1
|
Gamba AG, Oakley CA, Ashley IA, Grossman AR, Weis VM, Suggett DJ, Davy SK. Oxylipin Receptors and Their Role in Inter-Partner Signalling in a Model Cnidarian-Dinoflagellate Symbiosis. Environ Microbiol 2024; 26:e70015. [PMID: 39702992 DOI: 10.1111/1462-2920.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2). Receptor abundance and localisation were compared between aposymbiotic anemones and symbiotic anemones hosting either native Breviolum minutum or non-native Durusdinium trenchii. All receptors were localised to the putative symbiosome of freshly isolated symbionts, suggesting a role in host-symbiont crosstalk. EP2, EP4 and TRPA1 abundance decreased in the gastrodermis of anemones hosting B. minutum, indicating potential downregulation of pathways mediated by these receptors. In contrast, GRIK2 abundance increased in anemones hosting D. trenchii in both the epidermis and gastrodermis; GRIK2 acts as a chemosensor of potential pathogens in other systems and could play a similar role here given D. trenchii's reputation as a sub-optimal partner for Aiptasia. This study contributes to the understanding of oxylipin signalling in the cnidarian-dinoflagellate symbiosis and supports further exploration of host-symbiont molecular signalling.
Collapse
Affiliation(s)
- Andrea G Gamba
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Immy A Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
3
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
5
|
Rizo-Téllez SA, Sekheri M, Filep JG. Myeloperoxidase: Regulation of Neutrophil Function and Target for Therapy. Antioxidants (Basel) 2022; 11:antiox11112302. [PMID: 36421487 PMCID: PMC9687284 DOI: 10.3390/antiox11112302] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most abundant white blood cells in humans, are critical for host defense against invading pathogens. Equipped with an array of antimicrobial molecules, neutrophils can eradicate bacteria and clear debris. Among the microbicide proteins is the heme protein myeloperoxidase (MPO), stored in the azurophilic granules, and catalyzes the formation of the chlorinating oxidant HOCl and other oxidants (HOSCN and HOBr). MPO is generally associated with killing trapped bacteria and inflicting collateral tissue damage to the host. However, the characterization of non-enzymatic functions of MPO suggests additional roles for this protein. Indeed, evolving evidence indicates that MPO can directly modulate the function and fate of neutrophils, thereby shaping immunity. These actions include MPO orchestration of neutrophil trafficking, activation, phagocytosis, lifespan, formation of extracellular traps, and MPO-triggered autoimmunity. This review scrutinizes the multifaceted roles of MPO in immunity, focusing on neutrophil-mediated host defense, tissue damage, repair, and autoimmunity. We also discuss novel therapeutic approaches to target MPO activity, expression, or MPO signaling for the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Salma A. Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
- Correspondence: ; Tel.: +1-514-252-3400 (ext. 4662)
| |
Collapse
|
6
|
Mohammed A, Kalle AM, Reddanna P. Managing SARS-CoV2 Infections Through Resolution of Inflammation by Eicosanoids: A Review. J Inflamm Res 2022; 15:4349-4358. [PMID: 35937919 PMCID: PMC9346295 DOI: 10.2147/jir.s355568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Corona Virus Disease is characterized by angiocentric inflammation of lungs and cytokine storm leading to potentially fatal multiple organ failure. Several studies have shown the high levels of pro-inflammatory cytokines, indicative of a poor prognosis in COVID-19. Eicosanoids play an important role in the induction of inflammation and cytokine production, while anti-inflammatory and pro-resolving properties of some eicosanoic acid derivatives enable inflamed tissues to return to homeostasis through the resolution of inflammation by aiding the clearance of cell debris and downregulation of pro-inflammatory stimulants. This review attempts to provide an overall insight on the eicosanoids synthesis and their role in the resolution of inflammation in the context of Corona Virus infection.
Collapse
Affiliation(s)
- Ameena Mohammed
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, 741246, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
7
|
Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Int J Mol Sci 2022; 23:ijms23158672. [PMID: 35955804 PMCID: PMC9368987 DOI: 10.3390/ijms23158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular aging, characterized by structural and functional alterations of the vascular wall, is a hallmark of aging and is tightly related to the development of cardiovascular mortality and age-associated vascular pathologies. Over the last years, extensive and ongoing research has highlighted several sophisticated molecular mechanisms that are involved in the pathophysiology of vascular aging. A more thorough understanding of these mechanisms could help to provide a new insight into the complex biology of this non-reversible vascular process and direct future interventions to improve longevity. In this review, we discuss the role of the most important molecular pathways involved in vascular ageing including oxidative stress, vascular inflammation, extracellular matrix metalloproteinases activity, epigenetic regulation, telomere shortening, senescence and autophagy.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
- Correspondence: (E.G.); (K.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Trieda SNP 1, 04066 Košice, Slovakia
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Milica Vukicevic
- Cardiac Surgery Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Kristina Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, 11000 Belgrade, Serbia
- Correspondence: (E.G.); (K.G.)
| |
Collapse
|
8
|
Wu Y, Li K, Zeng M, Qiao B, Zhou B. Serum Metabolomics Analysis of the Anti-Inflammatory Effects of Gallic Acid on Rats With Acute Inflammation. Front Pharmacol 2022; 13:830439. [PMID: 35392557 PMCID: PMC8981033 DOI: 10.3389/fphar.2022.830439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Gallic acid (GA) is a natural small-molecule polyphenol having a wide range of pharmacological activities. Until now, some works have studied the effect and the mechanisms of GA against inflammation. However, whether or how gallic acid regulates the downstream metabolic disorder against acute inflammation remains unclear. The present study explored the protective effect and the potential mechanism of GA on acute inflammation through the metabolomics approach. Methods: An acute inflammation rat model was induced by local injection of carrageenin. Local swelling on paw and serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were assessed in Control, Model and Gallic acid groups, respectively. Serum metabolomics based on high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) was also established to collect rats’ metabolic profiles and explore the metabolic changes related to GA pretreatment. Results: Compared to the Modal group, local pain, redness, and swelling induced by carrageenin were significantly alleviated in GA groups in addition to the dose-dependent decreases of TNF-α and IL-6. Metabolomics analysis found significant alterations in metabolic signatures between the carrageenin-induced inflammation and control groups. Twelve potential biomarkers were further identified in acute inflammation by principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA). In addition, when rats were pretreated with gallic acid, serum levels of eleven biomarkers were observed to restore partially. Metabolic pathway and networks analysis revealed that GA might invert the pathological process of acute inflammation by regulating the key biomarkers involved in linoleic acid metabolism, ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and arachidonic acid (AA) metabolism pathways. Conclusion: The study elucidates the protective effect of gallic acid against acute inflammation and its possible regulating mechanism from a metabolomic perspective. These results could provide a theoretical basis for clarifying gallic acid’s mechanism and potential medicinal value in curing inflammation disorder in the clinic.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Kuangyu Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Maolin Zeng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China
| | - Boyang Qiao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuha, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Yu X, Sun H, Gao X, Zhang C, Sun Y, Wang H, Zhang H, Shi Y, He X. A comprehensive analysis of age-related metabolomics and transcriptomics reveals metabolic alterations in rat bone marrow mesenchymal stem cells. Aging (Albany NY) 2022; 14:1014-1032. [PMID: 35122680 PMCID: PMC8833123 DOI: 10.18632/aging.203857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
The functions of stem cells decline progressively with aging, and some metabolic changes occur during the process. However, the molecular mechanisms of stem cell aging remain unclear. In this study, the combined application of metabolomics and transcriptomics technologies can effectively describe the possible molecular mechanisms of rat bone marrow mesenchymal stem cell (BMSC) senescence. Metabolomic profiles revealed 23 differential metabolites which were abundant in “glycerophospholipid metabolism”, “linoleic acid metabolism” and “biosynthesis of unsaturated fatty acids”. In addition, transcriptomics analysis identified 590 genes with enormously differential expressions in young and old BMSCs. KEGG enrichment analyses showed that metabolism-related pathways in BMSC senescence had stronger responses. Furthermore, the integrated analysis of the interactions between the differentially expressed genes (DEGs) and metabolites indicated the differential genes related to lipid metabolism of Scd, Scd2, Dgat2, Fads2, Lpin1, Gpat3, Acaa2, Lpcat3, Pcyt2 and Pla2g4a may be closely associated with the aging of BMSCs. Finally, Scd2 was identified as the most significant DEG, and Scd2 over-expression could alleviate cellular senescence in aged BMSCs. In conclusion, this work provides a validated understanding that the DEGs and metabolites related to lipid metabolism present more apparent changes in the senescence of rat BMSCs.
Collapse
Affiliation(s)
- Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
10
|
Yang C, Zhao K, Chen X, Jiang L, Li P, Huang P. Pellino1 deficiency reprograms cardiomyocytes energy metabolism in lipopolysaccharide-induced myocardial dysfunction. Amino Acids 2021; 53:713-737. [PMID: 33885999 PMCID: PMC8128834 DOI: 10.1007/s00726-021-02978-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
Pellino1 has been shown to regulate proinflammatory genes by activating the nuclear factor kappa B (NF-κB) and Toll-like receptor (TLR) signaling pathways, which are important in the pathological development of lipopolysaccharide (LPS)-induced myocarditis. However, it is still unknown whether silencing Pellino1 (si-Pellino1) has a therapeutic effect on this disease. Here, we showed that silencing Pellino1 can be a potential protective strategy for abnormal myocardial energy metabolism in LPS-induced myocarditis. We used liquid chromatography electrospray–ionization tandem mass spectrometry (LC–MS/MS) to analyze samples from si-Pellino1 neonatal rat cardiac myocytes (NRCMs) treated with LPS or left untreated. After normalization of the data, metabolite interaction analysis of matched KEGG pathway associations following si-Pellino1 treatment was applied, accompanied by interaction analysis of gene and metabolite associations after this treatment. Moreover, we used western blot (WB) and polymerase chain reaction (PCR) analyses to determine the expression of genes involved in regulating cardiac energy and energy metabolism in different groups. LC–MS-based metabolic profiling analysis demonstrated that si-Pellino1 treatment could alleviate or even reverse LPS-induced cellular damage by altering cardiomyocytes energy metabolism accompanied by changes in key genes (Cs, Cpt2, and Acadm) and metabolites (3-oxoocotanoyl-CoA, hydroxypyruvic acid, lauroyl-CoA, and NADPH) in NRCMs. Overall, our study unveiled the promising cardioprotective effect of silencing Pellino1 in LPS-induced myocarditis through fuel and energy metabolic regulation, which can also serve as biomarkers for this disease.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China.,Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xufeng Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Peipei Huang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
11
|
Mariamenatu AH, Abdu EM. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their "Balanced Antagonistic Metabolic Functions" in the Human Body. J Lipids 2021; 2021:8848161. [PMID: 33815845 PMCID: PMC7990530 DOI: 10.1155/2021/8848161] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) contain ≥2 double-bond desaturations within the acyl chain. Omega-3 (n-3) and Omega-6 (n-6) PUFAs are the two known important families in human health and nutrition. In both Omega families, many forms of PUFAs exist: α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) from the n-3 family and linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA) from the n-6 family are the important PUFAs for human health. Omega-3 and Omega-6 PUFAs are competitively metabolized by the same set of desaturation, elongation, and oxygenase enzymes. The lipid mediators produced from their oxidative metabolism perform opposing (antagonistic) functions in the human body. Except for DGLA, n-6 PUFA-derived lipid mediators enhance inflammation, platelet aggregation, and vasoconstriction, while those of n-3 inhibit inflammation and platelet aggregation and enhance vasodilation. Overconsumption of n-6 PUFAs with low intake of n-3 PUFAs is highly associated with the pathogenesis of many modern diet-related chronic diseases. The volume of n-6 PUFAs is largely exceeding the volume of n-3PUFAs. The current n-6/n-3 ratio is 20-50/1. Due to higher ratios of n-6/n-3 in modern diets, larger quantities of LA- and AA-derived lipid mediators are produced, becoming the main causes of the formation of thrombus and atheroma, the allergic and inflammatory disorders, and the proliferation of cells, as well as the hyperactive endocannabinoid system. Therefore, in order to reduce all of these risks which are due to overconsumption of n-6 PUFAs, individuals are required to take both PUFAs in the highly recommended n-6/n-3 ratio which is 4-5/1.
Collapse
Affiliation(s)
- Abeba Haile Mariamenatu
- Department of Biotechnology, College of Natural and Computational Science, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - Emebet Mohammed Abdu
- Department of Biology, College of Natural and Computational Science, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| |
Collapse
|
12
|
Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021; 123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.
Collapse
|
13
|
Zhao M, Zhang H, Wang J, Shan D, Xu Q. Serum metabolomics analysis of the intervention effect of whole grain oats on insulin resistance induced by high-fat diet in rats. Food Res Int 2020; 135:109297. [DOI: 10.1016/j.foodres.2020.109297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022]
|
14
|
Kwon SY, Massey K, Watson MA, Hussain T, Volpe G, Buckley CD, Nicolaou A, Badenhorst P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. Life Sci Alliance 2020; 3:3/2/e201900356. [PMID: 31992650 PMCID: PMC6988086 DOI: 10.26508/lsa.201900356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023] Open
Abstract
Obesity-induced inflammation, or meta-inflammation, plays key roles in metabolic syndrome and is a significant risk factor in diabetes and cardiovascular disease. To investigate causal links between obesity, meta-inflammation, and insulin signaling we established a Drosophila model to determine how elevated dietary fat and changes in the levels and balance of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) influence inflammation. We observe negligible effect of saturated fatty acid on inflammation but marked enhancement or suppression by omega-6 and omega-3 PUFAs, respectively. Using combined lipidomic and genetic analysis, we show omega-6 PUFA enhances meta-inflammation by producing linoleic acid-derived lipid mediator 9-hydroxy-octadecadienoic acid (9-HODE). Transcriptome analysis reveals 9-HODE functions by regulating FOXO family transcription factors. We show 9-HODE activates JNK, triggering FOXO nuclear localisation and chromatin binding. FOXO TFs are important transducers of the insulin signaling pathway that are normally down-regulated by insulin. By activating FOXO, 9-HODE could antagonise insulin signaling providing a molecular conduit linking changes in dietary fatty acid balance, meta-inflammation, and insulin resistance.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Karen Massey
- Bradford School of Pharmacy, University of Bradford, Bradford, UK
| | - Mark A Watson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Tayab Hussain
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, Centre for Translational Inflammation Research, Queen Elizabeth Hospital, Edgbaston, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anna Nicolaou
- Bradford School of Pharmacy, University of Bradford, Bradford, UK.,Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul Badenhorst
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
15
|
Yu X, Bao Y, Meng X, Wang S, Li T, Chang X, Xu W, Yang G, Bo T. Multi-pathway integrated adjustment mechanism of licorice flavonoids presenting anti-inflammatory activity. Oncol Lett 2019; 18:4956-4963. [PMID: 31612007 DOI: 10.3892/ol.2019.10793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Glycyrrhiza, commonly known as licorice, is a herbal medicine that has been used for thousands of years. Licorice contains multiple flavonoids, which possess a variety of biological activities. On the basis of the anti-inflammatory effects of licorice flavonoids, the potential mechanism of action was investigated via a plasma metabolomics approach. A total of 9 differential endogenous metabolites associated with the therapeutic effect of licorice flavonoids were identified, including linoleic acid, sphingosine, tryptophanamide, corticosterone and leukotriene B4. Besides classical arachidonic acid metabolism, metabolism of sphingolipids, tryptophan and fatty acids, phospholipids synthesis, and other pathways were also involved. The multi-pathway integrated adjustment mechanism of licorice flavonoid action may reduce side effects in patients, along with any anti-inflammatory functions, which provides a foundation for identifying and developing novel, high-potential natural drugs with fewer side effects for clinical application.
Collapse
Affiliation(s)
- Xiaomeng Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Weifeng Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Guanlin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Tao Bo
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| |
Collapse
|
16
|
Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular Oxidative Stress: Impact and Therapeutic Approaches. Front Physiol 2018; 9:1668. [PMID: 30564132 PMCID: PMC6288353 DOI: 10.3389/fphys.2018.01668] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress has been defined as an imbalance between oxidants and antioxidants and more recently as a disruption of redox signaling and control. It is generally accepted that oxidative stress can lead to cell and tissue injury having a fundamental role in vascular dysfunction. Physiologically, reactive oxygen species (ROS) control vascular function by modulating various redox-sensitive signaling pathways. In vascular disorders, oxidative stress instigates endothelial dysfunction and inflammation, affecting several cells in the vascular wall. Vascular ROS are derived from multiple sources herein discussed, which are prime targets for therapeutic development. This review focuses on oxidative stress in vascular physiopathology and highlights different strategies to inhibit ROS production.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Adriana Leandro
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lara Azul
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - George Perry
- College of Sciences, One UTSA Circle, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Wang Y, Ouyang Y, Liu B, Ma X, Ding R. Platelet activation and antiplatelet therapy in sepsis: A narrative review. Thromb Res 2018; 166:28-36. [DOI: 10.1016/j.thromres.2018.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
|
18
|
Abstract
As one of the first defenders of innate immune response, neutrophils make a rapid and robust response against infection or harmful agents. While traditionally regarded as suicidal killers that cause collateral tissue damage, recent findings on neutrophil extracellular trap formation, heterogeneity and plasticity and novel reparative functions have expanded our understanding of their diverse roles in health and disease. This review summarizes our current understanding of neutrophil-associated tissue injury, highlighting the emerging roles of neutrophil extracellular traps. This review will also focus on scrutinizing the roles of neutrophils in tissue repair and regeneration and will examine data on unexpected aspects of involvement of neutrophils in regulating normal tissue homeostasis.
Collapse
Affiliation(s)
- Jing Wang
- Division of Inflammation Biology, Institute of Enzyme Research, Tokushima University, Tokushima, Japan.
| |
Collapse
|
19
|
Reber LL, Gillis CM, Starkl P, Jönsson F, Sibilano R, Marichal T, Gaudenzio N, Bérard M, Rogalla S, Contag CH, Bruhns P, Galli SJ. Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J Exp Med 2017; 214:1249-1258. [PMID: 28385925 PMCID: PMC5413333 DOI: 10.1084/jem.20161238] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/30/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
Neutrophils have crucial antimicrobial functions but are also thought to contribute to tissue injury upon exposure to bacterial products, such as lipopolysaccharide (LPS). To study the role of neutrophils in LPS-induced endotoxemia, we developed a new mouse model, PMNDTR mice, in which injection of diphtheria toxin induces selective neutrophil ablation. Using this model, we found, surprisingly, that neutrophils serve to protect the host from LPS-induced lethal inflammation. This protective role was observed in conventional and germ-free animal facilities, indicating that it does not depend on a particular microbiological environment. Blockade or genetic deletion of myeloperoxidase (MPO), a key neutrophil enzyme, significantly increased mortality after LPS challenge, and adoptive transfer experiments confirmed that neutrophil-derived MPO contributes importantly to protection from endotoxemia. Our findings imply that, in addition to their well-established antimicrobial properties, neutrophils can contribute to optimal host protection by limiting the extent of endotoxin-induced inflammation in an MPO-dependent manner.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Caitlin M Gillis
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Friederike Jönsson
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
| | - Marion Bérard
- Animalerie Centrale, Institut Pasteur, 75015 Paris, France
| | - Stephan Rogalla
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, CA 94305
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Christopher H Contag
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, CA 94305
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305
| | - Pierre Bruhns
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, 75015 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1222, 75015 Paris, France
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
20
|
Mariani F, Roncucci L. Role of the Vanins-Myeloperoxidase Axis in Colorectal Carcinogenesis. Int J Mol Sci 2017; 18:E918. [PMID: 28448444 PMCID: PMC5454831 DOI: 10.3390/ijms18050918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
The presence of chronic inflammation in the colonic mucosa leads to an increased risk of cancer. Among proteins involved in the regulation of mucosal inflammation and that may contribute both to structural damage of the intestinal mucosa and to intestinal carcinogenesis, there are myeloperoxidase (MPO) and vanins. The infiltration of colonic mucosa by neutrophils may promote carcinogenesis through MPO, a key enzyme contained in the lysosomes of neutrophils that regulates local inflammation and the generation of reactive oxygen species (ROS) and mutagenic species. The human vanin gene family consists of three genes: vanin-1, vanin-2 and vanin-3. All vanin molecules are pantetheinases, that hydrolyze pantetheine into pantothenic acid (vitamin B5), and cysteamine, a sulfhydryl compound. Vanin-1 loss confers an increased resistance to stress and acute intestinal inflammation, while vanin-2 regulates adhesion and transmigration of activated neutrophils. The metabolic product of these enzymes has a prominent role in the inflammation processes by affecting glutathione levels, inducing ulcers through a reduction in mucosal blood flow and oxygenation, decreasing local defense mechanisms, and in carcinogenesis by damaging DNA and regulating pathways involved in cell apoptosis, metabolism and growth, as Nrf2 and HIF-1α.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Luca Roncucci
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| |
Collapse
|
21
|
Harasstani OA, Tham CL, Israf DA. Kaempferol and Chrysin Synergies to Improve Septic Mice Survival. Molecules 2017; 22:molecules22010092. [PMID: 28067837 PMCID: PMC6155733 DOI: 10.3390/molecules22010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 01/13/2023] Open
Abstract
Previously, we reported the role of synergy between two flavonoids—namely, chrysin and kaempferol—in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice (n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers—such as aspartate aminotransferase (AST), TNF-α, and NO—in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold—up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple pathophysiological factors involved during sepsis. Although the kaempferol/chrysin combination did not exhibit significant antibacterial effects, it did exhibit anti-inflammatory and antioxidant activities, which translate to significant improvement in the survival rate of septic animals. These findings suggest the potential application of this combination treatment as a beneficial adjuvant supplement strategy in sepsis control.
Collapse
Affiliation(s)
- Omar A Harasstani
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Daud A Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| |
Collapse
|
22
|
Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5219056. [PMID: 26998194 PMCID: PMC4779540 DOI: 10.1155/2016/5219056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 11/18/2022]
Abstract
Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.
Collapse
|
23
|
Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis. Inflamm Res 2015; 65:133-42. [DOI: 10.1007/s00011-015-0897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
|
24
|
The investigation of anti-inflammatory activity of volatile oil of Angelica sinensis by plasma metabolomics approach. Int Immunopharmacol 2015; 29:269-277. [PMID: 26578286 DOI: 10.1016/j.intimp.2015.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022]
|
25
|
Mincheva RK, Kralimarkova TZ, Rasheva M, Dimitrov Z, Nedeva D, Staevska M, Papochieva V, Perenovska P, Bacheva K, Dimitrov VD, Popov TA. A real - life observational pilot study to evaluate the effects of two-week treatment with montelukast in patients with chronic cough. COUGH 2014; 10:2. [PMID: 24649919 PMCID: PMC3994549 DOI: 10.1186/1745-9974-10-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022]
Abstract
Background Different conditions make the proximal airways susceptible to tussigenic stimuli in the chronic cough (CC) syndrome. Leukotrienes can be implicated in the inflammatory mechanism at play in it. Montelukast is a selective cysteinyl-leukotriene receptor antagonist with proven effectiveness in patients with asthma. The aim of our real-life pilot study was to use montelukast to relieve cough symptoms in patients with CC allegedly due to the two frequent causes other than asthma – upper airway cough syndrome and gastroesophageal reflux (GER). Methods 14 consecutive patients with CC were evaluated before and after 2 weeks of treatment with montelukast 10 mg daily. Cough was assessed by validated cough questionnaire. Questionnaires regarding the presence of gastroesophageal reflux were also completed. Cough reflex sensitivity to incremental doubling concentrations of citric acid and capsaicin was measured. Lung function, airway hyperresponsiveness and exhaled breath temperature (EBT), a non-invasive marker of lower airway inflammation, were evaluated to exclude asthma as an underlying cause. Thorough upper-airway examination was also conducted. Cell counts, eosinophil cationic protein (ECP), lactoferrin, myeloperoxidase (MPO) were determined in blood to assess systemic inflammation. Results Discomfort due to cough was significantly reduced after treatment (P < 0.001). Cough threshold for capsaicin increased significantly (P = 0.001) but not for citric acid. The values of lactoferrin and ECP were significantly reduced, but those of MPO rose. EBT and pulmonary function were not significantly affected by the treatment. Conclusion Patients with CC due to upper airway cough syndrome or gastroesophageal reflux (GER) but not asthma reported significant relief of their symptoms after two weeks of treatment with montelukast. ECP, lactoferrin, MPO altered significantly, highlighting their role in the pathological mechanisms in CC. Clinical trial ID at Clinicaltrials.gov is NCT01754220.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Todor A Popov
- Clinical centre of Allergy and Asthma, Alexander's University Hospital, 1 Georgi Sofyiski Str, 1431 Sofia, Bulgaria.
| |
Collapse
|
26
|
Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation. Exp Mol Med 2014; 46:e71. [PMID: 24406320 PMCID: PMC3909889 DOI: 10.1038/emm.2013.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023] Open
Abstract
Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy.
Collapse
|
27
|
Kolarova H, Klinke A, Kremserova S, Adam M, Pekarova M, Baldus S, Eiserich JP, Kubala L. Myeloperoxidase induces the priming of platelets. Free Radic Biol Med 2013; 61:357-69. [PMID: 23603662 DOI: 10.1016/j.freeradbiomed.2013.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/23/2022]
Abstract
The release of myeloperoxidase (MPO) from polymorphonuclear neutrophils is a hallmark of vascular inflammation and contributes to the pathogenesis of vascular inflammatory processes. However, the effects of MPO on platelets as a contributory mechanism in vascular inflammatory diseases remain unknown. Thus, MPO interaction with platelets and its effects on platelet function were examined. First, dose-dependent binding of MPO (between 1.7 and 13.8nM) to both human and mouse platelets was observed. This was in direct contrast to the absence of MPO in megakaryocytes. MPO was localized both on the surface of and inside platelets. Cytoskeleton inhibition did not prevent MPO localization inside the three-dimensional platelet structure. MPO peroxidase activity was preserved upon the MPO binding to platelets. MPO sequestered in platelets catabolized NO, documented by the decreased production of NO (on average, an approximately 2-fold decrease). MPO treatment did not affect the viability of platelets during short incubations; however, it decreased platelet viability after long-term storage for 7 days (an approximately 2-fold decrease). The activation of platelets by MPO was documented by an MPO-mediated increase in the expression of surface platelet receptors P-selectin and PECAM-1 (of about 5 to 20%) and the increased formation of reactive oxygen species (of about 15 to 200%). However, the activation was only partial, as MPO did not induce the aggregation of platelets nor potentiate platelet response to classical activators. Nor did MPO induce a significant release of the content of granules. The activation of platelets by MPO was connected with increased MPO-treated platelet interaction with polymorphonuclear leukocytes (an approximately 1.2-fold increase) in vitro. In conclusion, it can be suggested that MPO can interact with and activate platelets, which can induce priming of platelets, rather than the classical robust activation of platelets. This can contribute to the development of chronic inflammatory processes in vessels.
Collapse
Affiliation(s)
- H Kolarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Animal Physiology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - A Klinke
- Department of Cardiology, University Heart Center Hamburg, University Hospital Eppendorf, Hamburg, Germany
| | - S Kremserova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Department of Animal Physiology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Adam
- Department of Cardiology, University Heart Center Hamburg, University Hospital Eppendorf, Hamburg, Germany
| | - M Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - S Baldus
- Department of Cardiology, University Heart Center Hamburg, University Hospital Eppendorf, Hamburg, Germany
| | - J P Eiserich
- Division of Pulmonary/Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of California at Davis, Davis, CA, USA
| | - L Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; International Clinical Research Center-Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
28
|
Kubala L, Kolářová H, Víteček J, Kremserová S, Klinke A, Lau D, Chapman ALP, Baldus S, Eiserich JP. The potentiation of myeloperoxidase activity by the glycosaminoglycan-dependent binding of myeloperoxidase to proteins of the extracellular matrix. Biochim Biophys Acta Gen Subj 2013; 1830:4524-36. [PMID: 23707661 DOI: 10.1016/j.bbagen.2013.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood. METHODS We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested. RESULTS MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed. CONCLUSIONS Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins. GENERAL SIGNIFICANCE Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.
Collapse
Affiliation(s)
- Lukáš Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yuan ZX, Rapoport SI, Soldin SJ, Remaley AT, Taha AY, Kellom M, Gu J, Sampson M, Ramsden CE. Identification and profiling of targeted oxidized linoleic acid metabolites in rat plasma by quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2013; 27:422-32. [PMID: 23037960 PMCID: PMC3552117 DOI: 10.1002/bmc.2809] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/22/2023]
Abstract
Linoleic acid (LA) and LA-esters are the precursors of LA hydroperoxides, which are readily converted to 9- and 13-hydroxy-octadecadienoic acid (HODE) and 9- and 13-oxo-octadecadienoic acid (oxo ODE) metabolites in vivo. These four oxidized LA metabolites (OXLAMs) have been implicated in a variety of pathological conditions. Therefore, their accurate measurement may provide mechanistic insights into disease pathogenesis. Here we present a novel quadrupole time-of-flight mass spectrometry (Q-TOFMS) method for quantitation and identification of target OXLAMs in rat plasma. In this method, the esterified OXLAMs were base-hydrolyzed and followed by liquid-liquid extraction. Quantitative analyses were based on one-point standard addition with isotope dilution. The Q-TOFMS data of target metabolites were acquired and multiple reaction monitoring extracted-ion chromatograms were generated post-acquisition with a 10 ppm extraction window. The limit of quantitation was 9.7-35.9 nmol/L depending on the metabolite. The method was reproducible with a coefficient of variation of <18.5%. Mean concentrations of target metabolites in rat plasma were 57.8, 123.2, 218.1 and 57.8 nmol/L for 9-HODE, 13-HODE, 9-oxoODE and 13-oxoODE, respectively. Plasma levels of total OXLAMs were 456.9 nmol/L, which correlated well with published concentrations obtained by gas chromatography/mass spectrometry (GC/MS). The concentrations were also obtained utilizing a standard addition curve approach. The calibration curves were linear with correlation coefficients of >0.991. Concentrations of 9-HODE, 13-HODE, 9-oxoODE and 13-oxoODE were 84.0, 138.6, 263.0 and 69.5 nmol/L, respectively, which were consistent with the results obtained from one-point standard addition. Target metabolites were simultaneously characterized based on the accurate Q-TOFMS data. This is the first study of secondary LA metabolites using Q-TOFMS. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Zhi-Xin Yuan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 2013; 18:692-713. [PMID: 22823200 DOI: 10.1089/ars.2012.4783] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The heme-enzyme myeloperoxidase (MPO) is one of the major neutrophil bactericidal proteins and is stored in large amounts inside azurophilic granules of neutrophils. Upon cell activation, MPO is released and extracellular MPO has been detected in a wide range of acute and chronic inflammatory conditions. Recent ADVANCES AND CRITICAL ISSUES: Apart from its role during infection, MPO has emerged as a critical modulator of inflammation throughout the last decade and is currently discussed in the initiation and propagation of cardiovascular diseases. MPO-derived oxidants (e.g., hypochlorous acid) interfere with various cell functions and contribute to tissue injury. Recent data also suggest that MPO itself exerts proinflammatory properties independent of its catalytic activity. Despite advances in unraveling the complex action of MPO and MPO-derived oxidants, further research is warranted to determine the precise nature and biological role of MPO in inflammation. FUTURE DIRECTIONS The identification of MPO as a central player in inflammation renders this enzyme an attractive prognostic biomarker and a potential target for therapeutic interventions. A better understanding of the (patho-) physiology of MPO is essential for the development of successful treatment strategies in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Nussbaum
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
31
|
Papežíková I, Pekarová M, Kolářová H, Klinke A, Lau D, Baldus S, Lojek A, Kubala L. Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res 2012; 47:82-8. [PMID: 23136942 DOI: 10.3109/10715762.2012.747677] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial dysfunction characterized by decreased nitric oxide (NO) bioavailability is the first stage of coronary artery disease. It is known that one of the factors associated with an increased risk of coronary artery disease is a high plasma level of uric acid. However, causative associations between hyperuricaemia and cardiovascular risk have not been definitely proved. In this work, we tested the effect of uric acid on endothelial NO bioavailability. Electrochemical measurement of NO production in acetylcholine-stimulated human umbilical endothelial cells (HUVECs) revealed that uric acid markedly decreases NO release. This finding was confirmed by organ bath experiments on mouse aortic segments. Uric acid dose-dependently reduced endothelium-dependent vasorelaxation. To reveal the mechanism of decreasing NO bioavailability we tested the effect of uric acid on reactive oxygen species production by HUVECs, on arginase activity, and on acetylcholine-induced endothelial NO synthase phosphorylation. It was found that uric acid increases arginase activity and reduces endothelial NO synthase phosphorylation. Interestingly, uric acid significantly increased intracellular superoxide formation. In conclusion, uric acid decreases NO bioavailability by means of multiple mechanisms. This finding supports the idea of a causal association between hyperuricaemia and cardiovascular risk.
Collapse
Affiliation(s)
- I Papežíková
- Department of Free Radical Patophysiology, Institute of Biophysics, v. v. i., Academy of Sciences of the Czech Republic, and International Clinical Research Center-Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Kralovopolska 135, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion. Toxicol Appl Pharmacol 2011; 259:143-51. [PMID: 22230337 DOI: 10.1016/j.taap.2011.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/22/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A(2) to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved.
Collapse
|
33
|
Qi Y, Qu L, Wu Y, Fan G. A plasma metabonomic investigation into the intervention of volatile oil of Magnolia biondii Pamp on rat model of acute inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:487-494. [PMID: 21771651 DOI: 10.1016/j.jep.2011.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/24/2011] [Accepted: 05/30/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried flower buds of Magnolia biondii Pamp (Magnoliaceae) possesses significant anti-inflammatory activities. AIM OF THE STUDY Volatile oil in Magnolia biondii Pamp (VOMbP) is considered to be important pharmacologically active individuals against acute inflammation, but its exact anti-inflammatory mechanism remains elusive. In this study, we aimed to investigate the intervention of VOMbP on rats with acute inflammation and explore the possible anti-inflammatory mechanisms of VOMbP with metabonomic strategy. MATERIALS AND METHODS Acute inflammation was induced by subcutaneously injection of carrageenan in the rats. Plasma was analyzed using gas chromatography-mass spectrometry (GC-MS), based on which the principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) models were established for metabonomic analysis. RESULTS It was revealed that the pretreatment of VOMbP in acute inflammatory rats induces a substantial and characteristic change in their metabolic profiles. Some significantly changed metabolites, including hexadecanoic acid, linoleic acid, oleic acid, stearic acid, and cholesterol, were found to be reasonable in explaining the anti-inflammatory mechanism of VOMbP. CONCLUSIONS In all, it is likely that VOMbP intervenes the metabolic process of inflammatory rats by affecting the fatty acid and cholesterol metabolism. Our work also indicated that the metabonomics method is a promising tool for performing intervention and mechanism research of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | |
Collapse
|
34
|
Theken KN, Deng Y, Kannon MA, Miller TM, Poloyac SM, Lee CR. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab Dispos 2010; 39:22-9. [PMID: 20947618 DOI: 10.1124/dmd.110.035287] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450 (P450)-mediated metabolism of arachidonic acid regulates inflammation in hepatic and extrahepatic tissue. CYP2C/CYP2J-derived epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EET+DHET) elicit anti-inflammatory effects, whereas CYP4A/CYP4F-derived 20-hydroxyeicosatetraenoic acid (20-HETE) is proinflammatory. Because the impact of inflammation on P450-mediated formation of endogenous eicosanoids is unclear, we evaluated P450 mRNA levels and P450 epoxygenase (EET+DHET) and ω-hydroxylase (20-HETE) metabolic activity in liver, kidney, lung, and heart in mice 3, 6, 24, and 48 h after intraperitoneal lipopolysaccharide (LPS) (1 mg/kg) or saline administration. Hepatic Cyp2c29, Cyp2c44, and Cyp2j5 mRNA levels and EET+DHET formation were significantly lower 24 and 48 h after LPS administration. Hepatic Cyp4a12a, Cyp4a12b, and Cyp4f13 mRNA levels and 20-HETE formation were also significantly lower at 24 h, but recovered to baseline at 48 h, resulting in a significantly higher 20-HETE/EET+DHET formation rate ratio compared with that for saline-treated mice. Renal P450 mRNA levels and P450-mediated eicosanoid metabolism were similarly suppressed 24 h after LPS treatment. Pulmonary EET+DHET formation was lower at all time points after LPS administration, whereas 20-HETE formation was suppressed in a time-dependent manner, with the lowest formation rate observed at 24 h. No differences in EET+DHET or 20-HETE formation were observed in heart. Collectively, these data demonstrate that acute activation of the innate immune response alters P450 expression and eicosanoid metabolism in mice in an isoform-, tissue-, and time-dependent manner. Further study is necessary to determine whether therapeutic restoration of the functional balance between the P450 epoxygenase and ω-hydroxylase pathways is an effective anti-inflammatory strategy.
Collapse
Affiliation(s)
- Katherine N Theken
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
35
|
Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:210-22. [PMID: 20869469 DOI: 10.1016/j.bbapap.2010.09.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA), such as epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid, serve as second messengers of various hormones and growth factors and play pivotal roles in the regulation of vascular, renal and cardiac function. As discussed in the present review, virtually all of the major AA metabolizing CYP isoforms accept a variety of other polyunsaturated fatty acids (PUFA), including linoleic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), as efficient alternative substrates. The metabolites of these alternative PUFAs also elicit profound biological effects. The CYP enzymes respond to alterations in the chain-length and double bond structure of their substrates with remarkable changes in the regio- and stereoselectivity of product formation. The omega-3 double bond that distinguishes EPA and DHA from their omega-6 counterparts provides a preferred epoxidation site for CYP1A, CYP2C, CYP2J and CYP2E subfamily members. CYP4A enzymes that predominantly function as AA ω-hydroxylases show largely increased (ω-1)-hydroxylase activities towards EPA and DHA. Taken together, these findings indicate that CYP-dependent signaling pathways are highly susceptible to changes in the relative bioavailability of the different PUFAs and may provide novel insight into the complex mechanisms that link essential dietary fatty acids to the development of cardiovascular disease.
Collapse
|