1
|
Oktar S, Karadeniz M, Acar M, Zararsız İ. The effects of omega-3 fatty acids on antioxidant enzyme activities and nitric oxide levels in the cerebral cortex of rats treated ethanol. BIOMEDITSINSKAIA KHIMIIA 2024; 70:83-88. [PMID: 38711407 DOI: 10.18097/pbmc20247002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.
Collapse
Affiliation(s)
- Süleyman Oktar
- University of Health Sciences, Beyhekim Training and Research Hospital, Department of Pharmacology, Konya, Turkey
| | | | - Musa Acar
- Necmettin Erbakan University, Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Konya, Turkey
| | - İsmail Zararsız
- Girne American University, Medical Faculty, Department of Anatomy, Girne, Cyprus
| |
Collapse
|
2
|
Lu D, Jiang H, Zou T, Jia Y, Zhao Y, Wang Z. Endothelial-to-mesenchymal transition: New insights into vascular calcification. Biochem Pharmacol 2023; 213:115579. [PMID: 37589048 DOI: 10.1016/j.bcp.2023.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 08/18/2023]
Abstract
With the continuous progress of atherosclerosis research, the significant pathological change of it--vascular calcification (VC), gains increasing attention. In recent years, numerous studies have demonstrated that it is an independent predictor of death risk of cardiovascular disease, and it has a strong correlation with poor clinical prognosis. As the world's population continues to age, the occurrence of VC is expected to reach its highest point in the near future. Therefore, it is essential to investigate ways to prevent or even reverse this process for clinical purposes. Endothelial-to-mesenchymal transition (EndMT) describes the progressive differentiation of endothelial cells into mesenchymal stem cells (MSCs) under various stimuli and acquisition of pluripotent cell characteristics. More and more studies show that EndMT plays a vital role in various cardiovascular diseases, including atherosclerosis, vascular calcification and heart valvular disease. EndMT is also involved in the formation and progression of VC. This review vividly describes the history, characteristics of EndMT and how it affects the endothelial cell process, then focuses on the relationship between vascular endothelium, EndMT, amino acid metabolism, and vascular calcification. Finally, it overviews the signal pathway of EndMT and drugs targeting EndMT, hoping to provide new ideas and a theoretical basis for studying potential therapeutic targets of VC.
Collapse
Affiliation(s)
- Dingkun Lu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ting Zou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yuanwang Jia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yunyun Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
3
|
Gueguen E, Morsy Y, Scharl M, Krämer SD, Zaugg M, Hersberger M, Rogler G, Wawrzyniak M. Endothelial Barrier Disruption by Lipid Emulsions Containing a High Amount of N3 Fatty Acids (Omegaven) but Not N6 Fatty Acids (Intralipid). Cells 2022; 11:cells11142202. [PMID: 35883643 PMCID: PMC9320111 DOI: 10.3390/cells11142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Lipid emulsions are crucial for life-saving total parenteral nutrition (TPN). Their composition provides a high amount of essential fatty acids and calories for millions of patients with serious diseases. Nevertheless, several TPN-mediated side-effects have been reported in over 90% of patients. This project aimed to investigate the effect of a high amount of ω3 fatty acids (Omegaven®) emulsion vs. a high amount of ω6 fatty acids (Intralipid®) emulsions on the endothelial barrier function. EA.hy926 cell line was cultured and incubated with 0.01, 0.1, and 1 mM lipid emulsions. The influence of these lipid emulsions on the barrier function was assessed using ECIS technology, immunofluorescent microscopy, viability measurements by flow cytometry, multiplex cytokines analysis, and qRT-PCR. BODIPY staining confirmed the uptake of fatty acids by endothelial cells. ECIS measurements demonstrated that a high concentration of Omegaven® prevents barrier formation and impairs the barrier function by inducing cell detachment. Moreover, the expression of VE-cadherin and F-actin formation showed a reorganization of the cell structure within 2 h of 1 mM Omegaven® addition. Interestingly, the study’s findings contradict previous studies and revealed that Omegaven® at high concentration, but not Intralipid, induces cell detachments, impairing endothelial cells’ barrier function. In summary, our studies shed new light on the effect of lipid emulsions on the endothelium.
Collapse
Affiliation(s)
- Emilie Gueguen
- Faculty of Fundamental and Applied Sciences, University of Poitiers, 86000 Poitiers, France;
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Y.M.); (M.S.); (G.R.)
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Y.M.); (M.S.); (G.R.)
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Y.M.); (M.S.); (G.R.)
| | - Stefanie D. Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8039 Zurich, Switzerland;
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Y.M.); (M.S.); (G.R.)
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Y.M.); (M.S.); (G.R.)
- Correspondence:
| |
Collapse
|
4
|
Stivala S, Gobbato S, Bonetti N, Camici GG, Lüscher TF, Beer JH. Dietary alpha-linolenic acid reduces platelet activation and collagen-mediated cell adhesion in sickle cell disease mice. J Thromb Haemost 2022; 20:375-386. [PMID: 34758193 DOI: 10.1111/jth.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic hemoglobinopathy associated with high morbidity and mortality. The primary cause of hospitalization in SCD is vaso-occlusive crisis (VOC), mediated by alteration of red blood cells, platelets, immune cells and a pro-adhesive endothelium. OBJECTIVES We investigated the potential therapeutic use of the plant-derived omega-3 alpha-linolenic acid (ALA) in SCD. METHODS Berkeley mice were fed a low- or high-ALA diet for 4 weeks, followed by analysis of liver fibrosis, endothelial activation, platelet activation and formation of platelet-neutrophils aggregates. Aggregation of platelets over collagen under flow after high-ALA was compared to a blocking P-selectin Fab. RESULTS Dietary high-ALA was able to reduce the number of sickle cells in blood smear, liver fibrosis, and the expression of adhesion molecules on the endothelium of aorta, lungs, liver and kidneys (VCAM-1, ICAM-1 and vWF). Specific parameters of platelet activation were blunted after high-ALA feeding, notably P-selectin exposure and the formation of neutrophil-platelet aggregates, along with a correspondingly reduced expression of PSGL-1 on neutrophils. By comparison, in vivo treatment of SCD mice with the anti-P-selectin Fab was able to similarly reduce the formation of neutrophil-platelet aggregates, but did not reduce GpIbα shedding nor the activation of the αIIb β3 integrin in response to thrombin. Both ALA feeding and P-selectin blocking significantly reduced collagen-mediated cell adhesion under flow. CONCLUSIONS Dietary ALA is able to reduce the pro-inflammatory and pro-thrombotic state occurring in the SCD mouse model and may represent a novel, inexpensive and readily available therapeutic strategy for SCD.
Collapse
Affiliation(s)
- Simona Stivala
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sara Gobbato
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Nicole Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
- Cardiology, Royal Brompton and Harefield Hospitals, Imperial College London, London, UK
| | - Jürg H Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
- Cardiology, Royal Brompton and Harefield Hospitals, Imperial College London, London, UK
- Internal Medicine Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
5
|
Zhu Y, Wen L, Wang S, Zhang K, Cui Y, Zhang C, Feng L, Yu F, Chen Y, Wang R, Ma X. Omega-3 fatty acids improve flow-induced vasodilation by enhancing TRPV4 in arteries from diet-induced obese mice. Cardiovasc Res 2021; 117:2450-2458. [PMID: 33070195 DOI: 10.1093/cvr/cvaa296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/07/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Previous studies have shown the intake of omega-3 polyunsaturated fatty acids is associated with low rates of obesity and ischaemic pathologies. Omega-3 also have anti-inflammatory and plaque-stabilization effects and regulate vasodilation and constriction. However, there are few studies of the role of omega-3 in flow-induced vasodilation involving Ca2+-permeable ion channel TRPV4 in high-fat diet-induced obese (DIO) mouse. Here, we determined whether omega-3 protect against vascular dysfunction induced by a high-fat diet by enhancing TRPV4 activity and subsequently improving flow-mediated vasodilation. METHODS AND RESULTS Flow-mediated vasodilation in second-order mesenteric arteries from mice was measured using a pressure myograph. The intracellular Ca2+ concentration in response to flow and GSK1016790A (a TRPV4 agonist) was measured by Fluo-4 fluorescence. Whole-cell current was measured by patch clamp. Cell membrane tether force was measured by atomic force microscopy. Impairment of flow-mediated vasodilation in arteries and Ca2+ influx in endothelial cells from DIO mice was restored by omega-3 treatment. The improved flow-induced vasodilation was inhibited by the TRPV4 antagonist HC067047 and in TRPV4-/- mice. Omega-3 treatment enhanced endothelial TRPV4 activity and altered cell membrane mechanic property, as indicated by enhanced GSK1016790A-induced Ca2+ influx and whole-cell current and altered membrane mean tether force in endothelial cells from DIO mice. CONCLUSION Omega-3 improve vascular function by improving flow-induced vasodilation via enhancing TRPV4 activity in the endothelium of obese mice which may be related to improved cell membrane physical property. Activation of TRPV4 in endothelium plays an important role in the protective mechanisms of omega-3 against vascular dysfunction in obesity by improving flow-mediated vasodilation.
Collapse
Affiliation(s)
- Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Lei Wen
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Sheng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yue Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Chi Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | | | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
6
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
7
|
Osunkwo I, Manwani D, Kanter J. Current and novel therapies for the prevention of vaso-occlusive crisis in sickle cell disease. Ther Adv Hematol 2020; 11:2040620720955000. [PMID: 33062233 PMCID: PMC7534097 DOI: 10.1177/2040620720955000] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Individuals with sickle cell disease (SCD) are living further into adulthood in high-resource countries. However, despite increased quantity of life, recurrent, acute painful episodes cause significant morbidity for affected individuals. These SCD-related painful episodes, also referred to as vaso-occlusive crises (VOCs), have multifactorial causes, and they often occur as a result of multicellular aggregation and vascular adherence of red blood cells, neutrophils, and platelets, leading to recurrent and unpredictable occlusion of the microcirculation. In addition to severe pain, long-term complications of vaso-occlusion may include damage to muscle and/or bone, in addition to vital organs such as the liver, spleen, kidneys, and brain. Severe pain associated with VOCs also has a substantial detrimental impact on quality of life for individuals with SCD, and is associated with increased health care utilization, financial hardship, and impairments in education and vocation attainment. Previous treatments have targeted primarily SCD symptom management, or were broad nontargeted therapies, and include oral or parenteral hydration, analgesics (including opioids), nonsteroidal anti-inflammatory agents, and various other types of nonpharmacologic pain management strategies to treat the pain associated with VOC. With increased understanding of the pathophysiology of VOCs, there are several new potential therapies that specifically target the pathologic process of vaso-occlusion. These new therapies may reduce cell adhesion and inflammation, leading to decreased incidence of VOCs and prevention of end-organ damage. In this review, we consider the benefits and limitations of current treatments to reduce the occurrence of VOCs in individuals with SCD and the potential impact of emerging treatments on future disease management.
Collapse
Affiliation(s)
- Ifeyinwa Osunkwo
- Non-Malignant Hematology Section, The Levine Cancer Institute and Atrium Health, Charlotte, NC, USA
| | - Deepa Manwani
- Division of Pediatric Hematology and Oncology, The Children’s Hospital at Montefiore, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie Kanter
- Division of Hematology and Oncology, University of Alabama Birmingham, 1720 2nd Avenue S, NP 2510, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Potential Cardiovascular and Metabolic Beneficial Effects of ω-3 PUFA in Male Obesity Secondary Hypogonadism Syndrome. Nutrients 2020; 12:nu12092519. [PMID: 32825328 PMCID: PMC7551945 DOI: 10.3390/nu12092519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are fundamental biocomponents of lipids and cell membranes. They are involved in the maintenance of cellular homeostasis and they are able to exert anti-inflammatory and cardioprotective actions. Thanks to their potential beneficial effects on the cardiovascular system, metabolic axis and body composition, we have examined their action in subjects affected by male obesity secondary hypogonadism (MOSH) syndrome. MOSH syndrome is characterized by the presence of obesity associated with the alteration of sexual and metabolic functions. Therefore, this review article aims to analyze scientific literature regarding the possible benefits of ω-3 PUFA administration in subjects affected by MOSH syndrome. We conclude that there are strong evidences supporting ω-3 PUFA administration and/or supplementation for the treatment and management of MOSH patients.
Collapse
|
10
|
Kuszewski JC, Wong RHX, Howe PRC. Fish oil supplementation reduces osteoarthritis-specific pain in older adults with overweight/obesity. Rheumatol Adv Pract 2020; 4:rkaa036. [PMID: 32968708 PMCID: PMC7494084 DOI: 10.1093/rap/rkaa036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives OA is a leading cause of chronic pain and disability. Next to inflammation, vascular pathology has been hypothesized to play a role in its aetiology and progression. Owing to side effects and the low efficacy of pharmacological treatments, dietary supplements are popular as alternative treatments, but evidence of efficacy is limited. We tested whether fish oil and curcumin supplementation can reduce chronic pain and OA burden in older adults. Methods A 16-week randomized, double-blind, placebo-controlled, 2 × 2 factorial design supplementation trial with fish oil (2000 mg/day docosahexaenoic acid + 400 mg/day eicosapentaenoic acid), curcumin (160 mg/day) or a combination of both was undertaken in sedentary overweight/obese older adults. Secondary outcomes included treatment-induced changes in self-reported chronic pain and OA burden and whether changes were related to changes in small artery elasticity (surrogate marker for microvascular function), CRP (inflammatory marker) and well-being. Results The majority of participants (131 of 152) reported chronic pain, which was predominantly OA specific. Fish oil significantly reduced OA-specific pain (P = 0.002, Cohen’s d = 0.56) and burden (P = 0.015, Cohen’s d = 0.45) compared with no fish oil treatment; reductions were correlated with improvements in microvascular function and well-being. Curcumin, alone or in combination with fish oil, did not reduce pain measures. Conclusion Our findings indicate potential for fish oil to alleviate OA pain and burden in overweight/obese older adults. Further investigations should be undertaken in patients with clinically diagnosed OA to evaluate fish oil alone and as an adjunct to conventional pharmacotherapy and to investigate underlying mechanisms. Trial registration Australian and New Zealand Clinical Trials Register, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370788, ACTRN12616000732482p.
Collapse
Affiliation(s)
- Julia C Kuszewski
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales
| | - Rachel H X Wong
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales.,Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Queensland
| | - Peter R C Howe
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales.,Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Queensland.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Almaspour MB, Nasehi M, Khalifeh S, Zarrindast MR. The effect of fish oil on social interaction memory in total sleep-deprived rats with respect to the hippocampal level of stathmin, TFEB, synaptophysin and LAMP-1 proteins. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102097. [PMID: 32388317 DOI: 10.1016/j.plefa.2020.102097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/23/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Fish oil (FO) is one of the richest natural sources of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). DHA is essential for brain functions and EPA has been approved for brain health. On the other hand, stathmin, TFEB, synaptophysin and LAMP-1 proteins are involved in synaptic plasticity, lysosome biogenesis and synaptic vesicles biogenesis. In this study, we aimed to investigate the effect of FO on social interaction memory in sleep-deprived rats with respect to level of stathmin, TFEB, synaptophysin and LAMP-1 in the hippocampus of rats. All rats received FO through oral gavage at the doses of 0.5, 0.75 and 1 mg/kg. The water box was used to induce total sleep deprivation (TSD) and the three-chamber paradigm test was used to assess social behavior. Hippocampal level of proteins was assessed using Western blot. The results showed, FO impaired social memory at the dose of 1 mg/kg in normal and sham groups. SD impaired social memory and FO did not restore this effect. Furthermore, FO at the dose of 0.75 mg/kg decreased social affiliation and social memory in all groups of normal rats, compared with related saline groups, and at the dose of 1 mg/kg impaired social memory for stranger 2 compared with saline group. In sham groups, FO at the dose of 1 mg/kg impaired social memory for stranger 2 compared with saline group. SD decreased hippocampal level of all proteins (except stathmin), and FO (1 mg/kg) restored these effects. In conclusion, FO negatively affects social interaction memory in rats.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, P.O. Box: 13145-784, Iran.
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, P.O. Box: 13145-784, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Shannon OM, Mendes I, Köchl C, Mazidi M, Ashor AW, Rubele S, Minihane AM, Mathers JC, Siervo M. Mediterranean Diet Increases Endothelial Function in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Nutr 2020; 150:1151-1159. [PMID: 32027740 DOI: 10.1093/jn/nxaa002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The endothelium plays a key role in the maintenance of vascular health and represents a potential physiological target for dietary and other lifestyle interventions designed to reduce the risk of cardiovascular diseases (CVD) including stroke or coronary heart disease. OBJECTIVE To conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) investigating the effects of the Mediterranean dietary pattern (MedDiet) on endothelial function. METHODS Medline, Embase, and Scopus databases were searched from inception until January 2019 for studies that met the following criteria: 1) RCTs including adult participants, 2) interventions promoting the MedDiet, 3) inclusion of a control group, and 4) measurements of endothelial function. A random-effects meta-analysis was conducted. Metaregression and subgroup analyses were performed to identify whether effects were modified by health status (i.e., healthy participants versus participants with existing comorbidities), type of intervention (i.e., MedDiet alone or with a cointervention), study duration, study design (i.e., parallel or crossover), BMI, and age of participants. RESULTS Fourteen articles reporting data for 1930 participants were included in the meta-analysis. Study duration ranged from 4 wk to 2.3 y. We observed a beneficial effect of the MedDiet on endothelial function [standardized mean difference (SMD): 0.35; 95% CI: 0.17, 0.53; P <0.001; I2 = 73.68%]. MedDiet interventions improved flow-mediated dilation (FMD)-the reference method for noninvasive, clinical measurement of endothelial function-by 1.66% (absolute change; 95% CI: 1.15, 2.17; P <0.001; I2 = 0%). Effects of the MedDiet on endothelial function were not modified by health status, type of intervention, study duration, study design, BMI, or age of participants (P >0.05). CONCLUSIONS MedDiet interventions improve endothelial function in adults, suggesting that the protective effects of the MedDiet are evident at early stages of the atherosclerotic process with important implications for the early prevention of CVD. This study has the PROSPERO registration number: CRD42018106188.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, United Kingdom
| | - Inês Mendes
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, United Kingdom
| | - Christina Köchl
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, United Kingdom
| | - Mohsen Mazidi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Ammar W Ashor
- Department of Internal Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Sofia Rubele
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, United Kingdom.,Faculty of Medicine & Surgery, University of Verona, Italy
| | - Anne-Marie Minihane
- Norwich Medical School, Bob Champion Research & Education, University of East Anglia, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, United Kingdom
| | - Mario Siervo
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, United Kingdom.,School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
13
|
Lin Z, Chen R, Jiang Y, Xia Y, Niu Y, Wang C, Liu C, Chen C, Ge Y, Wang W, Yin G, Cai J, Clement V, Xu X, Chen B, Chen H, Kan H. Cardiovascular Benefits of Fish-Oil Supplementation Against Fine Particulate Air Pollution in China. J Am Coll Cardiol 2020; 73:2076-2085. [PMID: 31023432 DOI: 10.1016/j.jacc.2018.12.093] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Few studies have evaluated the health benefits of omega-3 fatty acid supplementation against fine particulate matter (aerodynamic diameter <2.5 μm [PM2.5]) exposure in highly polluted areas. OBJECTIVES The authors sought to evaluate whether dietary fish-oil supplementation protects cardiovascular health against PM2.5 exposure in China. METHODS This is a randomized, double-blinded, and placebo-controlled trial among 65 healthy college students in Shanghai, China. Participants were randomly assigned to either the placebo group or the intervention group with dietary fish-oil supplementation of 2.5 g/day from September 2017 to January 2018, and received 4 rounds of health examinations in the last 2 months of treatments. Fixed-site PM2.5 concentrations on campus were measured in real time. The authors measured blood pressure and 18 biomarkers of systematic inflammation, coagulation, endothelial function, oxidative stress, antioxidant activity, cardiometabolism, and neuroendocrine stress response. Acute effects of PM2.5 on these outcomes were evaluated within each group using linear mixed-effect models. RESULTS The average PM2.5 level was 38 μg/m3 during the study period. Compared with the placebo group, the fish-oil group showed relatively stable levels of most biomarkers in response to changes in PM2.5 exposure. Between-group differences associated with PM2.5 exposure varied by biomarkers and by lags of exposure. The authors observed beneficial effects of fish-oil supplementation on 5 biomarkers of blood inflammation, coagulation, endothelial function, oxidative stress, and neuroendocrine stress response in the fish-oil group at a false discovery rate of <0.05. CONCLUSIONS This trial shows that omega-3 fatty acid supplementation is associated with short-term subclinical cardiovascular benefits against PM2.5 exposure among healthy young adults in China. (Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution; NCT03255187).
Collapse
Affiliation(s)
- Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guanjin Yin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Viviane Clement
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, Texas
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, Texas
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
14
|
de Freitas MCP, Martins Figueiredo Neto A, Damasceno NR. Nonlinear optical responses of oxidized low-density lipoprotein: Cutoff point for z-scan peak-valley distance. Photodiagnosis Photodyn Ther 2020; 30:101689. [PMID: 32087295 DOI: 10.1016/j.pdpdt.2020.101689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 02/18/2020] [Indexed: 11/26/2022]
Abstract
The development of new methods to assess biomarkers of cardiovascular disease is currently a subject of scientific research. This article broadens our view of nonlinear optical responses of oxidized low density lipoprotein (LDL) evaluated using the Z-scan peak-valley distance and proposes a cutoff point. We investigated the association of peak-valley distance and some cardiovascular risk factors related with sociodemographic, clinical and anthropometric profiles and plasma biomarkers such as lipid and glucose profile, apolipoprotein, lipoprotein subfractions and omega 3 fatty acids. Z-scan analysis was performed using isolated LDL after ultracentrifugation in human blood samples collected after fasting. Peak-valley distance is a parameter that decreases directly depending on the oxidizability of LDL. As peak-valley distance was associated with relevant biomarkers of cardiovascular risk, we tested cutoff points for categorization and the best results were obtained using percentile < 75 (Lowz-scan) and percentile ≥ 75 (Highz-scan). The regression logistic models tested after establishing the cutoff point for peak-valley distance showed that increased levels of plasma high-density lipoprotein cholesterol, apolipoprotein A-I, large high-density lipoprotein subfractions and docosahexaenoic acid are directly associated with HighZ-scan. Conversely, high levels of small LDL were associated with decreased odds of presenting HighZ-scan. In conclusion, the cutoff point for peak-valley distance was able to identify atherogenic characteristics of LDL and its relationship with some parameters of high-density lipoprotein functionality.
Collapse
Affiliation(s)
- Maria Camila Pruper de Freitas
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, 01246-904, Sao Paulo, SP, Brazil.
| | | | - Nágila Raquel Damasceno
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, 01246-904, Sao Paulo, SP, Brazil.
| |
Collapse
|
15
|
Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells. Molecules 2019; 25:molecules25010128. [PMID: 31905689 PMCID: PMC6982972 DOI: 10.3390/molecules25010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 11/17/2022] Open
Abstract
N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial Na,K-ATPase controls the ionic homeostasis of the neighboring cells, as well as cell function. However, controversy exists with respect to the vascular protective effect of EPA and DHA. We argue that this dispute might be due to the use of different concentrations of EPA and DHA in different studies. Therefore, this study was designed to define an optimal concentration of EPA and DHA to investigate endothelial function. For this purpose, human endothelial cells were exposed for 24 h to different concentrations of DHA or EPA (0–20 μM) to study membrane fluidity, peroxidation potential and Na,K-ATPase activity. EPA and DHA were linearly incorporated and this incorporation was mirrored by the linear increase of unsaturation index, membrane fluidity, and peroxidation potential. Na,K-ATPase activity peaked at 3.75 μM of EPA and DHA and then gradually decreased. It is noteworthy that DHA effects were always more pronounced than EPA. Concluding, low concentrations of EPA and DHA minimize peroxidation sensitivity and optimize Na,K-ATPase activity.
Collapse
|
16
|
Du Y, Taylor CG, Zahradka P. Modulation of endothelial cell responses and vascular function by dietary fatty acids. Nutr Rev 2019; 77:614-629. [PMID: 31228246 DOI: 10.1093/nutrit/nuz026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Healthy and functional endothelial cells play important roles in maintaining vascular homeostasis, whereas endothelial dysfunction initiates and exacerbates vascular disease progression. Interventional studies with dietary fatty acids have shown that these molecules have varying effects on vascular function. It is hypothesized that the actions of dietary fatty acids on vascular function may be mediated in part through endothelial cells. This review summarizes the results of studies that have examined the acute and chronic effects of dietary fatty acids on endothelial function and vascular properties in humans, as well as the potential mechanisms by which n-3 polyunsaturated fatty acids regulate endothelial function. Altogether, this article provides an extensive review of how fatty acids contribute to vascular function through their ability to modulate endothelial cells and discusses relationships between dietary fatty acids and endothelial cells in the context of vascular dysfunction.
Collapse
Affiliation(s)
- Youjia Du
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Das UN. Vitamin C for Type 2 Diabetes Mellitus and Hypertension. Arch Med Res 2019; 50:11-14. [PMID: 31349946 DOI: 10.1016/j.arcmed.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
It is suggested that supplementation of vitamin C reduces hyperglycemia and lowers blood pressure in hypertensives by enhacing the formation of prostaglandin E1 (PGE1), PGI2 (prostacyclin), endothelial nitric oxide (eNO), and restore essential fatty acid (EFA) metabolism to normal and enhance the formation of lipoxin A4 (LXA4), a potent anti-inflammatory, vasodilator and antioxidant. These actions are in addition to the ability of vitamin C to function as an antioxidant. In vitro and in vivo studies revealed that PGE1, PGI2 and NO have cytoprotective and genoprotective actions and thus, protect pancreatic β and vascular endotheilial cells from the cytotoxic actions of endogenous and exogenous toxins. AA, the precursor of LXA4 and LXA4 have potent anti-diabetic actions and their plasma tissue concentrations are decreased in those with diabetes mellitus and hypertension. Thus, vitamin C by augmenting the formation of PGE1, PGI2, eNO, LXA4 and restoring AA content to normal may function as a cytoprotective, anti-mutagenic, vasodilator and platelet anti-agregator actions that explains its benefical action in type 2 diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, WA, USA; Department of Medicine, GVP Hospital and Medical College, Visakhapatnam, India; BioScience Research Centre, GVP College of Engineering Campus, Visakhapatnam, India.
| |
Collapse
|
18
|
Amatruda M, Ippolito G, Vizzuso S, Vizzari G, Banderali G, Verduci E. Epigenetic Effects of n-3 LCPUFAs: A Role in Pediatric Metabolic Syndrome. Int J Mol Sci 2019; 20:E2118. [PMID: 31035722 PMCID: PMC6539774 DOI: 10.3390/ijms20092118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Childhood obesity represents an important public health issue worldwide and is strongly linked to metabolic alterations such as hypertension, insulin resistance, and dyslipidemia. The constellation of these conditions is commonly known as Metabolic Syndrome (MetS). Metabolic syndrome is not just a simple cluster of metabolic complications due to excess of adipose tissue, but is considered a risk factor for cardiovascular diseases. Evidence from several human and animal studies suggests that environmental and nutritional exposure during pregnancy may affect the newborn development and future health through epigenetic changes, playing a potential role in determining obesity and obesity-related complications. Understanding how nutritional epigenetic mechanisms contribute to the "transgenerational risk" for obesity and metabolic dysfunction is crucial in order to develop early prevention strategies for children's health. Nutrigenetics is the science that studies the role of nutrients in gene expression. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) are known for their health benefits, especially in relation to their ability to modulate inflammation and improve some obesity-associated comorbidities, mainly by decreasing plasma triglycerides. Recent nutrigenetic research is focusing on the potential role of LCPUFAs in influencing epigenetic markers. In this review, we present the most recent updates about the possible interaction between n-3 LCPUFAs and epigenetic pathways in metabolic syndrome. Literature from MEDLINE® and the Cochrane database between May 2005 and December 2018 has been scanned.
Collapse
Affiliation(s)
- Matilde Amatruda
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Giulio Ippolito
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Sara Vizzuso
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Giulia Vizzari
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Giuseppe Banderali
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A. Di Rudinì 8, I - 20142 Milan, Italy.
| |
Collapse
|
19
|
Effect of Dietary Hemp Seed on Oxidative Status in Sows during Late Gestation and Lactation and Their Offspring. Animals (Basel) 2019; 9:ani9040194. [PMID: 31027169 PMCID: PMC6523475 DOI: 10.3390/ani9040194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hemp seeds are rich in polyunsaturated fatty acids as well as other bioactive compounds. Using dietary hemp seeds as late gestation and lactation supplementation for sows and early life supplementation for piglets, we found that the indicators of oxidative status were improved in both sows and offspring. Besides the significant improvement in the antioxidant defense system of the sows, our assessment of dietary intervention resulted in an array of increased antioxidative status markers for their progeny. In addition, this could be translated into increased adaptability to the upcoming weaning stage. Abstract This study shows the antioxidant effect of a dietary hemp seed diet rich in ω-6 polyunsaturated fatty acid (PUFA) on oxidative status in sows during late gestation and lactation and their offspring. Ten pregnant sows were divided into two groups and fed either a control diet (CD) or a hemp diet (HD) containing 2% hemp seed meal for a period of 10 days before farrowing and 5% throughout the lactation period (21 d). After farrowing, 16 of their resulting piglets were divided into two groups: control group CD (eight piglets derived from control sows) and HD group (eight piglets derived from HD sows), respectively. Blood collected from sows and piglets at day 1, 7 and 21 was used for the measurement of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), glutathione (GPx)), nitric oxide production (NO), lipid peroxidation (thiobarbituric acid reactive substances—TBARS), reactive oxygen species (ROS) generation and total antioxidant capacity (TAC) in plasma. The results showed a significant improvement in the oxidative status of sows fed HD throughout lactation compared with CD. Similarly, in piglets, HD positively influenced the activities of antioxidant enzymes, TAC and NO levels and significantly decreased lipid peroxidation in plasma until weaning, in comparison with the CD group. This study suggests the potential of hemp seed diet to improve the overall antioxidant status of the lactating sows and their progeny.
Collapse
|
20
|
Cui H, Han F, Zhang L, Wang L, Kumar M. Gamma linolenic acid regulates PHD2 mediated hypoxia and mitochondrial apoptosis in DEN induced hepatocellular carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4241-4252. [PMID: 30587920 PMCID: PMC6296206 DOI: 10.2147/dddt.s178519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the known major health problems across the globe, and is sixth ranked among all cancer, due to its high mortality rate. Polyunsaturated fatty acids (PUFAs) play an important role in the formation of a cell membrane, along with the fluidity of the membrane and proteins. Gamma linolenic acid (GLA) is member of the ω-6 family of PUFAs and converts into the arachidonic acid via a series of elongation and desaturation reactions. The aim of the current investigation was to scrutinize the effect of GLA on mitochondrial mediated apoptosis and anti-inflammatory pathway against diethylnitrosamine (DEN) induced HCC. Materials and methods Chemical carcinogenesis in Wistar rats was introduced by an intra-peritoneal dose of DEN (200 mg/kg). The rats received the various doses of GLA for 22 weeks. The progressions of serum biomarkers and histopathology components of hepatic tissue were used to access the prophylactic effects. The antioxidant parameters, cancer preventive agent status, and apoptosis mechanism were reviewed to scrutinize the possible mechanism. Results Dose-dependent treatment of GLA significantly (P<−0.001) modulated the hepatic nodules, hepatic, body weight, antioxidant, and non-hepatic parameters. Curiously, the Real-time polymerase chain reaction (RT-PCR) and immunoblotting showed the GLA altered reduced the hypoxic microenvironment, mitochondrial mediated death apoptosis, and anti-inflammsatory pathways. Conclusion On the basis of the above results, we can conclude that the GLA exhibited a chemo-protective effect against DEN induced HCC that might be due to the altered hypoxic microenvironment, mitochondrial mediated death apoptosis, and anti-inflammatory pathway, respectively.
Collapse
Affiliation(s)
- Hong Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Feng Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Ling Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Li Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, China
| | - Mukesh Kumar
- Chandra Shekhar Singh College of Pharmacy, Allahabad, India,
| |
Collapse
|
21
|
Ross MD. Endothelial Regenerative Capacity and Aging: Influence of Diet, Exercise and Obesity. Curr Cardiol Rev 2018; 14:233-244. [PMID: 30047332 PMCID: PMC6300798 DOI: 10.2174/1573403x14666180726112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background: The endothelium plays an important role in cardiovascular regulation, from blood flow to platelet aggregation, immune cell infiltration and demargination. A dysfunctional endo-thelium leads to the onset and progression of Cardiovascular Disease (CVD). The aging endothelium displays significant alterations in function, such as reduced vasomotor functions and reduced angio-genic capabilities. This could be partly due to elevated levels of oxidative stress and reduced endothe-lial cell turnover. Circulating angiogenic cells, such as Endothelial Progenitor Cells (EPCs) play a significant role in maintaining endothelial health and function, by supporting endothelial cell prolifera-tion, or via incorporation into the vasculature and differentiation into mature endothelial cells. Howev-er, these cells are reduced in number and function with age, which may contribute to the elevated CVD risk in this population. However, lifestyle factors, such as exercise, physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and antioxidants, significantly af-fect the number and function of these circulating angiogenic cells. Conclusion: This review will discuss the effects of advancing age on endothelial health and vascular regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the mecha-nistic links and the subsequent impact on cardiovascular health
Collapse
Affiliation(s)
- Mark D Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Rimm EB, Appel LJ, Chiuve SE, Djoussé L, Engler MB, Kris-Etherton PM, Mozaffarian D, Siscovick DS, Lichtenstein AH. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018; 138:e35-e47. [PMID: 29773586 PMCID: PMC6903778 DOI: 10.1161/cir.0000000000000574] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the 2002 American Heart Association scientific statement "Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease," evidence from observational and experimental studies and from randomized controlled trials continues to emerge to further substantiate the beneficial effects of seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease. A recent American Heart Association science advisory addressed the specific effect of n-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events. This American Heart Association science advisory extends that review and offers further support to include n-3 polyunsaturated fatty acids from seafood consumption. Several potential mechanisms have been investigated, including antiarrhythmic, anti-inflammatory, hematologic, and endothelial, although for most, longer-term dietary trials of seafood are warranted to substantiate the benefit of seafood as a replacement for other important sources of macronutrients. The present science advisory reviews this evidence and makes a suggestion in the context of the 2015-2020 Dietary Guidelines for Americans and in consideration of other constituents of seafood and the impact on sustainability. We conclude that 1 to 2 seafood meals per week be included to reduce the risk of congestive heart failure, coronary heart disease, ischemic stroke, and sudden cardiac death, especially when seafood replaces the intake of less healthy foods.
Collapse
|
23
|
Antihypertensive Effect of Ethanolic Extract from Acanthopanax sessiliflorus Fruits and Quality Control of Active Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5158243. [PMID: 29849899 PMCID: PMC5937377 DOI: 10.1155/2018/5158243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
Acanthopanax sessiliflorus (Rupr. & Maxim.) Seem., which belongs to the Araliaceae family, mainly inhabits Korea, China, and Japan. Traditionally, Acanthopanax species have been used as treatment for several diseases such as diabetes, tumors, and rheumatoid arthritis. Especially, its fruits have many biological functions including antitumor, immunostimulating, antithrombosis, and antiplatelet activities. Recently, the extract of A. sessiliflorus fruit has been reported to have antithrombotic and antiplatelet activities related to the alleviation of hypertension. Therefore, we investigated the antihypertensive effect of ethanolic extract from A. sessiliflorus fruits (DHP1501) through in vivo, ex vivo, and in vitro studies. In this study, DHP1501 demonstrated free radical scavenging capacity, enhanced endothelial nitric oxide (NO) production, and inhibited angiotensin-converting enzyme (ACE) activity in spontaneously hypertensive rats (SHRs), resulting in the improvement of vascular relaxation and decrease in blood pressure in the hypertensive animal model. These results suggest that A. sessiliflorus fruit extract may be a promising functional material for the prevention and treatment of hypertension. Furthermore, this study demonstrated the utility of MS-based active compounds for the quality control of DHP1501.
Collapse
|
24
|
Shannon OM, Stephan BCM, Minihane AM, Mathers JC, Siervo M. Nitric Oxide Boosting Effects of the Mediterranean Diet: A Potential Mechanism of Action. J Gerontol A Biol Sci Med Sci 2018; 73:902-904. [DOI: 10.1093/gerona/gly087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, UK
| | - Blossom C M Stephan
- Institute of Health and Society, Newcastle University, UK
- Institute of Ageing, Newcastle University, UK
| | - Anne-Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, UK
| |
Collapse
|
25
|
Zhong Y, Catheline D, Houeijeh A, Sharma D, Du L, Besengez C, Deruelle P, Legrand P, Storme L. Maternal omega-3 PUFA supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring. Am J Physiol Lung Cell Mol Physiol 2018; 315:L116-L132. [PMID: 29597832 DOI: 10.1152/ajplung.00527.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Omega-3 polyunsaturated fatty acids (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Sprague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, randomly assigned to either air or continuous oxygen exposure (fraction of inspired oxygen = 85%) for 20 days, and then euthanized for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk and was found to reverse the reduced levels of VEGFA, VEGF receptor 2, angiopoietin-1 (ANGPT1), endothelial TEK tyrosine kinase, endothelial nitric oxide synthase, and nitric oxide concentrations in lung tissue and the increased ANGPT2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration and reduced expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. These data indicate that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.
Collapse
Affiliation(s)
- Ying Zhong
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine, Institut National de la Recherche Agronomique USC 2012, Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Rennes , France
| | - Ali Houeijeh
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Neonatology, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Dyuti Sharma
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Pediatric Surgery, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Capucine Besengez
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Philippe Deruelle
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Obstetrics and Gynecology, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, Institut National de la Recherche Agronomique USC 2012, Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Rennes , France
| | - Laurent Storme
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Neonatology, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| |
Collapse
|
26
|
Omega 3 Polyunsaturated Fatty Acids Improve Endothelial Dysfunction in Chronic Renal Failure: Role of eNOS Activation and of Oxidative Stress. Nutrients 2017; 9:nu9080895. [PMID: 28820443 PMCID: PMC5579688 DOI: 10.3390/nu9080895] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Endothelial dysfunction is a key vascular alteration in chronic kidney disease (CKD). Omega 3 (n-3) polyunsaturated fatty acids (PUFA) reduce vascular oxidative stress and inflammation. We investigated whether n-3 PUFA could reverse endothelial dysfunction in CKD by improving endothelial nitric oxide synthase (eNOS) function and oxidative stress. Methods: 5/6 nephrectomized male Wistar rats (CKD; n = 10) and sham operated animals (SHAM; n = 10) were treated for 6 weeks with standard diet. An additional group of CKD rats were fed an n-3 PUFA enriched diet (CKD + PUFA; n = 10). We then measured endothelium-dependent (EDD) and -independent vasodilation, markers of endothelial function and of oxidative stress in thoracic aortas. Results: Compared to SHAM, in CKD aortas EDD and eNOS expression were reduced (p < 0.05) and 3-nitrotyrosine levels were increased, while expression of NADPH oxidase subunits NOX4 and p22phox was similar. In-vitro incubation with Tiron failed to reverse endothelial dysfunction in CKD. In CKD + PUFA, EDD improved (p < 0.05) compared with CKD rats, while blockade of eNOS by L-NAME worsened EDD. These effects were accompanied by increased (p < 0.05) eNOS and reduced (p < 0.05) expression of NOX4 and 3-nitrotyrosine levels. Conclusion: Collectively, these findings indicate that n-3 PUFA improve endothelial dysfunction by restoring NO bioavailability in CKD.
Collapse
|
27
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
28
|
de Oliveira JN, Reis LO, Ferreira EDF, Godinho J, Bacarin CC, Soares LM, de Oliveira RMW, Milani H. Postischemic fish oil treatment confers task-dependent memory recovery. Physiol Behav 2017; 177:196-207. [DOI: 10.1016/j.physbeh.2017.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
|
29
|
Yamagata K. Docosahexaenoic acid regulates vascular endothelial cell function and prevents cardiovascular disease. Lipids Health Dis 2017; 16:118. [PMID: 28619112 PMCID: PMC5472966 DOI: 10.1186/s12944-017-0514-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 01/15/2023] Open
Abstract
Docosahexaenoic acid (DHA) is present in high concentrations in salmon, herring, and trout. Epidemiologic studies have shown that high dietary consumption of these and other oily fish is associated with reduced rates of myocardial infarction, atherosclerosis, and other ischemic pathologies. Atherosclerosis is induced by inflammation and can lead to acute cardiovascular events and extensive plaque. DHA inhibits the development of inflammation in endothelial cells, alters the function and regulation of vascular biomarkers, and reduces cardiovascular risk. It also affects vascular relaxation and constriction by controlling nitric oxide and endothelin 1 production in endothelial cells. DHA also contributes to the prevention of arteriosclerosis by regulating the expression of oxidized low density lipoprotein receptor 1, plasminogen activator inhibitor 1, thromboxane A2 receptor, and adhesion molecules such as vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, and intercellular adhesion molecule 1 in endothelial cells. Recent research showed that DHA reduces the increase in adhesion factor expression induced by lipopolysaccharide by suppressing toll-like receptor 4. A new mechanism of action of DHA has been described that is mediated through endothelial free fatty acid receptor 4, associated with heme oxygenase 1 induction by Nrf2. However, the efficacy and mechanisms of action of DHA in cardiovascular disease prevention are not yet completely understood. The aim of this paper was to review the effects of DHA on vascular endothelial cells and recent findings on their potential for the prevention of circulatory diseases.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience and Biotechnology, College of Bioresourse, Science, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan.
| |
Collapse
|
30
|
McManus S, Tejera N, Awwad K, Vauzour D, Rigby N, Fleming I, Cassidy A, Minihane AM. Differential effects of EPA versus DHA on postprandial vascular function and the plasma oxylipin profile in men. J Lipid Res 2016; 57:1720-7. [PMID: 27170732 PMCID: PMC5003154 DOI: 10.1194/jlr.m067801] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Our objective was to investigate the impact of EPA versus DHA on arterial stiffness and reactivity and underlying mechanisms (with a focus on plasma oxylipins) in the postprandial state. In a three-arm crossover acute test meal trial, men (n = 26, 35-55 years) at increased CVD risk received a high-fat (42.4 g) test meal providing 4.16 g of EPA or DHA or control oil in random order. At 0 h and 4 h, blood samples were collected to quantify plasma fatty acids, long chain n-3 PUFA-derived oxylipins, nitrite and hydrogen sulfide, and serum lipids and glucose. Vascular function was assessed using blood pressure, reactive hyperemia index, pulse wave velocity, and augmentation index (AIx). The DHA-rich oil significantly reduced AIx by 13% (P = 0.047) with the decrease following EPA-rich oil intervention not reaching statistical significance. Both interventions increased EPA- and DHA-derived oxylipins in the acute postprandial state, with an (1.3-fold) increase in 19,20-dihydroxydocosapentaenoic acid evident after DHA intervention (P < 0.001). In conclusion, a single dose of DHA significantly improved postprandial arterial stiffness as assessed by AIx, which if sustained would be associated with a significant decrease in CVD risk. The observed increases in oxylipins provide a mechanistic insight into the AIx effect.
Collapse
Affiliation(s)
- Seán McManus
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Khader Awwad
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Neil Rigby
- Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Aedin Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
31
|
Minihane AM, Armah CK, Miles EA, Madden JM, Clark AB, Caslake MJ, Packard CJ, Kofler BM, Lietz G, Curtis PJ, Mathers JC, Williams CM, Calder PC. Consumption of Fish Oil Providing Amounts of Eicosapentaenoic Acid and Docosahexaenoic Acid That Can Be Obtained from the Diet Reduces Blood Pressure in Adults with Systolic Hypertension: A Retrospective Analysis. J Nutr 2016; 146:516-23. [PMID: 26817716 DOI: 10.3945/jn.115.220475] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/17/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although many randomized controlled trials (RCTs) have examined the effects of the n-3 (ω-3) fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) on blood pressure (BP) and vascular function, the majority have used doses of EPA+DHA of >3 g/d, which are unlikely to be achieved by dietary manipulation. OBJECTIVE The objective was to examine, by using a retrospective analysis from a multicenter RCT, the impact of recommended EPA+DHA intakes achievable through diet on systolic and diastolic BPs and microvascular function in adults in the United Kingdom. METHODS In a double-blind, placebo-controlled RCT, healthy men and women (n = 312) consumed a control oil or fish oil (FO) providing 0.7 or 1.8 g EPA+DHA/d, in random order, each for 8 wk. Fasting BP and microvascular function (using laser Doppler iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the endothelial nitric oxide synthase (eNOS) rs1799983 variant. RESULTS No effects of n-3 fatty acid treatment or any treatment × eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P = 0.046) FO-induced reduction (mean: 5 mm Hg) in systolic BP, specifically in those with isolated systolic hypertension (n = 31). No dose response was observed. CONCLUSIONS These findings indicate that in adults with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g show clinically meaningful BP reductions, which, at a population level, could be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT in which participants are prospectively recruited on the basis of BP status is required to draw definite conclusions.
Collapse
Affiliation(s)
- Anne M Minihane
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom;
| | - Christopher K Armah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Elizabeth A Miles
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jacqueline M Madden
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Allan B Clark
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Muriel J Caslake
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Bettina M Kofler
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Georg Lietz
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; and
| | - Peter J Curtis
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; and
| | - Christine M Williams
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre at University Hospitals Southampton National Health Service (NHS) Foundation Trust and the University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Skilton MR, Phang M. From the α to the ω-3: Breaking the link between impaired fetal growth and adult cardiovascular disease. Nutrition 2016; 32:725-31. [PMID: 27025974 DOI: 10.1016/j.nut.2015.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/03/2015] [Accepted: 12/31/2015] [Indexed: 02/05/2023]
Abstract
Atherosclerotic vascular disease is an important cause of premature morbidity and mortality. An extensive body of epidemiologic data links impaired fetal growth, evidenced by reductions in birth weight, with a higher risk for cardiovascular disease in adulthood. This association appears to be at least partially independent of established cardiovascular risk factors, such as hypertension and type 2 diabetes. There is currently no clinically established strategy to prevent cardiovascular events secondary to being born with poor fetal growth. This review summarizes recent evidence that suggests that ω-3 polyunsaturated fatty acids may be beneficial for this indication; in particular being associated with more marked reductions in blood pressure and subclinical atherosclerosis in people who were born with poor fetal growth, than in those with healthy birth weight. Possible mechanisms, and the evidence base required to support the implementation of dietary guidelines specific to people born with impaired fetal growth are also described.
Collapse
Affiliation(s)
- Michael R Skilton
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Melinda Phang
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Evaluation of the effects of different supplementation on oxidative status in patients with rheumatoid arthritis. Clin Rheumatol 2016; 35:1909-1915. [DOI: 10.1007/s10067-016-3168-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
|
34
|
|
35
|
Kakoti BB, Hernandez-Ontiveros DG, Kataki MS, Shah K, Pathak Y, Panguluri SK. Resveratrol and Omega-3 Fatty Acid: Its Implications in Cardiovascular Diseases. Front Cardiovasc Med 2015; 2:38. [PMID: 26697434 PMCID: PMC4675849 DOI: 10.3389/fcvm.2015.00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023] Open
Abstract
The present review aims at summarizing the major therapeutic roles of resveratrol and omega-3 fatty acids (O3FAs) along with their related pathways. This article reviews some of the key studies involving the health benefits of resveratrol and O3FAs. Oxidative stress has been considered as one of the most important pathophysiological factors associated with various cardiovascular disease conditions. Resveratrol, with the potent antioxidant and free radical scavenging properties, has been proven to be a significantly protective compound in restoring the normal cardiac health. A plethora of research also demonstrated the reduction of the risk of coronary heart disease, hypertension, and stroke, and their complications by O3FAs derived from fish and fish oils. This review describes the potential cardioprotective role of resveratrol and O3FAs in ameliorating the endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | | | - Kajri Shah
- College of Pharmacy, University of South Florida , Tampa, FL , USA
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida , Tampa, FL , USA
| | | |
Collapse
|
36
|
Balakumar P, Kavitha M, Nanditha S. Cardiovascular drugs-induced oral toxicities: A murky area to be revisited and illuminated. Pharmacol Res 2015; 102:81-9. [DOI: 10.1016/j.phrs.2015.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/22/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
|
37
|
Semen K, Yelisyeyeva O, Jarocka-Karpowicz I, Kaminskyy D, Solovey L, Skrzydlewska E, Yavorskyi O. Sildenafil reduces signs of oxidative stress in pulmonary arterial hypertension: Evaluation by fatty acid composition, level of hydroxynonenal and heart rate variability. Redox Biol 2015; 7:48-57. [PMID: 26654977 PMCID: PMC4683386 DOI: 10.1016/j.redox.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed. Sildenafil showed antioxidant and anti-inflammatory effects in pulmonary hypertension. Sildenafil reduced hydroxynonenal level and improved fatty acid profile in serum. Improvement of heart rate variability and functional capacity was noted after therapy. Mild prooxidant activity is suggested as the mechanism to improve sildenafil efficacy.
Collapse
Affiliation(s)
- Khrystyna Semen
- Department of Propedeutics of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Olha Yelisyeyeva
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, Jana Kilinskego 1, 15089 Bialystok, Poland
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic, and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Lyubomyr Solovey
- Lviv Regional Clinical Hospital, Chernigivska 7, 79010 Lviv, Ukraine
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Jana Kilinskego 1, 15089 Bialystok, Poland
| | - Ostap Yavorskyi
- Department of Propedeutics of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| |
Collapse
|
38
|
Dantas NM, Sampaio GR, Ferreira FS, Labre TDS, Torres EAFDS, Saldanha T. Cholesterol Oxidation in Fish and Fish Products. J Food Sci 2015; 80:R2627-39. [PMID: 26555783 DOI: 10.1111/1750-3841.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.
Collapse
Affiliation(s)
- Natalie Marinho Dantas
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Geni Rodrigues Sampaio
- Dept. of Nutrition, School of Public Health, Univ. of São Paulo (USP), Brazil - Av. Dr. Arnaldo, 715, São Paulo, SP, CEP, 01246-904, Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | | | - Tatiana Saldanha
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| |
Collapse
|
39
|
Matsumoto T, Goulopoulou S, Taguchi K, Tostes RC, Kobayashi T. Constrictor prostanoids and uridine adenosine tetraphosphate: vascular mediators and therapeutic targets in hypertension and diabetes. Br J Pharmacol 2015; 172:3980-4001. [PMID: 26031319 DOI: 10.1111/bph.13205] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Vascular dysfunction plays a pivotal role in the development of systemic complications associated with arterial hypertension and diabetes. The endothelium, or more specifically, various factors derived from endothelial cells tightly regulate vascular function, including vascular tone. In physiological conditions, there is a balance between endothelium-derived factors, that is, relaxing factors (endothelium-derived relaxing factors; EDRFs) and contracting factors (endothelium-derived contracting factors; EDCFs), which mediate vascular homeostasis. However, in disease states, such as diabetes and arterial hypertension, there is an imbalance between EDRF and EDCF, with a reduction of EDRF signalling and an increase of EDCF signalling. Among EDCFs, COX-derived vasoconstrictor prostanoids play an important role in the development of vascular dysfunction associated with hypertension and diabetes. Moreover, uridine adenosine tetraphosphate (Up4 A), identified as an EDCF in 2005, also modulates vascular function. However, the role of Up4 A in hypertension- and diabetes-associated vascular dysfunction is unclear. In the present review, we focused on experimental and clinical evidence that implicate these two EDCFs (vasoconstrictor prostanoids and Up4 A) in vascular dysfunction associated with hypertension and diabetes.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
40
|
Massaro M, Martinelli R, Gatta V, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Buonomo T, Stuppia L, Storelli C, De Caterina R. Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS One 2015; 10:e0129652. [PMID: 26114549 PMCID: PMC4482638 DOI: 10.1371/journal.pone.0129652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
Scope High intakes of n-3 fatty acids exert anti-inflammatory effects and cardiovascular protection, but the underlying molecular basis is incompletely defined. By genome-wide analysis we searched for novel effects of docosahexaenoic acid (DHA) on gene expression and pathways in human vascular endothelium under pro-inflammatory conditions. Methods and Results Human umbilical vein endothelial cells were treated with DHA and then stimulated with interleukin(IL)-1β. Total RNA was extracted, and gene expression examined by DNA microarray. DHA alone altered the expression of 188 genes, decreasing 92 and increasing 96. IL-1β changed the expression of 2031 genes, decreasing 997 and increasing 1034. Treatment with DHA before stimulation significantly affected the expression of 116 IL-1β-deregulated genes, counter-regulating the expression of 55 genes among those decreased and of 61 among those increased. Functional and network analyses identified immunological, inflammatory and metabolic pathways as the most affected. Newly identified DHA-regulated genes are involved in stemness, cellular growth, cardiovascular system function and cancer, and included cytochrome p450 4F2(CYP4F2), transforming growth factor(TGF)-β2, Cluster of Differentiation (CD)47, caspase recruitment domain(CARD)11 and phosphodiesterase(PDE)5α. Conclusions Endothelial exposure to DHA regulates novel genes and related pathways. Such unbiased identification should increase our understanding of mechanisms by which n-3 fatty acids affect human diseases.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Rosanna Martinelli
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Medicine and Surgery of Salerno University, Salerno, Italy
| | - Valentina Gatta
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | | | - Liborio Stuppia
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | - Raffaele De Caterina
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
- Fondazione Toscana “Gabriele Monasterio”, Pisa, Italy
- * E-mail:
| |
Collapse
|
41
|
Speck N, Brandsch C, Schmidt N, Yazdekhasti N, Hirche F, Lucius R, Rimbach G, Stangl GI, Reiss K. The Antiatherogenic Effect of Fish Oil in Male Mice Is Associated with a Diminished Release of Endothelial ADAM17 and ADAM10 Substrates. J Nutr 2015; 145:1218-26. [PMID: 25926412 DOI: 10.3945/jn.115.211375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Growing evidence suggests that disintegrin and metalloprotease (ADAM) 17 (ADAM17) and ADAM10 contribute to the pathogenesis of vascular diseases. ADAM17 promotes inflammatory processes by liberating tumor necrosis factor α, interleukin 6 receptor (IL-6R), and tumor necrosis factor receptor 1 (TNFR1). ADAM17 and ADAM10 modulate vascular permeability by cleaving endothelial adhesion molecules such as junctional adhesion molecule A (JAM-A) and vascular endothelial cadherin (VE-cadherin), respectively. OBJECTIVE This study was designed to investigate whether a link might exist between the protective effects of fish oil (FO) supplementation against atherosclerosis and ADAM function. METHODS Male LDL receptor knockout (LDLR(-/-)) mice and male wild-type (WT) mice were fed a Western diet (200 g/kg fat, 1.5 g/kg cholesterol) containing either 20% lard (LDLR(-/-)-lard and WT-lard groups) or 10% lard combined with 10% FO (LDLR(-/-)-FO and WT-FO groups) for 12 wk. Atherosclerotic lesion development and fatty acid composition of liver microsomes were evaluated. ADAM10 and ADAM17 expression was determined by quantitative real-time polymerase chain reaction and immunoblot analyses. Concentrations of soluble ADAM substrates in plasma and liver extracts were measured by ELISA. RESULTS Diets supplemented with FO markedly reduced development of early atherosclerotic lesions in LDLR(-/-) mice (LDLR(-/-)-lard group vs. LDLR(-/-)-FO group mean ± SD: 29.6 ± 6.1% vs. 22.5 ± 4.2%, P < 0.05). This was not accompanied by changes in expression of ADAM17 or ADAM10 in the aorta or liver. No dietary effects on circulating TNFR1 (LDLR(-/-)-lard group vs. LDLR(-/-)-FO group mean ± SD: 1.22 ± 0.23 vs. 1.39 ± 0.28, P > 0.2) or IL-6R (1.06 ± 0.12 vs. 0.98 ± 0.09 fold of WT-lard group, P > 0.1), classical substrates of ADAM17 on macrophages, and neutrophil granulocytes were observed. However, a reduction in atherosclerotic lesions in the LDLR(-/-)-FO group was accompanied by a significant reduction in the circulating endothelial cell adhesion molecules JAM-A (LDLR(-/-)-lard group vs. LDLR(-/-)-FO group mean ± SD: 1.42 ± 0.20 vs. 0.95 ± 0.56 fold of WT-lard group, P < 0.05), intercellular adhesion molecule 1 (1.15 ± 0.14 vs. 0.88 ± 0.17 fold of WT-lard group, P < 0.05), and VE-cadherin (0.88 ± 0.12 vs. 0.72 ± 0.15 fold of WT-lard group, P < 0.05), reflecting reduced ADAM activity in endothelial cells. CONCLUSION FO exerted an antiatherogenic effect on male LDLR(-/-) mice that was accompanied by a reduced release of ADAM17 and ADAM10 substrates from endothelial cells. It is suggested that FO-decreased ADAM activity contributes to improved endothelial barrier function and thus counteracts intimal lipoprotein insudation and macrophage accumulation.
Collapse
Affiliation(s)
| | - Corinna Brandsch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Nadine Schmidt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Narges Yazdekhasti
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Kiel, Germany; and
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | |
Collapse
|
42
|
Cicero AFG, Colletti A. Nutraceuticals and Blood Pressure Control: Results from Clinical Trials and Meta-Analyses. High Blood Press Cardiovasc Prev 2015; 22:203-13. [PMID: 25788027 DOI: 10.1007/s40292-015-0081-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 12/16/2022] Open
Abstract
Beyond the well-known effects on blood pressure (BP) of the dietary approaches to stop hypertension (DASH) and the Mediterranean diets, a large number of studies has investigated the possible BP lowering effect of different dietary supplements and nutraceuticals, the most part of them being antioxidant agents with a high tolerability and safety profile. In particular relatively large body of evidence support the use of potassium, L-arginine, vitamin C, cocoa flavonoids, beetroot juice, coenzyme Q10, controlled-release melatonin, and aged garlic extract. However there is a need for data about the long-term safety of a large part of the above discussed products. Moreover further clinical research is advisable to identify between the available active nutraceuticals those with the best cost-effectiveness and risk-benefit ratio for a large use in general population with low-added cardiovascular risk related to uncomplicated hypertension.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy,
| | | |
Collapse
|
43
|
Kang N, Lee JH, Lee W, Ko JY, Kim EA, Kim JS, Heu MS, Kim GH, Jeon YJ. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:764-772. [PMID: 25727171 DOI: 10.1016/j.etap.2015.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/31/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
In this study, we investigated the vasorelaxant and antihypertensive effects of gallic acid (GA), a polyphenol isolated from the green alga Spirogyra sp., to assess its suitability as a therapeutic for cardiovascular diseases (CVDs). We examined the effect of GA on endothelium-dependent vasorelaxation in human umbilical vein endothelial cells (HUVECs). GA increased nitric oxide (NO) levels by increasing phosphorylation of endothelial nitric oxide synthase (eNOS), and its effect on NO production was attenuated by pretreatment with the eNOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We also investigated its antihypertensive effect by examining GA-mediated inhibition of angiotensin-I converting enzyme (ACE). GA inhibited ACE with a half-maximal inhibitory concentration (IC50) value of 37.38 ± 0.39 μg/ml. In silico simulations revealed that GA binds to the active site of ACE (PDB: 1O86) with a binding energy of -270.487 kcal/mol. Furthermore, GA clearly reduced blood pressure in spontaneously hypertensive rats (SHR) to an extent comparable to captopril. These results suggest that GA isolated from Spirogyra sp. exerts multiple therapeutic effects and has potential as a CVD treatment.
Collapse
Affiliation(s)
- Nalae Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ji-Hyeok Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - WonWoo Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ju-Young Ko
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun-A Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jin-Soo Kim
- Department of Seafood Science and Technolgy, Institute of Marine Industry, Gyeongsang National University, Tongyeong 650-160, Republic of Korea
| | - Min-Soo Heu
- Department of Food Science and Nutrition, Institute of Marine Industry, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju 314-701, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
44
|
Abstract
OBJECTIVES The aim of the study was to evaluate the potential changes induced by fish oil (FO) supplementation on the redox status of pancreatic islets from healthy rats. To test whether these effects were due to eicosapentaenoic acid and docosahexaenoic acid (ω-3), in vitro experiments were performed. METHODS Rats were supplemented with FO, and pancreatic islets were obtained. Islets were also treated in vitro with palmitate (P) or eicosapentaenoic acid + docosahexaenoic acid (ω-3). Insulin secretion (GSIS), glucose oxidation, protein expression, and superoxide content were analyzed. RESULTS The FO group showed a reduction in superoxide content. Moreover, FO reduced the expression of NAD(P)H oxidase subunits and increased superoxide dismutase, without altering β-cell function. Palmitate increased β-cell reactive oxygen species (ROS) production, apoptosis, and impaired GSIS. Under these conditions, ω-3 triggered a parallel reduction in ROS production and β-cell apoptosis induced by P and protected against the impairment in GSIS. There was no difference in mitochondrial ROS production. CONCLUSIONS Our results show that ω-3 protect pancreatic islets from alterations induced by P. In vivo FO supplementation modulates the redox state of pancreatic β-cell. Considering that in vitro effects do not involve mitochondrial superoxide production, we can speculate that this protection might involve NAD(P)H oxidase activity.
Collapse
|
45
|
Herrera EA, Farías JG, González-Candia A, Short SE, Carrasco-Pozo C, Castillo RL. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Mar Drugs 2015; 13:838-60. [PMID: 25658050 PMCID: PMC4344605 DOI: 10.3390/md13020838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/29/2023] Open
Abstract
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg−1·day−1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)—normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Stefania E Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Catalina Carrasco-Pozo
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
46
|
Abstract
Significant effects on blood pressure (BP) have been reported from large nutritional interventions, particularly the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet. In more recent years, numerous studies have investigated the possible BP-lowering effect of different nutraceuticals; these range from specific foods to minerals, lipids, whole proteins, peptides, amino acids, probiotics, and vitamins. While a very large body of evidence supports the use of potassium, L-arginine, vitamins C and D, cocoa flavonoids, beetroot juice, some probiotics, coenzyme Q10, controlled-release melatonin, aged garlic extract, and coffee, the use of other nutraceuticals, such as green tea, flaxseed, and resveratrol, has not as yet been supported by adequate evidence. In some cases, e.g. proteins/peptides, the responsible component needs also to be fully uncovered. Finally, while for most of the products only short-term studies are available, with no specific end-points, an ongoing very large prospective study on chocolate flavanols will answer the question whether this may reduce cardiovascular risk. Thus, in addition to data on long-term safety, further clinical research is advisable in order to identify, among active nutraceuticals, those with the best cost-effectiveness and risk-benefit ratio for a wide use in the general population with a raised cardiovascular risk consequent to uncomplicated hypertension.
Collapse
Affiliation(s)
- Cesare R Sirtori
- a Department of Pharmacological and Biomolecular Sciences , University of Milan , Milano , Italy
| | - Anna Arnoldi
- b Department of Pharmaceutical Sciences , University of Milan , Milano , Italy
| | - Arrigo F G Cicero
- c Department of Medical and Surgical Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
47
|
Impact of DHA on metabolic diseases from womb to tomb. Mar Drugs 2014; 12:6190-212. [PMID: 25528960 PMCID: PMC4278225 DOI: 10.3390/md12126190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
Long chain polyunsaturated fatty acids (LC-PUFAs) are important mediators in improving and maintaining human health over the total lifespan. One topic we especially focus on in this review is omega-3 LC-PUFA docosahexaenoic acid (DHA). Adequate DHA levels are essential during neurodevelopment and, in addition, beneficial in cognitive processes throughout life. We review the impact of DHA on societal relevant metabolic diseases such as cardiovascular diseases, obesity, and diabetes mellitus type 2 (T2DM). All of these are risk factors for cognitive decline and dementia in later life. DHA supplementation is associated with a reduced incidence of both stroke and atherosclerosis, lower bodyweight and decreased T2DM prevalence. These findings are discussed in the light of different stages in the human life cycle: childhood, adolescence, adulthood and in later life. From this review, it can be concluded that DHA supplementation is able to inhibit pathologies like obesity and cardiovascular disease. DHA could be a dietary protector against these metabolic diseases during a person’s entire lifespan. However, supplementation of DHA in combination with other dietary factors is also effective. The efficacy of DHA depends on its dose as well as on the duration of supplementation, sex, and age.
Collapse
|
48
|
Song X, Liu H, Wang X, Li Z, Huang C. Atorvastatin combined with poly-unsaturated fatty acid confers better improvement of dyslipidemia and endothelium function. Lipids Health Dis 2014; 13:186. [PMID: 25491404 PMCID: PMC4292817 DOI: 10.1186/1476-511x-13-186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/29/2014] [Indexed: 12/29/2022] Open
Abstract
Background Atorvastatin and poly-unsaturated fatty acid (PUFA) are beneficial for lipid-modification, whether atorvastatin plus PUFA could confer better improvement on dyslipidemia and endothelium function is unknown. Methods Dyslipidemia model of 40 rabbits were produced with atherogenic diet, and thereafter saline, atorvastatin, PUFA, or atorvastatin plus PUFA were prescribed for 1 week. Ten rabbits given normal diet served as the sham group. Parameters of interest including lipid profiles, endothelium function (nitric oxide, NO) and activation (solution vascular-cellular adhesion molecule, (sVCAM) and intracellular adhesion molecule, (sICAM)), markers of inflammation (C-reactive protein, CRP) and oxidation (malondialdehyde, MDA) were compared among groups. Results There was no significant difference of parameters among groups at the initial. With 1 week of atherogenic diet administration, serum levels of lipid profiles, sVCAM and sICAM, CRP and MDA were significantly increased, accompanying with profound NO reduction, as compared to the sham group. After 1 week of medical intervention, as compared to the control group (saline administration), dyslipidemia and endothelium function were modestly improved with either atorvastatin or PUFA therapy. Nevertheless, these efficacies were further and significantly enhanced with combined therapy when compared to the control group (p < 0.005), suggesting that there was synergistic effects of atorvastatin and PUFA co-therapy in rabbits with dyslipidemia. Conclusion Atorvastatin plus PUFA therapy could immediately contribute to better improvement of lipid-modification and endothelium function in rabbits with dyslipidemia.
Collapse
Affiliation(s)
| | | | | | - Zhenhua Li
- Department of Cardiology, Dongying People's Hospital, Shandong 257000, China.
| | | |
Collapse
|
49
|
Wu SY, Mayneris-Perxachs J, Lovegrove JA, Todd S, Yaqoob P. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. Am J Clin Nutr 2014; 100:1232-43. [PMID: 25332321 DOI: 10.3945/ajcn.114.088880] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs), respectively. Effects of long-chain (LC) n-3 (omega-3) polyunsaturated fatty acids (PUFAs) and the influence of genetic background on these markers are not known. OBJECTIVE We investigated effects of fish-oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 endothelial nitric oxide synthase (eNOS) polymorphism and at moderate risk of cardiovascular disease (CVD). DESIGN A total of 84 subjects with moderate risk of CVD (GG: n = 40; GT/TT: n = 44) completed a randomized, double-blind, placebo-controlled, 8-wk crossover trial of fish-oil supplementation that provided 1.5 g LC n-3 PUFAs/d. Effects of genotype and fish-oil supplementation on the blood lipid profile, inflammatory markers, vascular function (by using peripheral artery tonometry), and numbers of circulating EPCs and EMPs (by using flow cytometry) were assessed. RESULTS There was no significant effect of fish-oil supplementation on blood pressure, plasma lipids, or plasma glucose, although there was a trend (P = 0.069) toward a decrease in the plasma triglyceride concentration after fish-oil supplementation compared with placebo treatment. GT/TT subjects tended to have higher concentrations of total cholesterol and low-density lipoprotein cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish-oil supplementation on cellular markers of endothelial function. Fish-oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to those with placebo treatment, which potentially favored the maintenance of endothelial integrity. There was no influence of genotype for any cellular markers of endothelial function, which indicated that effects of fish-oil supplementation were independent of eNOS genotype. CONCLUSION Emerging cellular markers of endothelial damage, integrity, and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFAs. This trial was registered at www.controlled-trials.com/isrctn as ISRCTN76272133.
Collapse
Affiliation(s)
- Szu-Yun Wu
- From the Hugh Sinclair Unit of Human Nutrition, Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (S-YW, JM-P, JAL, and PY) and the Department of Mathematics and Statistics (ST), University of Reading, Whiteknights, Reading, United Kingdom
| | - Jordi Mayneris-Perxachs
- From the Hugh Sinclair Unit of Human Nutrition, Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (S-YW, JM-P, JAL, and PY) and the Department of Mathematics and Statistics (ST), University of Reading, Whiteknights, Reading, United Kingdom
| | - Julie A Lovegrove
- From the Hugh Sinclair Unit of Human Nutrition, Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (S-YW, JM-P, JAL, and PY) and the Department of Mathematics and Statistics (ST), University of Reading, Whiteknights, Reading, United Kingdom
| | - Susan Todd
- From the Hugh Sinclair Unit of Human Nutrition, Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (S-YW, JM-P, JAL, and PY) and the Department of Mathematics and Statistics (ST), University of Reading, Whiteknights, Reading, United Kingdom
| | - Parveen Yaqoob
- From the Hugh Sinclair Unit of Human Nutrition, Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (S-YW, JM-P, JAL, and PY) and the Department of Mathematics and Statistics (ST), University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
50
|
de Souza MDGC, Conde CMS, Laflôr CM, Sicuro FL, Bouskela E. n-3 PUFA induce microvascular protective changes during ischemia/reperfusion. Lipids 2014; 50:23-37. [PMID: 25344627 PMCID: PMC4282880 DOI: 10.1007/s11745-014-3961-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/04/2014] [Indexed: 01/20/2023]
Abstract
Ischemia/reperfusion (I/R) injury can occur in consequence of myocardial infarction, stroke and multiple organ failure, the most prevalent cause of death in critically ill patients. I/R injury encompass impairment of endothelial dependent relaxation, increase in macromolecular permeability and leukocyte-endothelium interactions. Polyunsaturated fatty acids (n-3 PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) found in fish oil have several anti-inflammatory properties and their potential benefits against I/R injury were investigated using the hamster cheek pouch preparation before and after ischemia. Before the experiments, hamsters were treated orally with saline, olive oil, fish oil and triacylglycerol (TAG) and ethyl ester (EE) forms of EPA and DHA at different daily doses for 14 days. Fish oil restored the arteriolar diameter to pre ischemic values during reperfusion. At onset and during reperfusion, Fish oil and DHA TAG significantly reduced the number of rolling leukocytes compared to saline and olive oil treatments. Fish oil, EPA TAG and DHA TAG significantly prevented the rise on leukocyte adhesion compared to saline. Fish oil (44.83 ± 3.02 leaks/cm(2)), EPA TAG (31.67 ± 2.65 leaks/cm(2)), DHA TAG (41.14 ± 3.63 leaks/cm(2)), and EPA EE (30.63 ± 2.25 leaks/cm(2)), but not DHA EE (73.17 ± 2.82 leaks/cm(2)) prevented the increase in macromolecular permeability compared to saline and olive oil (134.80 ± 1.49 and 121.00 ± 4.93 leaks/cm(2), respectively). On the basis of our findings, we may conclude that consumption of n-3 polyunsaturated fatty acids, especially in the triacylglycerol form, could be a promising therapy to prevent microvascular damage induced by ischemia/reperfusion and its consequent clinical sequelae.
Collapse
Affiliation(s)
- Maria das Graças Coelho de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Reitor Haroldo Lisboa da Cunha térreo, Rio de Janeiro, RJ, 20550-013, Brazil,
| | | | | | | | | |
Collapse
|