Song Y, Chen DJ, Shen XJ, Chen JH. Neutrophil CD16b crosslinking induces lipid raft-mediated activation of SHP-2 and affects cytokine expression and retarded neutrophil apoptosis. Exp Cell Res 2017; 362:121-131. [PMID: 29137913 DOI: 10.1016/j.yexcr.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/11/2023]
Abstract
Two different types of FcRs for IgG are constitutively expressed on the surface of human neutrophils, namely, FcγRIIA (CD32a) and FcγRIIIB (CD16b). Unlike FcγRIIA, FcγRIIIb is GPI anchored to the cell membrane and its signal transduction is still ambiguous. To further understand the signal transduction of CD16b, we compared neutrophil cytokine expression and apoptosis by the cross-linking of CD32a and CD16b respectively. We found that both CD32a and CD16b crosslinking can activate neutrophils, but did not exactly share cytokine expression profiles. On the other hand, CD16b cross-linking retarded neutrophil apoptosis while CD32a promoted it. By interrupting the lipid raft with methyl-β-cyclodextrin (MβCD) and inhibiting the ITAM-SYK pathway with an SYK inhibitor (piceatannol), we found reduced apoptosis was at least partially mediated by lipid raft structure, but not the ITAM-SYK pathway. Additionally, CD16b but not CD32a cross-linking triggered SHP-2 phosphorylation and led to its translocation into lipid rafts. SHP-2 phosphorylation and translocation were inhibited by MβCD. Moreover, pre-inhibition of SHP-2 by a specific inhibitor (SHP099) converted IL-10 and SOCS3 expression level and promoted neutrophil apoptosis after CD16b crosslinking. In conclusion, these results, for the first time, collectively indicate that SHP-2 is activated by CD16b crosslinking in neutrophils and functions as a component of the raft-mediated signaling pathway.
Collapse
Affiliation(s)
- H Yang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, Zhejiang, China; National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - H Jiang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, Zhejiang, China; National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Y Song
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, Zhejiang, China; National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - D J Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, Zhejiang, China; National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - X J Shen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, Zhejiang, China; National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - J H Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University, School of Medicine, Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, Zhejiang, China; National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
14
|
Torres TE, Russo LC, Santos A, Marques GR, Magalhaes YT, Tabassum S, Forti FL. Loss of DUSP3 activity radiosensitizes human tumor cell lines via attenuation of DNA repair pathways. Biochim Biophys Acta Gen Subj 2017; 1861:1879-1894. [PMID: 28389334 DOI: 10.1016/j.bbagen.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
|
15
|
Meier JA, Hyun M, Cantwell M, Raza A, Mertens C, Raje V, Sisler J, Tracy E, Torres-Odio S, Gispert S, Shaw PE, Baumann H, Bandyopadhyay D, Takabe K, Larner AC. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci Signal 2017; 10:eaag2588. [PMID: 28351946 PMCID: PMC5502128 DOI: 10.1126/scisignal.aag2588] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is associated with various physiological and pathological functions, mainly as a transcription factor that translocates to the nucleus upon tyrosine phosphorylation induced by cytokine stimulation. In addition, a small pool of STAT3 resides in the mitochondria, where it serves as a sensor for various metabolic stressors including reactive oxygen species (ROS). Mitochondrially localized STAT3 largely exerts its effects through direct or indirect regulation of the activity of the electron transport chain (ETC). It has been assumed that the amounts of STAT3 in the mitochondria are static. We showed that various stimuli, including oxidative stress and cytokines, triggered a signaling cascade that resulted in a rapid loss of mitochondrially localized STAT3. Recovery of the mitochondrial pool of STAT3 over time depended on phosphorylation of Ser727 in STAT3 and new protein synthesis. Under these conditions, mitochondrially localized STAT3 also became competent to bind to cyclophilin D (CypD). Binding of STAT3 to CypD was mediated by the amino terminus of STAT3, which was also important for reducing mitochondrial ROS production after oxidative stress. These results outline a role for mitochondrially localized STAT3 in sensing and responding to external stimuli.
Collapse
Affiliation(s)
- Jeremy A Meier
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Moonjung Hyun
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Marc Cantwell
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ali Raza
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Claudia Mertens
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10065, USA
| | - Vidisha Raje
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Sisler
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erin Tracy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Peter E Shaw
- School of Life Sciences, University of Nottingham, Nottingham, U.K
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kazuaki Takabe
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Andrew C Larner
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
16
|
Hamdi Y, Madfai H, Belhareth R, Mokni M, Masmoudi-Kouki O, Amri M. Prenatal exposure to cigarette smoke enhances oxidative stress in astrocytes of neonatal rat. Toxicol Mech Methods 2016; 26:231-7. [PMID: 26998663 DOI: 10.3109/15376516.2016.1156205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress is involved in the pathogenesis of smoking-related disease. Protection of astrocytes from oxidative insult appears essential to maintain brain function. In this study, we have investigated the effect of gestational cigarette exposure on astrocyte survival. Pregnant female were randomly allocated to the control group or to the cigarette smoke group in which they were placed in an exposure chamber and inhale three cigarettes smoke twice a day for a period of 20 days. The control group was kept in the exposure chamber for the same duration, but without exposure to cigarette smoke. Newborn rats from both groups were weighed 24 h after birth and then cerebral hemispheres were collected for astrocyte culture. Incubation of astrocytes isolated from animals exposed to cigarette smoke with 300 μM H2O2 for 1 h induced a significant decrease of the proportion of surviving cells compared to cells isolated form control animals. We have observed that H2O2-treated astroglial cells derived from cigarette smoke exposure showed more reduced superoxide dismutase and catalase activities than H2O2-treated astroglial cells from control animals. In conclusion, this study indicates that astroglial cells derived from newborn rats exposed in utero to cigarette smoke are more vulnerable to oxidative assault than cultured astrocytes obtained from control animals. These results point out the existence of excitotoxic lesions in newborn exposed in utero to cigarette smoke and suggest that despite their high antioxidative activities, astrocytes cannot survive and protect neurons under massive oxidative stress.
Collapse
Affiliation(s)
- Yosra Hamdi
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Hayfa Madfai
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Rym Belhareth
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Meherzia Mokni
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Olfa Masmoudi-Kouki
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Mohamed Amri
- a Laboratory of Functional Neurophysiology and Pathology, Research Unit UR11ES09, Department of Biological Sciences , Faculty of Science of Tunis, University Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
17
|
Lee YM, Kim MJ, Kim Y, Kim H. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells. J Cancer Prev 2015; 20:179-84. [PMID: 26473156 PMCID: PMC4597806 DOI: 10.15430/jcp.2015.20.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. METHODS We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. RESULTS Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. CONCLUSIONS In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation.
Collapse
Affiliation(s)
- Yun Mi Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Mi Jung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Youngha Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
18
|
Chen CL, Chiang TH, Tseng PC, Wang YC, Lin CF. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ. Biochem Biophys Res Commun 2015; 466:578-84. [DOI: 10.1016/j.bbrc.2015.09.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
|
19
|
Hsieh CY, Chen CL, Yang KC, Ma CT, Choi PC, Lin CF. Detection of reactive oxygen species during the cell cycle under normal culture conditions using a modified fixed-sample staining method. J Immunoassay Immunochem 2015; 36:149-61. [PMID: 24749949 DOI: 10.1080/15321819.2014.910806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed an alternative method of simultaneously monitoring the generation of reactive oxygen species (ROS) and cellular oxidative responses using the oxidation-sensitive fluorescent probe dichlorofluorescein (DCF) in fixed samples. In this study, we evaluated the ability of this method to detect ROS generation during the cell cycle under normal culture conditions using flow cytometric analyses. Among the fixatives tested, only acetone and paraformaldehyde did not alter the endogenous oxidation of the responsive dye 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), which is a chloromethyl derivative of H2DCFDA. Only acetone fixation followed by staining with propidium iodide was able to detect ROS generation during the cell cycle without altering DCF oxidation. Further thymidine treatment led to cell cycle arrest at the G1 phase followed by the downregulation of total intracellular ROS. Paraformaldehyde-based fixation enabled the evaluation of ROS generation by immunostaining at a different phase of the cell cycle, whereas MPM2 co-staining enabled identification of the specific mitotic phase. This study demonstrates a modified fixed-sample method that can be used to measure intracellular ROS production during the cell cycle using standard immunostaining techniques.
Collapse
Affiliation(s)
- Chia-Yuan Hsieh
- a Institute of Clinical Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Jeon BK, Kwon K, Kang JL, Choi YH. Csk-Induced Phosphorylation of Src at Tyrosine 530 is Essential for H2O2-Mediated Suppression of ERK1/2 in Human Umbilical Vein Endothelial Cells. Sci Rep 2015; 5:12725. [PMID: 26234813 PMCID: PMC4522603 DOI: 10.1038/srep12725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress.
Collapse
Affiliation(s)
- Bo Kyung Jeon
- 1] Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea [2] Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kihwan Kwon
- Department of Internal Medicine, Division of Cardiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Jihee Lee Kang
- 1] Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea [2] Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Youn-Hee Choi
- 1] Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea [2] Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
21
|
Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage. Neurochem Int 2015; 82:19-27. [PMID: 25620665 DOI: 10.1016/j.neuint.2015.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 11/22/2022]
Abstract
Astrocytes appear to be important regulators of the inflammatory events that occur in stroke. Sulfiredoxin-1 (Srxn1), an endogenous antioxidant protein, exhibits neuroprotective effects. Although the mechanism by which Srxn1 negatively regulates oxidative and apoptotic pathways has been extensively characterized, the impact of Srxn1 on inflammation has not been well studied. In this study, we used oxygen-glucose deprivation followed by recovery (OGD/R) and hydrogen peroxide (H2O2) to mimic stress from cerebral ischemic damage on primary cultured astrocytes. We found that knockdown of Srxn1 by two shRNAs resulted in decreased cell viability of astrocytes. Decreased level of Srxn1 also correlated with excessive levels of proinflammatory cytokines and chemokines such as TNF-α, MPO, IL-1β, and IL-6. In addition, Srxn1 appeared to influence the strength of TLR4 signaling pathway; the expression of COX-2, IL-6, and NOS2 were strongly induced by OGD/R and H2O2 in astrocyte cultures with Srxn1-shRNAs. Our results suggested that loss of Srxn1 expression in astrocytes may cause excessive activation of inflammatory responses which contribute to OGD/R- and H2O2-induced cell death. Restoring Srxn1 function by gene therapy and/or pharmacology emerges as a promising strategy for the treatment of stroke and other chronic neurodegenerative diseases.
Collapse
|
22
|
Kagawa Y, Yasumoto Y, Sharifi K, Ebrahimi M, Islam A, Miyazaki H, Yamamoto Y, Sawada T, Kishi H, Kobayashi S, Maekawa M, Yoshikawa T, Takaki E, Nakai A, Kogo H, Fujimoto T, Owada Y. Fatty acid-binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin-1. Glia 2015; 63:780-94. [PMID: 25601031 DOI: 10.1002/glia.22784] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/16/2014] [Indexed: 12/28/2022]
Abstract
Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang YC, Chen CL, Sheu BS, Yang YJ, Tseng PC, Hsieh CY, Lin CF. Helicobacter pylori infection activates Src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:4149-58. [PMID: 25225672 DOI: 10.4049/jimmunol.1400594] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238(CagAm) failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238(CagAm) differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane-associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance.
Collapse
Affiliation(s)
- Yu-Chih Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Ling Chen
- Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yao-Jong Yang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Chun Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan; and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
24
|
Ryter SW, Choi AMK, Kim HP. Profibrogenic phenotype in caveolin-1 deficiency via differential regulation of STAT-1/3 proteins. Biochem Cell Biol 2014; 92:370-8. [PMID: 25263949 DOI: 10.1139/bcb-2014-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibrosis underlies the pathogenesis of several human diseases, which can lead to severe injury of vital organs. We previously demonstrated that caveolin-1 expression is reduced in experimental fibrosis and that caveolin-1 exerts antiproliferative and antifibrotic effects in lung fibrosis models. The signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT3, can be activated simultaneously. STAT1 can inhibit cell growth and promote apoptosis while STAT3 inhibits apoptosis. Here, we show that caveolin-1-deficient (cav-1(-/-)) lung fibroblasts display dramatically upregulated STAT3 activation in response to platelet-derived growth factor-BB and transforming growth factor-β stimuli, whereas STAT1 activation is undetectable. Downregulation of protein tyrosine phosphatase-1B played a role in the preferential activation of STAT3 in cav-1(-/-) fibroblasts. Genetic deletion of STAT3 by siRNA modulated the expression of genes involved in cell proliferation and fibrogenesis. Basal expression of α-smooth muscle actin was prominent in cav-1(-/-) liver and kidney, consistent with deposition of collagen in these organs. Collectively, we demonstrate that the antiproliferative and antifibrogenic properties of caveolin-1 in vitro are mediated by the balance between STAT1 and STAT3 activation. Deregulated STAT signaling associated with caveolin-1 deficiency may be relevant to proliferative disorders such as tissue fibrosis.
Collapse
Affiliation(s)
- Stefan W Ryter
- a Division of Pulmonary and Critical Care Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7:ra52. [PMID: 24894995 DOI: 10.1126/scisignal.2005260] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.
Collapse
Affiliation(s)
- Ho-Sung Lee
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sung-Young Shin
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
26
|
Jo A, Park H, Lee SH, Ahn SH, Kim HJ, Park EM, Choi YH. SHP-2 binds to caveolin-1 and regulates Src activity via competitive inhibition of CSK in response to H2O2 in astrocytes. PLoS One 2014; 9:e91582. [PMID: 24632723 PMCID: PMC3954793 DOI: 10.1371/journal.pone.0091582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/12/2014] [Indexed: 01/26/2023] Open
Abstract
Reactive oxygen species (ROS) regulate diverse cellular functions by triggering signal transduction events, such as Src and mitogen-activated protein (MAP) kinases. Here, we report the role of caveolin-1 and Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP-2) in H2O2-induced signaling pathway in brain astrocytes. H2O2-mediated oxidative stress induced phosphorylation of caveolin-1 and association between p-caveolin-1 and SHP-2. SHP-2 specifically bound to wild-type caveolin-1 similarly to c-Src tyrosine kinase (CSK), but not to phosphorylation-deficient mutant of caveolin-1 (Y14A), and interfered with complex formation between caveolin-1 and CSK. In the presence of CSK siRNA, binding between caveolin-1 and SHP-2 was enhanced by H2O2 treatment, which led to reduced Src phosphorylation at tyrosine (Tyr) 530 and enhanced Src phosphorylation at Tyr 419. In contrast, siRNA targeting of SHP-2 facilitated H2O2-mediated interaction between caveolin-1 and CSK and enhanced Src phosphorylation at Tyr 530, leading to subsequent decrease in Src downstream signaling, such as focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). Our results collectively indicate that SHP-2 alters Src kinase activity by interfering with the complex formation between CSK and phosphotyrosine caveolin-1 in the presence of H2O2, thus functions as a positive regulator in Src signaling under oxidative stress in brain astrocytes.
Collapse
Affiliation(s)
- Ara Jo
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyunju Park
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Sung-Hee Lee
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - So-Hee Ahn
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hee Ja Kim
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Youn-Hee Choi
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Lawler JM, Kunst M, Hord JM, Lee Y, Joshi K, Botchlett RE, Ramirez A, Martinez DA. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading. Am J Physiol Regul Integr Comp Physiol 2014; 306:R470-82. [PMID: 24477538 DOI: 10.1152/ajpregu.00371.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reduced mechanical loading during bedrest, spaceflight, and casting, causes rapid morphological changes in skeletal muscle: fiber atrophy and reduction of slow-twitch fibers. An emerging signaling event in response to unloading is the translocation of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma to the cytosol. We used EUK-134, a cell-permeable mimetic of superoxide dismutase and catalase, to test the role of redox signaling in nNOSμ translocation and muscle fiber atrophy as a result of short-term (54 h) hindlimb unloading. Fischer-344 rats were divided into ambulatory control, hindlimb-unloaded (HU), and hindlimb-unloaded + EUK-134 (HU-EUK) groups. EUK-134 mitigated the unloading-induced phenotype, including muscle fiber atrophy and muscle fiber-type shift from slow to fast. nNOSμ immunolocalization at the sarcolemma of the soleus was reduced with HU, while nNOSμ protein content in the cytosol increased with unloading. Translocation of nNOS from the sarcolemma to cytosol was virtually abolished by EUK-134. EUK-134 also mitigated dephosphorylation at Thr-32 of FoxO3a during HU. Hindlimb unloading elevated oxidative stress (4-hydroxynonenal) and increased sarcolemmal localization of Nox2 subunits gp91phox (Nox2) and p47phox, effects normalized by EUK-134. Thus, our findings are consistent with the hypothesis that oxidative stress triggers nNOSμ translocation from the sarcolemma and FoxO3a dephosphorylation as an early event during mechanical unloading. Thus, redox signaling may serve as a biological switch for nNOS to initiate morphological changes in skeletal muscle fibers.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology and Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang CY, Chiang TH, Chen CL, Tseng PC, Chien SY, Chuang YJ, Yang TT, Hsieh CY, Choi PC, Lin CF. Autophagy facilitates cytokine-induced ICAM-1 expression. Innate Immun 2013; 20:200-13. [PMID: 23751820 DOI: 10.1177/1753425913488227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ICAM-1 can be induced by inflammatory cytokines such as IFN-γ and TNF-α. This study investigated whether autophagy regulates ICAM-1 given that autophagy facilitates signaling of these two cytokines. Exogenous IFN-γ induced ICAM-1 in human lung epithelial A549 cells carrying wild type p53, a transcription factor reported for ICAM-1, but not in PC14PE6/AS2 (AS2) cells carrying mutated p53. However, IFN-γ also induced ICAM-1 in A549 cells with short hairpin RNA-silenced p53. No changes in IFN-γ receptor expression were observed in AS2 cells, but IFN-γ-activated Jak2/STAT1/IFN regulatory factor 1 was markedly decreased. In AS2 cells, increased levels of reactive oxygen species induced the activation of Src homology domain-containing phosphatase 2 (SHP2), while SHP2 was essential for IFN-γ resistance. AS2 cells showed autophagy resistance, and the manipulation of the autophagy pathway altered IFN-γ resistance. Aberrant Bcl-2 expression and mammalian target of rapamycin activation contributed to both autophagy resistance and IFN-γ resistance. Autophagy, but not p53, also modulated TNF-α-induced NF-κB activation and ICAM-1 expression. Inhibiting autophagy decreased the adhesion of human monocytic U937 cells to IFN-γ-treated A549 cells. These results demonstrated that IFN-γ and TNF-α induced ICAM-1 expression through a common pathway that was regulated by autophagy, but not p53.
Collapse
Affiliation(s)
- Chi-Yun Wang
- 1Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shen WJ, Hsieh CY, Chen CL, Yang KC, Ma CT, Choi PC, Lin CF. A modified fixed staining method for the simultaneous measurement of reactive oxygen species and oxidative responses. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Abstract
The yeast high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase pathway is activated in response to hyperosmotic stress via two independent osmosensing branches, the Sln1 branch and the Sho1 branch. While the mechanism by which the osmosensing machinery activates the downstream MAP kinase cascade has been well studied, the mechanism by which the machinery senses and responds to hyperosmotic stress remains to be clarified. Here we report that inhibition of the de novo sphingolipid synthesis pathway results in activation of the HOG pathway via both branches. Inhibition of ergosterol biosynthesis also induces activation of the HOG pathway. Sphingolipids and sterols are known to be tightly packed together in cell membranes to form partitioned domains called rafts. Raft-enriched detergent-resistant membranes (DRMs) contain both Sln1 and Sho1, and sphingolipid depletion and hyperosmotic stress have similar effects on the osmosensing machinery of the HOG pathway: dissociation of an Sln1-containing protein complex and elevated association of Sho1 with DRMs. These observations reveal the sphingolipid-mediated regulation of the osmosensing machinery of the HOG pathway.
Collapse
|
31
|
Yun JH, Park SJ, Jo A, Kang JL, Jou I, Park JS, Choi YH. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes. Exp Mol Med 2012; 43:660-8. [PMID: 21918362 DOI: 10.3858/emm.2011.43.12.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin- 1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin- 1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.
Collapse
Affiliation(s)
- Ji Hee Yun
- Department of Physiology, Ewha Womans University School of Medicine Seoul 158-710, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Park SJ, Lee JH, Kim HY, Choi YH, Park JS, Suh YH, Park SM, Joe EH, Jou I. Astrocytes, but not microglia, rapidly sense H₂O₂via STAT6 phosphorylation, resulting in cyclooxygenase-2 expression and prostaglandin release. THE JOURNAL OF IMMUNOLOGY 2012; 188:5132-41. [PMID: 22504638 DOI: 10.4049/jimmunol.1101600] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Emerging evidence has established that astrocytes, once considered passive supporting cells that maintained extracellular ion levels and served as a component of the blood-brain barrier, play active regulatory roles during neurogenesis and in brain pathology. In the current study, we demonstrated that astrocytes sense H(2)O(2) by rapidly phosphorylating the transcription factor STAT6, a response not observed in microglia. STAT6 phosphorylation was induced by generators of other reactive oxygen species (ROS) and reactive nitrogen species, as well as in the reoxygenation phase of hypoxia/reoxygenation, during which ROS are generated. Src-JAK pathways mediated STAT6 phosphorylation upstream. Experiments using lipid raft disruptors and analyses of detergent-fractionated cells demonstrated that H(2)O(2)-induced STAT6 phosphorylation occurred in lipid rafts. Under experimental conditions in which H(2)O(2) did not affect astrocyte viability, H(2)O(2)-induced STAT6 phosphorylation resulted in STAT6-dependent cyclooxygenase-2 expression and subsequent release of PGE(2) and prostacyclin, an effect also observed in hypoxia/reoxygenation. Finally, PGs released from H(2)O(2)-stimulated astrocytes inhibited microglial TNF-α expression. Accordingly, our results indicate that ROS-induced STAT6 phosphorylation in astrocytes can modulate the functions of neighboring cells, including microglia, through cyclooxygenase-2 induction and subsequent release of PGs. Differences in the sensitivity of STAT6 in astrocytes (highly sensitive) and microglia (insensitive) to phosphorylation following brief exposure to H(2)O(2) suggest that astrocytes can act as sentinels for certain stimuli, including H(2)O(2) and ROS, refining the canonical notion that microglia are the first line of defense against external stimuli.
Collapse
Affiliation(s)
- Soo Jung Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arsenault D, Lucien F, Dubois CM. Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. J Cell Physiol 2012; 227:789-800. [PMID: 21503879 DOI: 10.1002/jcp.22792] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumor hypoxia is strongly associated with malignant progression such as increased cell invasion and metastasis. Although the invasion-related genes affected by hypoxia have been well described, the contribution of post-transcriptional mechanisms such as protein trafficking and proprotein processing associated with the hypoxic response remains poorly understood. The proprotein convertase furin, the major processing enzyme of the secretory pathway, resides in the trans-Golgi network and most studies support a model where endogenous substrates are processed by furin within this compartment. Here, we report that hypoxia triggered an unexpected relocalization of furin from the trans-Golgi network to endosomomal compartments and the cell surface in cancer cells. Exposing these cells back to normoxic conditions reversed furin redistribution, suggesting that the tumor microenvironment modulates furin trafficking in a highly regulated manner. Assessment of the mechanisms involved revealed that both Rab4GTPase-dependent recycling and interaction of furin with the cytoskeletal anchoring protein, filamin-A, are essential for the cell surface relocalization of furin. Interference with the association of furin with filamin-A, prevented cell surface relocalization of furin and abolished the ability of cancer cells to migrate in response to hypoxia. Our observations support the notion that hypoxia promotes the formation of a peripheral processing compartment where furin translocates for enhanced processing of proproteins involved in tumorigenesis.
Collapse
Affiliation(s)
- Dominique Arsenault
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
34
|
Awada R, Rondeau P, Grès S, Saulnier-Blache JS, Lefebvre d'Hellencourt C, Bourdon E. Autotaxin protects microglial cells against oxidative stress. Free Radic Biol Med 2012; 52:516-26. [PMID: 22155714 DOI: 10.1016/j.freeradbiomed.2011.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 02/06/2023]
Abstract
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.
Collapse
Affiliation(s)
- Rana Awada
- Laboratoire de Biochimie et Génétique Moléculaire, Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Plateforme CYROI, Université de La Réunion, 97715 Saint Denis de La Réunion Cedex 09, France
| | | | | | | | | | | |
Collapse
|
35
|
Hamdi Y, Kaddour H, Vaudry D, Douiri S, Bahdoudi S, Leprince J, Castel H, Vaudry H, Amri M, Tonon MC, Masmoudi-Kouki O. The stimulatory effect of the octadecaneuropeptide ODN on astroglial antioxidant enzyme systems is mediated through a GPCR. Front Endocrinol (Lausanne) 2012; 3:138. [PMID: 23181054 PMCID: PMC3502939 DOI: 10.3389/fendo.2012.00138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Astroglial cells possess an array of cellular defense systems, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damage caused by oxidative stress on the central nervous system. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including the octadecaneuropeptide (ODN). ODN is the ligand of both central-type benzodiazepine receptors (CBR), and an adenylyl cyclase- and phospholipase C-coupled receptor. We have recently shown that ODN is a potent protective agent that prevents hydrogen peroxide (H(2)O(2))-induced inhibition of SOD and catalase activities and stimulation of cell apoptosis in astrocytes. The purpose of the present study was to investigate the type of receptor involved in ODN-induced inhibition of SOD and catalase in cultured rat astrocytes. We found that ODN induced a rapid stimulation of SOD and catalase gene transcription in a concentration-dependent manner. In addition, 0.1 nM ODN blocked H(2)O(2)-evoked reduction of both mRNA levels and activities of SOD and catalase. Furthermore, the inhibitory actions of ODN on the deleterious effects of H(2)O(2) on SOD and catalase were abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[Dleu(5)]OP, but not by the CBR antagonist flumazenil. Finally, the protective action of ODN against H(2)O(2)-evoked inhibition of endogenous antioxidant systems in astrocytes was protein kinase A (PKA)-dependent, but protein kinase C-independent. Taken together, these data demonstrate for the first time that ODN, acting through its metabotropic receptor coupled to the PKA pathway, prevents oxidative stress-induced alteration of antioxidant enzyme expression and activities. The peptide ODN is thus a potential candidate for the development of specific agonists that would selectively mimic its protective activity.
Collapse
Affiliation(s)
- Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - David Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie, Institute for Medical Research and Innovation, University of RouenMont-Saint-Aignan, France
| | - Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| | - Jérôme Leprince
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
| | - Hélène Castel
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
| | - Hubert Vaudry
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- *Correspondence: Mohamed Amri, Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia. e-mail: ; Hubert Vaudry, Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie, Institute for Medical Research and Innovation, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- *Correspondence: Mohamed Amri, Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia. e-mail: ; Hubert Vaudry, Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie, Institute for Medical Research and Innovation, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Marie-Christine Tonon
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of RouenMont-Saint-Aignan, France
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El ManarTunis, Tunisia
| |
Collapse
|
36
|
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8:270-85. [PMID: 22023617 PMCID: PMC3254854 DOI: 10.2174/156720211798120990] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/20/2011] [Accepted: 10/04/2011] [Indexed: 01/01/2023]
Abstract
Inflammatory microglia modulate a host of cellular processes in the central nervous system that include neuronal survival, metabolic fluxes, foreign body exclusion, and cellular regeneration. Elucidation of the pathways that oversee microglial survival and integrity may offer new avenues for the treatment of neurodegenerative disorders. Here we demonstrate that erythropoietin (EPO), an emerging strategy for immune system modulation, prevents microglial early and late apoptotic injury during oxidant stress through Wnt1, a cysteine-rich glycosylated protein that modulates cellular development and survival. Loss of Wnt1 through blockade of Wnt1 signaling or through the gene silencing of Wnt1 eliminates the protective capacity of EPO. Furthermore, endogenous Wnt1 in microglia is vital to preserve microglial survival since loss of Wnt1 alone increases microglial injury during oxidative stress. Cellular protection by EPO and Wnt1 intersects at the level of protein kinase B (Akt1), the mammalian target of rapamycin (mTOR), and p70S6K, which are necessary to foster cytoprotection for microglia. Downstream from these pathways, EPO and Wnt1 control "anti-apoptotic" pathways of microglia through the modulation of mitochondrial membrane permeability, the release of cytochrome c, and the expression of apoptotic protease activating factor-1 (Apaf-1) and X-linked inhibitor of apoptosis protein (XIAP). These studies offer new insights for the development of innovative therapeutic strategies for neurodegenerative disorders that focus upon inflammatory microglia and novel signal transduction pathways.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| |
Collapse
|
37
|
Tsai MC, Chen WJ, Tsai MS, Ching CH, Chuang JI. Melatonin attenuates brain contusion-induced oxidative insult, inactivation of signal transducers and activators of transcription 1, and upregulation of suppressor of cytokine signaling-3 in rats. J Pineal Res 2011; 51:233-45. [PMID: 21545521 DOI: 10.1111/j.1600-079x.2011.00885.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The induction of oxidative stress and inflammation has been closely linked in traumatic brain injury (TBI). Transcriptional factors of signal transducers and activators of transcription (STAT) proteins are redox sensitive and participate in the regulation of cytokine signaling. Previous studies demonstrated that melatonin protects neurons through its antioxidative and anti-inflammatory effects in various neuropathological conditions. However, the effect of melatonin on STAT activity after TBI has not yet been explored. In this study, we used a controlled weight-drop TBI model and found that brain contusion induced oxidative stress (a decreased level of total glutathione and an increased ratio of oxidized glutathione to total glutathione), a reduction in STAT1 DNA-binding activity, and consequently neuronal loss in a contusion depth-dependent manner. A significant increased mRNA expression of suppressor of cytokine signaling (SOCS3), inducible nitric oxide synthetase (iNOS), and interleukine-6 (IL-6), but a decreased protein expression of protein inhibitor of activated STAT (PIAS1), was found 24 hr after brain contusion. SOCS3 and PIAS1 are endogenous negative regulators of STAT1. Moreover, the combination of intraperitoneal and local (presoaked in gelfoam and placed on the traumatic cortex) administration of melatonin had the most pronounced influence in inhibiting all effects except the PIAS1 downregulation induced by brain contusion. The results suggest that SOCS-3 upregulation and oxidative stress may contribute to the STAT1 inactivation after TBI. Melatonin protects neurons from TBI by reducing oxidative stress, STAT1 inactivation, and upregulation of SOCS-3 and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Ming Che Tsai
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
39
|
Kao TK, Ou YC, Lin SY, Pan HC, Song PJ, Raung SL, Lai CY, Liao SL, Lu HC, Chen CJ. Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J Nutr Biochem 2011; 22:612-24. [DOI: 10.1016/j.jnutbio.2010.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 12/30/2022]
|
40
|
Hamdi Y, Masmoudi-Kouki O, Kaddour H, Belhadj F, Gandolfo P, Vaudry D, Mokni M, Leprince J, Hachem R, Vaudry H, Tonon MC, Amri M. Protective effect of the octadecaneuropeptide on hydrogen peroxide-induced oxidative stress and cell death in cultured rat astrocytes. J Neurochem 2011; 118:416-28. [DOI: 10.1111/j.1471-4159.2011.07315.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Autophagy facilitates an IFN-γ response and signal transduction. Microbes Infect 2011; 13:888-94. [PMID: 21664983 DOI: 10.1016/j.micinf.2011.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/20/2011] [Indexed: 12/24/2022]
Abstract
Autophagy, that is directly triggered by invaded pathogens and indirectly triggered by IFN-γ, acts as a defense by mediating intracellular microbial recognition and clearance. In addition, autophagy contributes to inflammation by facilitating an IFN-γ response and signal transduction. For immune escape, downregulated autophagy may be a strategy used by microbes.
Collapse
|
42
|
Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases. Cell Signal 2011; 23:820-6. [DOI: 10.1016/j.cellsig.2011.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/09/2010] [Accepted: 01/10/2011] [Indexed: 12/16/2022]
|
43
|
Hypoxia effects on proangiogenic factors in human umbilical vein endothelial cells: functional role of the peptide somatostatin. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:593-612. [DOI: 10.1007/s00210-011-0625-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/23/2011] [Indexed: 12/15/2022]
|
44
|
Won KJ, Lee HM, Lee CK, Lin HY, Na H, Lim KW, Roh HY, Sim S, Song H, Choi WS, Lee SH, Kim B. Protein Tyrosine Phosphatase SHP-2 Is Positively Involved in Platelet-Derived Growth Factor–Signaling in Vascular Neointima Formation via the Reactive Oxygen Species–Related Pathway. J Pharmacol Sci 2011; 115:164-175. [DOI: 10.1254/jphs.10250fp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022] Open
|
45
|
Repetitive peroxide exposure reveals pleiotropic mitogen-activated protein kinase signaling mechanisms. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:636951. [PMID: 21258655 PMCID: PMC3023409 DOI: 10.1155/2011/636951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 09/28/2010] [Indexed: 01/14/2023]
Abstract
Oxidative stressors such as hydrogen peroxide control the activation of many interconnected signaling systems and are implicated in neurodegenerative disease etiology. Application of hydrogen peroxide to PC12 cells activated multiple tyrosine kinases (c-Src, epidermal growth factor receptor (EGFR), and Pyk2) and the serine-threonine kinase ERK1/2. Peroxide-induced ERK1/2 activation was sensitive to intracellular calcium chelation and EGFR and c-Src kinase inhibition. Acute application and removal of peroxide allowed ERK1/2 activity levels to rapidly subside to basal serum-deprived levels. Using this protocol, we demonstrated that ERK1/2 activation tachyphylaxis developed upon repeated peroxide exposures. This tachyphylaxis was independent of c-Src/Pyk2 tyrosine phosphorylation but was associated with a progressive reduction of peroxide-induced EGFR tyrosine phosphorylation, EGFR interaction with growth factor receptor binding protein 2, and a redistribution of EGFR from the plasma membrane to the cytoplasm. Our data indicates that components of peroxide-induced ERK1/2 cascades are differentially affected by repeated exposures, indicating that oxidative signaling may be contextually variable.
Collapse
|
46
|
Chang YP, Tsai CC, Huang WC, Wang CY, Chen CL, Lin YS, Kai JI, Hsieh CY, Cheng YL, Choi PC, Chen SH, Chang SP, Liu HS, Lin CF. Autophagy facilitates IFN-gamma-induced Jak2-STAT1 activation and cellular inflammation. J Biol Chem 2010; 285:28715-22. [PMID: 20592027 DOI: 10.1074/jbc.m110.133355] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autophagy is regulated for IFN-gamma-mediated antimicrobial efficacy; however, its molecular effects for IFN-gamma signaling are largely unknown. Here, we show that autophagy facilitates IFN-gamma-activated Jak2-STAT1. IFN-gamma induces autophagy in wild-type but not in autophagy protein 5 (Atg5(-/-))-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-gamma induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5(-/-) or Atg7(-/-) MEFs are, independent of changes in IFN-gamma receptor expression, resistant to IFN-gamma-activated Jak2-STAT1, which suggests that autophagy is important for IFN-gamma signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-gamma-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-gamma-induced activation of STAT1 in Atg5(-/-) MEFs. Our study provides evidence that there is a link between autophagy and both IFN-gamma signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation.
Collapse
Affiliation(s)
- Yu-Ping Chang
- Institutes of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abdul-Sater AA, Saïd-Sadier N, Padilla EV, Ojcius DM. Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome. Microbes Infect 2010; 12:652-661. [PMID: 20434582 DOI: 10.1016/j.micinf.2010.04.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022]
Abstract
Chlamydia trachomatis infections represent the leading cause of bacterial sexually-transmitted disease in the United States and can cause serious tissue damage leading to infertility and ectopic pregnancies in women. Inflammation and hence the innate immune response to chlamydial infection contributes significantly to tissue damage, particularly by secreting proinflammatory cytokines such as interleukin (IL)-1beta from monocytes, macrophages and dendritic cells. Here we demonstrate that C. trachomatis or Chlamydia muridarum infection of a monocytic cell line leads to caspase-1 activation and IL-1beta secretion through a process requiring the NLRP3 inflammasome. Thus, secretion of IL-1beta decreased significantly when cells were depleted of NLRP3 or treated with the anti-inflammatory inhibitors parthenolide or Bay 11-7082, which inhibit inflammasomes and the transcription factor NF-kappaB. As for other infections causing NRLP3 inflammasome assembly, caspase-1 activation in monocytes is triggered by potassium efflux and reactive oxygen species production. However, anti-oxidants inhibited IL-1beta secretion only partially. Atypically for a bacterial infection, caspase-1 activation during chlamydial infection also involves partially the spleen tyrosine kinase (Syk), which is usually associated with a pathogen recognition receptor for fungal pathogens. Secretion of IL-1beta during infection by many bacteria requires both microbial products from the pathogen and an exogenous danger signal, but chlamydial infection provides both the pathogen-associated molecular patterns and danger signals necessary for IL-1beta synthesis and its secretion from human monocytes. Use of inhibitors that target the inflammasome in animals should therefore dampen inflammation during chlamydial infection.
Collapse
Affiliation(s)
- Ali A Abdul-Sater
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Najwane Saïd-Sadier
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA.,Institut Jacques Monod, Université Paris Diderot, 75205 Paris cedex 13, France
| | - Eduardo V Padilla
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - David M Ojcius
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA.,Institut Jacques Monod, Université Paris Diderot, 75205 Paris cedex 13, France
| |
Collapse
|
48
|
McClelland EE, Nicola AM, Prados-Rosales R, Casadevall A. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 2010; 120:1355-61. [PMID: 20335660 DOI: 10.1172/jci38322] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/27/2010] [Indexed: 01/22/2023] Open
Abstract
Abs facilitate humoral immunity via the classical mechanisms of opsonization, complement activation, Ab-dependent cellular cytotoxicity, and toxin/viral neutralization. There is also evidence that some Abs mediate direct antimicrobial effects. For example, Ab binding to the polysaccharide capsule of the human pathogenic fungus Cryptococcus neoformans promotes opsonization but also inhibits polysaccharide release and biofilm formation. To investigate whether Ab binding affects C. neoformans directly, we analyzed fungal gene expression after binding of protective and nonprotective mAbs. The 2 IgM Abs and 1 IgG1 Ab tested each induced different changes in gene expression. The protective IgG1 mAb upregulated genes encoding proteins involved in fatty acid synthesis, the protective IgM mAb downregulated genes encoding proteins required for protein translation, and the nonprotective IgM mAb had modest effects on gene expression. Differences in gene expression correlated with mAb binding to different locations of the capsule. Of the 3 Abs tested, the protective IgG1 mAb bound to C. neoformans closest to the cell wall, produced specific differences in the pattern of phosphorylated proteins, caused changes in lipid metabolism, and resulted in increased susceptibility to the antifungal drug amphotericin B. These results suggest what we believe to be a new mode of action for Ab-mediated immunity and raise the possibility that immunoglobulins mediate cross talk between microbes and hosts through their effects on microbial metabolism.
Collapse
Affiliation(s)
- Erin E McClelland
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA.
| | | | | | | |
Collapse
|
49
|
Current Opinion in Clinical Nutrition and Metabolic Care. Current world literature. Curr Opin Clin Nutr Metab Care 2010; 13:215-21. [PMID: 20145440 DOI: 10.1097/mco.0b013e32833643b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Kao TK, Ou YC, Raung SL, Lai CY, Liao SL, Chen CJ. Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci 2010; 86:315-21. [DOI: 10.1016/j.lfs.2009.12.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/02/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022]
|