1
|
Striesow J, Nasri Z, von Woedtke T, Bekeschus S, Wende K. Epilipidomics reveals lipid fatty acid and headgroup modification in gas plasma-oxidized biomembranes. Redox Biol 2024; 77:103343. [PMID: 39366067 PMCID: PMC11483335 DOI: 10.1016/j.redox.2024.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Lipids, possessing unsaturated fatty acid chains and polar regions with nucleophilic heteroatoms, represent suitable oxidation targets for autologous and heterologous reactive species. Lipid peroxidation products (LPPs) are highly heterogeneous, including hydroperoxides, alkenals, chlorination, or glycation. Accordingly, delineation of lipid targets, species type, resulting products, and oxidation level remains challenging. To this end, liposomal biomimetic models incorporating a phosphatidylcholine, -ethanolamine, and a sphingomyelin were used to deconvolute effects on a single lipid scale to predict potential modification product outcomes. To introduce oxidative modifications, gas plasma technology, a powerful pro-oxidant tool to promote LPP formation by forming highly abundant reactive species in the gas and liquid phases, was employed to liposomes. The plasma parameters (gas type/combination) were modified to modulate the resulting species-profile and LPP formation by enriching specific reactive species types over others. HR-LC-MS (Münzel and et al., 2017) [2] was employed for LPP identification. Moreover, the heavy oxygen isotope 18O was used to trace O2-incorporation into LPPs, providing first information on the plasma-mediated lipid peroxidation mechanism. We found that combination of lipid class and gas composition predetermined the type of attack: admixture of O2 to the plasma and the presence of nitrogen atoms with free electrons in the molecule lead to chlorination of the amide bond and headgroup. Here, atomic oxygen driven formation of hypochlorite is the major reactive species. In contrast, POPC yields mainly to LPPs with oxidation of the oleic acid tail, especially truncations, epoxidation, and hydroperoxide formation. Here, singlet oxygen is assumingly the major driver. 18O labelling revealed that gas phase derived reactive species are dominantly incorporated into the LPPs, supporting previous findings on gas-liquid interface chemistry. In summary, we here provided the first insights into gas plasma-mediated lipid peroxidation, which, employed in more complex cell and tissue models, may support identifying mechanisms of actions in plasma medicine.
Collapse
Affiliation(s)
- Johanna Striesow
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Zahra Nasri
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Qin S, Gao Y, Zhao M, Wang Y, Zhai M, Chen M, Xu X, Hu C, Lei J, Chu H, Gao L, Jin F. Acriflavine-modified UIO-66 ratiometric fluorescent sensor for highly selective and fast detection of hypochlorite in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125333. [PMID: 39492089 DOI: 10.1016/j.saa.2024.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Hypochlorite (ClO-) as a kind of highly toxic pollutant has garnered significant interest in detection methods, highlighting the pressing need to develop intelligent functional materials for the qualitative and quantitative analysis of ClO- in aqueous solutions. Herein, a ratiometric fluorescent sensor was prepared by the combination of acriflavine (Acr) and UIO-66 via a post-synthetic modification strategy. Acr/UIO-66 exhibited both high crystallinity typical of metal-organic frameworks and demonstrated good fluorescent and thermal stability. Additionally, Acr/UIO-66 functioned effectively as a dual-responsive fluorescent platform for detecting ClO- in domestic drinking and surface water samples. This material displayed high sensitivity, exceptional selectivity, and superior anti-interference capabilities, along with fast respond time (60 s), a wide pH range (4.0-7.0), high recoveries (94.46-118.00 %), a broad linear range (0-28 µmol L-1) and low detection limits (0.74 µmol L-1). This study broadened the potential applications of fluorescent metal-organic frameworks and presented a feasible solution for water quality monitoring.
Collapse
Affiliation(s)
- Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Yu Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Minghui Zhai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Mo Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xidi Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Chunqi Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Jinxin Lei
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China.
| | - Fenglong Jin
- Qiqihar Inspection and Testing Center, Qiqihar Administration for Market Regulation, Qiqihar 161000, PR China.
| |
Collapse
|
3
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
4
|
He Z, Zhu J, Li X, Weng GJ, Li JJ, Zhao JW. Au@Ag Nanopencil with Au Tip and Au@Ag Rod: Multimodality Plasmonic Nanoprobe based on Asymmetric Etching for the Detection of SCN - and ClO . SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302302. [PMID: 37211700 DOI: 10.1002/smll.202302302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/26/2023] [Indexed: 05/23/2023]
Abstract
In this paper, Au@Ag nanopencil is designed as a multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN- and ClO- . Au@Ag nanopencil with Au tip and Au@Ag rod is prepared by asymmetric tailoring of uniformly grown silver-covered gold nanopyramids under the combined effect of partial galvanic replacement and redox reaction. By asymmetric etching in different systems, Au@Ag nanopencil exhibits diversified changes in the plasmonic absorption band: O2 •- facilitated by SCN- etches Au@Ag rod from the end to the tip, causing a blue shift of the localized surface plasmon resonance (LSPR) peak as the aspect ratio decreases; while the ClO- can retain Au@Ag shell and etch Ag within rod from the tip to the end, causing a redshift of the LSPR peak as the coupling resonance weakens. Based on peak shifts in different directions, a multimodality detection of SCN- and ClO- has been established. The results demonstrate the detection limits of SCN- and ClO- are 160 and 6.7 nm, and the linear ranges are 1-600 µm and 0.05-13 µm, respectively. The finely designed Au@Ag nanopencil not only broadens the horizon of designing heterogeneous structures, but also enriches the strategy of constructing multimodality sensing platform.
Collapse
Affiliation(s)
- Zhao He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
5
|
Saçmacı H, Çakır M, Özcan SS. Adropin and MOTS-c as new peptides: Do levels change in neurodegenerative diseases and ischemic stroke? J Biochem Mol Toxicol 2023; 37:e23246. [PMID: 36303331 DOI: 10.1002/jbt.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Neurological diseases such as Alzheimer's disease and Parkinson's disease (AD, PD), acute ischemic stroke (AIS), and multiple sclerosis (MS) are thought to be deeply affected by changes in the pathophysiological processes of neurons. As new peptides, it was aimed to evaluate the level of adropin and MOTS-c (mitochondrial open reading frame of the 12S rRNA-c) and its possible relationship with NSE (neuron-specific enolase) and NF-L (neurofilament light chain) in terms of neuronal interaction. METHODS This study was conducted with 32 patients from each subgroup and group-appropriate controls. Disease identifiers and hemogram/biochemical parameters specific to the groups of participants were obtained. Additionally, plasma adropin, MOTS-c, NSE, and NF-L levels were evaluated by the ELISA method. RESULTS Plasma adropin levels were decreased in the AD group and decreased in MOTS-c, AIS, and AD groups compared to the control (p < 0.05). Similar values were found in the MS group compared to its control (p > 0.05). In correlation analysis of these markers with laboratory parameters, while platelet and cholesterol levels were negatively correlated with adropin levels; platelet, lymphocyte, and triglyceride levels were positively correlated with MOTS-c (p < 0.05). CONCLUSION This study provides new information about adropin may be potentially important markers in AD and MOTS-C in AIS and AD. Future studies are needed to examine the relationship between changes in metabolic profiles and these peptides.
Collapse
Affiliation(s)
| | - Murat Çakır
- School of Medicine, Bozok University, Yozgat, Turkey
| | - Seda S Özcan
- Celal Bayar University School of Medicine, Manisa, Turkey
| |
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
8
|
Yu F, Wang Y, Liu T, Liu X, Jiang H, Wang X. Dual-emissive EY/UiO-66-NH 2 as a ratiometric probe for turn-on sensing and cell imaging of hypochlorite. Analyst 2022; 147:3867-3875. [PMID: 35920663 DOI: 10.1039/d2an00944g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypochlorite plays a vital role in biological systems and our daily life. The rapid and convenient detection of hypochlorite is imperative and significant for disease treatment and human health. In this work, EY/UiO-66-NH2 (EY = eosin Y) was prepared through a hydrothermal process and could be applied to the detection and bioimaging of hypochlorite as a self-calibrating sensing nanoprobe. EY/UiO-66-NH2 features two emissions at 432 nm and 533 nm, and the emission intensity of 533 nm is enhanced with increasing ClO- concentration. EY/UiO-66-NH2 could be utilized as a ratiometric fluorescence sensor of ClO-. The linear range of EY/UiO-66-NH2 towards ClO- is 0.1-200 μM and its detection limit is 46.4 nM. In comparison with previously reported probes for ClO-, EY/UiO-66-NH2 has the advantages of a wide linear range, low detection limit, turn-on fluorescence and ratiometric response. This work provides a new method for ClO- detection in living cells.
Collapse
Affiliation(s)
- Fangfang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Tengfei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Development of Fluorescent Carbon Nanoparticle-Based Probes for Intracellular pH and Hypochlorite Sensing. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acid-base and redox reactions are important mechanisms that affect the optical properties of fluorescent probes. Fluorescent carbon nanoparticles (CNPs) that possess tailored surface functionality enable a prompt response to regional stimuli, offering a useful platform for detection, sensing, and imaging. In this study, mPA CNPs were developed through one-pot hydrothermal reaction as a novel fluorescent probe (quantum yield = 10%) for pH and hypochlorite sensing. m-Phenylenediamine was chosen as the major component of CNPs for pH and hypochlorite responsiveness. Meanwhile, ascorbic acid with many oxygen-containing groups was introduced to generate favorable functionalities for improved water solubility and enhanced sensing response. Thus, the mPA CNPs could serve as a pH probe and a turn-off sensor toward hypochlorite at neutral pH through fluorescence change. The as-prepared mPA CNPs exhibited a linear fluorescence response over the pH ranges from pH 5.5 to 8.5 (R2 = 0.989), and over the concentration range of 0.125–1.25 μM for hypochlorite (R2 = 0.985). The detection limit (LOD) of hypochlorite was calculated to be 0.029 μM at neutral pH. The mPA CNPs were further applied to the cell imaging. The positively charged surface and nanoscale dimension of the mPA CNPs lead to their efficient intracellular delivery. The mPA CNPs were also successfully used for cell imaging and sensitive detection of hypochlorite as well as pH changes in biological systems. Given these desirable performances, the as-synthesized fluorescent mPA CNPs shows great potential as an optical probe for real-time pH and hypochlorite monitoring in living cells.
Collapse
|
10
|
Direct acting antiviral therapy rescues neutrophil dysfunction and reduces hemolysis in hepatitis C infection. Transl Res 2021; 232:103-114. [PMID: 33352296 DOI: 10.1016/j.trsl.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis C virus infection is characterized by multiple extra-hepatic manifestations. Innate immune dysfunction and hemolysis are symptoms which might be associated with each other. We investigated the impact of direct acting antivirals on neutrophil function and its connection to hemolysis. In this prospective study, 85 patients with or without cirrhosis and 21 healthy controls were included. Patients' blood samples were taken at baseline, at the end of therapy and at follow-up 12 weeks after end of therapy. Neutrophil phagocytosis, oxidative burst, and hemolysis parameters were studied. Multivariate analysis was performed to decipher the relationship between hemolysis and neutrophil function. Ex vivo cross-incubation experiments with neutrophils and serum fractions were done. Impaired neutrophil phagocytosis and mild hemolysis were observed in patients with and without cirrhosis. A proteome approach revealed different expression of hemolysis-related serum proteins in patients and controls. Direct acting antiviral therapy restored neutrophil function irrespective of severity of liver disease, achievement of sustained virologic response or type of drug and reduced hemolysis. Treatment with ribavirin delayed the improvement of neutrophil function. Statistical analysis revealed associations of haptoglobin with neutrophil phagocytic capacity. Neutrophil dysfunction could be transferred to healthy cells by incubation with patients' serum fractions (>30 kDa) ex vivo. Neutrophil dysfunction and hemolysis represent extrahepatic manifestations of chronic hepatitis C virus infection and simultaneously improve during direct acting antiviral therapy independently of therapy-related liver function recovery. Therefore, large-scale treatment would not only drive viral eradication but also improve patients' immune system and may reduce susceptibility to infections.
Collapse
|
11
|
Barker-Tejeda TC, Villaseñor A, Gonzalez-Riano C, López-López Á, Gradillas A, Barbas C. In vitro generation of oxidized standards for lipidomics. Application to major membrane lipid components. J Chromatogr A 2021; 1651:462254. [PMID: 34118530 DOI: 10.1016/j.chroma.2021.462254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
Membrane lipids (sphingolipids, glycerophospholipids, cardiolipins, and cholesteryl esters) are critical in cellular functions. Alterations in the levels of oxidized counterparts of some of these lipids have been linked to the onset and development of many pathologies. Unfortunately, the scarce commercial availability of chemically defined oxidized lipids is a limitation for accurate quantitative analysis, characterization of oxidized composition, or testing their biological effects in lipidomic studies. To address this dearth of standards, several approaches rely on in-house prepared mixtures of oxidized species generated under in vitro conditions from different sources - non-oxidized commercial standards, liposomes, micelles, cells, yeasts, and human preparations - and using different oxidant systems - UVA radiation, air exposure, enzymatic or chemical oxidant systems, among others. Moreover, high-throughput analytical techniques such as liquid chromatography coupled to mass spectrometry (LC-MS) have provided evidence of their capabilities to study oxidized lipids both in in vitro models and complex biological samples. In this review, we describe the commercial resources currently available, the in vitro strategies carried out for obtaining oxidized lipids as standards for LC-MS analysis, and their applications in lipidomics studies, specifically for lipids found in cell and mitochondria membranes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain; Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Science, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain; Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Science, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Ángeles López-López
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| |
Collapse
|
12
|
Prasch J, Bernhart E, Reicher H, Kollroser M, Rechberger GN, Koyani CN, Trummer C, Rech L, Rainer PP, Hammer A, Malle E, Sattler W. Myeloperoxidase-Derived 2-Chlorohexadecanal Is Generated in Mouse Heart during Endotoxemia and Induces Modification of Distinct Cardiomyocyte Protein Subsets In Vitro. Int J Mol Sci 2020; 21:ijms21239235. [PMID: 33287422 PMCID: PMC7730634 DOI: 10.3390/ijms21239235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Sepsis is a major cause of mortality in critically ill patients and associated with cardiac dysfunction, a complication linked to immunological and metabolic aberrations. Cardiac neutrophil infiltration and subsequent release of myeloperoxidase (MPO) leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to chemically modify plasmalogens (ether-phospholipids) abundantly present in the heart. This reaction gives rise to the formation of reactive lipid species including aldehydes and chlorinated fatty acids. During the present study, we tested whether endotoxemia increases MPO-dependent lipid oxidation/modification in the mouse heart. In hearts of lipopolysaccharide-injected mice, we observed significantly higher infiltration of MPO-positive cells, increased fatty acid content, and formation of 2-chlorohexadecanal (2-ClHDA), an MPO-derived plasmalogen modification product. Using murine HL-1 cardiomyocytes as in vitro model, we show that exogenously added HOCl attacks the cellular plasmalogen pool and gives rise to the formation of 2-ClHDA. Addition of 2-ClHDA to HL-1 cardiomyocytes resulted in conversion to 2-chlorohexadecanoic acid and 2-chlorohexadecanol, indicating fatty aldehyde dehydrogenase-mediated redox metabolism. However, a recovery of only 40% indicated the formation of non-extractable (protein) adducts. To identify protein targets, we used a clickable alkynyl analog, 2-chlorohexadec-15-yn-1-al (2-ClHDyA). After Huisgen 1,3-dipolar cycloaddition of 5-tetramethylrhodamine azide (N3-TAMRA) and two dimensional-gel electrophoresis (2D-GE), we were able to identify 51 proteins that form adducts with 2-ClHDyA. Gene ontology enrichment analyses revealed an overrepresentation of heat shock and chaperone, energy metabolism, and cytoskeletal proteins as major targets. Our observations in a murine endotoxemia model demonstrate formation of HOCl-modified lipids in the heart, while pathway analysis in vitro revealed that the chlorinated aldehyde targets specific protein subsets, which are central to cardiac function.
Collapse
Affiliation(s)
- Jürgen Prasch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | | | - Gerald N. Rechberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
- Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
| | - Chintan N. Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Christopher Trummer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Peter P. Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
- Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-71950
| |
Collapse
|
13
|
Santos DC, Henriques RR, Junior MADAL, Farias AB, Nogueira TLDC, Quimas JVF, Romeiro NC, Silva LLD, Souza ALFD. Acylhydrazones as isoniazid derivatives with multi-target profiles for the treatment of Alzheimer’s disease: Radical scavenging, myeloperoxidase/acetylcholinesterase inhibition and biometal chelation. Bioorg Med Chem 2020; 28:115470. [DOI: 10.1016/j.bmc.2020.115470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
|
14
|
Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The Role of Halogenative Stress in Atherogenic Modification of Low-Density Lipoproteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S34-S55. [PMID: 32087053 DOI: 10.1134/s0006297920140035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses formation of reactive halogen species (RHS) catalyzed by myeloperoxidase (MPO), an enzyme mostly present in leukocytes. An imbalance between the RHS production and body's ability to remove or neutralize them leads to the development of halogenative stress. RHS reactions with proteins, lipids, carbohydrates, and antioxidants in the content of low-density lipoproteins (LDLs) of the human blood are described. MPO binds site-specifically to the LDL surface and modifies LDL properties and structural organization, which leads to the LDL conversion into proatherogenic forms captured by monocytes/macrophages, which causes accumulation of cholesterol and its esters in these cells and their transformation into foam cells, the basis of atherosclerotic plaques. The review describes the biomarkers of MPO enzymatic activity and halogenative stress, as well as the involvement of the latter in the development of atherosclerosis.
Collapse
Affiliation(s)
- O M Panasenko
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - T I Torkhovskaya
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, 220030, Belarus
| | - A V Sokolov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia. .,Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
15
|
Goeritzer M, Bernhart E, Plastira I, Reicher H, Leopold C, Eichmann TO, Rechberger G, Madreiter-Sokolowski CT, Prasch J, Eller P, Graier WF, Kratky D, Malle E, Sattler W. Myeloperoxidase and Septic Conditions Disrupt Sphingolipid Homeostasis in Murine Brain Capillaries In Vivo and Immortalized Human Brain Endothelial Cells In Vitro. Int J Mol Sci 2020; 21:E1143. [PMID: 32050431 PMCID: PMC7037060 DOI: 10.3390/ijms21031143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Ioanna Plastira
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Christina Leopold
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| | - Gerald Rechberger
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| | - Corina T. Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Jürgen Prasch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz 8036, Austria;
| | - Wolfgang F. Graier
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria; (M.G.); (E.B.); (I.P.); (H.R.); (C.L.); (C.T.M.-S.); (J.P.); (W.F.G.); (D.K.); (E.M.)
- BioTechMed-Graz, Graz 8010, Austria; (T.O.E.); (G.R.)
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| |
Collapse
|
16
|
Marcinkiewicz J, Walczewska M. Neutrophils as Sentinel Cells of the Immune System: A Role of the MPO-halide-system in Innate and Adaptive Immunity. Curr Med Chem 2019; 27:2840-2851. [PMID: 31424363 DOI: 10.2174/0929867326666190819123300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/14/2019] [Accepted: 07/28/2019] [Indexed: 01/24/2023]
Abstract
For decades, neutrophils were generally regarded as the cells of innate immunity with proinflammatory and phagocytic properties involved in a dual activity, beneficial (antimicrobial) and detrimental (tissue damage). Importantly, until the discovery of toll-like receptors (TLRs), a role of neutrophils in adaptive immunity was limited to the effector stage of humoral response and phagocytosis of opsonized antigens. Moreover, in common opinion, neutrophils, as well as the entire innate immune system, were not functionally associated with adaptive immunity. At the time we demonstrated protein chlorination by HOCl, the major product of neutrophil MPO-halide system enhances protein immunogenicity. Based on this discovery, we proposed, as the first, a new role for neutrophils as APC-accessory cells involved in the induction stage of adaptive immunity. Thereafter, we developed our theory concerning the role of neutrophils as the cells which link innate and adaptive immunity. We proposed that protein modification by HOCl may act as a neutrophildependent molecular tagging system, by which sentinel dendritic cells can faster recognise pathogen- derived antigens. Contemporaneously, it was demonstrated that taurine, the most abundant free amino acid in neutrophil cytosol and the major scavenger of HOCl, is a part of the oxidantantioxidant network and is responsible for the regulation and termination of acute inflammation. Moreover, it has been described, that taurine chloramine (TauCl), the physiological products of the reaction of HOCl with taurine, show anti-microbial and anti-inflammatory properties. In this review, the role of HOCl, taurine and TauCl in innate and adaptive immunity will be discussed.
Collapse
Affiliation(s)
| | - Maria Walczewska
- Chair of Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
17
|
Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism. Neurotoxicology 2018; 67:178-189. [DOI: 10.1016/j.neuro.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
18
|
Li C, Hai J, Li S, Wang B, Yang Z. Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO -/SCN - and anti-counterfeiting. NANOSCALE 2018; 10:8667-8676. [PMID: 29700546 DOI: 10.1039/c8nr01487f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well-known that ClO- and SCN- can cause adverse effects on the environment and organisms; therefore, development of new strategies for detecting ClO- and SCN-, especially in water, are highly desirable. Here, we present luminous Eu(iii) complex-functionalized Fe3O4 nanoparticles encapsulated into zeolitic imidazolate framework materials (nano-ZIF-8) and successfully employ this nano-MOF as a fluorescence probe for selective and sensitive detection of ClO- and SCN-. The introduction of ClO- into nano-ZIF-8 solution induced a significant decrease in the characteristic fluorescence emission of Eu3+ at 613 nm. However, strong fluorescence emission was again observed when SCN- was successively injected into the prepared nano-ZIF-8-ClO-. Thus, a novel fluorescence system for simultaneous detection of free ClO- and SCN- was established. On the basis of the superior adsorption performance of nano-MOF materials, free residual ClO- and SCN- in water was rapidly, sensitively and selectively detected with a detection limit of 0.133 nM and 0.204 nM, respectively. Moreover, nano-ZIF-8 was successfully used for monitoring the concentration levels of ClO- and SCN- in specimens of tap water and Yellow River water. Furthermore, the reversibility and regeneration of nano-ZIF-8 in sensing ClO- and SCN- is advantageous for applications of nano-ZIF-8 in solid-state sensing and anti-counterfeiting. As far as we know, this is the first time that nano-MOFs have been used as a selective fluorescence probe for ClO-/SCN- detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Chaorui Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P.R. China.
| | | | | | | | | |
Collapse
|
19
|
Duerr MA, Palladino END, Hartman CL, Lambert JA, Franke JD, Albert CJ, Matalon S, Patel RP, Slungaard A, Ford DA. Bromofatty aldehyde derived from bromine exposure and myeloperoxidase and eosinophil peroxidase modify GSH and protein. J Lipid Res 2018; 59:696-705. [PMID: 29444934 PMCID: PMC5880502 DOI: 10.1194/jlr.m083279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Indexed: 02/01/2023] Open
Abstract
α-Chlorofatty aldehydes (α-ClFALDs) and α-bromofatty aldehydes (α-BrFALDs) are produced in activated neutrophils and eosinophils. This study investigated the ability of α-BrFALD and α-ClFALD to react with the thiols of GSH and protein cysteinyl residues. Initial studies showed that 2-bromohexadecanal (2-BrHDA) and 2-chlorohexadecanal (2-ClHDA) react with GSH producing the same fatty aldehyde-GSH adduct (FALD-GSH). In both synthetic and cellular reactions, FALD-GSH production was more robust with 2-BrHDA compared with 2-ClHDA as precursor. NaBr-supplemented phorbol myristate acetate (PMA)-activated neutrophils formed more α-BrFALD and FALD-GSH compared with non-NaBr-supplemented neutrophils. Primary human eosinophils, which preferentially produce hypobromous acid and α-BrFALD, accumulated FALD-GSH following PMA stimulation. Mice exposed to Br2 gas had increased levels of both α-BrFALD and FALD-GSH in the lungs, as well as elevated systemic plasma levels of FALD-GSH in comparison to mice exposed to air. Similar relative reactivity of α-ClFALD and α-BrFALD with protein thiols was shown using click analogs of these aldehydes. Collectively, these data demonstrate that GSH and protein adduct formation are much greater as a result of nucleophilic attack of cysteinyl residues on α-BrFALD compared with α-ClFALD, which was observed in both primary leukocytes and in mice exposed to bromine gas.
Collapse
Affiliation(s)
- Mark A Duerr
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Elisa N D Palladino
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - James A Lambert
- Departments of Anesthesiology University of Alabama at Birmingham, Birmingham, AL 35294; Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL 35294; Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jacob D Franke
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Carolyn J Albert
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Sadis Matalon
- Departments of Anesthesiology University of Alabama at Birmingham, Birmingham, AL 35294; Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL 35294; Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rakesh P Patel
- Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL 35294; Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL 35294; Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Arne Slungaard
- Department of Medicine, Section of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104.
| |
Collapse
|
20
|
Xu W, Li F, Xu Z, Sun B, Cao J, Liu Y. Role of Peroxiredoxin 2 in the Protection Against Ferrous Sulfate-Induced Oxidative and Inflammatory Injury in PC12 Cells. Cell Mol Neurobiol 2018; 38:735-745. [PMID: 28871473 DOI: 10.1007/s10571-017-0540-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
Peroxiredoxin 2 (Prdx2) is a ubiquitous antioxidant enzyme in mammalian brain. Although a protective role of Prdx2 has been established in cerebral ischemia and several neurodegenerative diseases, its contribution against iron-induced neurocytotoxicity still remains to be determined. Accordingly, in this study, we aimed to investigate the effects of Prdx2 on iron-induced cytotoxicity using an in vitro model in which PC12 cells are exposed to ferrous sulfate (FS). The FS treatment increased Prdx2 expression, and promoted lactate dehydrogenase (LDH) release and cell apoptosis in PC12 cells, accompanied by the increase in the Bax/Bcl2 ratio, cytochrome c release, and caspase-3 cleavage. FS exposure also increased the malondialdehyde content (lipid peroxidation), 3'-nitrotyrosine expression (protein nitration), γ-H2A.X formation (DNA oxidation), and promoted nuclear factor kappa B nuclear translocation, cyclooxygenase-2 expression, and release of tumor necrosis factor-α and interleukin-1β. Lentivirus-mediated Prdx2 knockdown intensified the FS-induced LDH release and cell apoptosis by aggravating the oxidative and inflammatory damage. In conclusion, our findings demonstrated that Prdx2 played a vital role in the protection against iron-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute of Shandong University, Jinan, 250012, People's Republic of China
| | - Feng Li
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute of Shandong University, Jinan, 250012, People's Republic of China.
| | - Zhenkuan Xu
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute of Shandong University, Jinan, 250012, People's Republic of China
| | - Bin Sun
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute of Shandong University, Jinan, 250012, People's Republic of China
| | - Jingwei Cao
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute of Shandong University, Jinan, 250012, People's Republic of China
| | - Yuguang Liu
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
21
|
Pravalika K, Sarmah D, Kaur H, Wanve M, Saraf J, Kalia K, Borah A, Yavagal DR, Dave KR, Bhattacharya P. Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chem Neurosci 2018; 9:421-430. [PMID: 29351721 DOI: 10.1021/acschemneuro.7b00462] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myeloperoxidase (MPO) is a protein present in azurophilic granules, macrophages, and neutrophils that are released into extracellular fluid (ECF) during inflammation. MPO releases hypochlorous acid (HOCl) and other chlorinated species. It is derived from hydrogen peroxide (H2O2) showing response during inflammatory conditions and plays a role in the immune defense against pathogens. MPO may show unwanted effects by indirectly increasing the formation of reactive nitrogen species (RNS), reactive oxygen species (ROS), and tumor necrosis factor alpha (TNF-α) leading to inflammation and oxidative stress. As neuroinflammation is one of the inevitable biological components among most of neurological disorders, MPO and its receptor may be explored as candidates for future clinical interventions. The purpose of this review is to provide an overview of the pathophysiological characteristics of MPO and further explore the possibilities to target it for clinical use. Targeting MPO is promising and may open an avenue to act as a biomarker for diagnosis with defined risk stratification in patients with various neurological disorders.
Collapse
Affiliation(s)
- Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Madhuri Wanve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011 Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| |
Collapse
|
22
|
Dutta T, Chandra F, Koner AL. A rapid, naked-eye detection of hypochlorite and bisulfite using a robust and highly-photostable indicator dye Quinaldine Red in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:217-220. [PMID: 29040926 DOI: 10.1016/j.saa.2017.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
A "naked-eye" detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8μM and 0.2μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.
Collapse
Affiliation(s)
- Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Falguni Chandra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Apurba L Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
23
|
Reis A. Oxidative Phospholipidomics in health and disease: Achievements, challenges and hopes. Free Radic Biol Med 2017; 111:25-37. [PMID: 28088624 DOI: 10.1016/j.freeradbiomed.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Phospholipid peroxidation products are recognized as important bioactive lipid mediators playing an active role as modulators in signalling events in inflammation, immunity and infection. The biochemical responses are determined by the oxidation structural features present in oxPL modulating biophysical and biological properties in model membranes and lipoproteins. In spite of the extensive work conducted with model systems over the last 20 years, the study of oxPL in biological systems has virtually stagnated. In fact, very little is known concerning the predominant oxPL in fluids and tissues, their basal levels, and any variations introduced with age, gender and ethnicity in health and disease. In consequence, knowledge on oxPL has not yet translated into clinical diagnostic, in the early and timely diagnosis of "silent" diseases such as atherosclerosis and cardiovascular diseases, or as prognosis tools in disease stratification and particularly useful in the context of multimorbidities. Their use as therapeutic solutions or the development of innovative functional biomaterials remains to be explored. This review summarizes the achievements made in the identification of oxPL revealing an enormous structural diversity. A brief overview of the challenges associated with the analysis of such diverse array of products is given and a critical evaluation on key aspects in the analysis pipeline that need to be addressed. Once these issues are addressed, Oxidative Phospholipidomics will hopefully lead to major breakthrough discoveries in biochemistry, pharmaceutical, and clinical areas for the upcoming 20 years. This article is part of Special Issue entitled 4-Hydroxynonenal and Related Lipid Oxidation Products.
Collapse
Affiliation(s)
- Ana Reis
- Mass Spectrometry Centre, Department of Chemistry, Campus Santiago, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
24
|
Xu W, Li F, Xu Z, Sun B, Cao J, Liu Y. Tert-butylhydroquinone protects PC12 cells against ferrous sulfate-induced oxidative and inflammatory injury via the Nrf2/ARE pathway. Chem Biol Interact 2017; 273:28-36. [DOI: 10.1016/j.cbi.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022]
|
25
|
Ray RS, Katyal A. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci Biobehav Rev 2016; 68:611-620. [PMID: 27343997 DOI: 10.1016/j.neubiorev.2016.06.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Neurodegenerative conditions present a group of complex disease pathologies mostly due to unknown aetiology resulting in neuronal death and permanent neurological disability. Any undesirable stress to the brain, disrupts homeostatic balance, through a remarkable convergence of pathophysiological changes and immune dysregulation. The crosstalk between inflammatory and oxidative mechanisms results in the release of neurotoxic mediators apparently spearheaded by myeloperoxidase derived from activated microglia, astrocytes, neurons as well as peripheral inflammatory cells. These isolated entities combinedly have the potential to flare up and contribute significantly to neuropathology and disease progression. Recent, clinicopathological evidence support the association of myeloperoxidase and its cytotoxic product, hypochlorous acid in a plethora of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Stroke, Epilepsy etc. But the biochemical and mechanistic insights into myeloperoxidase mediated neuroinflammation and neuronal death is still an uncharted territory. The current review outlines the emerging recognition of myeloperoxidase in neurodegeneration, which may offer novel therapeutic and diagnostic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- R S Ray
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi 110 007, India.
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi 110 007, India.
| |
Collapse
|
26
|
Ford DA, Honavar J, Albert CJ, Duerr MA, Oh JY, Doran S, Matalon S, Patel RP. Formation of chlorinated lipids post-chlorine gas exposure. J Lipid Res 2016; 57:1529-40. [PMID: 27324796 DOI: 10.1194/jlr.m069005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 01/12/2023] Open
Abstract
Exposure to chlorine (Cl2) gas can occur during accidents and intentional release scenarios. However, biomarkers that specifically indicate Cl2 exposure and Cl2-derived products that mediate postexposure toxicity remain unclear. We hypothesized that chlorinated lipids (Cl-lipids) formed by direct reactions between Cl2 gas and plasmalogens serve as both biomarkers and mediators of post-Cl2 gas exposure toxicities. The 2-chloropalmitaldehyde (2-Cl-Pald), 2-chlorostearaldehyde (2-Cl-Sald), and their oxidized products, free- and esterified 2-chloropalmitic acid (2-Cl-PA) and 2-chlorostearic acid were detected in the lungs and plasma of mouse and rat models of Cl2 gas exposure. Levels of Cl-lipids were highest immediately post-Cl2 gas exposure, and then declined over 72 h with levels remaining 20- to 30-fold higher at 24 h compared with baseline. Glutathione adducts of 2-Cl-Pald and 2-Cl-Sald also increased with levels peaking at 4 h in plasma. Notably, 3-chlorotyrosine also increased after Cl2 gas exposure, but returned to baseline within 24 h. Intranasal administration of 2-Cl-PA or 2-Cl-Pald at doses similar to those formed in the lung after Cl2 gas exposure led to increased distal lung permeability and inflammation and systemic endothelial dysfunction characterized by loss of eNOS-dependent vasodilation. These data suggest that Cl-lipids could serve as biomarkers and mediators for Cl2 gas exposure and toxicity.
Collapse
Affiliation(s)
- David A Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO
| | - Jaideep Honavar
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Carolyn J Albert
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO
| | - Mark A Duerr
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO
| | - Joo Yeun Oh
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Stephen Doran
- Anesthesiology, University of Alabama at Birmingham, Birmingham, AL
| | - Sadis Matalon
- Anesthesiology, University of Alabama at Birmingham, Birmingham, AL Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL
| | - Rakesh P Patel
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL Centers for Free Radical Biology University of Alabama at Birmingham, Birmingham, AL Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
27
|
Jeitner TM, Kalogiannis M, Krasnikov BF, Gomolin I, Peltier MR, Moran GR. Linking Inflammation and Parkinson Disease: Hypochlorous Acid Generates Parkinsonian Poisons. Toxicol Sci 2016; 151:388-402. [PMID: 27026709 DOI: 10.1093/toxsci/kfw052] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a common feature of Parkinson Disease and other neurodegenerative disorders. Hypochlorous acid (HOCl) is a reactive oxygen species formed by neutrophils and other myeloperoxidase-containing cells during inflammation. HOCl chlorinates the amine and catechol moieties of dopamine to produce chlorinated derivatives collectively termed chlorodopamine. Here, we report that chlorodopamine is toxic to dopaminergic neurons both in vivo and in vitro Intrastriatal administration of 90 nmol chlorodopamine to mice resulted in loss of dopaminergic neurons from the substantia nigra and decreased ambulation-results that were comparable to those produced by the same dose of the parkinsonian poison, 1-methyl-4-phenylpyridinium (MPP+). Chlorodopamine was also more toxic to differentiated SH SY5Y cells than HOCl. The basis of this selective toxicity is likely mediated by chlorodopamine uptake through the dopamine transporter, as expression of this transporter in COS-7 cells conferred sensitivity to chlorodopamine toxicity. Pharmacological blockade of the dopamine transporter also mitigated the deleterious effects of chlorodopamine in vivo The cellular actions of chlorodopamine included inactivation of the α-ketoglutarate dehydrogenase complex, as well as inhibition of mitochondrial respiration. The latter effect is consistent with inhibition of cytochrome c oxidase. Illumination at 670 nm, which stimulates cytochrome c oxidase, reversed the effects of chlorodopamine. The observed changes in mitochondrial biochemistry were also accompanied by the swelling of these organelles. Overall, our findings suggest that chlorination of dopamine by HOCl generates toxins that selectively kill dopaminergic neurons in the substantia nigra in a manner comparable to MPP+.
Collapse
Affiliation(s)
- Thomas M Jeitner
- *Department of Biochemistry and Molecular Biology, New York Medical College, Basic Science, Valhalla, NY 10595; Department of Biomedical Research
| | | | | | - Irving Gomolin
- Department of Geriatrics, Winthrop University Hospital, Mineola, NY 11501
| | | | - Graham R Moran
- Department of Chemistry and Biochemistry, University of Wisconsin - Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
28
|
Nusshold C, Üllen A, Kogelnik N, Bernhart E, Reicher H, Plastira I, Glasnov T, Zangger K, Rechberger G, Kollroser M, Fauler G, Wolinski H, Weksler BB, Romero IA, Kohlwein SD, Couraud PO, Malle E, Sattler W. Assessment of electrophile damage in a human brain endothelial cell line utilizing a clickable alkyne analog of 2-chlorohexadecanal. Free Radic Biol Med 2016; 90:59-74. [PMID: 26577177 PMCID: PMC6392177 DOI: 10.1016/j.freeradbiomed.2015.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022]
Abstract
Peripheral leukocytes aggravate brain damage by releasing cytotoxic mediators that compromise blood-brain barrier function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system. The reaction of HOCl with the endogenous plasmalogen pool of brain endothelial cells results in the generation of 2-chlorohexadecanal (2-ClHDA), a toxic, lipid-derived electrophile that induces blood-brain barrier dysfunction in vivo. Here, we synthesized an alkynyl-analog of 2-ClHDA, 2-chlorohexadec-15-yn-1-al (2-ClHDyA) to identify potential protein targets in the human brain endothelial cell line hCMEC/D3. Similar to 2-ClHDA, 2-ClHDyA administration reduced cell viability/metabolic activity, induced processing of pro-caspase-3 and PARP, and led to endothelial barrier dysfunction at low micromolar concentrations. Protein-2-ClHDyA adducts were fluorescently labeled with tetramethylrhodamine azide (N3-TAMRA) by 1,3-dipolar cycloaddition in situ, which unveiled a preferential accumulation of 2-ClHDyA adducts in mitochondria, the Golgi, endoplasmic reticulum, and endosomes. Thirty-three proteins that are subject to 2-ClHDyA-modification in hCMEC/D3 cells were identified by mass spectrometry. Identified proteins include cytoskeletal components that are central to tight junction patterning, metabolic enzymes, induction of the oxidative stress response, and electrophile damage to the caveolar/endosomal Rab machinery. A subset of the targets was validated by a combination of N3-TAMRA click chemistry and specific antibodies by fluorescence microscopy. This novel alkyne analog is a valuable chemical tool to identify cellular organelles and protein targets of 2-ClHDA-mediated damage in settings where myeloperoxidase-derived oxidants may play a disease-propagating role.
Collapse
Affiliation(s)
- Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria
| | - Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Toma Glasnov
- Christian Doppler Laboratory for Flow Chemistry, Institute of Chemistry, University of Graz, Austria
| | | | - Gerald Rechberger
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria; OMICS-Center Graz, BioTechMed Graz, Austria
| | | | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Heimo Wolinski
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria
| | - Babette B Weksler
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6BJ, UK
| | - Sepp D Kohlwein
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria
| | - Pierre-Olivier Couraud
- Institut Cochin, Inserm, U1016, CNRS UMR 8104, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| |
Collapse
|
29
|
Duerr MA, Aurora R, Ford DA. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils. J Lipid Res 2015; 56:1014-24. [PMID: 25814023 PMCID: PMC4409278 DOI: 10.1194/jlr.m058636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/25/2015] [Indexed: 11/20/2022] Open
Abstract
α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice.
Collapse
Affiliation(s)
- Mark A. Duerr
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Rajeev Aurora
- Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
30
|
Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med 2014; 71:240-255. [PMID: 24632382 DOI: 10.1016/j.freeradbiomed.2014.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic T Love
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
31
|
Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD, Rechberger GN. A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:119-28. [PMID: 24548922 PMCID: PMC3946075 DOI: 10.1016/j.jchromb.2014.01.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/17/2022]
Abstract
A new UPLC-based untargeted lipidomic approach using a qTOF hybrid mass spectrometer is introduced. The applied binary gradient enables separations of lipid species including constitutional isomeric compounds and low abundant lipid classes such as phosphatidic acid (PA). Addition of phosphoric acid to the solvents improves peak shapes for acidic phospholipids. MS(E) scans allow simultaneous acquisition of full scan data and collision induced fragmentation to improve identification of lipid classes and to obtain structural information. The method was used to investigate the lipidome of yeast.
Collapse
Affiliation(s)
- Oskar L Knittelfelder
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/II, 8010 Graz, Austria
| | - Bernd P Weberhofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/II, 8010 Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/II, 8010 Graz, Austria
| | - Sepp D Kohlwein
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/II, 8010 Graz, Austria
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/II, 8010 Graz, Austria; Omics Center Graz, Austria.
| |
Collapse
|
32
|
Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 2013; 406:1291-306. [DOI: 10.1007/s00216-013-7534-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
33
|
Üllen A, Fauler G, Bernhart E, Nusshold C, Reicher H, Leis HJ, Malle E, Sattler W. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro. Free Radic Biol Med 2012; 53:1770-81. [PMID: 22982051 PMCID: PMC3485557 DOI: 10.1016/j.freeradbiomed.2012.08.575] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 06/11/2012] [Accepted: 08/18/2012] [Indexed: 11/21/2022]
Abstract
2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase-hydrogen peroxide-chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood-brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Hans-Jörg Leis
- Research Unit of Osteology and Analytical Mass Spectrometry, University Children's Hospital, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, University Children's Hospital, Medical University of Graz, Graz, Austria
- Corresponding author. Fax: +43 316 380 9615.
| |
Collapse
|
34
|
Effects of oxidation of lysozyme by hypohalous acids and haloamines on enzymatic activity and aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1090-6. [DOI: 10.1016/j.bbapap.2012.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/18/2022]
|
35
|
Melo T, Maciel E, Oliveira MM, Domingues P, Domingues MRM. Study of sphingolipids oxidation by ESI tandem MS. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med 2012; 52:266-80. [PMID: 22080084 DOI: 10.1016/j.freeradbiomed.2011.10.481] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
37
|
Fuchs B, Bresler K, Schiller J. Oxidative changes of lipids monitored by MALDI MS. Chem Phys Lipids 2011; 164:782-95. [PMID: 21964445 DOI: 10.1016/j.chemphyslip.2011.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
Oxidation processes of lipids are of paramount interest from many viewpoints. For instance, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by oxidation of lipids or free fatty acids. Additionally, many inflammatory diseases are accompanied by lipid oxidation and, therefore, oxidation products are also useful disease (bio)markers. Thus, there is also considerable interest in methods of (oxidized) lipid analysis. Nowadays, soft ionization mass spectrometric (MS) methods are regularly used to study oxidative lipid modifications due to their high sensitivities and the extreme mass resolution. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are increasing. This review aims to summarize the so far available data on MALDI analyses of oxidized lipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids under in vivo conditions, particularly the oxidation of (human) lipoproteins. It is not the aim of this review to praise MALDI as the "best" method but to provide a critical survey of the advantages and drawbacks of this method.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Faculty of Medicine, Institute of Medical Physics and Biophysics, Härtelstrasse16/18, Leipzig, Germany
| | | | | |
Collapse
|
38
|
Qi H, Takano H, Kato Y, Wu Q, Ogata C, Zhu B, Murata Y, Nakamura Y. Hydrogen [corrected] peroxide-dependent photocytotoxicity by phloxine B, a xanthene-type food colorant. Biochim Biophys Acta Gen Subj 2011; 1810:704-12. [PMID: 21565256 DOI: 10.1016/j.bbagen.2011.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/14/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Phloxine B (PhB; 2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-fluorescein), an artificial xanthene colorant, has been used as a red coloring agent in drugs and cosmetics as well as foods in some countries. However, little effort has been devoted to the study of this colorant as a potentially useful medicinal agent. METHODS We investigated the daily light-induced photocytotoxicity of PhB in two human leukemia cells, HL-60 and Jurkat, and its underlying mechanisms by in vitro experiments using antioxidants. REUSLTS AND CONCLUSIONS: PhB inhibited cell proliferation more preferentially to HL-60 cells than to Jurkat cells. Co-treatment of catalase completely blocked the photocytotoxicity by PhB in HL-60 cells, whereas the effect of histidine was only partial, suggesting that hydrogen peroxide (H(2)O(2)), rather than singlet oxygen, might be a prerequisite for the PhB-induced HL-60 cell death. Actually, PhB produced a significant amount of H(2)O(2) in the media as well as in the cells in concentration- and light-dependent manners. Furthermore, methionine, a hypochlorous acid (HOCl) scavenger, also significantly attenuated the cytotoxicity in HL-60 cells, but not in Jurkat cells, indicating the involvement of myeloperoxidase (MPO)-dependent hypohalous acid formation during the photocytotoxicity. In vitro experiments revealed that halogenated tyrosine was generated from the reaction of bovine serum albumin with PhB and HL-60 cell lysate. The present findings suggested that PhB induced a differential photodynamic action in the MPO-containing leukemia cells through an H(2)O(2)-dependent mechanism. GENERAL SIGNIFICANCE Our findings provide new insights into the molecular mechanisms underlying the PhB-induced apoptosis and also evaluated PhB as a promising PDT agent.
Collapse
Affiliation(s)
- Hang Qi
- Department of Biofunctional Chemistry, Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chandrasekaran K, Swaminathan K, Kumar SM, Chatterjee S, Clemens DL, Dey A. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1. Toxicol In Vitro 2011; 25:969-78. [PMID: 21414402 DOI: 10.1016/j.tiv.2011.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/04/2011] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis.
Collapse
Affiliation(s)
- Karthikeyan Chandrasekaran
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai 600 044, India
| | | | | | | | | | | |
Collapse
|
40
|
Ximenes VF, da Fonseca LM, de Almeida AC. Taurine bromamine: A potent oxidant of tryptophan residues in albumin. Arch Biochem Biophys 2011; 507:315-22. [DOI: 10.1016/j.abb.2010.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/15/2010] [Accepted: 12/21/2010] [Indexed: 11/25/2022]
|
41
|
Üllen A, Fauler G, Köfeler H, Waltl S, Nusshold C, Bernhart E, Reicher H, Leis HJ, Wintersperger A, Malle E, Sattler W. Mouse brain plasmalogens are targets for hypochlorous acid-mediated modification in vitro and in vivo. Free Radic Biol Med 2010; 49:1655-65. [PMID: 20807565 PMCID: PMC4061399 DOI: 10.1016/j.freeradbiomed.2010.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022]
Abstract
Plasmalogens, 1-O-alk-1'-enyl-2-acyl-sn-glycerophospholipids, are significant constituents of cellular membranes and are essential for normal brain development. Plasmalogens, which contain a vinyl ether bond at the sn-1 position, are preferential targets for hypochlorous acid (HOCl), generated by myeloperoxidase (MPO) from H(2)O(2) and chloride ions. Because MPO is implicated in neurodegeneration, this study pursued two aims: (i) to investigate the reactivity of mouse brain plasmalogens toward HOCl in vitro and (ii) to obtain in vivo evidence for MPO-mediated brain plasmalogen modification. Liquid chromatography coupled to hybrid linear ion trap-Fourier transform-ion cyclotron resonance mass spectrometry revealed plasmalogen modification in mouse brain lipid extracts at lower HOCl concentrations as observed for diacylphospholipids, resulting in the generation of 2-chloro fatty aldehydes and lysophospholipids. Lysophosphatidylethanolamine accumulation was transient, whereas lysophosphatidylcholine species containing saturated acyl residues remained stable. In vivo, a single, systemic endotoxin injection resulted in upregulation of cerebral MPO mRNA levels to a range comparable to that observed for tumor necrosis factor-α and cyclooxygenase-2. This inflammatory response was accompanied by a significant decrease in several brain plasmalogen species and concomitant in vivo generation of 2-chlorohexadecanal. The present findings demonstrate that activation of the MPO-H(2)O(2)-chloride system under neuroinflammatory conditions results in oxidative attack of the total cerebral plasmalogen pool. As this lipid class is indispensable for normal neuronal function, HOCl-mediated plasmalogen modification is likely to compromise normal synaptic transmission.
Collapse
Affiliation(s)
- Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria
| | - Harald Köfeler
- Center of Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Sabine Waltl
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Hans-Jörg Leis
- Research Unit of Osteology and Analytical Mass Spectrometry, University Children’s Hospital, Medical University of Graz, 8010 Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
- Corresponding author. Fax: +43 316 380 9615.
| |
Collapse
|
42
|
Ford DA. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia. CLINICAL LIPIDOLOGY 2010; 5:835-852. [PMID: 21339854 PMCID: PMC3041592 DOI: 10.2217/clp.10.68] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets.
Collapse
Affiliation(s)
- David A Ford
- Department of Biochemistry & Molecular Biology, Center for Cardiovascular Research, Saint Louis University School of Medicine, Room 325, Doisy Research Center, 1100 South Grand Blvd, St Louis, MO 63104, USA, Tel.: +1 314 977 9264, Fax: +1 314 977 9205
| |
Collapse
|
43
|
Thomas A, Déglon J, Lenglet S, Mach F, Mangin P, Wolfender JL, Steffens S, Staub C. High-Throughput Phospholipidic Fingerprinting by Online Desorption of Dried Spots and Quadrupole-Linear Ion Trap Mass Spectrometry: Evaluation of Atherosclerosis Biomarkers in Mouse Plasma. Anal Chem 2010; 82:6687-6694. [DOI: 10.1021/ac101421b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurélien Thomas
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - Julien Déglon
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - Sébastien Lenglet
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - François Mach
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - Patrice Mangin
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - Sabine Steffens
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| | - Christian Staub
- Unit of Toxicology, CURML, Geneva University Hospitals, Geneva, Switzerland, Division of Cardiology, Department of Internal Medicine, University Hospital, Foundation for Medical Researches, Geneva, Switzerland, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, and Swiss Center of Applied Human Toxicology, University of Geneva, Geneva, Switzerland
| |
Collapse
|