1
|
Zhang H, Hao J, Hong H, Gu W, Li Z, Sun J, Zhan H, Wei X, Zhou L. Redox signaling regulates the skeletal tissue development and regeneration. Biotechnol Genet Eng Rev 2024; 40:2308-2331. [PMID: 37043672 DOI: 10.1080/02648725.2023.2199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Skeletal tissue development and regeneration in mammals are intricate, multistep, and highly regulated processes. Various signaling pathways have been implicated in the regulation of these processes, including redox. Redox signaling is the signal transduction by electron transfer reactions involving free radicals or related species. Redox homeostasis is essential to cell metabolic states, as the ROS not only regulates cell biological processes but also mediates physiological processes. Following a bone fracture, redox signaling is also triggered to regulate bone healing and regeneration by targeting resident stromal cells, osteoblasts, osteoclasts and endothelial cells. This review will focus on how the redox signaling impact the bone development and bone regeneration.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Jin Hao
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - HaiPing Hong
- FangTa Hospital of Traditional Chinese Medicine, Songjiang Branch, Shanghai, East China, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | | | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Hongsheng Zhan
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| |
Collapse
|
2
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
3
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
4
|
Prieux-Klotz C, Chédotal H, Zoumpoulaki M, Chouzenoux S, Chêne C, Lopez-Sanchez A, Thomas M, Ranjan Sahoo P, Policar C, Batteux F, Bertrand HC, Nicco C, Coriat R. A New Manganese Superoxide Dismutase Mimetic Improves Oxaliplatin-Induced Neuropathy and Global Tolerance in Mice. Int J Mol Sci 2022; 23:12938. [PMID: 36361753 PMCID: PMC9658974 DOI: 10.3390/ijms232112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•-) to hydrogen peroxide (H2O2) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy. New Pt(IV) conjugate prodrugs (OxPt-x-Mn1C1A (x = 1, 1-OH, 2)), combining oxaliplatin and a Mn SOD mimic (MnSODm Mn1C1A) with a covalent link, were designed. Their stability in buffer and in the presence of sodium ascorbate was studied. In vitro, their antitumoral activity was assessed by the viability and ROS production of tumor cell lines (CT16, HCT 116, KC) and fibroblasts (primary culture and NIH 3T3). In vivo, a murine model of colorectal cancer was created with subcutaneous injection of CT26 cells in Balb/c mice. Tumor size and volume were measured weekly in four groups: vehicle, oxaliplatin, and oxaliplatin associated with MnSODm Mn1C1A and the bis-conjugate OxPt-2-Mn1C1A. Oxaliplatin-induced peripheral neuropathy (OIPN) was assessed using a Von Frey test reflecting chronic hypoalgesia. Tolerance to treatment was assessed with a clinical score including four items: weight loss, weariness, alopecia, and diarrhea. In vitro, Mn1C1A associated with oxaliplatin and Pt(IV) conjugates treatment induced significantly higher production of H2O2 in all cell lines and showed a significant improvement of the antitumoral efficacy compared to oxaliplatin alone. In vivo, the association of Mn1C1A to oxaliplatin did not decrease its antitumoral activity, while OxPt-2-Mn1C1A had lower antitumoral activity than oxaliplatin alone. Mn1C1A associated with oxaliplatin significantly decreased OIPN and also improved global clinical tolerance of oxaliplatin. A neuroprotective effect was observed, associated with a significantly improved tolerance to oxaliplatin without impairing its antitumoral activity.
Collapse
Affiliation(s)
- Caroline Prieux-Klotz
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Percy Military Hospital, Gastroenterology, 101 Avenue Henri Barbusse, 92140 Clamart, France
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Henri Chédotal
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martha Zoumpoulaki
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sandrine Chouzenoux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Charlotte Chêne
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Alvaro Lopez-Sanchez
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marine Thomas
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Priya Ranjan Sahoo
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Hélène C. Bertrand
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Carole Nicco
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
| | - Romain Coriat
- Institut Cochin, INSERM U 1016 CNRS UMR 8104, Université de Paris, 75005 Paris, France
- Gastroenterology, Cochin Hospital AP-HP, Université de Paris, 75014 Paris, France
| |
Collapse
|
5
|
Rom O, Liu Y, Finney AC, Ghrayeb A, Zhao Y, Shukha Y, Wang L, Rajanayake KK, Das S, Rashdan NA, Weissman N, Delgadillo L, Wen B, Garcia-Barrio MT, Aviram M, Kevil CG, Yurdagul A, Pattillo CB, Zhang J, Sun D, Hayek T, Gottlieb E, Mor I, Chen YE. Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis. Redox Biol 2022; 52:102313. [PMID: 35447412 PMCID: PMC9044008 DOI: 10.1016/j.redox.2022.102313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Lower circulating levels of glycine are consistently reported in association with cardiovascular disease (CVD), but the causative role and therapeutic potential of glycine in atherosclerosis, the underlying cause of most CVDs, remain to be established. Here, following the identification of reduced circulating glycine in patients with significant coronary artery disease (sCAD), we investigated a causative role of glycine in atherosclerosis by modulating glycine availability in atheroprone mice. We further evaluated the atheroprotective potential of DT-109, a recently identified glycine-based compound with dual lipid/glucose-lowering properties. Glycine deficiency enhanced, while glycine supplementation attenuated, atherosclerosis development in apolipoprotein E-deficient (Apoe−/−) mice. DT-109 treatment showed the most significant atheroprotective effects and lowered atherosclerosis in the whole aortic tree and aortic sinus concomitant with reduced superoxide. In Apoe−/− mice with established atherosclerosis, DT-109 treatment significantly reduced atherosclerosis and aortic superoxide independent of lipid-lowering effects. Targeted metabolomics and kinetics studies revealed that DT-109 induces glutathione formation in mononuclear cells. In bone marrow-derived macrophages (BMDMs), glycine and DT-109 attenuated superoxide formation induced by glycine deficiency. This was abolished in BMDMs from glutamate-cysteine ligase modifier subunit-deficient (Gclm−/-) mice in which glutathione biosynthesis is impaired. Metabolic flux and carbon tracing experiments revealed that glycine deficiency inhibits glutathione formation in BMDMs while glycine-based treatment induces de novo glutathione biosynthesis. Through a combination of studies in patients with CAD, in vivo studies using atherosclerotic mice and in vitro studies using macrophages, we demonstrated a causative role of glycine in atherosclerosis and identified glycine-based treatment as an approach to mitigate atherosclerosis through antioxidant effects mediated by induction of glutathione biosynthesis.
Collapse
Affiliation(s)
- Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Alia Ghrayeb
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yousef Shukha
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, 3109601, Israel; The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Lu Wang
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Krishani K Rajanayake
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Natan Weissman
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Bo Wen
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Aviram
- The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Arif Yurdagul
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher B Pattillo
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, 3109601, Israel; The Lipid Research Laboratory, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Eyal Gottlieb
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Inbal Mor
- The Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
7
|
Srinivasarao DA, Sreenivasa Reddy S, Bhanuprakash Reddy G, Katti DS. Simultaneous amelioration of diabetic ocular complications in lens and retinal tissues using a non-invasive drug delivery system. Int J Pharm 2021; 608:121045. [PMID: 34481006 DOI: 10.1016/j.ijpharm.2021.121045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Topically administered delivery systems for ophthalmic applications have been studied for the treatment of anterior or posterior eye diseases. However, simultaneous treatment of both anterior and posterior eye diseases has not been explored. In this study, we fabricated a topically administrable polymeric nanoparticle (NP)- based delivery system consisting of pluronic®F-68 shell and polycaprolactone core for the simultaneous treatment of both anterior and posterior eye diseases. These NPs were loaded with pyrrolidine dithiocarbamate (PDTC) or triamcinolone acetonide (TA) separately. The drug loading in NPs was optimized to initially achieve a moderate burst release of PDTC followed by slow and sustained release of both PDTC and TA. The resultant delivery system was studied for its in vivo efficacy in a diabetic retinopathy (DR) and cataract rat model. The results demonstrated that administration of PDTC NPs + TA NPs minimized oxidative stress in lens as evidenced by reduced levels of protein carbonyls and malondialdehyde, and, ameliorated DR complications in retina as evidenced by reduced expression of hypoxia inducible factor-1α along with a reduction in number of neovascular tufts and acellular capillaries. Therefore, delivery of PDTC and TA using PCL-PF68 NPs could be a useful approach for simultaneous treatment of diabetic cataract and DR.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - S Sreenivasa Reddy
- Biochemistry Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
8
|
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020; 37:101693. [PMID: 32912836 PMCID: PMC7767732 DOI: 10.1016/j.redox.2020.101693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.
Collapse
Affiliation(s)
- N A Rashdan
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - B Shrestha
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - C B Pattillo
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
9
|
El-Ghaiesh SH, Bahr HI, Ibrahiem AT, Ghorab D, Alomar SY, Farag NE, Zaitone SA. Metformin Protects From Rotenone-Induced Nigrostriatal Neuronal Death in Adult Mice by Activating AMPK-FOXO3 Signaling and Mitigation of Angiogenesis. Front Mol Neurosci 2020; 13:84. [PMID: 32625061 PMCID: PMC7314970 DOI: 10.3389/fnmol.2020.00084] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that affects substantia nigra dopamine neurons. Many studies have documented the role of oxidative stress and angiogenesis in the pathogenesis of PD. Metformin (MTF) is an antidiabetic medication and AMP-activated protein kinase (AMPK) regulator that has shown antioxidant and antiangiogenic properties in many disorders. The aim of this study is to investigate the neuroprotective effect of MTF in a mouse model of rotenone-prompted PD with a highlight on its influence on the AMPK/forkhead box transcription factor O3 (FOXO3) pathway and striatal angiogenesis. In the running study, PD was induced in mice using repeated doses of rotenone and concomitantly treated with MTF 100 or 200 mg/kg/day for 18 days. Rotarod and pole tests were used to examine the animals’ motor functionality. After that, animals were sacrificed, and brains were isolated and processed for immunohistochemical investigations or biochemical analyses. Oxidant stress and angiogenic markers were measured, including reduced glutathione, malondialdehyde, the nuclear factor erythroid 2–related factor 2 (Nrf2), hemoxygenase-1, thioredoxin, AMPK, FOXO3, and vascular endothelial growth factor (VEGF). Results indicated that MTF improved animals’ motor function, improved striatal glutathione, Nrf2, hemoxygenase-1, and thioredoxin. Furthermore, MTF upregulated AMPK-FOXO3 proteins and reduced VEGF and cleaved caspase 3. MTF also increased the number of tyrosine hydroxylase (TH)–stained neurons in the substantia nigra neurons and in striatal neuronal terminals. This study is the first to highlight that the neuroprotective role of MTF is mediated through activation of AMPK-FOXO3 signaling and inhibition of the proangiogenic factor, VEGF. Further studies are warranted to confirm this mechanism in other models of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sabah H El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda I Bahr
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Ghorab
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Suliman Y Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Noha E Farag
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Physiology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
10
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Fashioning blood vessels by ROS signalling and metabolism. Semin Cell Dev Biol 2018; 80:35-42. [DOI: 10.1016/j.semcdb.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
|
12
|
Prasai PK, Shrestha B, Orr AW, Pattillo CB. Decreases in GSH:GSSG activate vascular endothelial growth factor receptor 2 (VEGFR2) in human aortic endothelial cells. Redox Biol 2018; 19:22-27. [PMID: 30096614 PMCID: PMC6086407 DOI: 10.1016/j.redox.2018.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
The angiogenic capacity of local tissue critically regulates the response to ischemic injury. Elevated reactive oxygen species production, commonly associated with ischemic injury, has been shown to promote phosphorylation of the vascular endothelial growth factor receptor 2 (VEGFR2), a critical regulator of angiogenesis. Previous data from our lab demonstrated that diminished levels of the antioxidant glutathione positively augment ischemic angiogenesis. Here, we sought to determine the relationship between glutathione levels and oxidative stress in VEGFR2 signaling. We reveal that decreasing the ratio of GSH to GSSG with diamide leads to enhanced protein S-glutathionylation, increased reactive oxygen species (ROS) production, and enhanced VEGFR2 activation. However, increasing ROS alone was insufficient in activating VEGFR2, while ROS enhanced VEGF-stimulated VEGFR2 activation at supraphysiological levels. We also found that inhibiting glutathione reductase activity is sufficient to increase VEGFR2 activation and sensitizes cells to ROS-dependent VEGFR2 activation. Taken together, these data suggest that regulation of the cellular GSH:GSSG ratio critically regulates VEGFR2 activation. This work represents an important first step in separating thiol mediated signaling events from ROS dependent signaling.
Collapse
Affiliation(s)
- Priya K Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Bandana Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
13
|
Shrestha B, Prasai PK, Kaskas AM, Khanna A, Letchuman V, Letchuman S, Alexander JS, Orr AW, Woolard MD, Pattillo CB. Differential arterial and venous endothelial redox responses to oxidative stress. Microcirculation 2018; 25:e12486. [PMID: 29923664 DOI: 10.1111/micc.12486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/15/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Oxidative stress is a central event linked with endothelial dysfunction and inflammation in several vascular pathologies, marked by over-production of ROS and concomitant decreases in antioxidants, for example GSH. Here, we distinguish endothelial oxidative stress regulation and associated functional disparities in the two main vascular conduits, (arteries and veins) following decreases in GSH. METHODS MAECs and VCECs were used as models of arterial and venular endothelium, respectively, and BSO (0-100 μmol/L) was used to indirectly increase cellular oxidative stress. Inflammatory responses were measured using immune cell attachment and immunoblotting for endothelial cell adhesion molecule (ICAM-1, VCAM-1) expression, altered cell proliferation, and wound healing. RESULTS MAECs and VCECs exhibited differential responses to oxidative stress produced by GSH depletion with VCECs exhibiting greater sensitivity to oxidative stress. Compared to MAECs, VCECs showed a significantly increased inflammatory profile and a decreased proliferative phenotype in response to decreases in GSH levels. CONCLUSIONS Arterial and venous endothelial cells exhibit differential responses to oxidant stress, and decreases in GSH:GSSG are more exacerbated in venous endothelial cells. Specific pathogenesis in these vascular conduits, with respect to oxidant stress handling, warrants further study, especially considering surgical interventions such as Coronary artery bypass grafting that use both interchangeably.
Collapse
Affiliation(s)
- Bandana Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Priya K Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Amir M Kaskas
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Ankur Khanna
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Vijay Letchuman
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Sunjay Letchuman
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jonathan Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
14
|
Steven S, Daiber A, Dopheide JF, Münzel T, Espinola-Klein C. Peripheral artery disease, redox signaling, oxidative stress - Basic and clinical aspects. Redox Biol 2017; 12:787-797. [PMID: 28437655 PMCID: PMC5403804 DOI: 10.1016/j.redox.2017.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition) and non-pharmacological (e.g. exercise) interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension) as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Jörn F Dopheide
- Angiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christine Espinola-Klein
- Angiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Redox regulation of ischemic limb neovascularization - What we have learned from animal studies. Redox Biol 2017; 12:1011-1019. [PMID: 28505880 PMCID: PMC5430575 DOI: 10.1016/j.redox.2017.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.
Collapse
|
16
|
Wang Y, Zhou Z, Wang W, Liu M, Bao Y. Differential effects of sulforaphane in regulation of angiogenesis in a co-culture model of endothelial cells and pericytes. Oncol Rep 2017; 37:2905-2912. [DOI: 10.3892/or.2017.5565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
|
17
|
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12:18-34. [PMID: 28212521 PMCID: PMC5312547 DOI: 10.1016/j.redox.2017.01.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a multifocal alteration of the vascular wall of medium and large arteries characterized by a local accumulation of cholesterol and non-resolving inflammation. Atherothrombotic complications are the leading cause of disability and mortality in western countries. Neovascularization in atherosclerotic lesions plays a major role in plaque growth and instability. The angiogenic process is mediated by classical angiogenic factors and by additional factors specific to atherosclerotic angiogenesis. In addition to its role in plaque progression, neovascularization may take part in plaque destabilization and thromboembolic events. Anti-angiogenic agents are effective to reduce atherosclerosis progression in various animal models. However, clinical trials with anti-angiogenic drugs, mainly anti-VEGF/VEGFR, used in anti-cancer therapy show cardiovascular adverse effects, and require additional investigations.
Collapse
Affiliation(s)
- Caroline Camaré
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| | - Mélanie Pucelle
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France
| | - Anne Nègre-Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France.
| | - Robert Salvayre
- INSERM - I2MC, U-1048, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse cedex 4, France; Université Paul Sabatier Toulouse III, Faculty of Medicine, Biochemistry Departement, Toulouse, France; CHU Toulouse, Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France.
| |
Collapse
|
18
|
Barui AK, Nethi SK, Patra CR. Investigation of the role of nitric oxide driven angiogenesis by zinc oxide nanoflowers. J Mater Chem B 2017; 5:3391-3403. [DOI: 10.1039/c6tb03323g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Zinc oxide nanoflowers (ZONF) induce the generation of intracellular ROS that stimulates the phosphorylation of Akt and p38MAPK leading to activation of eNOS to produce NO, triggering angiogenesis in a cGMP dependent manner.
Collapse
Affiliation(s)
- Ayan Kumar Barui
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Susheel Kumar Nethi
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
19
|
Li Z, Xu X, Leng X, He M, Wang J, Cheng S, Wu H. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch Virol 2016; 162:603-610. [PMID: 27848013 DOI: 10.1007/s00705-016-3130-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
Abstract
Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2-. ROS are well known for being both beneficial and deleterious. Recent studies have indicated that ROS are deleterious to cells, leading to programmed cell death (PCD) at high concentrations. At low concentrations, however, ROS can act as signaling molecules in a variety of cellular processes. In this review, we present an update of our current understanding of the role and regulation of reactive oxygen species in various viral infections, cellular signaling pathways and immune responses. We then discuss how the antioxidant defense system acts as an antiviral effector to limit cell damage.
Collapse
Affiliation(s)
- Zhenguang Li
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Juye Street 4899, Changchun, 130122, Jilin, China
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Xiaoqin Xu
- Jiangyan Animal Health Inspection Institute, Jiangguan Road 251, Taizhou, 225529, Jiangsu, China
| | - Xue Leng
- Level 2 Laboratory of Medical Animal of Jilin Province, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Chinese Medicinal Materials, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, Jilin, China
| | - Minghui He
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Juye Street 4899, Changchun, 130122, Jilin, China
| | - Jiangke Wang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Juye Street 4899, Changchun, 130122, Jilin, China
| | - Shipeng Cheng
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Juye Street 4899, Changchun, 130122, Jilin, China
| | - Hua Wu
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China.
| |
Collapse
|
20
|
Guo J, Linetsky M, Yu AO, Zhang L, Howell SJ, Folkwein HJ, Wang H, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways. Chem Res Toxicol 2016; 29:2125-2135. [PMID: 27806561 DOI: 10.1021/acs.chemrestox.6b00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF expression. The new studies show that HOHA-lactone also participates in other angiogenic signaling pathways that include promoting the secretion of VEGF from retinal pigmented epithelial cells.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Liang Zhang
- Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Scott J Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
21
|
Radomska-Leśniewska DM, Hevelke A, Skopiński P, Bałan B, Jóźwiak J, Rokicki D, Skopińska-Różewska E, Białoszewska A. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications. Pharmacol Rep 2016; 68:462-71. [DOI: 10.1016/j.pharep.2015.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/11/2023]
|
22
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
23
|
Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72:3281-303. [PMID: 25972278 PMCID: PMC11113497 DOI: 10.1007/s00018-015-1928-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Massimo M. Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, 3000 Leuven, Belgium
- Laboratory of Endothelial Molecular Biology, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Mukherjee S, Sriram P, Barui AK, Nethi SK, Veeriah V, Chatterjee S, Suresh KI, Patra CR. Graphene Oxides Show Angiogenic Properties. Adv Healthc Mater 2015; 4:1722-32. [PMID: 26033847 DOI: 10.1002/adhm.201500155] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/01/2015] [Indexed: 01/04/2023]
Abstract
Angiogenesis, a process resulting in the formation of new capillaries from the pre-existing vasculature plays vital role for the development of therapeutic approaches for cancer, atherosclerosis, wound healing, and cardiovascular diseases. In this report, the synthesis, characterization, and angiogenic properties of graphene oxide (GO) and reduced graphene oxide (rGO) have been demonstrated, observed through several in vitro and in vivo angiogenesis assays. The results here demonstrate that the intracellular formation of reactive oxygen species and reactive nitrogen species as well as activation of phospho-eNOS and phospho-Akt might be the plausible mechanisms for GO and rGO induced angiogenesis. The results altogether suggest the possibilities for the development of alternative angiogenic therapeutic approach for the treatment of cardiovascular related diseases where angiogenesis plays a significant role.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Biomaterials Group; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad, Telangana State 500007 India
- Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg New Delhi 110001 India
| | - Pavithra Sriram
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad, Telangana State 500007 India
| | - Ayan Kumar Barui
- Biomaterials Group; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad, Telangana State 500007 India
- Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg New Delhi 110001 India
| | - Susheel Kumar Nethi
- Biomaterials Group; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad, Telangana State 500007 India
- Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg New Delhi 110001 India
| | - Vimal Veeriah
- Vascular Biology Lab; Life Sciences Division; AU-KBC Research CentreAnna University; Chennai Tamil Nadu 600044 India
| | - Suvro Chatterjee
- Vascular Biology Lab; Life Sciences Division; AU-KBC Research CentreAnna University; Chennai Tamil Nadu 600044 India
- Department of Biotechnology; Anna University; 600025 Chennai India
| | - Kattimuttathu Ittara Suresh
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad, Telangana State 500007 India
| | - Chitta Ranjan Patra
- Biomaterials Group; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad, Telangana State 500007 India
- Academy of Scientific and Innovative Research (AcSIR); 2 Rafi Marg New Delhi 110001 India
| |
Collapse
|
25
|
Harrison IP, Selemidis S. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets. Clin Exp Pharmacol Physiol 2015; 41:533-42. [PMID: 24738947 DOI: 10.1111/1440-1681.12238] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS), the cellular products of myriad physiological processes, have long been understood to lead to cellular damage if produced in excess and to be a causative factor in cancer through the oxidation and nitration of various macromolecules. Reactive oxygen species influence various hallmarks of cancer, such as cellular proliferation and angiogenesis, through the promotion of cell signalling pathways intrinsic to these processes and can also regulate the function of key immune cells, such as macrophages and regulatory T cells, which promote angiogenesis in the tumour environment. Herein we emphasize the family of NADPH oxidase enzymes as the most likely source of ROS, which promote angiogenesis and tumourigenesis through signalling pathways within endothelial, immune and tumour cells. In this review we focus on the pharmacological inhibitors of NADPH oxidases and suggest that, compared with traditional anti-oxidants, they are likely to offer better alternatives for suppression of tumour angiogenesis. Despite the emerging enthusiasm towards the use of NADPH oxidase inhibitors for cancer therapy, this field is still in its infancy; in particular, there is a glaring lack of knowledge of the roles of NADPH oxidases in in vivo animal models and in human cancers. Certainly a clearer understanding of the relevant signalling pathways influenced by NADPH oxidases during angiogenesis in cancer is likely to yield novel therapeutic approaches.
Collapse
Affiliation(s)
- Ian P Harrison
- Department of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | |
Collapse
|
26
|
Jové M, Mauri-Capdevila G, Suárez I, Cambray S, Sanahuja J, Quílez A, Farré J, Benabdelhak I, Pamplona R, Portero-Otín M, Purroy F. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology 2014; 84:36-45. [PMID: 25471397 DOI: 10.1212/wnl.0000000000001093] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To discover, by using metabolomics, novel candidate biomarkers for stroke recurrence (SR) with a higher prediction power than present ones. METHODS Metabolomic analysis was performed by liquid chromatography coupled to mass spectrometry in plasma samples from an initial cohort of 131 TIA patients recruited <24 hours after the onset of symptoms. Pattern analysis and metabolomic profiling, performed by multivariate statistics, disclosed specific SR and large-artery atherosclerosis (LAA) biomarkers. The use of these methods in an independent cohort (162 subjects) confirmed the results obtained in the first cohort. RESULTS Metabolomics analyses could predict SR using pattern recognition methods. Low concentrations of a specific lysophosphatidylcholine (LysoPC[16:0]) were significantly associated with SR. Moreover, LysoPC(20:4) also arose as a potential SR biomarker, increasing the prediction power of age, blood pressure, clinical features, duration of symptoms, and diabetes scale (ABCD2) and LAA. Individuals who present early (<3 months) recurrence have a specific metabolomic pattern, differing from non-SR and late SR subjects. Finally, a potential LAA biomarker, LysoPC(22:6), was also described. CONCLUSIONS The use of metabolomics in SR biomarker research improves the predictive power of conventional predictors such as ABCD2 and LAA. Moreover, pattern recognition methods allow us to discriminate not only SR patients but also early and late SR cases.
Collapse
Affiliation(s)
- Mariona Jové
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Gerard Mauri-Capdevila
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Idalmis Suárez
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Serafi Cambray
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Jordi Sanahuja
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Alejandro Quílez
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Joan Farré
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Ikram Benabdelhak
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Reinald Pamplona
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Manuel Portero-Otín
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain
| | - Francisco Purroy
- From NUTREN-Nutrigenomics Center (M.J., M.P.-O.), Department of Experimental Medicine (R.P.), Parc Científic i Tecnològic Agroalimentari de Lleida-Universitat de Lleida-IRBLleida, Lleida; Stroke Unit (G.M.-C., I.S., S.C., J.S., A.Q., I.B., F.P.), Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova de Lleida, IRBLleida; and Laboratori Clinic (J.F.), Universitari Arnau de Vilanova de Lleida, IRBLleida, Spain.
| |
Collapse
|