1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Liang Y, Zhang J, Hu J, Chen P, Xia J, He J, Wu S, Li J, Wang J. Oxygen vacancy formation strengthened microwave catalysis of Zn-Zr solid solution for antibiotic-free therapy strategies of bacteria-infected osteomyelitis. Free Radic Biol Med 2024; 222:122-129. [PMID: 38848785 DOI: 10.1016/j.freeradbiomed.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Osteomyelitis, a grave deep tissue infection primarily caused by Staphylococcus aureus, results in serious complications such as abscesses and sepsis. With the incidence from open fractures exceeding 30 % and prevalent antibiotic resistance due to extensive treatment regimens, there's an urgent need for innovative, antibiotic-free strategies. Photothermal therapy (PTT) and photodynamic therapy (PDT) renowned for generating localized reactive oxygen species (ROS), face limitations in penetration depth. To overcome this, our method combines the deep penetration attributes of medical microwaves (MW) with the synergistic effects of the ZnO/ZrO2 solid solution. Comprehensive in vitro and in vivo evaluations showcased the solid-solution's potent antibacterial efficacy and biocompatibility. The ZnO/ZrO2 solid solution, especially in a 7:3 M ratio, manifests superior microstructural characteristics, optimizing MW-assisted therapy. Our findings highlight the potential of this integrated strategy as a promising avenue in osteomyelitis management.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Jiale Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Jinlong Hu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Pengtao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Junyu Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jinshan He
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Shuqing Wu
- Sleep Medicine Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China; Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China.
| | - Jie Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China.
| |
Collapse
|
3
|
Ajuwon OR, Nsole-Biteghe FA, Ndong JD, Davids LM, Ajiboye BO, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke BO, Ntwasa M, Lebelo SL, Ayeleso AO. Nrf2-Mediated Antioxidant Response and Drug Efflux Transporters Upregulation as Possible Mechanisms of Resistance in Photodynamic Therapy of Cancers. Onco Targets Ther 2024; 17:605-627. [PMID: 39131905 PMCID: PMC11313505 DOI: 10.2147/ott.s457749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Photodynamic therapy (PDT) is a groundbreaking approach involving the induction of cytotoxic reactive oxygen species (ROS) within tumors through visible light activation of photosensitizers (PS) in the presence of molecular oxygen. This innovative therapy has demonstrated success in treating various cancers. While PDT proves highly effective in most solid tumors, there are indications that certain cancers exhibit resistance, and some initially responsive cancers may develop intrinsic or acquired resistance to PDT. The molecular mechanisms underlying this resistance are not fully understood. Recent evidence suggests that, akin to other traditional cancer treatments, the activation of survival pathways, such as the KEAP1/Nrf2 signaling pathway, is emerging as an important mechanism of post-PDT resistance in many cancers. This article explores the dual role of Nrf2, highlighting evidence linking aberrant Nrf2 expression to treatment resistance across a range of cancers. Additionally, it delves into the specific role of Nrf2 in the context of photodynamic therapy for cancers, emphasizing evidence that suggests Nrf2-mediated upregulation of antioxidant responses and induction of drug efflux transporters are potential mechanisms of resistance to PDT in diverse cancer types. Therefore, understanding the specific role(s) of Nrf2 in PDT resistance may pave the way for the development of more effective cancer treatments using PDT.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | | | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Ekiti-State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, Osun State, Nigeria
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
- Biochemistry Programme, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
4
|
Peralta-Mamani M, Silva BMDA, Honório HM, Rubira-Bullen IRF, Hanna R, Silva PSSDA. CLINICAL EFFICACY OF PHOTODYNAMIC THERAPY IN MANAGEMENT OF ORAL POTENTIALLY MALIGNANT DISORDERS: A SYSTEMATIC REVIEW AND META-ANALYSIS. J Evid Based Dent Pract 2024; 24:101899. [PMID: 38821659 DOI: 10.1016/j.jebdp.2023.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/02/2024]
Abstract
OBJECTIVES Despite phototherapy (in the form of photodynamic therapy (PDT)-mediated oxidative stress) being utilized in the management of oral potentially malignant disorders (OPMDs), the evidence of certainty remains unclear. Hence, this systematic review and meta-analysis (PROSPERO # CRD42021218748) is aimed to evaluate the clinical efficacy of PDT-induced oxidative stress in OPMDs METHODS: PubMed, Embase, Web of Science, Scopus, and Cochrane Library databases were searched without restriction of language or year of publication. In addition, gray literature was searched and a manual search was performed. Two independent reviewers screened all the studies, assessing data extraction, risk of bias and certainty of evidence. A narrative synthesis was carried out. For the meta-analysis, random effects were considered to determine the prevalence of a total and a partial remission (PR) of oral potentially malignant disorders (OPMDs). The certainty of evidence was explored using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. RESULTS Twenty-three studies were included in the qualitative and quantitative syntheses. A total of 880 patients were included (564 males; 218 females) with an age range between 24 and 89-years-old. The results showed the prevalence of the total and partial remissions respectively for the following OPMLs: actinic cheilitis (AC): 69.9% and 2.4%; oral leukoplakia (OL): 44% and 36.9%; oral verrucous hyperplasia (OVH): 98.5%; oral erythroleukoplakia (OEL): 92.1% and 7.9%. The prevalence of no remission of OL was 18.8%. CONCLUSIONS PDT demonstrated significant results in clinical remission of OPMDs and most of the eligible studies have shown a total or a partial remission of the included lesions, but at a low or a very low certainty of evidence. Hence, further clinical studies with robust methodology are warranted to offer further validated data. Also, further evidence is required to understand further the mechanism of PDT-induced oxidative stress.
Collapse
Affiliation(s)
- Mariela Peralta-Mamani
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| | - Bruna Machado DA Silva
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| | | | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Faculty of Medical Sciences, London, UK; Department of Oral Surgery, King's College Hospital NHS Foundation Trust, London UK.
| | - Paulo Sergio Santos DA Silva
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| |
Collapse
|
5
|
Otvagin VF, Krylova LV, Peskova NN, Kuzmina NS, Fedotova EA, Nyuchev AV, Romanenko YV, Koifman OI, Vatsadze SZ, Schmalz HG, Balalaeva IV, Fedorov AY. A first-in-class β-glucuronidase responsive conjugate for selective dual targeted and photodynamic therapy of bladder cancer. Eur J Med Chem 2024; 269:116283. [PMID: 38461680 DOI: 10.1016/j.ejmech.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a β-glucuronidase-responsive linker. Upon activation by β-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Nina N Peskova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Oscar I Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow, 119991, Russian Federation
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
6
|
Huang F, Li Y, Zhang XJ, Lin MY, Han GY, Lin HY, Lin HY, Miao Z, Li BH, Sheng CQ, Yao JZ. Novel chlorin e 6-based conjugates of tyrosine kinase inhibitors: Synthesis and photobiological evaluation as potent photosensitizers for photodynamic therapy. Eur J Med Chem 2023; 261:115787. [PMID: 37690263 DOI: 10.1016/j.ejmech.2023.115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mei-Yu Lin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266000, China
| | - Hui-Ying Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hui-Yun Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Bu-Hong Li
- School of Science, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
He Y, Gong F, Jin T, Liu Q, Fang H, Chen Y, Wang G, Chu PK, Wu Z, Ostrikov K(K. Dose-Dependent Effects in Plasma Oncotherapy: Critical In Vivo Immune Responses Missed by In Vitro Studies. Biomolecules 2023; 13:707. [PMID: 37189453 PMCID: PMC10136314 DOI: 10.3390/biom13040707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Cold atmospheric plasma (CAP) generates abundant reactive oxygen and nitrogen species (ROS and RNS, respectively) which can induce apoptosis, necrosis, and other biological responses in tumor cells. However, the frequently observed different biological responses to in vitro and in vivo CAP treatments remain poorly understood. Here, we reveal and explain plasma-generated ROS/RNS doses and immune system-related responses in a focused case study of the interactions of CAP with colon cancer cells in vitro and with the corresponding tumor in vivo. Plasma controls the biological activities of MC38 murine colon cancer cells and the involved tumor-infiltrating lymphocytes (TILs). In vitro CAP treatment causes necrosis and apoptosis in MC38 cells, which is dependent on the generated doses of intracellular and extracellular ROS/RNS. However, in vivo CAP treatment for 14 days decreases the proportion and number of tumor-infiltrating CD8+T cells while increasing PD-L1 and PD-1 expression in the tumors and the TILs, which promotes tumor growth in the studied C57BL/6 mice. Furthermore, the ROS/RNS levels in the tumor interstitial fluid of the CAP-treated mice are significantly lower than those in the MC38 cell culture supernatant. The results indicate that low doses of ROS/RNS derived from in vivo CAP treatment may activate the PD-1/PD-L1 signaling pathway in the tumor microenvironment and lead to the undesired tumor immune escape. Collectively, these results suggest the crucial role of the effect of doses of plasma-generated ROS and RNS, which are generally different in in vitro and in vivo treatments, and also suggest that appropriate dose adjustments are required upon translation to real-world plasma oncotherapy.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Fanwu Gong
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Haopeng Fang
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yan Chen
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guomin Wang
- Department of Orthopedics, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics and QUT Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
8
|
Nwahara N, Abrahams G, Mack J, Prinsloo E, Nyokong T. A hypoxia responsive silicon phthalocyanine containing naphthquinone axial ligands for photodynamic therapy activity. J Inorg Biochem 2023; 239:112078. [PMID: 36435091 DOI: 10.1016/j.jinorgbio.2022.112078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
A liposome loaded‑silicon (IV) phthalocyanine (SiPc) containing naphthoquinone axial ligands as hypoxia-responsive a prodrug-like moieties (Prodrug-SiPc), is herein reported. With the help of computational methods, this study assessed the photophysical, photochemical and electrochemical redox properties of the Prodrug-SiPc to elucidate the relationship between material structure and properties. The attachment of the axial quinoid moieties endowed the Prodrug-SiPc with Type I/II photochemical and prodrug-like properties. Following liposomal encapsulation, the therapeutic efficacy of Prodrug-SiPc-liposomes was investigated against Michigan Cancer Foundation-7 (MCF-7) and Henrietta Lacks (Hela) cancer cells as in vitro cancer models and revealed that the as-synthesized Prodrug-SiPc-liposomes are potential photodynamic therapy (PDT) drug candidates. The Prodrug-SiPc-liposome takes full advantage of the hypoxic microenvironment of tumors - a side effect PDT - to trigger therapy, resulting in significantly enhanced efficacy compared to typical PDT. This work highlights the importance of multiple characteristics in designing new and effective photosensitizer candidates.
Collapse
Affiliation(s)
- Nnamdi Nwahara
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, 6140, South Africa
| | - Garth Abrahams
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, 6140, South Africa.
| |
Collapse
|
9
|
Mendes MIP, Arnaut LG. Redaporfin Development for Photodynamic Therapy and its Combination with Glycolysis Inhibitors. Photochem Photobiol 2022; 99:769-776. [PMID: 36564949 DOI: 10.1111/php.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT - redaporfin - currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.
Collapse
Affiliation(s)
| | - Luis G Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Mazuryk O, Janczy-Cempa E, Łagosz J, Rutkowska-Zbik D, Machnicka A, Krasowska A, Pietrzyk P, Stochel G, Brindell M. Relevance of the electron transfer pathway in photodynamic activity of Ru(II) polypyridyl complexes containing 4,7-diphenyl-1,10-phenanthroline ligands under normoxic and hypoxic conditions. Dalton Trans 2022; 51:1888-1900. [PMID: 35018930 DOI: 10.1039/d1dt02908h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 μM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.
Collapse
Affiliation(s)
- Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Ewelina Janczy-Cempa
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Justyna Łagosz
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Agata Machnicka
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Aneta Krasowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Piotr Pietrzyk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Grażyna Stochel
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
11
|
Pucelik B, Dąbrowski JM. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. ADVANCES IN INORGANIC CHEMISTRY 2022; 79:65-103. [PMID: 35095189 PMCID: PMC8787646 DOI: 10.1016/bs.adioch.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Otvagin VF, Kuzmina NS, Kudriashova ES, Nyuchev AV, Gavryushin AE, Fedorov AY. Conjugates of Porphyrinoid-Based Photosensitizers with Cytotoxic Drugs: Current Progress and Future Directions toward Selective Photodynamic Therapy. J Med Chem 2022; 65:1695-1734. [DOI: 10.1021/acs.jmedchem.1c01953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vasilii F. Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S. Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S. Kudriashova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexander V. Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | | | - Alexey Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
13
|
de Paiva ADCM, Ferreira MDC, da Fonseca ADS. Photodynamic therapy for treatment of bacterial keratitis. Photodiagnosis Photodyn Ther 2022; 37:102717. [PMID: 35021106 DOI: 10.1016/j.pdpdt.2022.102717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
Microbial keratitis is the main cause of corneal opacification and the fourth leading cause of blindness worldwide, with bacteria the major infectious agent. Recently, bacterial keratitis has become a serious threat due to routine use of antibiotics leading to selection of resistant and multidrug-resistant bacteria strains. New approaches for treatment of bacterial keratitis are necessary to outcome the increasing antibiotic resistance. Antimicrobial photodynamic therapy is based on three agents: photosensitizer, oxygen, and light radiation. This therapy has been successful for treatment of infections in different tissues and organs as well as against different type of infectious agents and no resistance development. Also, new photosensitizers are being developed that has increased the spectrum of therapeutic protocols for treatment of a number of infectious diseases. Thus, antimicrobial photodynamic therapy has an extraordinary potential for treatment of those bacterial keratitis cases that actually are not solved by traditional antibiotic therapy.
Collapse
Affiliation(s)
- Alexandre de Carvalho Mendes de Paiva
- Hospital Universitário Gaffrée e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rua Mariz e Barros, 775, Maracanã, Rio de Janeiro 20270002, Brazil
| | - Michelle da Costa Ferreira
- Faculdade de Odontologia, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 157, Vila Isabel, Rio de Janeiro 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211040, Brazil; Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87 fundos, 4º andar, Vila Isabel, Rio de Janeiro 20551030, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro 25964004, Brazil.
| |
Collapse
|
14
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Charalambidis G, Coutsolelos AG, Paravatou-Petsotas M, Pelecanou M, Mavridis IM, Yannakopoulou K. Unsymmetrical, monocarboxyalkyl meso-arylporphyrins in the photokilling of breast cancer cells using permethyl-β-cyclodextrin as sequestrant and cell uptake modulator. Carbohydr Polym 2022; 275:118666. [PMID: 34742406 DOI: 10.1016/j.carbpol.2021.118666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In the search for photosensitizers with chemical handles to facilitate their integration into complex drug delivery nanosystems, new, unsymmetrically substituted, water insoluble meso-tetraphenylporphyrin and meso-tetra(m-hydroxyphenyl)porphyrin derivatives bearing one carboxyalkyl side chain were synthesized. Permethyl-β-cyclodextrin (pMβCD) was their ideal monomerizing host and highly efficient shuttle to transfer them into water. New assembly modes of the extremely stable (Kbinding > 1012 M-2) 2:1 complexes were identified. The complexes are photostable and do not disassemble in FBS-containing cell culture media for 24 h. Incubation of breast cancer MCF-7 cells with the complexes results in intense intracellular fluorescence, strongly enhanced in the endoplasmic reticulum (ER), high photokilling efficiency (~90%) and low dark toxicity. pMβCD stands out as a very capable molecular isolator of mono-carboxyalkyl-arylporphyrins that increases uptake and modulates their localization in the cells. The most efficient porphyrins are envisaged as suitable photosensitizers that can be linked to biocompatible drug carriers for photo- and chemo-therapy applications.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
15
|
Jana D, Wang D, Rajendran P, Bindra AK, Guo Y, Liu J, Pramanik M, Zhao Y. Hybrid Carbon Dot Assembly as a Reactive Oxygen Species Nanogenerator for Ultrasound-Assisted Tumor Ablation. JACS AU 2021; 1:2328-2338. [PMID: 34977901 PMCID: PMC8715545 DOI: 10.1021/jacsau.1c00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 06/01/2023]
Abstract
The efficacy of reactive oxygen species (ROS)-based therapy is substantially constrained by the limited ROS generation, stern activation conditions, and lack of a straightforward reaction paradigm. Carbon dots (CDs) have been highly sought after for therapeutic applications for their biocompatibility and intrinsic fluorescence imaging capabilities, making them suitable for ROS generation. Herein, we synthesized a CD-based ultrasmall hybrid nanostructure possessing active sites of Mo, Cu, and IR-780 dye. After cooperative self-assembly with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol), the obtained assembly (CMIR-CDa) exhibits near-infrared fluorescence imaging and photoacoustic tomography. Interestingly, CMIR-CDa can generate singlet oxygen (1O2), hydroxyl radical (·OH), and superoxide radical anion (O2 • -) upon ultrasound stimulus owing to its sonosensitizing and enzyme-mimicking properties, showing an enhanced efficacy for tumor ablation in vivo. The collective in vitro and in vivo results indicate that CMIR-CDa has a high potency as an ROS nanogenerator under US irradiation, even at a low concentration. The present study offers an approach for engineering hybrid CDs in a bioinspired way for intratumoral ROS augmentation in response to deep tissue penetrable external stimuli.
Collapse
Affiliation(s)
- Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yi Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
16
|
Dual Emissive Ir(III) Complexes for Photodynamic Therapy and Bioimaging. Pharmaceutics 2021; 13:pharmaceutics13091382. [PMID: 34575458 PMCID: PMC8472790 DOI: 10.3390/pharmaceutics13091382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment still bearing enormous prospects of improvement. Within the toolbox of PDT, developing photosensitizers (PSs) that can specifically reach tumor cells and promote the generation of high concentration of reactive oxygen species (ROS) is a constant research goal. Mitochondria is known as a highly appealing target for PSs, thus being able to assess the biodistribution of the PSs prior to its light activation would be crucial for therapeutic maximization. Bifunctional Ir(III) complexes of the type [Ir(C^N)2(N^N-R)]+, where N^C is either phenylpyridine (ppy) or benzoquinoline (bzq), N^N is 2,2'-dipyridylamine (dpa) and R either anthracene (1 and 3) or acridine (2 and 4), have been developed as novel trackable PSs agents. Activation of the tracking or therapeutic function could be achieved specifically by irradiating the complex with a different light wavelength (405 nm vs. 470 nm respectively). Only complex 4 ([Ir(bzq)2(dpa-acr)]+) clearly showed dual emissive pattern, acridine based emission between 407-450 nm vs. Ir(III) based emission between 521 and 547 nm. The sensitivity of A549 lung cancer cells to 4 evidenced the importance of involving the metal center within the activation process of the PS, reaching values of photosensitivity over 110 times higher than in dark conditions. Moreover, complex 4 promoted apoptotic cell death and possibly the paraptotic pathway, as well as higher ROS generation under irradiation than in dark conditions. Complexes 2-4 accumulated in the mitochondria but species 2 and 4 also localizes in other subcellular organelles.
Collapse
|
17
|
Lohan SB, Kröger M, Schleusener J, Darvin ME, Lademann J, Streit I, Meinke MC. Characterization of radical types, penetration profile and distribution pattern of the topically applied photosensitizer THPTS in porcine skin ex vivo. Eur J Pharm Biopharm 2021; 162:50-58. [PMID: 33691169 DOI: 10.1016/j.ejpb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022]
Abstract
The topical photodynamic therapy (PDT) is mainly used in the treatment of dermato-oncological diseases. The distribution and functionality of the photosensitizer Tetrahydroporphyrin-Tetratosylat (THPTS) was investigated using microscopic and spectroscopic methods after topical application to excised porcine skin followed by irradiation. The distribution of THPTS was determined by two-photon tomography combined with fluorescence lifetime imaging (TPT/FLIM) and confocal Raman microspectroscopy (CRM). The radicals were quantified and characterized by electron paramagnetic resonance (EPR) spectroscopy. Results show a penetration depth of THPTS into the skin down to around 12 ± 5 µm. A penetration of THPTS through the stratum corneum was not clearly observable after 1 h penetration time, but cannot be excluded. The irradiation within the phototherapeutic window (spectral range of visible and near infrared light in the range ≈ 650-850 nm) is needed to activate THPTS. An incubation time of 10 min showed the highest radical production. A longer incubation time affected the functionality of THPTS, whereby significant less radicals were detectable. During PDT mainly reactive oxygen species (ROS) and lipid oxygen species (LOS) are produced. Overall, the irradiation dose per se influences the radical types formed in skin. While ROS are always prominent at low doses, LOS increase at high doses, independent of previous skin treatment and the irradiation wavelength used.
Collapse
Affiliation(s)
- S B Lohan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany.
| | - M Kröger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - J Schleusener
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - I Streit
- Asclepion Laser Technologies GmbH, Jena, Germany
| | - M C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
18
|
Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021; 12:1154-1160. [PMID: 33442413 PMCID: PMC7797657 DOI: 10.7150/jca.51537] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide, with nearly 1.8 million-diagnosis and 1.59 million deaths. Surgery, radiotherapy, and chemotherapy in individual or combination are commonly used to treat lung cancers. Photodynamic therapy (PDT) is a highly selective method for the destruction of cancer cells by exerting cytotoxic activity on malignant cells. PDT has been the subject of numerous clinical studies and has proven to be an effective strategy for cancer therapy. Clinical studies revealed that PDT could prolong survival in patients with inoperable cancers and significantly improve quality of life. For inoperable lung cancer cases, PDT could be an effective therapy. Despite the clinical success reported, PDT is still currently underutilized to treat lung cancer and other tumors. PTD is still a new treatment approach for lung cancer mainly due to the lack of enough clinical research evaluating its' effectiveness and side effects. In this review, we discuss the current prospects and future potentials of PDT in lung cancer treatment.
Collapse
Affiliation(s)
- Kai Wang
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Boxin Yu
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
19
|
Shin JY, Kim SH, Lee S, Lee YS, Han WS, Wang KK. Effect of substituents of corrole derivatives on generation of singlet oxygen. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Sułek A, Pucelik B, Kobielusz M, Barzowska A, Dąbrowski JM. Photodynamic Inactivation of Bacteria with Porphyrin Derivatives: Effect of Charge, Lipophilicity, ROS Generation, and Cellular Uptake on Their Biological Activity In Vitro. Int J Mol Sci 2020; 21:ijms21228716. [PMID: 33218103 PMCID: PMC7698881 DOI: 10.3390/ijms21228716] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Resistance of microorganisms to antibiotics has led to research on various therapeutic strategies with different mechanisms of action, including photodynamic inactivation (PDI). In this work, we evaluated a cationic, neutral, and anionic meso-tetraphenylporphyrin derivative’s ability to inactivate the Gram-negative and Gram-positive bacteria in a planktonic suspension under blue light irradiation. The spectroscopic, physicochemical, redox properties, as well as reactive oxygen species (ROS) generation capacity by a set of photosensitizers varying in lipophilicity were investigated. The theoretical calculations were performed to explain the distribution of the molecular charges in the evaluated compounds. Moreover, logP partition coefficients, cellular uptake, and phototoxicity of the photosensitizers towards bacteria were determined. The role of a specific microbial efflux pump inhibitor, verapamil hydrochloride, in PDI was also studied. The results showed that E. coli exhibited higher resistance to PDI than S. aureus (3–5 logs) with low light doses (1–10 J/cm2). In turn, the prolongation of irradiation (up to 100 J/cm2) remarkably improved the inactivation of pathogens (up to 7 logs) and revealed the importance of photosensitizer photostability. The PDI potentiation occurs after the addition of KI (more than 3 logs extra killing). Verapamil increased the uptake of photosensitizers (especially in E. coli) due to efflux pump inhibition. This effect suggests that PDI is mediated by ROS, the electrostatic charge interaction, and the efflux of photosensitizers (PSs) regulated by multidrug-resistance (MDR) systems. Thus, MDR inhibition combined with PDI gives opportunities to treat more resistant bacteria.
Collapse
Affiliation(s)
- Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
| | - Barbara Pucelik
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Marcin Kobielusz
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
| | - Agata Barzowska
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
- Correspondence: ; Tel.: +48-12-686-2488; Fax: +48-12-686-2750
| |
Collapse
|
21
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
23
|
Melissari Z, Sample HC, Twamley B, Williams RM, Senge MO. Synthesis and Spectral Properties of
gem
‐Dimethyl Chlorin Photosensitizers. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zoi Melissari
- Medicinal ChemistryTrinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College DublinThe University of Dublin St James's Hospital Dublin 8 Ireland
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam P.O. Box 94157, 1090 GD Amsterdam (The Netherlands
| | - Harry C. Sample
- Medicinal ChemistryTrinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College DublinThe University of Dublin St James's Hospital Dublin 8 Ireland
| | - Brendan Twamley
- School of ChemistryTrinity College DublinThe University of DublinCollege Green Dublin 2 Ireland
| | - René M. Williams
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam P.O. Box 94157, 1090 GD Amsterdam (The Netherlands
| | - Mathias O. Senge
- Medicinal ChemistryTrinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College DublinThe University of Dublin St James's Hospital Dublin 8 Ireland
| |
Collapse
|
24
|
Pucelik B, Sułek A, Drozd A, Stochel G, Pereira MM, Pinto SMA, Arnaut LG, Dąbrowski JM. Enhanced Cellular Uptake and Photodynamic Effect with Amphiphilic Fluorinated Porphyrins: The Role of Sulfoester Groups and the Nature of Reactive Oxygen Species. Int J Mol Sci 2020; 21:ijms21082786. [PMID: 32316355 PMCID: PMC7216003 DOI: 10.3390/ijms21082786] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
A class of amphiphilic photosensitizers for photodynamic therapy (PDT) was developed. Sulfonate esters of modified porphyrins bearing-F substituents in the ortho positions of the phenyl rings have adequate properties for PDT, including absorption in the red, increased cellular uptake, favorable intracellular localization, low cytotoxicity, and high phototoxicity against A549 (human lung adenocarcinoma) and CT26 (murine colon carcinoma) cells. Moreover, the role of type I and type II photochemical processes was assessed by fluorescent probes specific for various reactive oxygen species (ROS). The photodynamic effect is improved not only by enhanced cellular uptake but also by the high generation of both singlet oxygen and oxygen-centered radicals. All of the presented results support the idea that the rational design of photosensitizers for PDT can be further improved by better understanding the determinants affecting its therapeutic efficiency and explain how smart structural modifications can make them suitable photosensitizers for application in PDT.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Drozd
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | | | - Sara M. A. Pinto
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Luis G. Arnaut
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
- Correspondence: ; Tel.: +48-12-686-2488; Fax: +48-12-686-2750
| |
Collapse
|
25
|
Ballatore MB, Milanesio ME, Fujita H, Lindsey JS, Durantini EN. Bacteriochlorin-bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. JOURNAL OF BIOPHOTONICS 2020; 13:e201960061. [PMID: 31602791 DOI: 10.1002/jbio.201960061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A novel bacteriochlorin bearing two spermine units (BCS) was synthesized from 3,13-dibromo-8,8,18,18-tetramethylbacteriochlorin (BC-Br 3,13 ). The synthesis involved the Suzuki coupling of BC-Br 3,13 to obtain a bacteriochlorin-dibenzaldehyde (BCA), which was subjected to reductive amination with spermine. The resulting bacteriochlorin BCS presents a strong near-infrared absorption band at 747 nm, emits at 750 nm with fluorescence quantum yield of 0.14, and generates singlet molecular oxygen, O2 (1 Δg ), with a quantum yield of 0.27. Photokilling capacities mediated by BCS were evaluated in microbial cells. The viability of Staphylococcus aureus decreased 7 logs when cells were incubated with 1 μM BCS and irradiated for 15 minutes. Comparable photocytotoxic effect was obtained with Escherichia coli, when cells were treated for 30 minutes with visible light. BCS was also an effective photosensitizer to inactivate Candida albicans. In addition, this bacteriochlorin was able to eradicate bacteria at short incubation times. The structure of BCS contains eight basic amino groups that, when protonated in water, increase the binding to the cell envelope. In summary, the readily accessible bacteriochlorin BCS was highly effective at low concentrations as a broad-spectrum antimicrobial photosensitizer.
Collapse
Affiliation(s)
- María B Ballatore
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María E Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Hikaru Fujita
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
26
|
Wang H, Wang Z, Tu Y, Li Y, Xu T, Yang M, Wang P, Gu Y. Homotypic targeting upconversion nano-reactor for cascade cancer starvation and deep-tissue phototherapy. Biomaterials 2020; 235:119765. [PMID: 31991338 DOI: 10.1016/j.biomaterials.2020.119765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/21/2019] [Accepted: 01/04/2020] [Indexed: 01/27/2023]
Abstract
Cancer starvation therapy based on catalytic chemistry of glucose oxidase (GOx) offers great potential for multimodal treatment, benefiting from both nutrition shutting-off and the oxidization product hydrogen peroxide (H2O2). Herein, further optimization of such combined therapy was achieved by a cascade Nano-reactor, which was constructed by incorporating GOx into a bio-mimic upconversion nanosystem. The cascade began when GOx was delivered into tumor sites through homotypic targeting, facilitating selective starving of cancer cells and H2O2 generation. Then, upon 980 nm laser excitation, the 470 nm light emitted by upconversion nanoparticles (NaYF4: Yb, Tm) photolyzed H2O2 into hydroxyl radical for phototherapy, superior to direct photolysis by blue light with limited tissue penetration depth. Meanwhile, the 800 nm emission of UCNPs was used to track the in vivo fate and tumor targeting ability of the Nano-reactor. Radionuclide imaging further confirmed the targeting of the Nano-reactor to subcutaneous 4T1 tumor and lung metastasis. Significantly enhanced therapeutic efficacy of this cascade starvation-phototherapy was validated in vitro and in vivo, suggesting the Nano-reactor as a smart, simple and strong system for cancer multimodal therapy.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanbiao Tu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yongkuan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Xu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
27
|
Calvete MJ, Pinto SM, Burrows HD, Castro MMC, Geraldes CF, Pereira MM. Multifunctionalization of cyanuric chloride for the stepwise synthesis of potential multimodal imaging chemical entities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Pucelik B, Arnaut LG, Dąbrowski JM. Lipophilicity of Bacteriochlorin-Based Photosensitizers as a Determinant for PDT Optimization through the Modulation of the Inflammatory Mediators. J Clin Med 2019; 9:E8. [PMID: 31861531 PMCID: PMC7019385 DOI: 10.3390/jcm9010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
: Photodynamic therapy (PDT) augments the host antitumor immune response, but the role of the PDT effect on the tumor microenvironment in dependence on the type of photosensitizer and/or therapeutic protocols has not been clearly elucidated. We employed three bacteriochlorins (F2BOH, F2BMet and Cl2BHep) of different polarity that absorb near-infrared light (NIR) and generated a large amount of reactive oxygen species (ROS) to compare the PDT efficacy after various drug-to-light intervals: 15 min. (V-PDT), 3h (E-PDT) and 72h (C-PDT). We also performed the analysis of the molecular mechanisms of PDT crucial for the generation of the long-lasting antitumor immune response. PDT-induced damage affected the integrity of the host tissue and developed acute (protocol-dependent) local inflammation, which in turn led to the infiltration of neutrophils and macrophages. In order to further confirm this hypothesis, a number of proteins in the plasma of PDT-treated mice were identified. Among a wide range of cytokines (IL-6, IL-10, IL-13, IL-15, TNF-α, GM-CSF), chemokines (KC, MCP-1, MIP1α, MIP1β, MIP2) and growth factors (VEGF) released after PDT, an important role was assigned to IL-6. PDT protocols optimized for studied bacteriochlorins led to a significant increase in the survival rate of BALB/c mice bearing CT26 tumors, but each photosensitizer (PS) was more or less potent, depending on the applied DLI (15 min, 3 h or 72 h). Hydrophilic (F2BOH) and amphiphilic (F2BMet) PSs were equally effective in V-PDT (>80 cure rate). F2BMet was the most efficient in E-PDT (DLI = 3h), leading to a cure of 65 % of the animals. Finally, the most powerful PS in the C-PDT (DLI = 72 h) regimen turned out to be the most hydrophobic compound (Cl2BHep), allowing 100 % of treated animals to be cured at a light dose of only 45 J/cm2.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland;
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Luis G. Arnaut
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | | |
Collapse
|
29
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Chiu WT, Tran TTV, Pan SC, Huang HK, Chen YC, Wong TW. Cystic Fibrosis Transmembrane Conductance Regulator: A Possible New Target for Photodynamic Therapy Enhances Wound Healing. Adv Wound Care (New Rochelle) 2019; 8:476-486. [PMID: 31456905 DOI: 10.1089/wound.2018.0927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Objective: Cell migration is an essential process in skin wound healing. Photodynamic therapy (PDT) enhances wound healing by photoactivating a photosensitizer with a specific wavelength of light. Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel expressed in multiple layers of keratinocytes. Recent studies showed that the activation of CFTR-related downstream signaling affects skin wound healing. We examined whether indocyanine green (ICG)-mediated PDT-enhanced cell migration is related to CFTR activation. Approach: The spatial and temporal expression levels of CFTR and proteins involved in focal adhesion, including focal adhesion kinase (FAK) and paxillin, were evaluated during cell migration in vitro and in vivo for wound healing. Results: ICG-PDT-conditioned medium collected from cells exposed to 5 J/cm2 near-infrared light in the presence of 100 μg/mL ICG activated CFTR and enhanced HaCaT cell migration. The expression of phosphorylated FAK Tyr861 and phosphorylated paxillin in focal adhesions was spatially and temporally regulated in parallel by ICG-PDT-conditioned medium. Curcumin, a nonspecific activator of CFTR, further increased PDT-enhanced cell migration, whereas inhibition of CFTR and FAK delayed cell migration. The involvement of CFTR in ICG-PDT-enhanced skin wound healing was confirmed in a mouse back skin wound model. Innovation: CFTR is a potential new therapeutic target in ICG-PDT to enhance wound healing. Conclusion: ICG-PDT-enhanced cell migration may be related to activation of the CFTR and FAK pathway. Conditioned medium collected from ICG-PDT may be useful for treating patients with chronic skin ulcer by regulating CFTR expression in keratinocytes.
Collapse
Affiliation(s)
- Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi-Tuong Vi Tran
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chen Pan
- Section of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ho-Kai Huang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Caruso E, Malacarne MC, Banfi S, Gariboldi MB, Orlandi VT. Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111548. [PMID: 31288120 DOI: 10.1016/j.jphotobiol.2019.111548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy..
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Viviana Teresa Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| |
Collapse
|
34
|
Hamdan IM, Tekko IA, Matchett KB, Arnaut LG, Silva CS, McCarthy HO, Donnelly RF. Intradermal Delivery of a Near-Infrared Photosensitizer Using Dissolving Microneedle Arrays. J Pharm Sci 2018; 107:2439-2450. [DOI: 10.1016/j.xphs.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 12/01/2022]
|
35
|
Luz AFS, Pucelik B, Pereira MM, Dąbrowski JM, Arnaut LG. Translating phototherapeutic indices from in vitro to in vivo photodynamic therapy with bacteriochlorins. Lasers Surg Med 2018; 50:451-459. [PMID: 29714399 DOI: 10.1002/lsm.22931] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To compare hydrophilic and lipophilic bacteriochlorin photosensitizers in the photodynamic therapy of cancer, and relate their properties and in vitro phototoxicities to the efficacy of in vivo PDT treatments. MATERIALS AND METHODS Photochemical characterization of a hydrophilic bacteriochlorin (F2 BOH) photosensitizer, and its use in PDT was compared with the performance of a closely related but water-insoluble bacteriochlorin (F2 BMet or redaporfin). Biodistribution, pharmacokinetics, skin photosensitivity, PDT efficacy and immune responses of two bacteriochlorins were compared. PDT in vitro employed CT26 colon carcinoma cells. BALB/c mice bearing CT26 cells were treated according to a protocol where the illumination of the subcutaneous tumor is performed 15 minute after intravenous administration of the photosensitizer, while it is in the vascular compartment (vascular-PDT). RESULTS F2 BOH has photochemical properties comparable to redaporfin and both are promising photosensitizers for PDT. Although, F2 BOH is 10 times less phototoxic in vitro than redaporfin, the phototoxicity of F2 BOH in vascular-PDT is comparable to that of redaporfin. This is consistent with the fact that the vasculature is the main target of vascular-PDT. F2 BOH-PDT led to long-term cures and stimulation of the immune system. CONCLUSION F2 BOH is soluble in aqueous media, photostable, has a convenient elimination half-life of 44 hours and leads to very low skin photosensitivity one week after administration. F2 BOH and redaporfin are both very phototoxic in vascular-PDT, but this could not be anticipated from their widely different phototherapeutic indices in vitro. PDT with F2 BOH enabled long-term cures of BALB/c mice with subcutaneously implanted CT26 tumors, and the cured mice rejected tumor re-inoculation one year after the treatment. Lasers Surg. Med. 50:451-459, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- André F S Luz
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-3867 Krakow, Poland
| | | | - Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-3867 Krakow, Poland
| | - Luis G Arnaut
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
36
|
Misba L, Khan AU. Enhanced photodynamic therapy using light fractionation against Streptococcus mutans biofilm: type I and type II mechanism. Future Microbiol 2018; 13:437-454. [PMID: 29469615 DOI: 10.2217/fmb-2017-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The objective of the study was to look the efficacy of fractionated light against Streptococcus mutans biofilm. MATERIALS & METHODS Antibiofilm assays (crystal violet, congo red), electron microscopic, confocal and spectroscopic studies were performed to check the effect of fractionated light. RESULTS 6-6.5 log10 reduction of planktonic and 3.6-4.2 log10 reduction in biofilm were observed after irradiation with fractionated as compared with continuous light. Increased permeability to propidium iodide and leakage of cellular constituent validate the greater antibiofilm effect of fractionated light. Spectroscopic studies confirmed the relative contribution of type I and type II photochemistry. CONCLUSION Phenothiazinium dyes have a potential against bacterial biofilm in combination with light fractionation and it offers new opportunities to explore its clinical implication.
Collapse
Affiliation(s)
- Lama Misba
- Medical Microbiology & Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asad U Khan
- Medical Microbiology & Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
37
|
|
38
|
Horne TK, Cronjé MJ. Novel carbohydrate-substituted metallo-porphyrazine comparison for cancer tissue-type specificity during PDT. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:412-422. [PMID: 28662468 DOI: 10.1016/j.jphotobiol.2017.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022]
Abstract
A longstanding obstacle to cancer eradication centers on the heterogeneous nature of the tissue that manifests it. Variations between cancer cell resistance profiles often result in a survival percentage following classic therapeutics. As an alternative, photodynamic therapys' (PDT) unique non-specific cell damage mechanism and high degree of application control enables it to potentially deliver an efficient treatment regime to a broad range of heterogeneous tissue types thereby overcoming individual resistance profiles. This study follows on from previous design, characterization and solubility analyses of three novel carbohydrate-ligated zinc-porphyrazine (Zn(II)Pz) derivatives. Here we report on their PDT application potential in the treatment of five common cancer tissue types in vitro. Following analyses of metabolic homeostasis, toxicity and cell death induction, overall Zn(II)Pz-PDT proved comparably efficient between all cancer tissue populations. Differential localization patterns of Zn(II)Pz derivatives between cell types did not appear to influence the overall PDT effect. All cell types exhibited significant disruptions to mitochondrial activity and associated ATP production levels. Toxicity and chromatin structure profiles revealed indiscernible patterns of damage between Zn(II)Pz derivatives and cell type. The subtle differences observed between individual Zn(II)Pz derivatives is most likely due to a combination of carbohydrate moiety characteristics on energy transfer processes and associated dosage optimization requirements per tissue type. Collectively, this indicates that resistance profiles are negated to a significant extent by Zn(II)Pz-PDT making these derivatives attractive candidates for PDT applications across multiple tissue types and subtypes.
Collapse
Affiliation(s)
- Tamarisk K Horne
- Dept of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa
| | - Marianne J Cronjé
- Dept of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, Gauteng, South Africa.
| |
Collapse
|
39
|
Zang L, Zhao H, Fang Q, Fan M, Chen T, Tian Y, Yao J, Zheng Y, Zhang Z, Cao W. Photophysical properties of sinoporphyrin sodium and explanation of its high photo-activity. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sinoporphyrin sodium (DVDMS) is a novel photosensitizer with high photodynamic therapy (PDT) effect. Reasons for its high photo-activity were investigated according to the study of photophysical characteristics of DVDMS. Extinction coefficients ([Formula: see text] of DVDMS at 405 nm and 630 nm are 4.36 × 105 and 1.84 × 104 M[Formula: see text].cm[Formula: see text]; fluorescence quantum yield ([Formula: see text] is 0.026; quantum yield of lowest triplet state formation is 0.94 and singlet oxygen quantum yield ([Formula: see text] is 0.92. Although [Formula: see text] of DVDMS is only 10% higher than that of Photofrin[Formula: see text] (0.83), the extinction coefficient of DVDMS at 630 nm is 10-fold greater than that of Photofrin[Formula: see text]. This leads to its higher singlet oxygen generation efficiency ([Formula: see text]. The higher [Formula: see text] of DVDMS can result in an effective reduction of dosage (1/10 of Photofrin[Formula: see text] reaching the same cytotoxic effect as Photofrin[Formula: see text]. Even though [Formula: see text] is approximately equal to that of Photofrin[Formula: see text], brightness ([Formula: see text] of DVDMS is 10-fold greater than that of Photofrin[Formula: see text] because of the 10-fold greater extinction coefficient. Thus, fluorescence diagnosis ability of 0.2 mg/kg DVDMS is comparable to that of 2 mg/kg Photofrin[Formula: see text] used in PDT. Overall, the 10-fold greater extinction coefficients are responsible for the high brightness and singlet oxygen generation efficiency of DVDMS.
Collapse
Affiliation(s)
- Lixin Zang
- Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Huimin Zhao
- School of Physics and Electronics, Shandong Normal University, Ji’nan, 250014, China
| | - Qicheng Fang
- Institute of Materia Medica, Chinese Academy of Medical Science, Beijing, 100050, China
| | - Ming Fan
- Shenzhen Micromed Tech. Co., Ltd., Shenzhen, 518109, China
| | - Tong Chen
- Shenzhen Micromed Tech. Co., Ltd., Shenzhen, 518109, China
| | - Ye Tian
- Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, China
| | - Jianting Yao
- Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, China
| | - Yangdong Zheng
- Department of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguo Zhang
- Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Wenwu Cao
- Department of Mathematics and Materials Research Institute, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
40
|
Tectona grandis leaf extract, free and associated with nanoemulsions, as a possible photosensitizer of mouse melanoma B16 cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:242-248. [PMID: 28088105 DOI: 10.1016/j.jphotobiol.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022]
Abstract
Over the past six years we have been studying extracts from tropical, specially Amazon, plants, to search for new sensitizers for photodynamic therapy of cancer and infectious diseases. Tectona grandis is a genus of tropical hardwood trees in the mint family, Lamiaceae. That is native to south and southeast Asia, but since the end of the 20th century is also gaining ground in the Amazon. The present work aims to evaluate the photodynamic potential of hydro-alcoholic extract from Tectona grandis LF leaves (TGE) and the same extract prepared as the oil-water nanoemulsion (TGE-NE) against melanoma B16 F10 cells. The method for preparation of a stable nanoemulsion with ~20nm particles associated to the TGE (TGE-NE) was successfully developed. We have shown that both free and nanostructured presentations possess the ability to sensitize B16 F10 cells to red light of the LED in vitro. Photodynamic effect was observed for both TGE and TGE-NE because toxicity increased under illumination with red light. While TGE was highly toxic towards melanoma cells under illumination with red light of the LED, it also possessed significant dark toxicity towards both B16 F10 and murine fibroblast NIH3T3 cells. The TGE-NE showed reasonable photocytotoxicity and was much less toxic towards normal cells in the dark compared to free TGE.
Collapse
|
41
|
Dąbrowski JM. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-Gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Garcia-Diaz M, Huang YY, Hamblin MR. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016; 109:158-166. [PMID: 27374076 PMCID: PMC5075498 DOI: 10.1016/j.ymeth.2016.06.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy involves the excitation of a non-toxic dye by harmless visible light to produce a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species (ROS), which can damage biomolecules and kill cells. ROS produced by electron transfer (Type 1) include superoxide, hydrogen peroxide and hydroxyl radical (HO), while singlet oxygen (1O2) is produced by energy transfer. Diverse methods exist to distinguish between these two pathways, some of which are more specific or more sensitive than others. In this review we cover the use of two fluorescence probes: singlet oxygen sensor green (SOSG) detects 1O2; and 4-hydroxyphenyl-fluorescein (HPF) that detects HO. Interesting data was collected concerning the photochemical pathways of functionalized fullerenes compared to tetrapyrroles, stable synthetic bacteriochlorins with and without central metals, phenothiazinium dyes interacting with inorganic salts such as azide.
Collapse
Affiliation(s)
- Maria Garcia-Diaz
- Department of Pharmacy, University of Copenhagen, Universitetsparken, 2, DK-2100, Copenhagen, Denmark
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Pucelik B, Gürol I, Ahsen V, Dumoulin F, Dąbrowski JM. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. Eur J Med Chem 2016; 124:284-298. [PMID: 27597406 DOI: 10.1016/j.ejmech.2016.08.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022]
Abstract
A fluorinated phthalocyanine and its non-fluorinated analogue were selected to evaluate the potential enhancement of fluorination on photophysical, photochemical and redox properties as well as on biological activity in cellular and animal models. Due to the pharmacological relevance, the affinity of these phthalocyanines towards biological membranes (logPow) as well as their primary interaction with human serum albumin (HSA) or low-density lipoprotein (LDL) were determined. Water-dispersible drug formulation of phthalocyanines via Pluronic®-based triblock copolymer micelles was prepared to avoid self-aggregation effects and to improve their delivery. The obtained results demonstrate that phthalocyanines incorporation into tunable-polymeric micelles significantly enhanced their cellular uptake and their photocytotoxicity. The improved biodistribution and photodynamic efficacy of the phthalocyanines-triblock copolymer conjugates was also confirmed in vivo in CT26 bearing BALB/c mice. PDT with both compounds led to tumor growth inhibition in all treated animals. Fluorinated phthalocyanine 2 turned out to be the most effective anticancer agent as the tumors of 20% of mice treated regressed completely and did not appear for over one year after treatment.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Poland
| | - Ilke Gürol
- TÜBITAK Marmara Research Center, Materials Institute, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey
| | - Vefa Ahsen
- Gebze Technical University, Department of Chemistry, P.O. Box 141, 41400 Gebze, Kocaeli, Turkey
| | - Fabienne Dumoulin
- Gebze Technical University, Department of Chemistry, P.O. Box 141, 41400 Gebze, Kocaeli, Turkey.
| | | |
Collapse
|
46
|
Melanogenesis and DNA damage following photodynamic therapy in melanoma with two meso-substituted porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:402-10. [DOI: 10.1016/j.jphotobiol.2016.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
|
47
|
Meng Z, Yu B, Han G, Liu M, Shan B, Dong G, Miao Z, Jia N, Tan Z, Li B, Zhang W, Zhu H, Sheng C, Yao J. Chlorin p6-Based Water-Soluble Amino Acid Derivatives as Potent Photosensitizers for Photodynamic Therapy. J Med Chem 2016; 59:4999-5010. [PMID: 27136389 DOI: 10.1021/acs.jmedchem.6b00352] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of novel photosensitizer with high phototoxicity, low dark toxicity, and good water solubility is a challenging task for photodynamic therapy (PDT). A series of chlorin p6-based water-soluble amino acid conjugates were synthesized and investigated for antitumor activity. Among them, aspartylchlorin p6 dimethylester (7b) showed highest phototoxicity against melanoma cells with weakest dark toxicity, which was more phototoxic than verteporfin while with less dark toxicity. It also exhibited better in vivo PDT antitumor efficacy on mice bearing B16-F10 tumor than verteporfin. The biological assays revealed that 7b was localized in multiple subcellular organelles and could cause both cell necrosis and apoptosis after PDT in a dose-dependent manner, resulting in more effective cell destruction. As a result, 7b represents a promising photosensitizer for PDT applications because of its strong absorption in the phototherapeutic window, relatively high singlet oxygen quantum yield, highest dark toxicity/phototoxicity ratio, good water solubility, and excellent in vivo PDT antitumor efficacy.
Collapse
Affiliation(s)
- Zhi Meng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Bin Yu
- Department of Cell Biology, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China
| | - Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Minghui Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine , 1 Qiuyang Road, Fuzhou, 350122, China
| | - Bin Shan
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine , 1 Qiuyang Road, Fuzhou, 350122, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Ningyang Jia
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University , 225 Changhai Road, Shanghai 200438, China
| | - Zou Tan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University , 32 Shangshan Road, Fujian 350007, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University , 32 Shangshan Road, Fujian 350007, China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Haiying Zhu
- Department of Cell Biology, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Jianzhong Yao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
48
|
Soares HT, Campos JRS, Gomes-da-Silva LC, Schaberle FA, Dabrowski JM, Arnaut LG. Pro-oxidant and Antioxidant Effects in Photodynamic Therapy: Cells Recognise that Not All Exogenous ROS Are Alike. Chembiochem 2016; 17:836-42. [DOI: 10.1002/cbic.201500573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Helder T. Soares
- Chemistry Department; Universidade de Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Joana R. S. Campos
- Chemistry Department; Universidade de Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | | | | | - Janusz M. Dabrowski
- Faculty of Chemistry; Jagiellonian University; Ingardena 3 30-060 Kraków Poland
| | - Luis G. Arnaut
- Chemistry Department; Universidade de Coimbra; Rua Larga 3004-535 Coimbra Portugal
| |
Collapse
|
49
|
Mazzone G, Alberto ME, De Simone BC, Marino T, Russo N. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Molecules 2016; 21:288. [PMID: 26938516 PMCID: PMC6273748 DOI: 10.3390/molecules21030288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023] Open
Abstract
The main photophysical properties of a series of expanded bacteriochlorins, recently synthetized, have been investigated by means of DFT and TD-DFT methods. Absorption spectra computed with different exchange-correlation functionals, B3LYP, M06 and ωB97XD, have been compared with the experimental ones. In good agreement, all the considered systems show a maximum absorption wavelength that falls in the therapeutic window (600-800 nm). The obtained singlet-triplet energy gaps are large enough to ensure the production of cytotoxic singlet molecular oxygen. The computed spin-orbit matrix elements suggest a good probability of intersystem spin-crossing between singlet and triplet excited states, since they result to be higher than those computed for 5,10,15,20-tetrakis-(m-hydroxyphenyl)chlorin (Foscan©) already used in the photodynamic therapy (PDT) protocol. Because of the investigated properties, these expanded bacteriochlorins can be proposed as PDT agents.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Marta E Alberto
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris (IRCP), PSL Research University, F-75005 Paris, France.
| | - Bruna C De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| |
Collapse
|
50
|
da Silva EFF, Pimenta FM, Pedersen BW, Blaikie FH, Bosio GN, Breitenbach T, Westberg M, Bregnhøj M, Etzerodt M, Arnaut LG, Ogilby PR. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. Integr Biol (Camb) 2016; 8:177-93. [DOI: 10.1039/c5ib00295h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elsa F. F. da Silva
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Frederico M. Pimenta
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Brian W. Pedersen
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Frances H. Blaikie
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Gabriela N. Bosio
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, Casilla de Correo 16, sucursal 4 (1900), La Plata, Argentina
| | - Thomas Breitenbach
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Michael Westberg
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Mikkel Bregnhøj
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Luis G. Arnaut
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Peter R. Ogilby
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Århus, Denmark
| |
Collapse
|