1
|
Mahoney BJ, Lyman LR, Ford J, Soule J, Cheung NA, Goring AK, Ellis-Guardiola K, Collazo MJ, Cascio D, Ton-That H, Schmitt MP, Clubb RT. Molecular basis of hemoglobin binding and heme removal in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2025; 122:e2411833122. [PMID: 39739808 DOI: 10.1073/pnas.2411833122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. Corynebacterium diphtheriae causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that C. diphtheriae selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits. Quantitative growth and heme release measurements are compatible with C. diphtheriae acquiring heme passively released from hemoglobin's β subunits. We propose a model in which HbpA and heme-binding receptors collectively function on the C. diphtheriae surface to capture hemoglobin and its spontaneously released heme. Acquisition mechanisms that exploit the propensity of hemoglobin's β subunit to release heme likely represent a common strategy used by bacterial pathogens to obtain iron during infections.
Collapse
Affiliation(s)
- Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Lindsey R Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Nicole A Cheung
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Kat Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Michael J Collazo
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
2
|
Jahr JS, MacKinnon K, Baum VC, Alayash AI. Hemoglobin-based oxygen carriers: Biochemical, biophysical differences, and safety. Transfusion 2025. [PMID: 39748550 DOI: 10.1111/trf.18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Jonathan S Jahr
- David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Khrystia MacKinnon
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Victor C Baum
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Zhang L, Brown MC, Mutter AC, Greenland KN, Cooley JW, Koder RL. Protein dynamics govern the oxyferrous state lifetime of an artificial oxygen transport protein. Biophys J 2023; 122:4440-4450. [PMID: 37865818 PMCID: PMC10698322 DOI: 10.1016/j.bpj.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
It has long been known that the alteration of protein side chains that occlude or expose the heme cofactor to water can greatly affect the stability of the oxyferrous heme state. Here, we demonstrate that the rate of dynamically driven water penetration into the core of an artificial oxygen transport protein also correlates with oxyferrous state lifetime by reducing global dynamics, without altering the structure of the active site, via the simple linking of the two monomers in a homodimeric artificial oxygen transport protein using a glycine-rich loop. The tethering of these two helices does not significantly affect the active site structure, pentacoordinate heme-binding affinity, reduction potential, or gaseous ligand affinity. It does, however, significantly reduce the hydration of the protein core, as demonstrated by resonance Raman spectroscopy, backbone amide hydrogen exchange, and pKa shifts in buried histidine side chains. This further destabilizes the charge-buried entatic state and nearly triples the oxyferrous state lifetime. These data are the first direct evidence that dynamically driven water penetration is a rate-limiting step in the oxidation of these complexes. It furthermore demonstrates that structural rigidity that limits water penetration is a critical design feature in metalloenzyme construction and provides an explanation for both the failures and successes of earlier attempts to create oxygen-binding proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, New York
| | - Mia C Brown
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Andrew C Mutter
- Department of Biochemistry, The City College of New York, New York, New York
| | - Kelly N Greenland
- Department of Physics, The City College of New York, New York, New York
| | - Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York; Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York.
| |
Collapse
|
4
|
Macdonald R, Mahoney BJ, Soule J, Goring AK, Ford J, Loo JA, Cascio D, Clubb RT. The Shr receptor from Streptococcus pyogenes uses a cap and release mechanism to acquire heme-iron from human hemoglobin. Proc Natl Acad Sci U S A 2023; 120:e2211939120. [PMID: 36693107 PMCID: PMC9945957 DOI: 10.1073/pnas.2211939120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's β subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.
Collapse
Affiliation(s)
- Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
5
|
Afzal A, Beavers WN, Skaar EP, Calhoun MC, Richardson KA, Landstreet SR, Cliffel DE, Wright D, Bastarache JA, Ware LB. Ultraviolet light oxidation of fresh hemoglobin eliminates aggregate formation seen in commercially sourced hemoglobin. Blood Cells Mol Dis 2023; 98:102699. [PMID: 36027791 PMCID: PMC10024311 DOI: 10.1016/j.bcmd.2022.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Elevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe3+, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time. These CAgg were intensely autofluorescent, altered intracellular structures (such as mitochondria), formed in multiple cell types and with different media composition, and formed regardless of the presence or absence of cells. An in-depth chemical analysis of these CAgg revealed that they contain inorganic components and are not pure hemoglobin. To oxidize freshly isolated hemoglobin without addition of an oxidizing agent, we developed a novel method to convert ferrous CFH to ferric CFH using ultraviolet light without the need for additional redox agents. Unlike commercial ferric hemoglobin, treatment of cells with the fresh ferric hemoglobin did not lead to CAgg formation. These studies suggest that commercially sourced CFH may contain stabilizers and additives which contribute to CAgg formation.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological Surgery, Division of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisina State University and Agricultural and Mechanical College, Baton Rouge, LA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Stuart R Landstreet
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - David Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Alayash AI, Wilson MT. Hemoglobin can Act as a (Pseudo)-Peroxidase in Vivo. What is the Evidence? Front Mol Biosci 2022; 9:910795. [PMID: 35832737 PMCID: PMC9271945 DOI: 10.3389/fmolb.2022.910795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Abdu I. Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices (DBCD), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
- *Correspondence: Abdu I. Alayash,
| | - Michael T. Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, United Kingdom
| |
Collapse
|
7
|
GOx/Hb Cascade Oxidized Crosslinking of Silk Fibroin for Tissue-Responsive Wound Repair. Gels 2022; 8:gels8010056. [PMID: 35049591 PMCID: PMC8774987 DOI: 10.3390/gels8010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Promising wound dressings can achieve rapid soft-tissue filling while refactoring the biochemical and biophysical microenvironment to recruit endogenous cells, facilitating tissue healing, integration, and regeneration. In this study, a tissue biomolecule-responsive hydrogel matrix, employing natural silk fibroin (SF) as a functional biopolymer and haemoglobin (Hb) as a peroxidase-like biocatalyst, was fabricated through cascade enzymatic crosslinking. The hydrogels possessed mechanical tunability and displayed adjustable gelation times. A tyrosine unit on SF stabilised the structure of Hb during the cascade oxidation process; thus, the immobilized Hb in SF hydrogels exhibited higher biocatalytic efficiency than the free enzyme system, which provided a continuously antioxidative system. The regulation of the dual enzyme ratio endowed the hydrogels with favourable biocompatibility, biodegradability, and adhesion strength. These multifunctional hydrogels provided a three-dimensional porous extracellular matrix-like microenvironment for promoting cell adhesion and proliferation. A rat model with a full-thickness skin defect revealed accelerated wound regeneration via collagen deposition, re-epithelialisation and revascularisation. Enzyme-loaded hydrogels are an attractive and high-safety biofilling material with the potential for wound healing, tissue regeneration, and haemostasis.
Collapse
|
8
|
Alayash AI. βCysteine 93 in human hemoglobin: a gateway to oxidative stability in health and disease. J Transl Med 2021; 101:4-11. [PMID: 32980855 DOI: 10.1038/s41374-020-00492-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
βcysteine 93 residue plays a key role in oxygen (O2)-linked conformational changes in the hemoglobin (Hb) molecule. This solvent accessible residue is also a target for binding of thiol reagents that can remotely alter O2 affinity, cooperativity, and Hb's sensitivity to changes in pH. In recent years, βCys93 was assigned a new physiological role in the transport of nitric oxide (NO) through a process of S-nitrosylation as red blood cells (RBCs) travel from lungs to tissues. βCys93 is readily and irreversibly oxidized in the presence of a mild oxidant to cysteic acid, which causes destabilization of Hb resulting in improper protein folding and the loss of heme. Under these oxidative conditions, ferryl heme (HbFe4+), a higher oxidation state of Hb is formed together with its protein radical (.HbFe4+). This radical migrates to βCys93 and interacts with other "hotspot" amino acids that are highly susceptible to oxidative modifications. Oxidized βCys93 may therefore be used as a biomarker of oxidative stress, reflecting the deterioration of Hb within RBCs intended for transfusion or RBCs from patients with hemoglobinopathies. Site specific mutation of a redox active amino acid(s) to reduce the ferryl heme or direct chemical modifications that can shield βCys93 have been proposed to improve oxidative resistance of Hb and may offer a protective therapeutic strategy.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research Food and Drug Administration (FDA), Silver Spring, MD, 20993, USA.
| |
Collapse
|
9
|
Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020; 14:603043. [PMID: 33363457 PMCID: PMC7755086 DOI: 10.3389/fncel.2020.603043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Anh Tran Tram Vo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Aswini Gnanansekaran
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, United States.,Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Materials Science and NanoEngineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States.,Department of Chemistry, Rice University, Houston, TX, United States.,Stanley H. Appel Department of Neurology, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Ascenzi P, De Simone G, Pasquadibisceglie A, Gioia M, Coletta M. Kinetic inequivalence between α and β subunits of ligand dissociation from ferrous nitrosylated human haptoglobin:hemoglobin complexes. A comparison with O 2 and CO dissociation. J Inorg Biochem 2020; 214:111272. [PMID: 33129126 DOI: 10.1016/j.jinorgbio.2020.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Haptoglobin (Hp) counterbalances the adverse effects of extra-erythrocytic hemoglobin (Hb) by trapping the αβ dimers of Hb in the bloodstream. In turn, the Hp:Hb complexes display Hb-like reactivity. Here, the kinetics of NO dissociation from ferrous nitrosylated Hp:Hb complexes (i.e., Hp1-1:Hb(II)-NO and Hp2-2:Hb(II)-NO, respectively) are reported at pH 7.0 and 20.0 °C. NO dissociation from Hp:Hb(II)-NO complexes has been followed by replacing NO with CO. Denitrosylation kinetics of Hp1-1:Hb(II)-NO and Hp2-2:Hb(II)-NO are biphasic, the relative amplitude of the fast and slow phase being 0.495 ± 0.015 and 0.485 ± 0.025, respectively. Values of koff(NO)1 and koff(NO)2 (i.e., (6.4 ± 0.8) × 10-5 s-1 and (3.6 ± 0.6) × 10-5 s-1 for Hp1-1:Hb(II)-NO and (5.8 ± 0.8) × 10-5 s-1 and (3.1 ± 0.6) × 10-5 s-1 for Hp2-2:Hb(II)-NO) are unaffected by allosteric effectors and correspond to those reported for the α and β subunits of tetrameric Hb(II)-NO and isolated α(II)-NO and β(II)-NO chains, respectively. This highlights the view that the conformation of the Hb α1β1 and α2β2 dimers matches that of the Hb high affinity conformation. Moreover, the observed functional heterogeneity reflects the variation of energy barriers for the ligand detachment and exit pathway(s) associated to the different structural arrangement of the two subunits in the nitrosylated R-state. Noteworthy, the extent of the inequivalence of α and β chains is closely similar for the O2, NO and CO dissociation in the R-state, suggesting that it is solely determined by the structural difference between the two subunits.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy.
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 79, I-00146 Roma, Italy
| | | | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133 Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133 Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| |
Collapse
|
11
|
Abstract
Several adverse events have been associated with the infusion of hemoglobin-based oxygen carriers (HBOCs), including transient hypertension, gastrointestinal, pancreatic/liver enzyme elevation, and cardiac/renal injury in humans. Although several mechanisms have been suggested, the basis of HBOC toxicity is still poorly understood. Scavenging of vascular endothelial nitric oxide (NO) and heme-mediated oxidative side reactions are thought to be the major causes of toxicity. However, based on more recent preclinical studies, oxidative pathways (driven by the heme prosthetic group) seem to play a more prominent role in the overall toxicity of free Hb or HBOCs. HBOCs display a diversity of physicochemical properties, including molecular size/cross-linking characteristics leading to differences in oxygen affinity, allosteric, redox properties, and even oxidative inactivation by protein/heme clearing mechanisms. These diverse characteristics can therefore be manipulated independently, leaving open the possibility of engineering a safe and effective HBOC. To date, several antioxidative strategies have been proposed to counteract the redox side reactions of current generation HBOCs.
Collapse
|
12
|
Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering. Shock 2020; 52:28-40. [PMID: 29112633 DOI: 10.1097/shk.0000000000001053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article reviews the key biochemical mechanisms that govern O2 transport, NO scavenging, and oxidative degradation of acellular hemoglobin (Hb) and how these ideas have been used to try to develop strategies to engineer safer and more effective hemoglobin-based oxygen carriers (HBOCs). Significant toxicities due to acellular Hb have been observed after the administration of HBOCs or after the lysis of red cells, and include rapid clearance and kidney damage due to dissociation into dimers, haptoglobin binding, and macrophage activation; early O2 release leading to decreased tissue perfusion in capillary beds; interference with endothelial and smooth muscle signaling due to nitric oxide (NO) scavenging; autooxidization of heme iron followed by production of reactive oxygen species; and iron overload symptoms due to hemin loss, globin denaturation, iron accumulation, and further inflammation. Protein engineering can be used to mitigate some of these side effects, but requires an in-depth mechanistic understanding of the biochemical and biophysical features of Hb that regulate quaternary structure, O2 affinity, NO dioxygenation, and resistance to oxidation, hemin loss, and unfolding.
Collapse
|
13
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
14
|
Munoz CJ, Pires IS, Baek JH, Buehler PW, Palmer AF, Cabrales P. Apohemoglobin-haptoglobin complex attenuates the pathobiology of circulating acellular hemoglobin and heme. Am J Physiol Heart Circ Physiol 2020; 318:H1296-H1307. [PMID: 32302494 DOI: 10.1152/ajpheart.00136.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Haptoglobin (Hp) is the plasma protein that binds and clears cell-free hemoglobin (Hb), whereas apohemoglobin (apoHb, i.e., Hb devoid of heme) can bind heme. Therefore, the apoHb-Hp protein complex should facilitate holoHb-apoHb αβ-dimer exchange and apoHb-heme intercalation. Thus, we hypothesized that apoHb-Hp could facilitate both Hb and heme clearance, which, if not alleviated, could have severe microcirculatory consequences. In this study, we characterized apoHb-Hp and Hb/heme ligand interactions and assessed their in vivo consequences. Hb exchange and heme binding with the apoHb-Hp complex was studied with transfer assays using size-exclusion high-performance liquid chromatography coupled with UV-visible spectrophotometry. Exchange/transfer experiments were conducted in guinea pigs dosed with Hb or heme-albumin followed by a challenge with equimolar amounts of apoHb-Hp. Finally, systemic and microcirculatory parameters were studied in hamsters instrumented with a dorsal window chamber via intravital microscopy. In vitro and in vivo Hb exchange and heme transfer experiments demonstrated proof-of-concept Hb/heme ligand transfer to apoHb-Hp. Dosing with the apoHb-Hp complex reversed Hb- and heme-induced systemic hypertension and microvascular vasoconstriction, reduced microvascular blood flow, and diminished functional capillary density. Therefore, this study highlights the apoHb-Hp complex as a novel therapeutic strategy to attenuate the adverse systemic and microvascular responses to intravascular Hb and heme exposure.NEW & NOTEWORTHY This study highlights the apoHb-Hp complex as a novel therapeutic strategy to attenuate the adverse systemic and microvascular responses to intravascular Hb and heme exposure. In vitro and in vivo Hb exchange and heme transfer experiments demonstrated proof-of-concept Hb/heme ligand transfer to apoHb-Hp. The apoHb-Hp complex reverses Hb- and heme-induced systemic hypertension and microvascular vasoconstriction, preserves microvascular blood flow, and functional capillary density. In summary, the unique properties of the apoHb-Hp complex prevent adverse systemic and microvascular responses to Hb and heme-albumin exposure and introduce a novel therapeutic approach to facilitate simultaneous removal of extracellular Hb and heme.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Office of Blood Research and Review, Laboratory of Biochemistry and Vascular Biology, Food and Drug Administration, Silver Spring, Maryland
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
15
|
Ascenzi P, De Simone G, Tundo GR, Coletta M. Kinetics of cyanide and carbon monoxide dissociation from ferrous human haptoglobin:hemoglobin(II) complexes. J Biol Inorg Chem 2020; 25:351-360. [DOI: 10.1007/s00775-020-01766-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
|
16
|
The Interplay between Molten Globules and Heme Disassociation Defines Human Hemoglobin Disassembly. Biophys J 2020; 118:1381-1400. [PMID: 32075750 DOI: 10.1016/j.bpj.2020.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hemoglobin functions as a tetrameric oxygen transport protein, with each subunit containing a heme cofactor. Its denaturation, either in vivo or in vitro, involves autoxidation to methemoglobin, followed by cofactor loss and globin unfolding. We have proposed a global disassembly scheme for human methemoglobin, linking hemin (ferric protoporphyrin IX) disassociation and apoprotein unfolding pathways. The model is based on the evaluation of circular dichroism and visible absorbance measurements of guanidine-hydrochloride-induced disassembly of methemoglobin and previous measurements of apohemoglobin unfolding. The populations of holointermediates and equilibrium disassembly parameters were estimated quantitatively for adult and fetal hemoglobins. The key stages are characterized by hexacoordinated hemichrome intermediates, which are important for preventing hemin disassociation from partially unfolded, molten globular species during early disassembly and late-stage assembly events. Both unfolding experiments and independent small angle x-ray scattering measurements demonstrate that heme disassociation leads to the loss of tetrameric structural integrity. Our model predicts that after autoxidation, dimeric and monomeric hemichrome intermediates occur along the disassembly pathway inside red cells, where the hemoglobin concentration is very high. This prediction suggests why misassembled hemoglobins often get trapped as hemichromes that accumulate into insoluble Heinz bodies in the red cells of patients with unstable hemoglobinopathies. These Heinz bodies become deposited on the cell membranes and can lead to hemolysis. Alternatively, when acellular hemoglobin is diluted into blood plasma after red cell lysis, the disassembly pathway appears to be dominated by early hemin disassociation events, which leads to the generation of higher fractions of unfolded apo subunits and free hemin, which are known to damage the integrity of blood vessel walls. Thus, our model provides explanations of the pathophysiology of hemoglobinopathies and other disease states associated with unstable globins and red cell lysis and also insights into the factors governing hemoglobin assembly during erythropoiesis.
Collapse
|
17
|
Olson JS. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxid Redox Signal 2020; 32:228-246. [PMID: 31530172 PMCID: PMC6948003 DOI: 10.1089/ars.2019.7876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Over the past 50 years, the mechanisms for O2 storage and transport have been determined quantitatively on distance scales from millimeters to tenths of nanometers and timescales from seconds to picoseconds. Recent Advances: In this review, I have described four key conclusions from work done by my group and our close colleagues. (i) O2 uptake by mammalian red cells is limited by diffusion through unstirred water layers adjacent to the cell surface and across cell-free layers adjacent to vessel walls. (ii) In most vertebrates, hemoglobins (Hbs) and myoglobins (Mbs), the distal histidine at the E7 helical position donates a strong hydrogen bond to bound O2, which selectively enhances O2 affinity, prevents carbon monoxide poisoning, and markedly slows autoxidation. (iii) O2 binding to mammalian Hbs and Mbs occurs by migration of the ligand through a channel created by upward rotation of the His(E7) side chain, capture in the empty space of the distal pocket, and then coordination with the ferroprotoporphyrin IX (heme) iron atom. (iv) The assembly of Mbs and Hbs occurs by formation of molten globule intermediates, in which the N- and C-terminal helices have almost fully formed secondary structures, but the heme pockets are disordered and followed by high-affinity binding of heme. Critical Issues: These conclusions indicate that there are often compromises between O2 transport function, holoprotein stability, and the efficiency of assembly. Future Directions: However, the biochemical mechanisms underlying these conclusions provide the framework for understanding globin evolution in greater detail and for engineering more efficient and stable globins.
Collapse
Affiliation(s)
- John S Olson
- BioSciences Department, Rice University, Houston, Texas
| |
Collapse
|
18
|
Ligand-dependent inequivalence of the α and β subunits of ferric human hemoglobin bound to haptoglobin. J Inorg Biochem 2020; 202:110814. [DOI: 10.1016/j.jinorgbio.2019.110814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
|
19
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
20
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Núñez G, Sakamoto K, Soares MP. Innate Nutritional Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:11-18. [PMID: 29914937 DOI: 10.4049/jimmunol.1800325] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) is an essential micronutrient for both microbes and their hosts. The biologic importance of Fe derives from its inherent ability to act as a universal redox catalyst, co-opted in a variety of biochemical processes critical to maintain life. Animals evolved several mechanisms to retain and limit Fe availability to pathogenic microbes, a resistance mechanism termed "nutritional immunity." Likewise, pathogenic microbes coevolved to deploy diverse and efficient mechanisms to acquire Fe from their hosts and in doing so overcome nutritional immunity. In this review, we discuss how the innate immune system regulates Fe metabolism to withhold Fe from pathogenic microbes and how strategies used by pathogens to acquire Fe circumvent these resistance mechanisms.
Collapse
Affiliation(s)
- Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; .,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Kei Sakamoto
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | | |
Collapse
|
22
|
Svistunenko DA, Manole A. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic? J Biomed Res 2019; 34:281-291. [PMID: 32475850 PMCID: PMC7386409 DOI: 10.7555/jbr.33.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the difficulties in creating a blood substitute on the basis of human haemoglobin (Hb) is the toxic nature of Hb when it is outside the safe environment of the red blood cells. The plasma protein haptoglobin (Hp) takes care of the Hb physiologically leaked into the plasma – it binds Hb and makes it much less toxic while retaining the Hb's high oxygen transporting capacity. We used Electron Paramagnetic Resonance (EPR) spectroscopy to show that the protein bound radical induced by H2O2 in Hb and Hp-Hb complex is formed on the same tyrosine residue(s), but, in the complex, the radical is found in a more hydrophobic environment and decays slower than in unbound Hb, thus mitigating its oxidative capacity. The data obtained in this study might set new directions in engineering blood substitutes for transfusion that would have the oxygen transporting efficiency typical of Hb, but which would be non-toxic.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Biomedical EPR Facility, School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Oxygen dissociation from ferrous oxygenated human hemoglobin:haptoglobin complexes confirms that in the R-state α and β chains are functionally heterogeneous. Sci Rep 2019; 9:6780. [PMID: 31043649 PMCID: PMC6494993 DOI: 10.1038/s41598-019-43190-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 01/25/2023] Open
Abstract
The adverse effects of extra-erythrocytic hemoglobin (Hb) are counterbalanced by several plasma proteins devoted to facilitate the clearance of free heme and Hb. In particular, haptoglobin (Hp) traps the αβ dimers of Hb, which are delivered to the reticulo-endothelial system by CD163 receptor-mediated endocytosis. Since Hp:Hb complexes show heme-based reactivity, kinetics of O2 dissociation from the ferrous oxygenated human Hp1-1:Hb and Hp2-2:Hb complexes (Hp1-1:Hb(II)-O2 and Hp2-2:Hb(II)-O2, respectively) have been determined. O2 dissociation from Hp1-1:Hb(II)-O2 and Hp2-2:Hb(III)-O2 follows a biphasic process. The relative amplitude of the fast and slow phases ranges between 0.47 and 0.53 of the total amplitude, with values of koff1 (ranging between 25.6 ± 1.4 s-1 and 29.1 ± 1.3 s-1) being about twice faster than those of koff2 (ranging between 13.8 ± 1.6 s-1 and 16.1 ± 1.2 s-1). Values of koff1 and koff2 are essentially the same independently on whether O2 dissociation has been followed after addition of a dithionite solution or after O2 displacement by a CO solution in the presence of dithionite. They correspond to those reported for the dissociation of the first O2 molecule from tetrameric Hb(II)-O2, indicating that in the R-state α and β chains are functionally heterogeneous and the tetramer and the dimer behave identically. Accordingly, the structural conformation of the α and β chains of the Hb dimer bound to Hp corresponds to that of the subunits of the Hb tetramer in the R-state.
Collapse
|
24
|
Gaastra B, Ren D, Alexander S, Bennett ER, Bielawski DM, Blackburn SL, Borsody MK, Doré S, Galea J, Garland P, He T, Iihara K, Kawamura Y, Leclerc JL, Meschia JF, Pizzi MA, Tamargo RJ, Yang W, Nyquist PA, Bulters DO, Galea I. Haptoglobin genotype and aneurysmal subarachnoid hemorrhage: Individual patient data analysis. Neurology 2019; 92:e2150-e2164. [PMID: 30952792 DOI: 10.1212/wnl.0000000000007397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform an individual patient-level data (IPLD) analysis and to determine the relationship between haptoglobin (HP) genotype and outcomes after aneurysmal subarachnoid hemorrhage (aSAH). METHODS The primary outcome was favorable outcome on the modified Rankin Scale or Glasgow Outcome Scale up to 12 months after ictus. The secondary outcomes were occurrence of delayed ischemic neurologic deficit, radiologic infarction, angiographic vasospasm, and transcranial Doppler evidence of vasospasm. World Federation of Neurological Surgeons (WFNS) scale, Fisher grade, age, and aneurysmal treatment modality were covariates for both primary and secondary outcomes. As preplanned, a 2-stage IPLD analysis was conducted, followed by these sensitivity analyses: (1) unadjusted; (2) exclusion of unpublished studies; (3) all permutations of HP genotypes; (4) sliding dichotomy; (5) ordinal regression; (6) 1-stage analysis; (7) exclusion of studies not in Hardy-Weinberg equilibrium (HWE); (8) inclusion of studies without the essential covariates; (9) inclusion of additional covariates; and (10) including only covariates significant in univariate analysis. RESULTS Eleven studies (5 published, 6 unpublished) totaling 939 patients were included. Overall, the study population was in HWE. Follow-up times were 1, 3, and 6 months for 355, 516, and 438 patients. HP genotype was not associated with any primary or secondary outcome. No trends were observed. When taken through the same analysis, higher age and WFNS scale were associated with an unfavorable outcome as expected. CONCLUSION This comprehensive IPLD analysis, carefully controlling for covariates, refutes previous studies showing that HP1-1 associates with better outcome after aSAH.
Collapse
Affiliation(s)
- Ben Gaastra
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dianxu Ren
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sheila Alexander
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ellen R Bennett
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dawn M Bielawski
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Spiros L Blackburn
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark K Borsody
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sylvain Doré
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - James Galea
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patrick Garland
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian He
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Koji Iihara
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yoichiro Kawamura
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jenna L Leclerc
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - James F Meschia
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael A Pizzi
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rafael J Tamargo
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wuyang Yang
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul A Nyquist
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Diederik O Bulters
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian Galea
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
25
|
Meng F, Kassa T, Strader MB, Soman J, Olson JS, Alayash AI. Substitutions in the β subunits of sickle-cell hemoglobin improve oxidative stability and increase the delay time of sickle-cell fiber formation. J Biol Chem 2019; 294:4145-4159. [PMID: 30630954 PMCID: PMC6422104 DOI: 10.1074/jbc.ra118.006452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
After reacting with hydrogen peroxide (H2O2), sickle-cell hemoglobin (HbS, βE6V) remains longer in a highly oxidizing ferryl form (HbFe4+=O) and induces irreversible oxidation of “hot-spot” amino acids, including βCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in β subunits (F41Y), a substitution present in Hb Mequon; the second contained the Asp (K82D) found in the β cleft of Hb Providence; and the third had both of these β substitutions. Both the single Tyr-41 and Asp-82 constructs lowered the oxygen affinity of HbS but had little or no effects on autoxidation or heme loss kinetics. In the presence of H2O2, both rHbS βF41Y and βF41Y/K82D enhanced ferryl Hb reduction by providing a pathway for electrons to reduce the heme via the Tyr-41 side chain. MS analysis of βCys-93 revealed moderate inhibition of thiol oxidation in the HbS single F41Y variant and dramatic 3- to 8-fold inhibition of cysteic acid formation in rHbS βK82D and βF41Y/K82D, respectively. Under hypoxia, βK82D and βF41Y/K82D HbS substitutions increased the delay time by ∼250 and 600 s before the onset of polymerization compared with the rHbS control and rHbS βF41Y, respectively. Moreover, at 60 °C, rHbS βK82D exhibited superior structural stability. Asp-82 also enhanced the function of Tyr as a redox-active amino acid in the rHbS βF41Y/K82D variant. We conclude that the βK82D and βF41Y substitutions add significant resistance to oxidative stress and anti-sickling properties to HbS and therefore could be potential genome-editing targets.
Collapse
Affiliation(s)
- Fantao Meng
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Tigist Kassa
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Michael Brad Strader
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Jayashree Soman
- the BioSciences Department, Rice University, Houston, Texas 77251
| | - John S Olson
- the BioSciences Department, Rice University, Houston, Texas 77251
| | - Abdu I Alayash
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| |
Collapse
|
26
|
Wang Y, Park H, Lin H, Kitova EN, Klassen JS. Multipronged ESI–MS Approach for Studying Glycan-Binding Protein Interactions with Glycoproteins. Anal Chem 2019; 91:2140-2147. [DOI: 10.1021/acs.analchem.8b04673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yilin Wang
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Heajin Park
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
27
|
The nitrite reductase activity of ferrous human hemoglobin:haptoglobin 1-1 and 2-2 complexes. J Inorg Biochem 2018; 187:116-122. [DOI: 10.1016/j.jinorgbio.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
28
|
Ascenzi P, Coletta M. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study. J Phys Chem B 2018; 122:11100-11107. [DOI: 10.1021/acs.jpcb.8b05340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
29
|
Dalan R, Liuh Ling G. The protean role of haptoglobin and haptoglobin genotypes on vascular complications in diabetes mellitus. Eur J Prev Cardiol 2018; 25:1502-1519. [PMID: 29799294 DOI: 10.1177/2047487318776829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction and background Haptoglobin (Hp) is considered to be an antioxidant and protective against cardiovascular complications. Polymorphisms in the Hp gene interact with diabetes mellitus to affect the risk of vascular complications. Methods We review the updated literature about the protean role of Hp and Hp genotypes spanning genomics, molecular, translational and clinical studies. We searched Pubmed, SCOPUS and Google Scholar for all articles using the keywords: haptoglobin and/or haptoglobin polymorphism and diabetes. We review the diverse Hp genotypes, phenotypes and the impact on diabetes complications, including lessons from animal models and in vitro models. We describe the clinical studies on the associations of Hp genotypes with vascular complications in type 1 and type 2 diabetes comprehensively. We review the studies looking at vitamin E supplementation in a personalized manner in Hp2-2 diabetes individuals. Results and conclusion Hp genotypes have evolved as a result of deletions in the traditional Hp genes. The Hp genotypes have been associated with microvascular and macrovascular complications in type 1 diabetes mellitus but the association in type 2 diabetes is more consistent with cardiovascular complications. A preferential benefit of vitamin E and other antioxidants in the Hp2-2 genotype for cardiovascular complications in type 2 diabetes has been seen presumably secondary to interaction with high-density lipoprotein function. Hence, the Hp genotype can be used to personalize antioxidant therapeutics in diabetes patients. These results need to be corroborated in large, global, pragmatic, prospective, cardiovascular outcome trials in type 2 diabetes patients.
Collapse
Affiliation(s)
- Rinkoo Dalan
- 1 Tan Tock Seng Hospital, Singapore.,2 NTU-Lee Kong Chian School of Medicine, Singapore.,3 Yong Loo Lin School of Medicine, Singapore
| | | |
Collapse
|
30
|
Kassa T, Strader MB, Nakagawa A, Zapol WM, Alayash AI. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics 2018; 9:1260-1270. [PMID: 28770911 DOI: 10.1039/c7mt00104e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a β globin gene mutation of hemoglobin (HbS). The polymerization of deoxyHbS and its subsequent aggregation (into long fibers) is the primary molecular event which leads to red blood cell (RBC) sickling and ultimately hemolytic anemia. We have recently suggested that HbS oxidative toxicity may also contribute to SCD pathophysiology due to its defective pseudoperoxidase activity. As a consequence, a persistently higher oxidized ferryl heme is formed which irreversibly oxidizes "hotspot" residues (particularly βCys93) causing protein unfolding and subsequent heme loss. In this report we confirmed first, the allosteric effect of a newly developed reagent (di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide) (TD-1) on oxygen affinity within SS RBCs. There was a considerable left shift in oxygen equilibrium curves (OECs) representing treated SS cells. Under hypoxic conditions, TD-1 treatment of HbS resulted in an approximately 200 s increase in the delay time of HbS polymerization over the untreated HbS control. The effect of TD-1 binding to HbS was also tested on oxidative reactions by incrementally treating HbS with increasing hydrogen peroxide (H2O2) concentrations. Under these experimental conditions, ferryl levels were consistently reduced by approximately 35% in the presence of TD-1. Mass spectrometric analysis confirmed that upon binding to βCys93, TD-1 effectively blocked irreversible oxidation of this residue. In conclusion, TD-1 appears to shield βCys93 (the end point of radical formation in HbS) and when coupled with its allosteric effect on oxygen affinity may provide new therapeutic modalities for the treatment of SCD.
Collapse
Affiliation(s)
- Tigist Kassa
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | | | | | | | |
Collapse
|
31
|
Meng F, Kassa T, Jana S, Wood F, Zhang X, Jia Y, D’Agnillo F, Alayash AI. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally. Bioconjug Chem 2018; 29:1560-1575. [DOI: 10.1021/acs.bioconjchem.8b00093] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fantao Meng
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Tigist Kassa
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Francine Wood
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Xiaoyuan Zhang
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yiping Jia
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Abdu I. Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
32
|
Phenotype-specific recombinant haptoglobin polymers co-expressed with C1r-like protein as optimized hemoglobin-binding therapeutics. BMC Biotechnol 2018; 18:15. [PMID: 29544494 PMCID: PMC5856381 DOI: 10.1186/s12896-018-0424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/07/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Preclinical studies have evaluated haptoglobin (Hp) polymers from pooled human plasma as a therapeutic protein to attenuate toxic effects of cell-free hemoglobin (Hb). Proof of concept studies have demonstrated efficacy of Hp in hemolysis associated with transfusion and sickle cell anemia. However, phenotype-specific Hp products might be desirable to exploit phenotype specific activities of Hp 1-1 versus Hp 2-2, offering opportunities for recombinant therapeutics. Prohaptoglobin (proHp) is the primary translation product of the Hp mRNA. ProHp is proteolytically cleaved by complement C1r subcomponent-like protein (C1r-LP) in the endoplasmic reticulum. Two main allelic Hp variants, HP1 and HP2 exist. The larger HP2 is considered to be the ancestor variant of all human Hp alleles and is characterized by an α2-chain, which contains an extra cysteine residue that pairs with additional α-chains generating multimers with molecular weights of 200-900 kDa. The two human HP1 alleles (HP1F and HP1S) differ by a two-amino-acid substitution polymorphism within the α-chain and are derived from HP2 by recurring exon deletions. RESULTS In the present study, we describe a process for the production of recombinant phenotype specific Hp polymers in mammalian FS293F cells. This approach demonstrates that efficient expression of mature and fully functional protein products requires co-expression of active C1r-LP. The functional characterization of our proteins, which included monomer/polymer distribution, binding affinities as well as NO-sparing and antioxidant functions, demonstrated that C1r-LP-processed recombinant Hp demonstrates equal protective functions as plasma derived Hp in vitro as well as in animal studies. CONCLUSIONS We present a recombinant production process for fully functional phenotype-specific Hp therapeutics. The proposed process could accelerate the development of Hb scavengers to treat patients with cell-free Hb associated disease states, such as sickle cell disease and other hemolytic conditions.
Collapse
|
33
|
Sjodt M, Macdonald R, Marshall JD, Clayton J, Olson JS, Phillips M, Gell DA, Wereszczynski J, Clubb RT. Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. J Biol Chem 2018. [PMID: 29540481 DOI: 10.1074/jbc.ra117.000803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and β-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.
Collapse
Affiliation(s)
- Megan Sjodt
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | - Ramsay Macdonald
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | | | - Joseph Clayton
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - John S Olson
- the Department of BioSciences, Rice University, Houston, Texas 77251, and
| | | | - David A Gell
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeff Wereszczynski
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Robert T Clubb
- From the Department of Chemistry and Biochemistry, .,UCLA-DOE Institute of Genomics and Proteomics, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
34
|
Engineering oxidative stability in human hemoglobin based on the Hb providence (βK82D) mutation and genetic cross-linking. Biochem J 2017; 474:4171-4192. [PMID: 29070524 DOI: 10.1042/bcj20170491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
Abstract
Previous work suggested that hemoglobin (Hb) tetramer formation slows autoxidation and hemin loss and that the naturally occurring mutant, Hb Providence (HbProv; βK82D), is much more resistant to degradation by H2O2 We have examined systematically the effects of genetic cross-linking of Hb tetramers with and without the HbProv mutation on autoxidation, hemin loss, and reactions with H2O2, using native HbA and various wild-type recombinant Hbs as controls. Genetically cross-linked Hb Presbyterian (βN108K) was also examined as an example of a low oxygen affinity tetramer. Our conclusions are: (a) at low concentrations, all the cross-linked tetramers show smaller rates of autoxidation and hemin loss than HbA, which can dissociate into much less stable dimers and (b) the HbProv βK82D mutation confers more resistance to degradation by H2O2, by markedly inhibiting oxidation of the β93 cysteine side chain, particularly in cross-linked tetramers and even in the presence of the destabilizing Hb Presbyterian mutation. These results show that cross-linking and the βK82D mutation do enhance the resistance of Hb to oxidative degradation, a critical element in the design of a safe and effective oxygen therapeutic.
Collapse
|
35
|
Dalan R, Liu X, Goh LL, Bing S, Luo KQ. Endothelial cell apoptosis correlates with low haptoglobin concentrations in diabetes. Diab Vasc Dis Res 2017; 14:534-539. [PMID: 28830235 PMCID: PMC5652643 DOI: 10.1177/1479164117719827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The haptoglobin 2-2 genotype is associated with lower haptoglobin concentrations and atherosclerosis in diabetes. Endothelial cell apoptosis contributes significantly to atherosclerosis. We studied endothelial cell apoptosis in diabetes patients with haptoglobin 2-2 and non-haptoglobin 2-2 genotype. Approach and results: We pooled plasma from 10 patients with haptoglobin 2-2 and non-haptoglobin 2-2 genotype and quantified endothelial cell apoptosis using a hemodynamic lab-on-chip system. Then, we conducted similar experiments on individual diabetes plasma samples with the haptoglobin 2-2 ( n = 20) and non-haptoglobin 2-2 genotype ( n = 20). Haptoglobin beta concentrations were measured by Western blot analysis. We looked for association with demographic, metabolic variables, inflammation and oxidative stress. In pooled plasma, endothelial cell apoptosis was higher in haptoglobin 2-2 group (haptoglobin 2-2: 23.18% vs non-haptoglobin 2-2:15.32%). In individual samples, univariate analysis showed that endothelial cell apoptosis correlated with haptoglobin beta concentration [ β = -10.29 (95% confidence interval: -13.44, -7.14), p < 0.001] and total haptoglobin concentration [ β = -0.03 (95% confidence interval: -0.05, -0.002), p = 0.03]. After multivariable analysis, only haptoglobin beta concentrations remained significant [ β = -9.24 (95% confidence interval: -13.10, -5.37), p < 0.001]. The interaction term between haptoglobin genotypes and haptoglobin beta was not significant ( p > 0.05). CONCLUSION These results show that regardless of the haptoglobin genotype, haptoglobin is associated with prevention of endothelial cell apoptosis in diabetes.
Collapse
Affiliation(s)
- Rinkoo Dalan
- Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- NUS Yong Loo Lin School of Medicine, National University Hospital, Singapore
- Rinkoo Dalan, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore.
| | - Xiaofeng Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- Department of Molecular Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | - Sun Bing
- Tan Tock Seng Hospital, Singapore
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
36
|
Haptoglobin Genotype and Outcome after Subarachnoid Haemorrhage: New Insights from a Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6747940. [PMID: 29104730 PMCID: PMC5634574 DOI: 10.1155/2017/6747940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Haptoglobin (Hp) is a plasma protein involved in clearing extracellular haemoglobin and regulating inflammation; it exists as two genetic variants (Hp1 and Hp2). In a meta-analysis of six published studies, we confirm that Hp genotype affects short-term outcome (cerebral vasospasm and/or delayed cerebral ischemia) after subarachnoid haemorrhage (SAH) but not long-term outcome (Glasgow Outcome Score and modified Rankin Scale between one and three months). A closer examination of the heterozygous group revealed that the short-term outcome of Hp2-1 individuals clustered with that of Hp1-1 and not Hp2-2, suggesting that the presence of one Hp1 allele was sufficient to confer protection. Since the presence of the Hp dimer is the only common feature between Hp1-1 and Hp2-1 individuals, the absence of this Hp moiety is most likely to underlie vasospasm in Hp2-2 individuals. These results have implications for prognosis after SAH and will inform further research into Hp-based mechanism of action and treatment.
Collapse
|
37
|
Chintagari NR, Jana S, Alayash AI. Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells. Am J Respir Cell Mol Biol 2017; 55:288-98. [PMID: 26974230 DOI: 10.1165/rcmb.2015-0197oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lung alveoli are lined by alveolar type (AT) 1 cells and cuboidal AT2 cells. The AT1 cells are likely to be exposed to cell-free hemoglobin (Hb) in multiple lung diseases; however, the role of Hb redox (reduction-oxidation) reactions and their precise contributions to AT1 cell injury are not well understood. Using mouse lung epithelial cells (E10) as an AT1 cell model, we demonstrate here that higher Hb oxidation states, ferric Hb (HbFe(3+)) and ferryl Hb (HbFe(4+)) and subsequent heme loss play a central role in the genesis of injury. Exposures to HbFe(2+) and HbFe(3+) for 24 hours induced expression of heme oxygenase (HO)-1 protein in E10 cells and HO-1 translocation in the purified mitochondrial fractions. Both of these effects were intensified with increasing oxidation states of Hb. Next, we examined the effects of Hb oxidation and free heme on mitochondrial bioenergetic function by measuring changes in the mitochondrial transmembrane potential and oxygen consumption rate. In contrast to HbFe(2+), HbFe(3+) reduced basal oxygen consumption rate, indicating compromised mitochondrial activity. However, HbFe(4+) exposure not only induced early expression of HO-1 but also caused mitochondrial dysfunction within 12 hours when compared with HbFe(2+) and HbFe(3+). Exposure to HbFe(4+) for 24 hours also caused mitochondrial depolarization in E10 cells. The deleterious effects of HbFe(3+) and HbFe(4+) were reversed by the addition of scavenger proteins, haptoglobin and hemopexin. Collectively, these data establish, for the first time, a central role for cell-free Hb in lung epithelial injury, and that these effects are mediated through the redox transition of Hb to higher oxidation states.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
38
|
Alayash AI. Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis 2017; 70:78-86. [PMID: 28554826 DOI: 10.1016/j.bcmd.2017.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Polymerization of deoxy sickle cell hemoglobin (HbS) is well recognized as the primary event that triggers the classic cycles of sickling/unsickling of patients red blood cells (RBCs). RBCs are also subjected to continuous endogenous and exogenous oxidative onslaughts resulting in hemolytic rate increases which contribute to the evolution of vasculopathies associated with this disease. Compared to steady-state conditions, the occurrences of vaso-occlusive crises increase the levels of both RBC-derived microparticles as well as extracellular Hb in circulation. Common byproduct resulting from free Hb oxidation and from Hb-laden microparticles is heme (now recognized as damage associated molecular pattern (DAMP) molecule) which has been shown to initiate inflammatory responses. This review provides new insights into the interplay between microparticles, free Hb and heme focusing on Hb's pseudoperoxidative activity that drives RBC's cytosolic, membrane changes as well as oxidative toxicity towards the vascular system. Emerging antioxidative strategies that include the use of protein and heme scavengers in controlling Hb oxidative pathways are discussed.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| |
Collapse
|
39
|
Belcher JD, Chen C, Nguyen J, Zhang P, Abdulla F, Nguyen P, Killeen T, Xu P, O'Sullivan G, Nath KA, Vercellotti GM. Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate. Antioxid Redox Signal 2017; 26:748-762. [PMID: 26914345 PMCID: PMC5421647 DOI: 10.1089/ars.2015.6571] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Heme derived from hemolysis is pro-oxidative and proinflammatory and promotes vaso-occlusion in murine models of sickle cell disease (SCD), suggesting that enhanced detoxification of heme may be beneficial. Nuclear factor erythroid-2-related factor-2 (Nrf2) transcription pathway is the principal cellular defense system responding to pro-oxidative and proinflammatory stress. Dimethyl fumarate (DMF), a drug approved for treatment of multiple sclerosis, provides neuroprotection by activating Nrf2-responsive genes. We hypothesized that induction of Nrf2 with DMF would be beneficial in murine SCD models. RESULTS DMF (30 mg/kg/day) or vehicle (0.08% methyl cellulose) was administered for 3-7 days to NY1DD and HbSS-Townes SCD mice. Vaso-occlusion, a hallmark of SCD, measured in sickle mice with dorsal skinfold chambers, was inhibited by DMF. The inhibitory effect of DMF was abrogated by the heme oxygenase-1 (HO-1) inhibitor tin protoporphyrin. DMF increased nuclear Nrf2 and cellular mRNA of Nrf2-responsive genes in livers and kidneys. DMF increased heme defenses, including HO-1, haptoglobin, hemopexin, and ferritin heavy chain, although plasma hemoglobin and heme levels were unchanged. DMF decreased markers of inflammation, including nuclear factor-kappa B phospho-p65, adhesion molecules, and toll-like receptor 4. DMF administered for 24 weeks to HbSS-Townes mice decreased hepatic necrosis, inflammatory cytokines, and irregularly shaped erythrocytes and increased hemoglobin F, but did not alter hematocrits, reticulocyte counts, lactate dehydrogenase, plasma heme, or spleen weights, indicating that the beneficial effects of DMF were not attributable to decreased hemolysis. INNOVATION These studies identify Nrf2 activation as a new therapeutic target for the treatment of SCD. CONCLUSION DMF activates Nrf2, enhances antioxidant defenses, and inhibits inflammation and vaso-occlusion in SCD mice. Antioxid. Redox Signal. 26, 748-762.
Collapse
Affiliation(s)
- John D Belcher
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Chunsheng Chen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Julia Nguyen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Ping Zhang
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Fuad Abdulla
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Phong Nguyen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Trevor Killeen
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Pauline Xu
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| | - Gerry O'Sullivan
- 2 Veterinary Population Medicine, University of Minnesota , St. Paul, Minnesota
| | - Karl A Nath
- 3 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic/Foundation , Rochester, Minnesota
| | - Gregory M Vercellotti
- 1 Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
40
|
Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK. Haptoglobin. Antioxid Redox Signal 2017; 26:814-831. [PMID: 27650279 DOI: 10.1089/ars.2016.6793] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haptoglobin (Hp) is an abundant human plasma protein that tightly captures hemoglobin (Hb) during hemolysis. The Hb-Hp complex formation reduces the oxidative properties of heme/Hb and promotes recognition by the macrophage scavenger receptor CD163. This leads to Hb-Hp breakdown and heme catabolism by heme oxygenase and biliverdin reductase. Gene duplications of a part of or the entire Hp gene in the primate evolution have led to variant Hp gene products that collectively may be designated "the haptoglobins (Hps)" as they all bind Hb. These variant products include the human-specific multimeric Hp phenotypes in individuals, which are hetero- or homozygous for an Hp2 gene allele. The Hp-related protein (Hpr) is another Hp duplication product in humans and other primates. Alternative functions of the variant Hps are indicated by numerous reports on association between Hp phenotypes and disease as well as the elucidation of a specific role of Hpr in the innate immune defense. Recent Advances: Recent functional and structural information on Hp and receptor systems for Hb removal now provides insight on how Hp carries out essential functions such as the Hb detoxification/removal, and how Hpr, by acting as an Hp-lookalike, can sneak a lethal toxin into trypanosome parasites that cause mammalian sleeping sickness. Critical Issues and Future Directions: The new structural insight may facilitate ongoing attempts of developing Hp derivatives for prevention of Hb toxicity in hemolytic diseases such as sickle cell disease and other hemoglobinopathies. Furthermore, the new structural knowledge may help identifying yet unknown functions based on other disease-relevant biological interactions involving Hps. Antioxid. Redox Signal. 26, 814-831.
Collapse
Affiliation(s)
| | | | - Kirstine Lindhardt Sæderup
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Anne Kuhlee
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Stefan Raunser
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Jonas H Graversen
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Søren Kragh Moestrup
- 1 Department of Biomedicine, University of Aarhus , Aarhus C, Denmark .,2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark .,4 Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense C, Denmark
| |
Collapse
|
41
|
Chakane S, Matos T, Kettisen K, Bulow L. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein. Redox Biol 2017; 12:114-120. [PMID: 28222378 PMCID: PMC5318347 DOI: 10.1016/j.redox.2017.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Hemoglobin (Hb) is well protected inside the red blood cells (RBCs). Upon hemolysis and when free in circulation, Hb can be involved in a range of radical generating reactions and may thereby attack several different biomolecules. In this study, we have examined the potential damaging effects of cell-free Hb on plasmid DNA (pDNA). Hb induced cleavage of supercoiled pDNA (sc pDNA) which was proportional to the concentration of Hb applied. Almost 70% of sc pDNA was converted to open circular or linear DNA using 10 µM of Hb in 12 h. Hb can be present in several different forms. The oxy (HbO2) and met forms are most reactive, while the carboxy-protein shows only low hydrolytic activity. Hemoglobin A (HbA) could easily induce complete pDNA cleavage while fetal hemoglobin (HbF) was three-fold less reactive. By inserting, a redox active cysteine residue on the surface of the alpha chain of HbF by site-directed mutagenesis, the DNA cleavage reaction was enhanced by 82%. Reactive oxygen species were not directly involved in the reaction since addition of superoxide dismutase and catalase did not prevent pDNA cleavage. The reactivity of Hb with pDNA can rather be associated with the formation of protein based radicals. Hemoglobin induced plasmid DNA cleavage in the absence of hydrogen peroxide. Fetal hemoglobin was three-fold less reactive compared to the adult protein on plasmid DNA. Insertion of a cysteine residue in the alpha chain enhanced the DNA cleavage reaction by 82%. Protein based radicals are associated with the DNA cleavage activity of hemoglobin.
Collapse
Affiliation(s)
- Sandeep Chakane
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden
| | - Tiago Matos
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden
| | - Karin Kettisen
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden
| | - Leif Bulow
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden.
| |
Collapse
|
42
|
Bissé E, Schaeffer-Reiss C, Van Dorsselaer A, Alayi TD, Epting T, Winkler K, Benitez Cardenas AS, Soman J, Birukou I, Samuel PP, Olson JS. Hemoglobin Kirklareli (α H58L), a New Variant Associated with Iron Deficiency and Increased CO Binding. J Biol Chem 2016; 292:2542-2555. [PMID: 28011635 DOI: 10.1074/jbc.m116.764274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
Mutations in hemoglobin can cause a wide range of phenotypic outcomes, including anemia due to protein instability and red cell lysis. Uncovering the biochemical basis for these phenotypes can provide new insights into hemoglobin structure and function as well as identify new therapeutic opportunities. We report here a new hemoglobin α chain variant in a female patient with mild anemia, whose father also carries the trait and is from the Turkish city of Kirklareli. Both the patient and her father had a His-58(E7) → Leu mutation in α1. Surprisingly, the patient's father is not anemic, but he is a smoker with high levels of HbCO (∼16%). To understand these phenotypes, we examined recombinant human Hb (rHb) Kirklareli containing the α H58L replacement. Mutant α subunits containing Leu-58(E7) autoxidize ∼8 times and lose hemin ∼200 times more rapidly than native α subunits, causing the oxygenated form of rHb Kirklareli to denature very rapidly under physiological conditions. The crystal structure of rHb Kirklareli shows that the α H58L replacement creates a completely apolar active site, which prevents electrostatic stabilization of bound O2, promotes autoxidation, and enhances hemin dissociation by inhibiting water coordination to the Fe(III) atom. At the same time, the mutant α subunit has an ∼80,000-fold higher affinity for CO than O2, causing it to rapidly take up and retain carbon monoxide, which prevents denaturation both in vitro and in vivo and explains the phenotypic differences between the father, who is a smoker, and his daughter.
Collapse
Affiliation(s)
- Emmanuel Bissé
- From the Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center, Hugstetterstrasse 55, D-79106 Freiburg, Germany
| | - Christine Schaeffer-Reiss
- the BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France.,the IPHC, CNRS, UMR7178, 67087 Strasbourg, France, and
| | - Alain Van Dorsselaer
- the BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France.,the IPHC, CNRS, UMR7178, 67087 Strasbourg, France, and
| | - Tchilabalo Dilezitoko Alayi
- the BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France.,the IPHC, CNRS, UMR7178, 67087 Strasbourg, France, and
| | - Thomas Epting
- From the Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center, Hugstetterstrasse 55, D-79106 Freiburg, Germany
| | - Karl Winkler
- From the Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center, Hugstetterstrasse 55, D-79106 Freiburg, Germany
| | | | - Jayashree Soman
- the BioSciences Department, Rice University, Houston, Texas 77281
| | - Ivan Birukou
- the BioSciences Department, Rice University, Houston, Texas 77281
| | - Premila P Samuel
- the BioSciences Department, Rice University, Houston, Texas 77281
| | - John S Olson
- the BioSciences Department, Rice University, Houston, Texas 77281
| |
Collapse
|
43
|
Graw JA, Mayeur C, Rosales I, Liu Y, Sabbisetti VS, Riley FE, Rechester O, Malhotra R, Warren HS, Colvin RB, Bonventre JV, Bloch DB, Zapol WM. Haptoglobin or Hemopexin Therapy Prevents Acute Adverse Effects of Resuscitation After Prolonged Storage of Red Cells. Circulation 2016; 134:945-60. [PMID: 27515135 DOI: 10.1161/circulationaha.115.019955] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/30/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Extracellular hemoglobin and cell-free heme are toxic breakdown products of hemolyzed erythrocytes. Mammals synthesize the scavenger proteins haptoglobin and hemopexin, which bind extracellular hemoglobin and heme, respectively. Transfusion of packed red blood cells is a lifesaving therapy for patients with hemorrhagic shock. Because erythrocytes undergo progressive deleterious morphological and biochemical changes during storage, transfusion of packed red blood cells that have been stored for prolonged intervals (SRBCs; stored for 35-40 days in humans or 14 days in mice) increases plasma levels of cell-free hemoglobin and heme. Therefore, in patients with hemorrhagic shock, perfusion-sensitive organs such as the kidneys are challenged not only by hypoperfusion but also by the high concentrations of plasma hemoglobin and heme that are associated with the transfusion of SRBCs. METHODS To test whether treatment with exogenous human haptoglobin or hemopexin can ameliorate adverse effects of resuscitation with SRBCs after 2 hours of hemorrhagic shock, mice that received SRBCs were given a coinfusion of haptoglobin, hemopexin, or albumin. RESULTS Treatment with haptoglobin or hemopexin but not albumin improved the survival rate and attenuated SRBC-induced inflammation. Treatment with haptoglobin retained free hemoglobin in the plasma and prevented SRBC-induced hemoglobinuria and kidney injury. In mice resuscitated with fresh packed red blood cells, treatment with haptoglobin, hemopexin, or albumin did not cause harmful effects. CONCLUSIONS In mice, the adverse effects of transfusion with SRBCs after hemorrhagic shock are ameliorated by treatment with either haptoglobin or hemopexin. Haptoglobin infusion prevents kidney injury associated with high plasma hemoglobin concentrations after resuscitation with SRBCs. Treatment with the naturally occurring human plasma proteins haptoglobin or hemopexin may have beneficial effects in conditions of severe hemolysis after prolonged hypotension.
Collapse
Affiliation(s)
- Jan A Graw
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Claire Mayeur
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Ivy Rosales
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Yumin Liu
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Venkata S Sabbisetti
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Frank E Riley
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Osher Rechester
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Rajeev Malhotra
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - H Shaw Warren
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Robert B Colvin
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Joseph V Bonventre
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Donald B Bloch
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.)
| | - Warren M Zapol
- From Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine (J.A.G., C.M., D.B.B., W.M.Z.), Department of Pathology (I.R., R.B.C.), Department of Pediatrics (F.E.R., O.R., H.S.W.), Cardiovascular Research Center and Cardiology Division, Department of Medicine (R.M.), and Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital, Harvard Medical School, Boston; and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.L., V.S.S., H.S.W.).
| |
Collapse
|
44
|
Shi PA, Choi E, Chintagari NR, Nguyen J, Guo X, Yazdanbakhsh K, Mohandas N, Alayash AI, Manci EA, Belcher JD, Vercellotti GM. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function. Br J Haematol 2016; 175:714-723. [PMID: 27507623 DOI: 10.1111/bjh.14280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
Abstract
There is growing evidence that extracellular haemoglobin and haem mediate inflammatory and oxidative damage in sickle cell disease. Haptoglobin (Hp), the scavenger for free haemoglobin, is depleted in most patients with sickle cell disease due to chronic haemolysis. Although single infusions of Hp can ameliorate vaso-occlusion in mouse models of sickle cell disease, prior studies have not examined the therapeutic benefits of more chronic Hp dosing on sickle cell disease manifestations. In the present study, we explored the effect of Hp treatment over a 3-month period in sickle mice at two dosing regimens: the first at a moderate dose of 200 mg/kg thrice weekly and the second at a higher dose of 400 mg/kg thrice weekly. We found that only the higher dosing regimen resulted in increased haem-oxygenase-1 and heavy chain ferritin (H-ferritin) expression and decreased iron deposition in the kidney. Despite the decreased kidney iron deposition following Hp treatment, there was no significant improvement in kidney function. However, there was a nearly significant trend towards decreased liver infarction.
Collapse
Affiliation(s)
- Patricia A Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Erika Choi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | | | - Julia Nguyen
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xinhua Guo
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Narla Mohandas
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Abdu I Alayash
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth A Manci
- Department of Pathology, University of South Alabama School of Medicine, Birmingham, AL, USA
| | - John D Belcher
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
45
|
Abstract
Extracorporeal membrane oxygenation (ECMO) is a pivotal bridge to recovery for cardiopulmonary failure in children. Besides its life-saving quality, it is often associated with severe system-related complications, such as hemolysis, inflammation, and thromboembolism. Novel oxygenator and pump systems may reduce such ECMO-related complications. The ExMeTrA oxygenator is a newly designed pediatric oxygenator with an integrated pulsatile pump minimizing the priming volume and reducing the surface area of blood contact. The aim of our study was to investigate the feasibility and safety of this new ExMeTrA (expansion mediated transport and accumulation) oxygenator in an animal model. During 6 h of extracorporeal circulation (ECC) in pigs, parameters of the hemostatic system including coagulation, platelets and complement activation, and flow rates were investigated. A nonsignificant trend in C3 consumption, thrombin-antithrombin-III (TAT) complex formation and a slight trend in hemolysis were detected. During the ECC, the blood flow was constantly at 500 ml/min using only flexible silicone tubes inside the oxygenator as pulsatile pump. Our data clearly indicate that the hemostatic markers were only slightly influenced by the ExMeTrA oxygenator. Additionally, the oxygenator showed a constant quality of blood flow. Therefore, this novel pediatric oxygenator shows the potential to be used in pediatric and neonatal support with ECMO.
Collapse
|
46
|
Vercellotti GM, Zhang P, Nguyen J, Abdulla F, Chen C, Nguyen P, Nowotny C, Steer CJ, Smith A, Belcher JD. Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease. Mol Med 2016; 22:437-451. [PMID: 27451971 DOI: 10.2119/molmed.2016.00063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) patients have low serum hemopexin (Hpx) levels due to chronic hemolysis. We hypothesize that in SCD mice, hepatic overexpression of hemopexin will scavenge the proximal mediator of vascular activation, heme, and will inhibit inflammation and microvascular stasis. To examine the protective role of Hpx in SCD, we transplanted bone marrow from NY1DD SCD mice into Hpx™/™ or Hpx+/+ C57BL/6 mice. Dorsal skin fold chambers were implanted in week 13 post-transplant and microvascular stasis (% non-flowing venules) evaluated in response to heme infusion. Hpx™/™ sickle mice had significantly greater microvascular stasis in response to heme infusion than Hpx+/+ sickle mice (p<0.05), demonstrating the protective effect of Hpx in SCD. We utilized Sleeping Beauty (SB) transposon-mediated gene transfer to overexpress wild-type rat Hpx (wt-Hpx) in NY1DD and Townes-SS SCD mice. Control SCD mice were treated with lactated Ringer's solution (LRS) or a luciferase (Luc) plasmid. Plasma and hepatic Hpx were significantly increased compared to LRS and Luc controls. Microvascular stasis in response to heme infusion in NY1DD and Townes-SS mice overexpressing wt-Hpx had significantly less stasis than controls (p<0.05). Wt-Hpx overexpression markedly increased hepatic nuclear Nrf2 expression, HO-1 activity and protein, the heme-Hpx binding protein and scavenger receptor, CD91/LRP1 and decreased NF-κB activation. Two missense (ms)-Hpx SB-constructs that bound neither heme nor the Hpx receptor, CD91/LRP1, did not prevent heme-induced stasis. In conclusion, increasing Hpx levels in transgenic sickle mice via gene transfer activates the Nrf2/HO-1 anti-oxidant axis and ameliorates inflammation and vaso-occlusion.
Collapse
Affiliation(s)
- Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ping Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Phong Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carlos Nowotny
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clifford J Steer
- Division of Gastroenterology, Department of Medicine, and Department of Genetics, Cell Biology and Development, 420 Delaware St SE, MMC 36, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann Smith
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, 420 Delaware St SE, MMC 480, University of Minnesota, Minneapolis, Minnesota, USA.,Vascular Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
47
|
Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65:665-78. [PMID: 27251171 DOI: 10.1007/s00011-016-0955-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Collapse
Affiliation(s)
- Rafaela Mendonça
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Angélica A A Silveira
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Nicola Conran
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
48
|
Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia. Redox Biol 2016; 8:363-74. [PMID: 26995402 PMCID: PMC4804395 DOI: 10.1016/j.redox.2016.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 01/24/2023] Open
Abstract
When adding peroxide (H2O2), β subunits of hemoglobin (Hb) bear the burden of oxidative changes due in part to the direct oxidation of its Cys93. The presence of unpaired α subunits within red cells and/or co-inheritance of another β subunit mutant, HbE (β26 Glu→Lys) have been implicated in the pathogenesis and severity of β thalassemia. We have found that although both HbA and HbE autoxidize at initially comparable rates, HbE loses heme at a rate almost 2 fold higher than HbA due to unfolding of the protein. Using mass spectrometry and the spin trap, DMPO, we were able to quantify irreversible oxidization of βCys93 to reflect oxidative instability of β subunits. In the presence of free α subunits and H2O2, both HbA and HbE showed βCys93 oxidation which increased with higher H2O2 concentrations. In the presence of Alpha-hemoglobin stabilizing protein (AHSP), which stabilizes the α-subunit in a redox inactive hexacoordinate conformation (thus unable to undergo the redox ferric/ferryl transition), Cys93 oxidation was substantially reduced in both proteins. These experiments establish two important features that may have relevance to the mechanistic understanding of these two inherited hemoglobinopathies, i.e. HbE/β thalassemia: First, a persistent ferryl/ferryl radical in HbE is more damaging to its own β subunit (i.e., βCys93) than HbA. Secondly, in the presence of excess free α-subunit and under the same oxidative conditions, these events are substantially increased for HbE compared to HbA, and may therefore create an oxidative milieu affecting the already unstable HbE. A compromised redox ferric/ferryl cycle promotes oxidative instability in hemoglobin E (HbE). The presence of unmatched alpha subunits aggravates oxidative instability of HbE. Alpha-hemoglobin stabilizing protein (AHSP) reverses alpha subunit destabilizing effects on HbE.
Collapse
|
49
|
Cai H, Tatiyaborworntham N, Yin J, Richards MP. Assessing Low Redox Stability of Myoglobin Relative to Rapid Hemin Loss from Hemoglobin. J Food Sci 2015; 81:C42-8. [DOI: 10.1111/1750-3841.13159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- He Cai
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| | - Nantawat Tatiyaborworntham
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| | - Jie Yin
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| | - Mark P. Richards
- Dept. of Animal Sciences; Meat Science and Muscle Biology Laboratory; Univ. of Wisconsin-Madison; Madison Wiss. 53706 U.S.A
| |
Collapse
|
50
|
Kassa T, Jana S, Strader MB, Meng F, Jia Y, Wilson MT, Alayash AI. Sickle Cell Hemoglobin in the Ferryl State Promotes βCys-93 Oxidation and Mitochondrial Dysfunction in Epithelial Lung Cells (E10). J Biol Chem 2015; 290:27939-58. [PMID: 26396189 DOI: 10.1074/jbc.m115.651257] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 01/02/2023] Open
Abstract
Polymerization of intraerythrocytic deoxyhemoglobin S (HbS) is the primary molecular event that leads to hemolytic anemia in sickle cell disease (SCD). We reasoned that HbS may contribute to the complex pathophysiology of SCD in part due to its pseudoperoxidase activity. We compared oxidation reactions and the turnover of oxidation intermediates of purified human HbS and HbA. Hydrogen peroxide (H2O2) drives a catalytic cycle that includes the following three distinct steps: 1) initial oxidation of ferrous (oxy) to ferryl Hb; 2) autoreduction of the ferryl intermediate to ferric (metHb); and 3) reaction of metHb with an additional H2O2 molecule to regenerate the ferryl intermediate. Ferrous and ferric forms of both proteins underwent initial oxidation to the ferryl heme in the presence of H2O2 at equal rates. However, the rate of autoreduction of ferryl to the ferric form was slower in the HbS solutions. Using quantitative mass spectrometry and the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide, we found more irreversibly oxidized βCys-93in HbS than in HbA. Incubation of the ferric or ferryl HbS with cultured lung epithelial cells (E10) induced a drop in mitochondrial oxygen consumption rate and impairment of cellular bioenergetics that was related to the redox state of the iron. Ferryl HbS induced a substantial drop in the mitochondrial transmembrane potential and increases in cytosolic heme oxygenase (HO-1) expression and mitochondrial colocalization in E10 cells. Thus, highly oxidizing ferryl Hb and heme, the product of oxidation, may be central to the evolution of vasculopathy in SCD and may suggest therapeutic modalities that interrupt heme-mediated inflammation.
Collapse
Affiliation(s)
- Tigist Kassa
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Sirsendu Jana
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Michael Brad Strader
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Fantao Meng
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Yiping Jia
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| | - Michael T Wilson
- the Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Abdu I Alayash
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 and
| |
Collapse
|