1
|
Bailey DM, Bain AR, Hoiland RL, Barak OF, Drvis I, Stacey BS, Iannetelli A, Davison GW, Dahl RH, Berg RMG, MacLeod DB, Dujic Z, Ainslie PN. Severe hypoxaemic hypercapnia compounds cerebral oxidative-nitrosative stress during extreme apnoea: Implications for cerebral bioenergetic function. J Physiol 2024; 602:5659-5684. [PMID: 38348606 DOI: 10.1113/jp285555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/16/2024] [Indexed: 11/01/2024] Open
Abstract
We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Ryan L Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Otto F Barak
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
- Department of Sports Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Gareth W Davison
- Department of Exercise Biochemistry and Physiology, Sport and Exercise Science Research Institute, Ulster University Belfast, United Kingdom of Great Britain and Northern Ireland, Ulster, UK
| | - Rasmus H Dahl
- Department of Radiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ronan M G Berg
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- School of Health and Exercise Sciences, Faculty of Health and Social Development, Center for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
2
|
Hernandez-Navarro I, Botana L, Diez-Mata J, Tesoro L, Jimenez-Guirado B, Gonzalez-Cucharero C, Alcharani N, Zamorano JL, Saura M, Zaragoza C. Replicative Endothelial Cell Senescence May Lead to Endothelial Dysfunction by Increasing the BH2/BH4 Ratio Induced by Oxidative Stress, Reducing BH4 Availability, and Decreasing the Expression of eNOS. Int J Mol Sci 2024; 25:9890. [PMID: 39337378 PMCID: PMC11432946 DOI: 10.3390/ijms25189890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging is associated with the development of cardiovascular complications, in which endothelial cell senescence (ES) may play a critical role. Nitric oxide (NO) prevents human ES through inhibition of oxidative stress, and inflammatory signaling by mechanisms yet to be elucidated. Endothelial cells undergo an irreversible growth arrest and alter their functional state after a finite number of divisions, a phenomenon called replicative senescence. We assessed the contribution of NO during replicative senescence of human aortic (HAEC) and coronary (CAEC) endothelial cells, in which accumulation of the senescence marker SA-β-Gal was quantified by β-galactosidase staining on cultured cells. We found a negative correlation in passaged cell cultures from P0 to P12, between a reduction in NO production with increased ES and the formation of reactive oxygen (ROS) and nitrogen (ONOO-) species, indicative of oxidative and nitrosative stress. The effect of ES was evidenced by reduced expression of endothelial Nitric Oxide Synthase (eNOS), Interleukin Linked Kinase (ILK), and Heat shock protein 90 (Hsp90), alongside a significant increase in the BH2/BH4 ratio, inducing the uncoupling of eNOS, favoring the production of superoxide and peroxynitrite species, and fostering an inflammatory environment, as confirmed by the levels of Cyclophilin A (CypA) and its receptor Extracellular Matrix Metalloprotease Inducer (EMMPRIN). NO prevents ES by preventing the uncoupling of eNOS, in which oxidation of BH4, which plays a key role in eNOS producing NO, may play a critical role in launching the release of free radical species, triggering an aging-related inflammatory response.
Collapse
Affiliation(s)
- Ignacio Hernandez-Navarro
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Botana
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Javier Diez-Mata
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Beatriz Jimenez-Guirado
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Claudia Gonzalez-Cucharero
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Nunzio Alcharani
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Jose Luis Zamorano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Marta Saura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), 28871 Alcala de Henares, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria, Hospital Universitario Ramón y Cajal (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
3
|
Heriansyah T, Dimiati H, Hadi TF, Umara DA, Riandi LV, Fajri F, Santosa SF, Wihastuti TA, Kumboyono K. Ascorbic Acid vs Calcitriol in Influencing Monocyte Chemoattractant Protein-1, Nitric Oxide, Superoxide Dismutase, as Markers of Endothelial Dysfunction: In Vivo Study in Atherosclerosis Rat Model. Vasc Health Risk Manag 2023; 19:139-144. [PMID: 36936550 PMCID: PMC10019521 DOI: 10.2147/vhrm.s401521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Introduction Ascorbic acid and calcitriol were frequently utilized in conjunction as therapy during the COVID-19 pandemic, and individuals with minor symptoms had notable improvements. There have been a few studies, often with conflicting findings, that examine the use of them for endothelium restoration and numerous clinical trial studies that failed to establish the efficacy. The aim of this study was to find the efficacy of ascorbic acid compared to calcitriol on the inflammatory markers monocyte chemoattractant protein-1 (MCP-1), nitric oxide (NO), and superoxide dismutase (SOD), as protective agents which play an important role in the early stages of atherosclerosis formation. This study was an experimental in vivo study. Methods The total of 24 male Rattus norvegicus strain Wistar rats were divided into 4 groups, namely: control/normal group (N), atherosclerosis group (DL) given atherogenic diet, atherosclerosis group given atherogenic diet and ascorbic acid (DLC), and atherosclerosis group given atherogenic diet and calcitriol (DLD) treatment for 30 days. Results Ascorbic acid and calcitriol treatment was significantly effective (P<0.05) in lowering expression of MCP-1 and increasing NO and SOD level. Calcitriol was superior to ascorbic acid in increasing SOD (P<0.05). There was no significant difference between ascorbic acid and calcitriol in decreasing MCP-1 and increasing NO (P>0.05). Discussion Both treatments could reduce MCP-1, and increase NO and SOD by increasing antioxidants. In this study calcitriol was superior to ascorbic acid in increasing SOD, but not NO and decreasing MCP-1. According to the theory, it was found that calcitriol through nuclear factor erythroid 2-related factor 2 (Nrf2) causes a direct increase in the amount of SOD. Nrf2 is an emerging regulator of cellular resistance to oxidants. Conclusion Ascorbic acid and calcitriol treatment was able to reduce MCP-1 and increase NO and SOD in atherosclerosis rat. Calcitriol was significantly superior in increasing SOD levels compared to ascorbic acid.
Collapse
Affiliation(s)
- Teuku Heriansyah
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Herlina Dimiati
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Tjut Farahiya Hadi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
- Correspondence: Tjut Farahiya Hadi, Email
| | - Dimas Arya Umara
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Lian Varis Riandi
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Fauzan Fajri
- Department of Animal Model, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Sukmawan Fajar Santosa
- Integrated Research Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Titin Andri Wihastuti
- Department of Basic Nursing, Faculty of Health Sciences, Universitas Brawijaya, Malang, Jawa Timur, Indonesia
| | - Kumboyono Kumboyono
- Department of Nursing, Faculty of Health Sciences, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
4
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
5
|
Ow CPC, Trask-Marino A, Betrie AH, Evans RG, May CN, Lankadeva YR. Targeting Oxidative Stress in Septic Acute Kidney Injury: From Theory to Practice. J Clin Med 2021; 10:jcm10173798. [PMID: 34501245 PMCID: PMC8432047 DOI: 10.3390/jcm10173798] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the leading cause of acute kidney injury (AKI) and leads to increased morbidity and mortality in intensive care units. Current treatments for septic AKI are largely supportive and are not targeted towards its pathophysiology. Sepsis is commonly characterized by systemic inflammation and increased production of reactive oxygen species (ROS), particularly superoxide. Concomitantly released nitric oxide (NO) then reacts with superoxide, leading to the formation of reactive nitrogen species (RNS), predominantly peroxynitrite. Sepsis-induced ROS and RNS can reduce the bioavailability of NO, mediating renal microcirculatory abnormalities, localized tissue hypoxia and mitochondrial dysfunction, thereby initiating a propagating cycle of cellular injury culminating in AKI. In this review, we discuss the various sources of ROS during sepsis and their pathophysiological interactions with the immune system, microcirculation and mitochondria that can lead to the development of AKI. We also discuss the therapeutic utility of N-acetylcysteine and potential reasons for its efficacy in animal models of sepsis, and its inefficacy in ameliorating oxidative stress-induced organ dysfunction in human sepsis. Finally, we review the pre-clinical studies examining the antioxidant and pleiotropic actions of vitamin C that may be of benefit for mitigating septic AKI, including future implications for clinical sepsis.
Collapse
Affiliation(s)
- Connie P. C. Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka 564-8565, Japan
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
| | - Ashenafi H. Betrie
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roger G. Evans
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Clive N. May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yugeesh R. Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-8344-0417; Fax: +61-3-9035-3107
| |
Collapse
|
6
|
Hsuan CF, Lee TL, Tseng WK, Wu CC, Chang CC, Ko TL, Chen YL, Houng JY. Glossogyne tenuifolia Extract Increases Nitric Oxide Production in Human Umbilical Vein Endothelial Cells. Pharmaceuticals (Basel) 2021; 14:ph14060577. [PMID: 34204249 PMCID: PMC8235410 DOI: 10.3390/ph14060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
The vascular nitric oxide (NO) system has a protective effect in atherosclerosis. NO is generated from the conversion of L-arginine to L-citrulline by the enzymatic action of endothelial NO synthase (eNOS). Compounds with the effect of enhancing eNOS expression are considered to be candidates for the prevention of atherosclerosis. In this study, extracts from the aerial, root, and whole plant of Glossogyne tenuifolia (GT) were obtained with ethanol, n-hexane, ethyl acetate (EA), and methanol extraction, respectively. The effects of these GT extracts on the synthesis of NO and the expression of eNOS in human umbilical vein endothelial cells (HUVECs) were investigated. NO production was determined as nitrite by colorimetry, following the Griess reaction. The treatment of HUVECs with EA extract from the root of GT and n-hexane, methanol, and ethanol extract from the aerial, root, and whole plant of GT increased NO production in a dose-dependent manner. When at a dose of 160 μg/mL, NO production increased from 0.9 to 18.4-fold. Among these extracts, the methanol extract from the root of GT (R/M GTE) exhibited the most potent effect on NO production (increased by 18.4-fold). Furthermore, using Western blot and RT-PCR analysis, treatment of HUVECs with the R/M GTE increased both eNOS protein and mRNA expression. In addition, Western blot analysis revealed that the R/M GTE increased eNOS phosphorylation at serine1177 as early as 15 min after treatment. The chemical composition for the main ingredients was also performed by HPLC analysis. In conclusion, the present study demonstrated that GT extracts increased NO production in HUVECs and that the R/M GTE increased NO production via increasing eNOS expression and activation by phosphorylation of eNOS at serine1177.
Collapse
Affiliation(s)
- Chin-Feng Hsuan
- Department of Internal Medicine, Division of Cardiology, E-Da Hospital, Kaohsiung 82445, Taiwan; (C.-F.H.); (T.-L.L.); (W.-K.T.)
- Department of Internal Medicine, Division of Cardiology, E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Thung-Lip Lee
- Department of Internal Medicine, Division of Cardiology, E-Da Hospital, Kaohsiung 82445, Taiwan; (C.-F.H.); (T.-L.L.); (W.-K.T.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (T.-L.K.)
| | - Wei-Kung Tseng
- Department of Internal Medicine, Division of Cardiology, E-Da Hospital, Kaohsiung 82445, Taiwan; (C.-F.H.); (T.-L.L.); (W.-K.T.)
| | - Chau-Chung Wu
- Department of Internal Medicine, Division of Cardiology, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (T.-L.K.)
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan;
| | - Tsui-Ling Ko
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (T.-L.K.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan;
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
7
|
May CN, Bellomo R, Lankadeva YR. Therapeutic potential of megadose vitamin C to reverse organ dysfunction in sepsis and COVID-19. Br J Pharmacol 2021; 178:3864-3868. [PMID: 34061355 PMCID: PMC8239596 DOI: 10.1111/bph.15579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis induced by bacteria or viruses can result in multiorgan dysfunction, which is a major cause of death in intensive care units. Current treatments are only supportive, and there are no treatments that reverse the pathophysiological effects of sepsis. Vitamin C has antioxidant, anti‐inflammatory, anticoagulant and immune modulatory actions, so it is a rational treatment for sepsis. Here, we summarise data that support the use of megadose vitamin C as a treatment for sepsis and COVID‐19. Megadose intravenous sodium ascorbate (150 g per 40 kg over 7 h) dramatically improved the clinical state and cardiovascular, pulmonary, hepatic and renal function and decreased body temperature, in a clinically relevant ovine model of Gram‐negative bacteria‐induced sepsis. In a critically ill COVID‐19 patient, intravenous sodium ascorbate (60 g) restored arterial pressure, improved renal function and increased arterial blood oxygen levels. These findings suggest that megadose vitamin C should be trialled as a treatment for sepsis and COVID‐19.
Collapse
Affiliation(s)
- Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
9
|
Lankadeva YR, Peiris RM, Okazaki N, Birchall IE, Trask-Marino A, Dornom A, Vale TAM, Evans RG, Yanase F, Bellomo R, May CN. Reversal of the Pathophysiological Responses to Gram-Negative Sepsis by Megadose Vitamin C. Crit Care Med 2021; 49:e179-e190. [PMID: 33239507 PMCID: PMC7803449 DOI: 10.1097/ccm.0000000000004770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Oxidative stress appears to initiate organ failure in sepsis, justifying treatment with antioxidants such as vitamin C at megadoses. We have therefore investigated the safety and efficacy of megadose sodium ascorbate in sepsis. DESIGN Interventional study. SETTING Research Institute. SUBJECTS Adult Merino ewes. INTERVENTIONS Sheep were instrumented with pulmonary and renal artery flow-probes, and laser-Doppler and oxygen-sensing probes in the kidney. Conscious sheep received an infusion of live Escherichia coli for 31 hours. At 23.5 hours of sepsis, sheep received fluid resuscitation (30 mL/kg, Hartmann solution) and were randomized to IV sodium ascorbate (0.5 g/kg over 0.5 hr + 0.5 g/kg/hr for 6.5 hr; n = 5) or vehicle (n = 5). Norepinephrine was titrated to restore mean arterial pressure to baseline values (~80 mm Hg). MEASUREMENTS AND MAIN RESULTS Sepsis-induced fever (41.4 ± 0.2°C; mean ± se), tachycardia (141 ± 2 beats/min), and a marked deterioration in clinical condition in all cases. Mean arterial pressure (86 ± 1 to 67 ± 2 mm Hg), arterial Po2 (102.1 ± 3.3 to 80.5 ± 3.4 mm Hg), and renal medullary tissue Po2 (41 ± 5 to 24 ± 2 mm Hg) decreased, and plasma creatinine doubled (71 ± 2 to 144 ± 15 µmol/L) (all p < 0.01). Direct observation indicated that in all animals, sodium ascorbate dramatically improved the clinical state, from malaise and lethargy to a responsive, alert state within 3 hours. Body temperature (39.3 ± 0.3°C), heart rate (99.7 ± 3 beats/min), and plasma creatinine (32.6 ± 5.8 µmol/L) all decreased. Arterial (96.5 ± 2.5 mm Hg) and renal medullary Po2 (48 ± 5 mm Hg) increased. The norepinephrine dose was decreased, to zero in four of five sheep, whereas mean arterial pressure increased (to 83 ± 2 mm Hg). We confirmed these physiologic findings in a coronavirus disease 2019 patient with shock by compassionate use of 60 g of sodium ascorbate over 7 hours. CONCLUSIONS IV megadose sodium ascorbate reversed the pathophysiological and behavioral responses to Gram-negative sepsis without adverse side effects. Clinical studies are required to determine if such a dose has similar benefits in septic patients.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Nobuki Okazaki
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Ian E Birchall
- Neuropathology Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anthony Dornom
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Tom A M Vale
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Roger G Evans
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - Fumitaka Yanase
- School of Medicine, University of Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
- School of Medicine, University of Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
| |
Collapse
|
10
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
11
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
12
|
Chen B, Zhao Q, Xu T, Yu L, Zhuo L, Yang Y, Xu Y. BRG1 Activates PR65A Transcription to Regulate NO Bioavailability in Vascular Endothelial Cells. Front Cell Dev Biol 2020; 8:774. [PMID: 32903816 PMCID: PMC7443572 DOI: 10.3389/fcell.2020.00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial cells contribute to the pathogenesis of cardiovascular diseases by producing and disseminating angiocrine factors. Nitric oxide (NO), catalyzed by endothelial NO synthase (eNOS), is one of the prototypical angiocrine factors. eNOS activity is modulated by site-specific phosphorylation. We have previously shown that endothelial-specific knockdown of BRG1 in Apoe–/– mice attenuates the development of atherosclerosis, in which eNOS-dependent NO catalysis plays an antagonizing role. Here we report that attenuation of atherogenesis in mice by BRG1 knockdown was accompanied by partial restoration of NO biosynthesis by 44% in the arteries and a simultaneous up-regulation of eNOS serine 1177 phosphorylation by 59%. Indeed, BRG1 depletion or inhibition ameliorated oxLDL-induced loss of NO bioavailability and eNOS phosphorylation in cultured endothelial cells. Further analysis revealed that BRG1 regulated eNOS phosphorylation and NO synthesis by activating the transcription of protein phosphatase 2A (PP2A) structural subunit a (encoded by PR65A). BRG1 interacted with ETS1, was recruited by ETS1 to the PR65A promoter, and cooperated with ETS1 to activate PR65A transcription. Finally, depletion of ETS1, similar to BRG1, repressed PR65A induction, normalized eNOS phosphorylation, and rescued NO biosynthesis in endothelial cells treated with oxLDL. In conclusion, our data characterize a novel transcriptional cascade that regulates NO bioavailability in vascular endothelial cells.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Qianwen Zhao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tongchang Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
13
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
14
|
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol 2019; 26:101284. [PMID: 31400697 PMCID: PMC6831867 DOI: 10.1016/j.redox.2019.101284] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ramón Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Comfort Effi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, China
| | - Xuebin Qin
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Das UN. Vitamin C for Type 2 Diabetes Mellitus and Hypertension. Arch Med Res 2019; 50:11-14. [PMID: 31349946 DOI: 10.1016/j.arcmed.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
It is suggested that supplementation of vitamin C reduces hyperglycemia and lowers blood pressure in hypertensives by enhacing the formation of prostaglandin E1 (PGE1), PGI2 (prostacyclin), endothelial nitric oxide (eNO), and restore essential fatty acid (EFA) metabolism to normal and enhance the formation of lipoxin A4 (LXA4), a potent anti-inflammatory, vasodilator and antioxidant. These actions are in addition to the ability of vitamin C to function as an antioxidant. In vitro and in vivo studies revealed that PGE1, PGI2 and NO have cytoprotective and genoprotective actions and thus, protect pancreatic β and vascular endotheilial cells from the cytotoxic actions of endogenous and exogenous toxins. AA, the precursor of LXA4 and LXA4 have potent anti-diabetic actions and their plasma tissue concentrations are decreased in those with diabetes mellitus and hypertension. Thus, vitamin C by augmenting the formation of PGE1, PGI2, eNO, LXA4 and restoring AA content to normal may function as a cytoprotective, anti-mutagenic, vasodilator and platelet anti-agregator actions that explains its benefical action in type 2 diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, WA, USA; Department of Medicine, GVP Hospital and Medical College, Visakhapatnam, India; BioScience Research Centre, GVP College of Engineering Campus, Visakhapatnam, India.
| |
Collapse
|
16
|
Dolinar K, Jan V, Pavlin M, Chibalin AV, Pirkmajer S. Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol 2018; 315:C803-C817. [PMID: 30230919 DOI: 10.1152/ajpcell.00311.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an adenosine analog, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as minimal essential medium α (MEMα), contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake, and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEMα that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEMα with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B-12, vitamin C, and α-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.
Collapse
Affiliation(s)
- Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia.,Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia
| | - Vid Jan
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana , Ljubljana , Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet , Stockholm , Sweden.,National Research Tomsk State University , Tomsk , Russia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
17
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|
18
|
Jaiswal SK, Gupta VK, Ansari MD, Siddiqi NJ, Sharma B. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro. Toxicol Rep 2017; 4:265-273. [PMID: 28959648 PMCID: PMC5615148 DOI: 10.1016/j.toxrep.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022] Open
Abstract
The observations of liver slices when treated with different concentrations of carbofuran were as follows:- increased LPO decreased SOD, CAT, & protein content in all the treatments
The observations of liver slices when treated with different concentrations of carbofuran along with vitamin C were as follows:- the levels of LPO, SOD, CAT & total protein content reinstated towards normal level only in liver slices treated with low concentration at higher concentration of carbofuran treatment Vitamin C does not ameliorate the hepatic toxicity induced by carbofuran
The in vitro liver slice culture may prove to be a useful model for hepatotoxicological studies and Vitamin C, as a hepatoprotectant in mammalian system. Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.
Collapse
Key Words
- Antioxidant
- BSA, Bovine serum albumin
- CaCl2, calcium chloride
- Carbofuran
- CuSO4, copper sulphate
- DMSO, Dimethylsulfoxide
- EDTA, Ethylenediaminetetraacetic acid
- Hepatotoxicity
- In vitro
- KCl, potassium chloride
- KRHB, Krebs-Ringer HEPES Buffer
- MgSO4, magnesium sulfate
- NADH, nicotinamide adenine dinucleotide
- NaCl, sodium chloride
- NaOH, sodium hydroxide and MDA Malonaldialdehyde
- Oxidative stress
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, thiobarbituric acid
- TCA, trichloroacetic acid
- WME, Williams medium E
Collapse
Affiliation(s)
| | - Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, 211002, UP, India
| | - Md Dilshad Ansari
- Department of Biochemistry, VBS Poorvanchal University, Jaunpur, 211002, UP, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, 211002, UP, India
| |
Collapse
|
19
|
Akolkar G, Bagchi AK, Ayyappan P, Jassal DS, Singal PK. Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. Am J Physiol Cell Physiol 2017; 312:C418-C427. [DOI: 10.1152/ajpcell.00356.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
An increase in oxidative stress is suggested to be the main cause in Doxorubicin (Dox)–induced cardiotoxicity. However, there is now evidence that activation of inducible nitric oxide synthase (iNOS) and nitrosative stress are also involved. The role of vitamin C (Vit C) in the regulation of nitric oxide synthase (NOS) and reduction of nitrosative stress in Dox-induced cardiotoxicity is unknown. The present study investigated the effects of Vit C in the mitigation of Dox-induced changes in the levels of nitric oxide (NO), NOS activity, protein expression of NOS isoforms, and nitrosative stress as well as cytokines TNF-α and IL-10 in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were segregated into four groups: 1) control, 2) Vit C (25 µM), 3) Dox (10 µM), and 4) Vit C + Dox. Dox caused a significant increase in the generation of superoxide radical (O2·−), peroxynitrite, and NO, and these effects of Dox were blunted by Vit C. Dox increased the expression of iNOS and altered protein expression as well as activation of endothelial NOS (eNOS). These changes were prevented by Vit C. Dox induced an increase in the ratio of monomeric/dimeric eNOS, promoting the production of O2·−, which was prevented by Vit C by increasing the stability of the dimeric form of eNOS. Vit C protected against the Dox-induced increase in TNFα as well as a reduction in IL-10. These results suggest that Vit C provides cardioprotection by reducing oxidative/nitrosative stress and inflammation via a modulation of Dox-induced increase in the NO levels and NOS activity.
Collapse
Affiliation(s)
- Gauri Akolkar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashim K. Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Prathapan Ayyappan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Kennedy DO, Stevenson EJ, Jackson PA, Dunn S, Wishart K, Bieri G, Barella L, Carne A, Dodd FL, Robertson BC, Forster J, Haskell-Ramsay CF. Multivitamins and minerals modulate whole-body energy metabolism and cerebral blood-flow during cognitive task performance: a double-blind, randomised, placebo-controlled trial. Nutr Metab (Lond) 2016; 13:11. [PMID: 26870152 PMCID: PMC4750202 DOI: 10.1186/s12986-016-0071-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The brain is by far the most metabolically active organ in the body, with overall energy expenditure and local blood-supply closely related to neural activity. Both energy metabolism and cerebral vaso-dilation are dependent on adequate micronutrient status. This study investigated whether supplementation with ascending doses of multi-vitamin/minerals could modulate the metabolic and cerebral blood-flow consequences of performing cognitive tasks that varied in difficulty. METHODS In this randomised, double-blind, placebo-controlled, parallel-groups study 97 healthy females (25-49 y), who were not selected on the basis of any nutritional parameters, received either placebo or one of two doses of multivitamins/minerals. Cerebral blood-flow (CBF) parameters in the frontal cortex, and total energy expenditure (TotalEnergy), carbohydrate and fat oxidation (CarbOxi/FatOxi), were measured during 5 tasks of graded cognitive difficulty and a control task (5 min per task) using Near-infrared spectroscopy (NIRS) and Indirect calorimetry of exhaled pulmonary gas (ICa) respectively. Assessments took place 60 min after the first dose and following eight weeks supplementation. RESULTS During task performance supplementation with the first dose of micronutrients led to a dose-dependent increase in TotalEnergy and FatOxi throughout the post-dose assessment period following the higher dose, and increases in the total concentration of haemoglobin, a proxy measure for CBF, during task performance following the lower dose of vitamins/minerals (also containing coenzyme-Q10). Chronic supplementation over 8 weeks led to a dose-dependent increase in TotalEnergy during the task period. There were no interpretable effects on mood or cognitive performance. CONCLUSIONS These results show that acute supplementation with micronutrients in healthy adults can modulate metabolic parameters and cerebral blood flow during cognitive task performance, and that the metabolic consequences are sustained during chronic supplementation. These findings suggest that both brain function and metabolism are amenable to micronutrient supplementation, even in adults who are assumed to have nutritional status typical of the population. TRIAL REGISTRATION ClinicalTrials.gov - NCT02381964.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma J Stevenson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Sarah Dunn
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Karl Wishart
- Bayer HealthCare - Consumer Care, Peter Merian Strasse 84, P.O. Box 4002, Basel, Switzerland
| | - Gregor Bieri
- Bayer HealthCare - Consumer Care, Peter Merian Strasse 84, P.O. Box 4002, Basel, Switzerland
| | - Luca Barella
- Bayer HealthCare - Consumer Care, Peter Merian Strasse 84, P.O. Box 4002, Basel, Switzerland
| | - Alexandra Carne
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Fiona L Dodd
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Bernadette C Robertson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Joanne Forster
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Crystal F Haskell-Ramsay
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
21
|
Trinity JD, Wray DW, Witman MAH, Layec G, Barrett-O'Keefe Z, Ives SJ, Conklin JD, Reese V, Zhao J, Richardson RS. Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 2016; 310:H765-74. [PMID: 26801312 DOI: 10.1152/ajpheart.00817.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/18/2016] [Indexed: 02/07/2023]
Abstract
The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgrip exercise, improves brachial artery (BA) vasodilation in a nitric oxide (NO)-dependent manner, by mitigating free radical production. BA vasodilation (Doppler ultrasound) and free radical outflow [electron paramagnetic resonance (EPR) spectroscopy] were measured in seven healthy older adults (69 ± 2 yr) during handgrip exercise at 3, 6, 9, and 12 kg (∼13-52% of maximal voluntary contraction) during the control condition and nitric oxide synthase (NOS) inhibition via N(G)-monomethyl-L-arginine (L-NMMA), AA, and coinfusion of l-NMMA + AA. Baseline BA diameter was not altered by any of the treatments, while L-NMMA and L-NMMA + AA diminished baseline BA blood flow and shear rate. AA improved BA dilation compared with control at 9 kg (control: 6.5 ± 2.2%, AA: 10.9 ± 2.5%, P = 0.01) and 12 kg (control: 9.5 ± 2.7%, AA: 15.9 ± 3.7%, P < 0.01). NOS inhibition blunted BA vasodilation compared with control and when combined with AA eliminated the AA-induced improvement in BA vasodilation. Free radical outflow increased with exercise intensity but, interestingly, was not attenuated by AA. Collectively, these results indicate that AA improves BA vasodilation in the elderly during handgrip exercise through an NO-dependent mechanism; however, this improvement appears not to be the direct consequence of attenuated free radical outflow from the forearm.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah;
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; and
| | - Melissa A H Witman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | | | - Stephen J Ives
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jamie D Conklin
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
22
|
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33:1582-1614. [PMID: 26281720 PMCID: PMC4748402 DOI: 10.1016/j.biotechadv.2015.08.001] [Citation(s) in RCA: 1346] [Impact Index Per Article: 149.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.
Collapse
Affiliation(s)
- Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Thomas Linder
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Christoph Wawrosch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Limei Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
23
|
Ferreira NR, Lourenço C, Barbosa RM, Laranjinha J. Coupling of ascorbate and nitric oxide dynamics in vivo in the rat hippocampus upon glutamatergic neuronal stimulation: A novel functional interplay. Brain Res Bull 2015; 114:13-9. [DOI: 10.1016/j.brainresbull.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/09/2015] [Accepted: 03/07/2015] [Indexed: 01/01/2023]
|
24
|
ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res Cardiol 2015; 110:21. [PMID: 25804308 DOI: 10.1007/s00395-015-0477-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
Angiotensin II (Ang II), a potent precursor of hypertrophy and heart failure, upregulates neuronal nitric oxide synthase (nNOS or NOS1) in the myocardium. Here, we investigate the involvement of type 1 and 2 angiotensin receptors (AT1R and AT2R) and molecular mechanisms mediating Ang II-upregulation of nNOS. Our results showed that pre-treatment of left ventricular (LV) myocytes with antagonists of AT1R or AT2R (losartan, PD123319) and ROS scavengers (apocynin, tiron or PEG-catalase) blocked Ang II-upregulation of nNOS. Surface biotinylation or immunocytochemistry experiments demonstrated that AT1R expression in plasma membrane was progressively decreased (internalization), whereas AT2R was increased (membrane trafficking) by Ang II. Inhibition of AT1R or ROS scavengers prevented Ang II-induced translocation of AT2R to plasma membrane, suggesting an alignment of AT1R-ROS-AT2R. Furthermore, Ang II increased eNOS-Ser(1177) but decreased eNOS-Thr(495), indicating concomitant activation of eNOS. Intriguingly, ROS scavengers but not AT2R antagonist prevented Ang II-activation of eNOS. NOS inhibitor (L-NG-Nitroarginine Methyl Ester, L-NAME) or eNOS gene deletion (eNOS(-/-)) abolished Ang II-induced membrane trafficking of AT2R, nNOS protein expression and activity. Mechanistically, S-nitrosation of AT2R was increased by sodium nitroprusside (SNP), a NO donor. Site-specific mutagenesis analysis reveals that C-terminal cysteine 349 in AT2R is essential in AT2R translocation to plasma membrane. Taken together, we demonstrate, for the first time, that Ang II upregulates nNOS protein expression and activity via AT1R/ROS/eNOS-dependent S-nitrosation and membrane translocation of AT2R. Our results suggest a novel crosstalk between AT1R and AT2R in regulating nNOS via eNOS in the myocardium under pathogenic stimuli.
Collapse
|
25
|
Rees MD, Maiocchi SL, Kettle AJ, Thomas SR. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate. Free Radic Biol Med 2014; 72:91-103. [PMID: 24704973 DOI: 10.1016/j.freeradbiomed.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
Abstract
Catalytic consumption of nitric oxide (NO) by myeloperoxidase and related peroxidases is implicated as playing a key role in impairing NO bioavailability during inflammatory conditions. However, there are major gaps in our understanding of how peroxidases consume NO in physiological fluids, in which multiple reactive enzyme substrates and antioxidants are present. Notably, ascorbate has been proposed to enhance myeloperoxidase-catalyzed NO consumption by forming NO-consuming substrate radicals. However, we show that in complex biological fluids ascorbate instead plays a critical role in inhibiting NO consumption by myeloperoxidase and related peroxidases (lactoperoxidase, horseradish peroxidase) by acting as a competitive substrate for protein-bound redox intermediates and by efficiently scavenging peroxidase-derived radicals (e.g., urate radicals), yielding ascorbyl radicals that fail to consume NO. These data identify a novel mechanistic basis for how ascorbate preserves NO bioavailability during inflammation. We show that NO consumption by myeloperoxidase Compound I is significant in substrate-rich fluids and is resistant to competitive inhibition by ascorbate. However, thiocyanate effectively inhibits this process and yields hypothiocyanite at the expense of NO consumption. Hypothiocyanite can in turn form NO-consuming radicals, but thiols (albumin, glutathione) readily prevent this. Conversely, where ascorbate is absent, glutathione enhances NO consumption by urate radicals via pathways that yield S-nitrosoglutathione. Theoretical kinetic analyses provide detailed insights into the mechanisms by which ascorbate and thiocyanate exert their protective actions. We conclude that the local depletion of ascorbate and thiocyanate in inflammatory microenvironments (e.g., due to increased metabolism or dysregulated transport) will impair NO bioavailability by exacerbating peroxidase-catalyzed NO consumption.
Collapse
Affiliation(s)
- Martin D Rees
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rural Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sophie L Maiocchi
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago, 8140 Christchurch, New Zealand
| | - Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Cutini PH, Campelo AE, Massheimer VL. Differential regulation of endothelium behavior by progesterone and medroxyprogesterone acetate. J Endocrinol 2014; 220:179-93. [PMID: 24301615 DOI: 10.1530/joe-13-0263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Medroxyprogesterone acetate (MPA) is a synthetic progestin commonly used in hormone replacement therapy (HRT). The aim of this research was to study and compare the effect of progesterone (Pg) and MPA on the regulation of cellular events associated with vascular homeostasis and disease. Platelet adhesion to endothelial cells (ECs), nitric oxide (NO) production, and cell migration were studied using murine ECs in vitro exposed to the progestins. After 7 min of treatment, MPA significantly inhibited NO synthesis with respect to control values; meanwhile, Pg markedly increased vasoactive production. In senile ECs, the stimulatory action of Pg decreases; meanwhile, MPA maintained its ability to inhibit NO synthesis. The presence of RU486 antagonized the action of each steroid. When ECs were preincubated with PD98059 (MAPK inhibitor) or chelerythrine (protein kinase C (PKC) inhibitor) before Pg or MPA treatment, the former totally suppressed the steroid action, but the PKC antagonist did not affect NO production. In the presence of a PI3K inhibitor (LY294002), a partial reduction in Pg effect and a reversal of MPA action were detected. Using indomethacin, the contribution of the cyclooxygenase (COX) pathway was also detected. On platelet adhesion assays, Pg inhibited and MPA stimulated platelet adhesion to ECs. Under inflammatory conditions, Pg prevented platelet adhesion induced by lipopolysaccharide (LPS); meanwhile, MPA potentiated the stimulatory action of LPS. Finally, although both steroids enhanced migration of ECs, MPA exhibited a greater effect. In conclusion, the data presented in this research provide evidence of a differential regulation of vascular function by Pg and MPA.
Collapse
Affiliation(s)
- Pablo H Cutini
- Cátedra de Bioquímica Clínica II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Mortensen A, Lykkesfeldt J. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide 2014; 36:51-7. [PMID: 24333161 DOI: 10.1016/j.niox.2013.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/09/2013] [Accepted: 12/03/2013] [Indexed: 12/31/2022]
Abstract
Ascorbate (Asc) has been shown to increase nitric oxide (NO) bioavailability and thereby improve endothelial function in patients showing signs of endothelial dysfunction. Tetrahydrobiopterin (BH₄) is a co-factor of endothelial nitric oxide synthase (eNOS) which may easily become oxidized to the inactive form dihydrobiopterin (BH₂). Asc may increase NO bioavailability by a number of mechanisms involving BH₄ and eNOS. Asc increases BH₄ bioavailability by either reducing oxidized BH₄ or preventing BH₄ from becoming oxidized in the first place. Asc could also increase NO bioavailability in a BH₄-independent manner by increasing eNOS activity by changing its phosphorylation and S-nitrosylation status or by upregulating eNOS expression. In this review, we discuss the putative mechanisms by which Asc may increase NO bioavailability through its interactions with BH₄ and eNOS.
Collapse
Affiliation(s)
- Alan Mortensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
28
|
Michels AJ, Frei B. Myths, artifacts, and fatal flaws: identifying limitations and opportunities in vitamin C research. Nutrients 2013; 5:5161-92. [PMID: 24352093 PMCID: PMC3875932 DOI: 10.3390/nu5125161] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 01/01/2023] Open
Abstract
Research progress to understand the role of vitamin C (ascorbic acid) in human health has been slow in coming. This is predominantly the result of several flawed approaches to study design, often lacking a full appreciation of the redox chemistry and biology of ascorbic acid. In this review, we summarize our knowledge surrounding the limitations of common approaches used in vitamin C research. In human cell culture, the primary issues are the high oxygen environment, presence of redox-active transition metal ions in culture media, and the use of immortalized cell lines grown in the absence of supplemental ascorbic acid. Studies in animal models are also limited due to the presence of endogenous ascorbic acid synthesis. Despite the use of genetically altered rodent strains lacking synthesis capacity, there are additional concerns that these models do not adequately recapitulate the effects of vitamin C deprivation and supplementation observed in humans. Lastly, several flaws in study design endemic to randomized controlled trials and other human studies greatly limit their conclusions and impact. There also is anecdotal evidence of positive and negative health effects of vitamin C that are widely accepted but have not been substantiated. Only with careful attention to study design and experimental detail can we further our understanding of the possible roles of vitamin C in promoting human health and preventing or treating disease.
Collapse
Affiliation(s)
- Alexander J Michels
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
29
|
Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid Redox Signal 2013; 19:2084-104. [PMID: 23642093 DOI: 10.1089/ars.2013.5382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Despite continuous advances in the prevention of cardiovascular disease (CVD), critical issues associated with an unhealthy lifestyle remain an increasing cause of morbidity and mortality in industrialized countries. RECENT ADVANCES A growing body of literature supports a specific role for vitamin C in a number of reactions that are associated with vascular function and control including, for example, nitric oxide bioavailability, lipid metabolism, and vascular integrity. CRITICAL ISSUES A large body of epidemiological evidence supports a relationship between poor vitamin C status and increased risk of developing CVD, and the prevalence of deficiency continues to be around 10%-20% of the general Western population although this problem could easily and cheaply be solved by supplementation. However, large intervention studies using vitamin C have not found a beneficial effect of supplementation. This review outlines the proposed mechanism by which vitamin C deficiency worsens CVD progression. In addition, it discusses problems with the currently available literature, including the discrepancies between the large intervention studies and the experimental and epidemiological literature. FUTURE DIRECTIONS Increased insights into vitamin C deficiency-mediated CVD progression will enable the design of future randomized controlled trials that are better suited to test the efficacy of vitamin C in disease prevention as well as the identification of high-risk individuals which could possibly benefit from supplementation.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg, Denmark
| | | |
Collapse
|
30
|
Abstract
SIGNIFICANCE Evidence is emerging that parenteral administration of high-dose vitamin C may warrant development as an adjuvant therapy for patients with sepsis. RECENT ADVANCES Sepsis increases risk of death and disability, but its treatment consists only of supportive therapies because no specific therapy is available. The characteristics of severe sepsis include ascorbate (reduced vitamin C) depletion, excessive protein nitration in microvascular endothelial cells, and microvascular dysfunction composed of refractive vasodilation, endothelial barrier dysfunction, and disseminated intravascular coagulation. Parenteral administration of ascorbate prevents or even reverses these pathological changes and thereby decreases hypotension, edema, multiorgan failure, and death in animal models of sepsis. CRITICAL ISSUES Dehydroascorbic acid appears to be as effective as ascorbate for protection against microvascular dysfunction, organ failure, and death when injected in sepsis models, but information about pharmacodynamics and safety in human subjects is only available for ascorbate. Although the plasma ascorbate concentration in critically ill and septic patients is normalized by repletion protocols that use high doses of parenteral ascorbate, and such doses are tolerated well by most healthy subjects, whether such large amounts of the vitamin trigger adverse effects in patients is uncertain. FUTURE DIRECTIONS Further study of sepsis models may determine if high concentrations of ascorbate in interstitial fluid have pro-oxidant and bacteriostatic actions that also modify disease progression. However, the ascorbate depletion observed in septic patients receiving standard care and the therapeutic mechanisms established in models are sufficient evidence to support clinical trials of parenteral ascorbate as an adjuvant therapy for sepsis.
Collapse
Affiliation(s)
- John X Wilson
- Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| |
Collapse
|
31
|
May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal 2013; 19:2068-83. [PMID: 23581713 PMCID: PMC3869438 DOI: 10.1089/ars.2013.5205] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/26/2013] [Accepted: 04/14/2013] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. RECENT ADVANCES Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. CRITICAL ISSUES The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. FUTURE DIRECTIONS A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial function, permeability, and survival in diseases that cause endothelial dysfunction.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine , Nashville, Tennessee
| | | |
Collapse
|
32
|
Barauna VG, Mantuan PR, Magalhães FC, Campos LCG, Krieger JE. AT1 receptor blocker potentiates shear-stress induced nitric oxide production via modulation of eNOS phosphorylation of residues Thr(495) and Ser(1177.). Biochem Biophys Res Commun 2013; 441:713-9. [PMID: 24211212 DOI: 10.1016/j.bbrc.2013.10.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023]
Abstract
We tested the hypothesis that AT1R blockade modulates the shear stress-induced (SS) synthesis of nitric oxide (NO) in endothelial cells (EC). The AT1R blocker Candesartan in the absence of the ligand angiotensin II (ang II) potentiated SS-induced NO synthesis accompanied by increased p-eNOS(Ser1177) and decreased p-eNOS(Thr495). Candesartan also inhibited SS-induced ERK activation and increased intracellular calcium transient in a time-dependent manner. To confirm the role of ERK to modulate p-eNOS(Thr495) and calcium to modulate p-eNOS(Ser1177), the MEK inhibitor U0126 and the calcium chelator BAPTA-AM were used, respectively. Pre-treatment of EC with U0126 completed abrogated basal and SS-induced ERK activation, inhibited p-eNOS(Thr495) and increased NO production by SS. On the other hand, pre-treatment of EC with BAPTA-AM decreased the effects of SS alone or in combination with Candesartan to induce p-eNOS(Ser1177) and partially inhibited the effects of Candesartan to potentiate NO release by SS. The AT1R blockers Losartan and Telmisartan were also tested but only Telmisartan potentiated NO synthesis and blocked SS-induced AT1R activation. Altogether, we provide evidence that Candesartan and Telmisartan potentiate SS-induced NO production even in the absence of the ligand ang II. This response requires both the inhibition of eNOS phosphorylation at its inhibitory residue Thr(495) as well as the increase of eNOS phosphorylation at its excitatory residue Ser(1177). In addition, the response is associated with inhibition of SS-induced ERK activation as well as increasing intracellular calcium transient. One may speculate that these yet undescribed events may contribute to the benefits of ARBs in cardiovascular diseases.
Collapse
Affiliation(s)
- Valério G Barauna
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, Brazil
| | | | | | | | | |
Collapse
|
33
|
Mortensen A, Hasselholt S, Tveden-Nyborg P, Lykkesfeldt J. Guinea pig ascorbate status predicts tetrahydrobiopterin plasma concentration and oxidation ratio in vivo. Nutr Res 2013; 33:859-67. [PMID: 24074744 DOI: 10.1016/j.nutres.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/01/2013] [Accepted: 07/07/2013] [Indexed: 12/16/2022]
Abstract
Tetrahydrobiopterin (BH₄) is an essential co-factor of nitric oxide synthases and is easily oxidized to dihydrobiopterin (BH₂) which promotes endothelial nitric oxide synthase uncoupling and deleterious superoxide production. Vitamin C has been shown to improve endothelial function by different mechanisms, some involving BH₄. The hypothesis of the present study was that vitamin C status, in particular low levels, influences biopterin redox status in vivo. Like humans, the guinea pig lacks the ability to synthesize vitamin C and was therefore used as model. Seven day old animals (n = 10/group) were given a diet containing 100, 250, 500, 750, 1000, or 1500 ppm vitamin C until euthanasia at age 60-64 days. Blood samples were drawn from the heart and analyzed for ascorbate, dehydroascorbic acid (DHA), BH₄ and BH₂ by high-performance liquid chromatography. Plasma BH₄ levels were found to be significantly lower in animals fed 100 ppm vitamin C compared to all other groups (P < .05 or less). BH₂ levels were not significantly different between groups but the BH₂-to-BH₄ ratio was higher in the group fed 100 ppm vitamin C (P < .001 all cases). Significant positive correlations between BH4 and ascorbate and between BH₂-to-BH₄ ratio and DHA were observed (P < .0001 both cases). Likewise, BH₂-to-BH₄ ratio was negatively correlated with ascorbate (P < .0001) as was BH₄ and DHA (P < .005). In conclusion, the redox status of plasma biopterins, essentially involved in vasodilation, depends on the vitamin C status in vivo. Thus, ingestion of insufficient quantities of vitamin C not only leads to vitamin C deficiency but also to increased BH₄ oxidation which may promote endothelial dysfunction.
Collapse
Affiliation(s)
- Alan Mortensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Rossman MJ, Garten RS, Groot HJ, Reese V, Zhao J, Amann M, Richardson RS. Ascorbate infusion increases skeletal muscle fatigue resistance in patients with chronic obstructive pulmonary disease. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1163-70. [PMID: 24068051 DOI: 10.1152/ajpregu.00360.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with systemic oxidative stress and skeletal muscle dysfunction. The purpose of this study was to examine the impact of intravenous ascorbate administration (AO) on biological markers of antioxidant capacity and oxidative stress, and subsequently skeletal muscle function during dynamic, small muscle mass exercise in patients with COPD. Ten patients with spirometric evidence of COPD performed single-leg knee extensor (KE) trials matched for intensity and time (isotime) following intravenous ascorbate (2 g) or saline infusion (PL). Quadriceps fatigue was quantified by changes in force elicited by maximal voluntary contraction (MVC) and magnetic femoral nerve stimulation (Qtw,pot). AO administration significantly increased antioxidant capacity, as measured by the ferric-reducing ability of plasma (PL: 1 ± 0.1 vs. AO: 5 ± 0.2 mM), and significantly reduced malondialdehyde levels (PL: 1.16 ± 0.1 vs. AO: 0.97 ± 0.1 mmol). Additionally, resting blood pressure was significantly reduced (PL: 104 ± 4 vs. AO: 93 ± 6 mmHg) and resting femoral vascular conductance was significantly elevated after AO (PL: 2.4 ± 0.2 vs. AO: 3.6 ± 0.4 ml·min(-1)·mmHg(-1)). During isotime exercise, the AO significantly attenuated both the ventilatory and metabolic responses, and patients accumulated significantly less peripheral quadriceps fatigue, as illustrated by less of a fall in MVC (PL: -11 ± 2% vs. AO: -5 ± 1%) and Qtw,pot (PL: -37 ± 1% vs. AO: -30 ± 2%). These data demonstrate a beneficial role of AO administration on skeletal muscle fatigue in patients with COPD and further implicate systemic oxidative stress as a causative factor in the skeletal muscle dysfunction observed in this population.
Collapse
Affiliation(s)
- Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang X, He F, Li X, Ito A, Sogo Y, Maruyama O, Kosaka R, Ye J. Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:035002. [PMID: 27877575 PMCID: PMC5090506 DOI: 10.1088/1468-6996/14/3/035002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/15/2013] [Indexed: 06/06/2023]
Abstract
A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)-l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)-apatite (Ap) coated titanium plate. The FGF-2-AsMg-Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2-AsMg-Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs), and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibited in vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2-AsMg-Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants.
Collapse
Affiliation(s)
- Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Fupo He
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Namiki1-2-1, Tsukuba, Ibaraki 305-8564, Japan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Xia Li
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Maruyama
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Namiki1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Ryo Kosaka
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Namiki1-2-1, Tsukuba, Ibaraki 305-8564, Japan
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
36
|
Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, Perna E, Mocharla P, Akhmedov A, Kubant R, Rohrer L, Malinski T, Camici GG, Matter CM, Mechta-Grigoriou F, Volpe M, Lüscher TF, Cosentino F. Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation 2013; 127:1229-40, e1-21. [DOI: 10.1161/circulationaha.112.000826] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francesco Paneni
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Elena Osto
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Sarah Costantino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Bogdan Mateescu
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Sylvie Briand
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Giuseppe Coppolino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Enrico Perna
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Pavani Mocharla
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Alexander Akhmedov
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Ruslan Kubant
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Lucia Rohrer
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Tadeusz Malinski
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Giovanni G. Camici
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Christian M. Matter
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Fatima Mechta-Grigoriou
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Massimo Volpe
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Thomas F. Lüscher
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| | - Francesco Cosentino
- From Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland (F.P., E.O., S.C., S.B., G.C., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); IRCCS Neuromed, Pozzilli, Italy (F.P., M.V.); Zürich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland (E.O., S.B., P.M., A.A., G.G.C., C.M.M., T.F.L., F.C.); Department of Experimental Medicine, Section of Pharmacology, Second University of Study of Naples, Naples, Italy (S.C.)
| |
Collapse
|
37
|
Najafi T, Novin MG, Ghazi R, Khorram O. Altered endometrial expression of endothelial nitric oxide synthase in women with unexplained recurrent miscarriage and infertility. Reprod Biomed Online 2012; 25:408-14. [PMID: 22877939 DOI: 10.1016/j.rbmo.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/24/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) has diverse roles in the female reproductive system including a role in blastocyst implantation. Aberrant expression of eNOS could therefore be significant in the pathogenesis of disorders of implantation. In this study, eNOS protein and mRNA levels in the endometrium of women with recurrent miscarriages, unexplained infertility and a control group were determined by compartmental quantitative immunohistochemistry and real-time reverse-transcription PCR. eNOS was found to be immunolocalized to all layers of the endometrium and vascular endothelium. eNOS protein was higher in glandular epithelium (P = 0.004) and luminal epithelium (P = 0.002), but not vascular endothelium and stroma, in women with recurrent miscarriage. Similarly, in women with unexplained infertility, eNOS was significantly higher (P < 0.03) in luminal epithelium but not in any other compartments compared with the control group. The levels of mRNA confirmed the protein data, demonstrating higher eNOS mRNA in the endometrium of women with recurrent miscarriage and unexplained infertility compared with controls. In conclusion, increased expression of eNOS in glandular and luminal epithelium of the endometrium in women with recurrent miscarriages and unexplained infertility suggests a detrimental effect of excess nitric oxide in endometrial receptivity and implantation.
Collapse
Affiliation(s)
- Tohid Najafi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, [corrected] Tehran, Iran
| | | | | | | |
Collapse
|