1
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Hai Y, Fan R, Zhao T, Lin R, Zhuang J, Deng A, Meng S, Hou Z, Wei G. A novel mitochondria-targeting DHODH inhibitor induces robust ferroptosis and alleviates immune suppression. Pharmacol Res 2024; 202:107115. [PMID: 38423231 DOI: 10.1016/j.phrs.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Dihydroorotate dehydrogenase (DHODH)-mediated ferroptosis defense is a targetable vulnerability in cancer. Currently, only a few DHODH inhibitors have been utilized in clinical practice. To further enhance DHODH targeting, we introduced the mitochondrial targeting group triphenylphosphine (TPP) to brequinar (BRQ), a robust DHODH inhibitor, resulting in the creation of active molecule B2. This compound exhibits heightened anticancer activity, effectively inhibiting proliferation in various cancer cells, and restraining tumor growth in melanoma xenografts in mice. B2 achieves these effects by targeting DHODH, triggering the formation of reactive oxygen species (ROS), promoting mitochondrial lipid peroxidation, and inducing ferroptosis in B16F10 and A375 cells. Surprisingly, B2 significantly downregulates PD-L1 and alleviates immune suppression. Importantly, B2 exhibits no apparent adverse effects in mice. Collectively, these findings highlight that enhancing the mitochondrial targeting capability of the DHODH inhibitor is a promising therapeutic approach for melanoma treatment.
Collapse
Affiliation(s)
- Yongrui Hai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Renming Fan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Ting Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruizhuo Lin
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Junyan Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Aohua Deng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Shanshui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhuang Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China.
| |
Collapse
|
3
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
4
|
Chen M, Wang L, Li M, Budai MM, Wang J. Mitochondrion-Mediated Cell Death through Erk1-Alox5 Independent of Caspase-9 Signaling. Cells 2022; 11:cells11193053. [PMID: 36231015 PMCID: PMC9564198 DOI: 10.3390/cells11193053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial disruption leads to the release of cytochrome c to activate caspase-9 and the downstream caspase cascade for the execution of apoptosis. However, cell death can proceed efficiently in the absence of caspase-9 following mitochondrial disruption, suggesting the existence of caspase-9-independent cell death mechanisms. Through a genome-wide siRNA library screening, we identified a network of genes that mediate caspase-9-independent cell death, through ROS production and Alox5-dependent membrane lipid peroxidation. Erk1-dependent phosphorylation of Alox5 is critical for targeting Alox5 to the nuclear membrane to mediate lipid peroxidation, resulting in nuclear translocation of cytolytic molecules to induce DNA damage and cell death. Consistently, double knockouts of caspase-9 and Alox5 in mice, but not deletion of either gene alone, led to significant T cell expansion with inhibited cell death, indicating that caspase-9- and Alox5-dependent pathways function in parallel to regulate T cell death in vivo. This unbiased whole-genome screening reveals an Erk1-Alox5-mediated pathway that promotes membrane lipid peroxidation and nuclear translocation of cytolytic molecules, leading to the execution of cell death in parallel to the caspase-9 signaling cascade.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (M.C.); (J.W.)
| | - Lei Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Correspondence: (M.C.); (J.W.)
| |
Collapse
|
5
|
Jose A, Guest D, LeGay R, Tizzard GJ, Coles SJ, Derveni M, Wright E, Marrison L, Lee AA, Morris A, Robinson M, von Delft F, Fearon D, Koekemoer L, Matviuk T, Aimon A, Schofield CJ, Malla TR, London N, Greenland BW, Bagley MC, Spencer J, The Covid Moonshot Consortium. Expanding the Repertoire of Low-Molecular-Weight Pentafluorosulfanyl-Substituted Scaffolds. ChemMedChem 2022; 17:e202100641. [PMID: 35191598 PMCID: PMC9305131 DOI: 10.1002/cmdc.202100641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Indexed: 11/19/2022]
Abstract
The pentafluorosulfanyl (-SF5 ) functional group is of increasing interest as a bioisostere in medicinal chemistry. A library of SF5 -containing compounds, including amide, isoxazole, and oxindole derivatives, was synthesised using a range of solution-based and solventless methods, including microwave and ball-mill techniques. The library was tested against targets including human dihydroorotate dehydrogenase (HDHODH). A subsequent focused approach led to synthesis of analogues of the clinically used disease modifying anti-rheumatic drugs (DMARDs), Teriflunomide and Leflunomide, considered for potential COVID-19 use, where SF5 bioisostere deployment led to improved inhibition of HDHODH compared with the parent drugs. The results demonstrate the utility of the SF5 group in medicinal chemistry.
Collapse
Affiliation(s)
- Arathy Jose
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | - Daniel Guest
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | - Remi LeGay
- Normandie UniversitéLaboratoire de Chimie Moléculaire et ThioorganiqueLCMT UMR 6507 ENSICAEN, UNICAEN, CNRS6 Bd. Du Marechal Juin, 14050CaenFrance
| | - Graham J. Tizzard
- National Crystallography Service, School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Simon J. Coles
- National Crystallography Service, School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | | | - Edward Wright
- BiochemistrySchool of Life Sciences, FalmerBrightonBN1 9QGUK
| | - Lester Marrison
- eMolecules, 3430Carmel Mountain Road, Suite 250San DiegoCA 92121USA
| | - Alpha A. Lee
- PostEra Inc., 2 Embarcadero CentreSan FrancisoCA 94111USA
| | - Aaron Morris
- PostEra Inc., 2 Embarcadero CentreSan FrancisoCA 94111USA
| | - Matt Robinson
- PostEra Inc., 2 Embarcadero CentreSan FrancisoCA 94111USA
| | - Frank von Delft
- Diamond Light Source (DLS)Harwell Science and Innovation CampusDidcotOX11 0DEUK
- Centre of Medicines Discovery (CMD)University of OxfordDepartment of BiochemistryOxfordOX1 3QUUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Daren Fearon
- Diamond Light Source (DLS)Harwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Lizbé Koekemoer
- Centre of Medicines Discovery (CMD)University of OxfordDepartment of BiochemistryOxfordOX1 3QUUK
| | | | - Anthony Aimon
- Diamond Light Source (DLS)Harwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Christopher J. Schofield
- Chemistry Research LaboratoryThe Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield RoadOX1 3TAOxfordUK
| | - Tika R. Malla
- Chemistry Research LaboratoryThe Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield RoadOX1 3TAOxfordUK
| | - Nir London
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovot76100Israel
| | | | - Mark C. Bagley
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | - John Spencer
- Chemistry DepartmentSchool of Life Sciences, FalmerBrightonBN1 9QJUK
| | | |
Collapse
|
6
|
Li C, Yang X, Luo Y, Liu H, Zhong X, Zhou X, Zeng T, Tao L, Zhou Y, Gou K, Yang X, Liu X, Chen Q, Zhao Y, Luo Y. Design, Synthesis, and Biological Evaluation of a Novel Series of Teriflunomide Derivatives as Potent Human Dihydroorotate Dehydrogenase Inhibitors for Malignancy Treatment. J Med Chem 2021; 64:18175-18192. [PMID: 34905371 DOI: 10.1021/acs.jmedchem.1c01711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Human dihydroorotate dehydrogenase (hDHODH), as the fourth and rate-limiting enzyme of the de novo pyrimidine synthesis pathway, is regarded as an attractive target for malignancy therapy. In the present study, a novel series of teriflunomide derivatives were designed, synthesized, and evaluated as hDHODH inhibitors. 13t was the optimal compound with promising enzymatic activity (IC50 = 16.0 nM), potent antiproliferative activity against human lymphoma Raji cells (IC50 = 7.7 nM), and excellent aqueous solubility (20.1 mg/mL). Mechanistically, 13t directly inhibited hDHODH and induced cell cycle S-phase arrest in Raji cells. The acute toxicity assay indicated a favorable safety profile of 13t. Notably, 13t displayed significant tumor growth inhibition activity with a tumor growth inhibition (TGI) rate of 81.4% at 30 mg/kg in a Raji xenograft model. Together, 13t is a promising inhibitor of hDHODH and a preclinical candidate for antitumor therapy, especially for lymphoma.
Collapse
Affiliation(s)
- Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaowei Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Huan Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Zhong
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ting Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xinyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Otto-Ślusarczyk D, Graboń W, Mielczarek-Puta M, Chrzanowska A. Teriflunomide - The common drug with underestimated oxygen - Dependent anticancer potential. Biochem Biophys Rep 2021; 28:101141. [PMID: 34611552 PMCID: PMC8476349 DOI: 10.1016/j.bbrep.2021.101141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Leflunomide (LFN) is a well-known immunomodulatory and anti-inflammatory prodrug of teriflunomide (TFN). Due to pyrimidine synthesis inhibition TFN also exhibits potent anticancer effect. Because, there is the strict coupling between the pyrimidine synthesis and the mitochondrial respiratory chain, the oxygen level could modify the cytostatic TNF effect. The aim of the study was to evaluate the cytostatic effect of pharmacologically achievable teriflunomide (TFN) concentrations at physiological oxygen levels, i.e. 1% hypoxia and 10% tissue normoxia compared to 21% oxygen level occurred in routine cell culture environment. The TFN effect was evaluated using TB, MTT and FITC Annexin tests for human primary (SW480) and metastatic (SW620) colon cancer cell lines at various oxygen levels. We demonstrated significant differences between proliferation, survival and apoptosis at 1, 10 and 21% oxygen in primary and metastatic colon cancer cell lines (SW480, SW620) under TFN treatment. The cytostatic TFN effect was more pronounced at hypoxia compared to tissue and atmospheric normoxia in both cancer cell lines, however metastatic cells were more resistant to antiproliferative and proapoptotic TFN action. The early apoptosis was predominant in physiological oxygen tension while in atmospheric normoxia the late apoptosis was induced. Our findings showed that anticancer TFN effect is more strong in physiological oxygen compared to atmospheric normoxia. It suggests that results obtained from in vitro studies could be underestimated. Thus, it gives assumption for future comprehensive studies at real oxygen environment involving TNF use in combination with other antitumor agents affecting oxygen-dependent pyrimidine synthesis.
Collapse
Affiliation(s)
- Dagmara Otto-Ślusarczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Wojciech Graboń
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Magdalena Mielczarek-Puta
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| |
Collapse
|
8
|
Hałubiec P, Łazarczyk A, Szafrański O, Bohn T, Dulińska-Litewka J. Synthetic Retinoids as Potential Therapeutics in Prostate Cancer-An Update of the Last Decade of Research: A Review. Int J Mol Sci 2021; 22:10537. [PMID: 34638876 PMCID: PMC8508817 DOI: 10.3390/ijms221910537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is the second most common tumor in males. The search for appropriate therapeutic options against advanced PC has been in process for several decades. Especially after cessation of the effectiveness of hormonal therapy (i.e., emergence of castration-resistant PC), PC management options have become scarce and the prognosis is poor. To overcome this stage of disease, an array of natural and synthetic substances underwent investigation. An interesting and promising class of compounds constitutes the derivatives of natural retinoids. Synthesized on the basis of the structure of retinoic acid, they present unique and remarkable properties that warrant their investigation as antitumor drugs. However, there is no up-to-date compilation that consecutively summarizes the current state of knowledge about synthetic retinoids with regard to PC. Therefore, in this review, we present the results of the experimental studies on synthetic retinoids conducted within the last decade. Our primary aim is to highlight the molecular targets of these compounds and to identify their potential promise in the treatment of PC.
Collapse
Affiliation(s)
- Przemysław Hałubiec
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Agnieszka Łazarczyk
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Oskar Szafrański
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Torsten Bohn
- Nutrition and Health Research Group 1 A-B, Department of Population Health, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-23 1445 Strassen, Luxembourg;
| | - Joanna Dulińska-Litewka
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| |
Collapse
|
9
|
Adamczuk G, Humeniuk E, Iwan M, Natorska-Chomicka D, Adamczuk K, Korga-Plewko A. The Mitochondria-Independent Cytotoxic Effect of Leflunomide on RPMI-8226 Multiple Myeloma Cell Line. Molecules 2021; 26:5653. [PMID: 34577124 PMCID: PMC8469018 DOI: 10.3390/molecules26185653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Leflunomide, an anti-inflammatory agent, has been shown to be effective in multiple myeloma (MM) treatment; however, the mechanism of this phenomenon has not been fully elucidated. The aim of the study was to assess the role of mitochondria and dihydroorotate dehydrogenase (DHODH) inhibition in the cytotoxicity of leflunomide in relation to the MM cell line RPMI 8226. The cytotoxic effect of teriflunomide-an active metabolite of leflunomide-was determined using MTT assay, apoptosis detection, and cell cycle analysis. To evaluate DHODH-dependent toxicity, the cultures treated with teriflunomide were supplemented with uridine. Additionally, the level of cellular thiols as oxidative stress symptom was measured as well as mitochondrial membrane potential and protein tyrosine kinases (PTK) activity. The localization of the compound in cell compartments was examined using HPLC method. Teriflunomide cytotoxicity was not abolished in uridine presence. Observed apoptosis occurred in a mitochondria-independent manner, there was also no decrease in cellular thiols level. Teriflunomide arrested cell cycle in the G2/M phase which is not typical for DHODH deficiency. PTK activity was decreased only at the highest drug concentration. Interestingly, teriflunomide was not detected in the mitochondria. The aforementioned results indicate DHODH- and mitochondria-independent mechanism of leflunomide toxicity against RPMI 8226 cell line.
Collapse
Affiliation(s)
- Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (A.K.-P.)
| | - Magdalena Iwan
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.I.); (D.N.-C.)
| | - Dorota Natorska-Chomicka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.I.); (D.N.-C.)
| | - Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (E.H.); (A.K.-P.)
| |
Collapse
|
10
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Mothes R, Ulbricht C, Leben R, Günther R, Hauser AE, Radbruch H, Niesner R. Teriflunomide Does Not Change Dynamics of Nadph Oxidase Activation and Neuronal Dysfunction During Neuroinflammation. Front Mol Biosci 2020; 7:62. [PMID: 32426367 PMCID: PMC7203781 DOI: 10.3389/fmolb.2020.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
The multiple sclerosis therapeutic teriflunomide is known to block the de novo synthesis of pyrimidine in mitochondria by inhibiting the enzyme dihydroorotate-dehydrogenase (DHODH). The metabolic processes of oxidative phosphorylation and glycolysis are further possible downstream targets. In healthy adult mice, high levels of dihydroorotate-dehydrogenase (DHODH) activity are measured in the central nervous system (CNS), and DHODH inhibition may cause indirect effects on reactive oxygen species production and NADPH oxidase (NOX) mediated oxidative stress, known to be key aspects of the inflammatory response of the CNS. However, little is known about the effect of teriflunomide on the dynamics of NOX activation in CNS cells and subsequent alterations of neuronal function in vivo. In this study, we employed fluorescence lifetime imaging (FLIM) and phasor analysis of the endogeneous fluorescence of NAD(P)H (nicotinamide adenine dinucleotide phosphate) in the brain stem of mice to visualize the effect of teriflunomide on cellular metabolism. Furthermore, we simultaneously studied neuronal Ca2+ signals in transgenic mice with a FRET-based Troponin C Ca2+ sensor based (CerTN L15) quantified using FRET-FLIM. Hence, we directly correlated neuronal (dys-)function indicated by steadily elevated calcium levels with metabolic activity in neurons and surrounding CNS tissue. Employing our intravital co-registered imaging approach, we could not detect any significant alteration of NOX activation after incubation of the tissue with teriflunomide. Furthermore, we could not detect any changes of the inflammatory induced neuronal dysfunction due to local treatment with teriflunomide. Concerning drug safety, we can confirm that teriflunomide has no metabolic effects on neuronal function in the CNS tissue during neuroinflammation at concentrations expected in orally treated patients. The combined endogenous FLIM and calcium imaging approach developed by us and employed here uniquely meets the need to monitor cellular metabolism as a basic mechanism of tissue functions in vivo.
Collapse
Affiliation(s)
- Ronja Mothes
- Institute for Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany
| | - Carolin Ulbricht
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany.,Immunodyanmics and Intravital Microscopy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Leben
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany
| | - Robert Günther
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany.,Immunodyanmics and Intravital Microscopy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Institute for Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum - Leibniz Institute, Berlin, Germany.,Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW. Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 2020; 27:2500-2516. [PMID: 32144381 DOI: 10.1038/s41418-020-0518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a highly malicious childhood malignancy characterized by specific chromosomal translocations mostly encoding the oncogenic transcription factor PAX3-FOXO1 and therefore also referred to as fusion-positive RMS (FP-RMS). Previously, we have identified fenretinide (retinoic acid p-hydroxyanilide) to affect PAX3-FOXO1 expression levels as well as FP-RMS cell viability. Here, we characterize the mode of action of fenretinide in more detail. First, we demonstrate that fenretinide-induced generation of reactive oxygen species (ROS) depends on complex II of the mitochondrial respiratory chain, since ROS scavenging as well as complexing of iron completely abolished cell death. Second, we co-treated cells with a range of pharmacological inhibitors of specific cell death pathways including z-vad (apoptosis), necrostatin-1 (necroptosis), 3-methyladenine (3-MA) (autophagy), and ferrostatin-1 (ferroptosis) together with fenretinide. Surprisingly, none of these inhibitors was able to prevent cell death. Also genetic depletion of key players in the apoptotic and necroptotic pathway (BAK, BAX, and RIPK1) confirmed the pharmacological data. Interestingly however, electron microscopy of fenretinide-treated cells revealed an excessive accumulation of cytoplasmic vacuoles, which were distinct from autophagosomes. Further flow cytometry and fluorescence microscopy experiments suggested a hyperstimulation of macropinocytosis, leading to an accumulation of enlarged early and late endosomes. Surprisingly, pharmacological inhibition as well as genetic depletion of large dynamin GTPases completely abolished fenretinide-induced vesicle formation and subsequent cell death, suggesting a new form of dynamin-dependent programmed cell death. Taken together, our data identify a new form of cell death mediated through the production of ROS by fenretinide treatment, highlighting the value of this compound for treatment of sarcoma patients including FP-RMS.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anja Wolf
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165759. [PMID: 32151633 DOI: 10.1016/j.bbadis.2020.165759] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) is an enzyme of the de novo pyrimidine synthesis pathway that provides nucleotides for RNA/DNA synthesis essential for proliferation. In mammalian cells, DHODH is localized in mitochondria, linked to the respiratory chain via the coenzyme Q pool. Here we discuss the role of DHODH in the oxidative phosphorylation system and in the initiation and progression of cancer. We summarize recent findings on DHODH biology, the progress made in the development of new, specific inhibitors of DHODH intended for cancer therapy, and the mechanistic insights into the consequences of DHODH inhibition.
Collapse
Affiliation(s)
- Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic
| | - Sona Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic
| | - Zuzana Ezrova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, 4222, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
14
|
Xiong J, Kuang X, Lu T, Liu X, Cheng B, Wang W, Wei D, Li X, Zhang Z, Fang Q, Wu D, Wang J. Fenretinide-induced Apoptosis of Acute Myeloid Leukemia Cells via NR4A1 Translocation into Mitochondria and Bcl-2 Transformation. J Cancer 2019; 10:6767-6778. [PMID: 31839811 PMCID: PMC6909957 DOI: 10.7150/jca.32167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2018] [Accepted: 09/01/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE: Fenretinide is reported to induce NR4A1-associated apoptosis in several types of cancer cells. However, it remains unclear about its specific role and the underlying mechanism in acute myeloid leukemia (AML). Therefore, this study aimed to explore the role and mechanism of fenretinide-induced apoptosis in AML. METHOD: Firstly, the NR4A1 mRNA level in the newly diagnosed AML patients was measured, then AML cells were treated with fenretinide at various time points and doses, and cell viability was investigated by using the cell-counting kit-8 (CCK-8) assay. Additionally, apoptosis and cell cycles were analyzed by using flow cytometry. Moreover, siNR4A1 was utilized to knockdown NR4A1 expression, and leptomycin B (LMB) was adopted to inhibit the nuclear export; afterwards, the apoptosis rate and expression of apoptotic proteins in AML cells were detected. In addition, the expression levels of NR4A1 in the nuclei and mitochondria of fenretinide-treated AML cells were also measured. Meanwhile, the interaction between NR4A1 and Bcl-2, as well as the Bcl-2 transformation, was also examined. The anti-leukemic effect of fenretinide on NOD/SCID mice was also determined through subcutaneous injection of HL-60 cells. RESULTS: NR4A1 expression in AML patients was markedly down-regulated compared with that in normal donors. Fenretinide induced the expression of NR4A1 and mitochondria-mediated apoptotic pathway-associated proteins in a time- and concentration-dependent manner. Importantly, both siNR4A1 alone or the combination of fenretinide with LMB could attenuate the fenretinide-induced apoptosis and expression of apoptotic proteins. Under the action of fenretinide, the NR4A1 protein expression was down-regulated in nuclear extracts whereas up-regulated in mitochondrial extracts. At the same time, fenretinide promoted NR4A1 translocation from nuclei into mitochondria, and enhanced the interaction between NR4A1 and Bcl-2, thereby exposing the BH3 domain of Bcl-2 to exert the anti-apoptotic effect. Moreover, fenretinide also exhibited an anti-leukemic effect and induced NR4A1 expression in the AML mouse model. CONCLUSIONS: Fenretinide exerts an obvious effect on AML cells both in vitro and in vivo. Besides, the NR4A1-mediated signaling pathway is highly involved in the fenretinide-induced apoptosis of AML cells.
Collapse
Affiliation(s)
- Jie Xiong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation,188 Shizi Street, Suzhou 215006, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Xingyi Kuang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Tingting Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Xu Liu
- Department of Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Bingqing Cheng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Weili Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Danna Wei
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Xinyao Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Zhaoyuan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou Institute of Blood and Marrow Transplantation,188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University. Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province. Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
15
|
Pesini A, Iglesias E, Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Gaudó P, Jiménez-Salvador I, Andrés-Benito P, Montoya J, Ferrer I, Pesini P, Ruiz-Pesini E. Brain pyrimidine nucleotide synthesis and Alzheimer disease. Aging (Albany NY) 2019; 11:8433-8462. [PMID: 31560653 PMCID: PMC6814620 DOI: 10.18632/aging.102328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Accepted: 09/22/2019] [Indexed: 01/12/2023]
Abstract
Many patients suffering late-onset Alzheimer disease show a deficit in respiratory complex IV activity. The de novo pyrimidine biosynthesis pathway connects with the mitochondrial respiratory chain upstream from respiratory complex IV. We hypothesized that these patients would have decreased pyrimidine nucleotide levels. Then, different cell processes for which these compounds are essential, such as neuronal membrane generation and maintenance and synapses production, would be compromised. Using a cell model, we show that inhibiting oxidative phosphorylation function reduces neuronal differentiation. Linking these processes to pyrimidine nucleotides, uridine treatment recovers neuronal differentiation. To unmask the importance of these pathways in Alzheimer disease, we firstly confirm the existence of the de novo pyrimidine biosynthesis pathway in adult human brain. Then, we report altered mRNA levels for genes from both de novo pyrimidine biosynthesis and pyrimidine salvage pathways in brain from patients with Alzheimer disease. Thus, uridine supplementation might be used as a therapy for those Alzheimer disease patients with low respiratory complex IV activity.
Collapse
Affiliation(s)
- Alba Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Paula Gaudó
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Pol Andrés-Benito
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isidro Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Neurociencias, Universidad de Barcelona, Barcelona, Spain
| | | | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Fundación ARAID, Zaragoza, Spain
| |
Collapse
|
16
|
Mailloux RJ. Cysteine Switches and the Regulation of Mitochondrial Bioenergetics and ROS Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:197-216. [PMID: 31452142 DOI: 10.1007/978-981-13-8367-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are dynamic organelles that perform a number of interconnected tasks that are elegantly intertwined with the regulation of cell functions. This includes the provision of ATP, reactive oxygen species (ROS), and building blocks for the biosynthesis of macromolecules while also serving as signaling platforms for the cell. Although the functions executed by mitochondria are complex, at its core these roles are, to a certain degree, fulfilled by electron transfer reactions and the establishment of a protonmotive force (PMF). Indeed, mitochondria are energy conserving organelles that extract electrons from nutrients to establish a PMF, which is then used to drive ATP and NADPH production, solute import, and many other functions including the propagation of cell signals. These same electrons extracted from nutrients are also used to produce ROS, pro-oxidants that can have potentially damaging effects at high levels, but also serve as secondary messengers at low amounts. Mitochondria are also enriched with antioxidant defenses, which are required to buffer cellular ROS. These same redox buffering networks also fulfill another important role; regulation of proteins through the reversible oxidation of cysteine switches. The modification of cysteine switches with the antioxidant glutathione, a process called protein S-glutathionylation, has been found to play an integral role in controlling various mitochondrial functions. In addition, recent findings have demonstrated that disrupting mitochondrial protein S-glutathionylation reactions can have some dire pathological consequences. Accordingly, this chapter focuses on the role of mitochondrial cysteine switches in the modulation of different physiological functions and how defects in these pathways contribute to the development of disease.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
17
|
Liu L, Dong Z, Lei Q, Yang J, Hu H, Li Q, Ji Y, Guo L, Zhang Y, Liu Y, Cui H. Inactivation/deficiency of DHODH induces cell cycle arrest and programed cell death in melanoma. Oncotarget 2017; 8:112354-112370. [PMID: 29348830 PMCID: PMC5762515 DOI: 10.18632/oncotarget.19379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2016] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma (MM) is one of the most malignant tumors and has a very poor prognosis. However, there are no effective drugs to treat this disease. As a kind of iron flavin dependent enzyme, dihydroorotate dehydrogenase (DHODH, EC 1.3.3.1) is the fourth and a key enzyme in the de novo biosynthesis of pyrimidines. Herein, we found that DHODH inactivation/deficiency inhibited melanoma cell proliferation, induced cell cycle arrest at S phase and lead to autophagy in human melanoma cells. Meanwhile, leflunomide treatment induced cell apoptosis and deficiency of DHODH sensitized cells to drug-induced apoptosis in BCL-2 deficient melanoma cells, while not in BCL-2 abundant melanoma cells. Then we found that BCL-2 could rescue apoptosis induced by DHODH inactivation/deficiency. Moreover, BCL-2 also showed to promote cell cycle arrest and to inhibit autophagy induced by leflunomide. To explore the mechanisms underlying autophagy induced by DHODH inhibition, we found that AMPK-Ulk1 axis was activated in this process. Besides, JNK was phosphorylated and activated to phosphorylate BCL-2, which abrogated the interaction between BCL-2 and Beclin1 and then abolished autophagy. Our findings provided evidences for the potential of DHODH used as a drug target for melanoma treatment.
Collapse
Affiliation(s)
- Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Qian Lei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Huanrong Hu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
18
|
Terrazas K, Dixon J, Trainor PA, Dixon MJ. Rare syndromes of the head and face: mandibulofacial and acrofacial dysostoses. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.263. [PMID: 28186364 PMCID: PMC5400673 DOI: 10.1002/wdev.263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/21/2016] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Craniofacial anomalies account for approximately one-third of all congenital birth defects reflecting the complexity of head and facial development. Craniofacial development is dependent upon a multipotent, migratory population of neural crest cells, which generate most of the bone and cartilage of the head and face. In this review, we discuss advances in our understanding of the pathogenesis of a specific array of craniofacial anomalies, termed facial dysostoses, which can be subdivided into mandibulofacial dysostosis, which present with craniofacial defects only, and acrofacial dysostosis, which encompasses both craniofacial and limb anomalies. In particular, we focus on Treacher Collins syndrome, Acrofacial Dysostosis-Cincinnati Type as well as Nager and Miller syndromes, and animal models that provide new insights into the molecular and cellular basis of these congenital syndromes. We emphasize the etiologic and pathogenetic similarities between these birth defects, specifically their unique deficiencies in global processes including ribosome biogenesis, DNA damage repair, and pre-mRNA splicing, all of which affect neural crest cell development and result in similar tissue-specific defects. WIREs Dev Biol 2017, 6:e263. doi: 10.1002/wdev.263 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karla Terrazas
- Stowers Institute for Medical Research, 1000 E. 50th Street Kansas City, MO 64110, USA
| | - Jill Dixon
- Division of Dentistry, Faculty of Biology, Medicine & Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul A Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J Dixon
- Division of Dentistry, Faculty of Biology, Medicine & Health, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
19
|
Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reprod Toxicol 2017; 69:121-131. [PMID: 28216407 DOI: 10.1016/j.reprotox.2017.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
Ovarian protection from chemotoxicity is essential for reproductive health. Our objective is to determine the role of ATP-dependent, Multidrug Resistance Transporters (MDRs) in this protection. Previously we identified MDR-dependent cytoprotection from cyclophosphamide in mouse and human oocytes by use of MDR inhibitors. Here we use genetic deletions in MDR1a/b/BCRP of mice to test MDR function in ovarian somatic cells and find that mdr1a/b/bcrp-/- mice had significantly increased sensitivity to cyclophosphamide. Further, estrus cyclicity and follicle distribution in mdr1a/b/bcrp-/- mice also differed from age-matched wildtype ovaries. We found that MDR gene activity cycles through estrus and that MDR-1b cyclicity correlated with 17β-estradiol surges. We also examined the metabolite composition of the ovary and learned that the mdr1a/b/bcrp-/- mice have increased accumulation of metabolites indicative of oxidative stress and inflammation. We conclude that MDRs are essential to ovarian protection from chemotoxicity and may have an important physiological role in the ovary.
Collapse
|
20
|
Ahmed MK, Ye X, Taub PJ. Review of the Genetic Basis of Jaw Malformations. J Pediatr Genet 2016; 5:209-219. [PMID: 27895973 DOI: 10.1055/s-0036-1593505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 10/20/2022]
Abstract
Genetic etiologies for congenital anomalies of the facial skeleton, namely, the maxilla and mandible, are important to understand and recognize. Malocclusions occur when there exist any significant deviation from what is considered a normal relationship between the upper jaw (maxilla) and the lower jaw (mandible). They may be the result of anomalies of the teeth alone, the bones alone, or both. A number of genes play a role in the facial skeletal development and are regulated by a host of additional regulatory molecules. As such, numerous craniofacial syndromes specifically affect the development of the jaws. The following review discusses several genetic anomalies that specifically affect the bones of the craniofacial skeleton and lead to malocclusion.
Collapse
Affiliation(s)
- Mairaj K Ahmed
- Department of Dentistry/Oral & Maxillofacial Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Peter J Taub
- Division of Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
21
|
Bassani B, Bartolini D, Pagani A, Principi E, Zollo M, Noonan DM, Albini A, Bruno A. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids. PLoS One 2016; 11:e0154111. [PMID: 27367907 PMCID: PMC4930187 DOI: 10.1371/journal.pone.0154111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB.
Collapse
Affiliation(s)
- Barbara Bassani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | | | - Arianna Pagani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Elisa Principi
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Douglas M. Noonan
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- * E-mail:
| | - Antonino Bruno
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| |
Collapse
|
22
|
Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 2016; 43:607-28. [DOI: 10.1007/s11033-016-4022-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
|
23
|
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8254942. [PMID: 27200148 PMCID: PMC4856919 DOI: 10.1155/2016/8254942] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.
Collapse
|
24
|
Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA. Mitochondrial ROS Metabolism: 10 Years Later. BIOCHEMISTRY (MOSCOW) 2016; 80:517-31. [PMID: 26071769 DOI: 10.1134/s0006297915050028] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
The role of mitochondria in oxidative stress is well recognized, but many questions are still to be answered. This article is intended to update our comprehensive review in 2005 by highlighting the progress in understanding of mitochondrial reactive oxygen species (ROS) metabolism over the past 10 years. We review the recently identified or re-appraised sources of ROS generation in mitochondria, such as p66(shc) protein, succinate dehydrogenase, and recently discovered properties of the mitochondrial antioxidant system. We also reflect upon some controversies, disputes, and misconceptions that confound the field.
Collapse
Affiliation(s)
- A Y Andreyev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0601, USA.
| | | | | | | |
Collapse
|
25
|
Mody N, Mcilroy GD. The mechanisms of Fenretinide-mediated anti-cancer activity and prevention of obesity and type-2 diabetes. Biochem Pharmacol 2014; 91:277-86. [DOI: 10.1016/j.bcp.2014.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
|
26
|
Grivennikova VG, Vinogradov AD. Mitochondrial production of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2014; 78:1490-511. [PMID: 24490736 DOI: 10.1134/s0006297913130087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
Numerous biochemical studies are aimed at elucidating the sources and mechanisms of formation of reactive oxygen species (ROS) because they are involved in cellular, organ-, and tissue-specific physiology. Mitochondria along with other cellular organelles of eukaryotes contribute significantly to ROS formation and utilization. This review is a critical account of the mitochondrial ROS production and methods for their registration. The physiological and pathophysiological significance of the mitochondrially produced ROS are discussed.
Collapse
Affiliation(s)
- V G Grivennikova
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
27
|
Hey-Mogensen M, Goncalves RLS, Orr AL, Brand MD. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic Biol Med 2014; 72:149-55. [PMID: 24746616 DOI: 10.1016/j.freeradbiomed.2014.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/20/2014] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
Abstract
Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Biomedical Sciences, Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark
| | | | - Adam L Orr
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
28
|
Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 2013; 19:2157-96. [PMID: 23458328 PMCID: PMC3869543 DOI: 10.1089/ars.2012.4662] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/07/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jubayer Al Hossain
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Thomas Kietzmann
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Trainor PA, Andrews BT. Facial dysostoses: Etiology, pathogenesis and management. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:283-94. [PMID: 24123981 DOI: 10.1002/ajmg.c.31375] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Approximately 1% of all live births exhibit a minor or major congenital anomaly. Of these approximately one-third display craniofacial abnormalities which are a significant cause of infant mortality and dramatically affect national health care budgets. To date, more than 700 distinct craniofacial syndromes have been described and in this review, we discuss the etiology, pathogenesis and management of facial dysostoses with a particular emphasis on Treacher Collins, Nager and Miller syndromes. As we continue to develop and improve medical and surgical care for the management of individual conditions, it is essential at the same time to better characterize their etiology and pathogenesis. Here we describe recent advances in our understanding of the development of facial dysostosis with a view towards early in utero identification and intervention which could minimize the manifestation of anomalies prior to birth. The ultimate management for any craniofacial anomaly however, would be prevention and we discuss this possibility in relation to facial dysostosis.
Collapse
|
30
|
Hail N, Chen P, Kepa JJ, Bushman LR. Evidence supporting a role for dihydroorotate dehydrogenase, bioenergetics, and p53 in selective teriflunomide-induced apoptosis in transformed versus normal human keratinocytes. Apoptosis 2011; 17:258-68. [DOI: 10.1007/s10495-011-0667-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
31
|
Hail N, Chen P, Wempe MF. The hydroxyl functional group of N-(4-hydroxyphenyl)retinamide mediates cellular uptake and cytotoxicity in premalignant and malignant human epithelial cells. Free Radic Biol Med 2010; 49:2001-9. [PMID: 20923701 PMCID: PMC3005946 DOI: 10.1016/j.freeradbiomed.2010.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/11/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 12/12/2022]
Abstract
In a previous study, we demonstrated that the anticancer synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) redox cycles at the mitochondrial enzyme dihydroorotate dehydrogenase to trigger anomalous reactive oxygen species (ROS) production and attendant apoptosis in transformed human epithelial cells. Furthermore, we speculated that the hydroxyl functional group of 4HPR was required for this pro-oxidant property. In this study, we investigated the role of the hydroxyl functional group in the in vitro cytotoxicity of 4HPR. Using 4HPR, its primary in vivo metabolite N-(4-methoxyphenyl)retinamide (4MPR), and the synthetic derivative N-(4-trifluoromethylphenyl)retinamide (4TPR), we examined the pro-oxidant and apoptotic effects, as well as the cellular uptake, of these three N-(4-substituted-phenyl)retinamides in premalignant and malignant human skin, prostate, and breast epithelial cells. Compared to 4HPR, both 4MPR and 4TPR were ineffective in promoting conspicuous cellular ROS production, mitochondrial disruption, or DNA fragmentation in these transformed cells. Interestingly, both 4MPR and 4TPR were not particularly cell permeative relative to 4HPR in skin or breast epithelial cells, which implied an additional role for the hydroxyl functional group in the cellular uptake of 4HPR. Moreover, the short-term uptake of 4HPR was directly proportional to cell size, but this characteristic, in obvious contrast to cellular bioenergetic status and/or dihydroorotate dehydrogenase expression, was not fundamentally influential in the overall sensitivity to the promotion of cellular ROS production and apoptosis induction by this agent. Together, these results strongly implicate the hydroxyl functional group in the cytotoxic effects of 4HPR.
Collapse
Affiliation(s)
- Numsen Hail
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO 80045, USA.
| | | | | |
Collapse
|