1
|
Silva JK, Veras ACC, Sousa SM, Albuquerque JSS, Ribeiro FPB, Lima NKS, Nascimento LBS, Alves RRV, Aires RS, Coelho LCBB, Napoleão TH, Paiva PMG, Paixão AD, Vieira LD. The water extract and the lectin WSMoL from the seeds of Moringa oleifera prevent the hypertension onset by decreasing renal oxidative stress. AN ACAD BRAS CIENC 2024; 96:e20231266. [PMID: 39319849 DOI: 10.1590/0001-3765202420231266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/19/2024] [Indexed: 09/26/2024] Open
Abstract
Maternal endotoxemia disturbs the intrauterine environment, impairs nephrogenesis, and increases the risk of hypertension and kidney disease in adulthood. Here, it was investigated whether maternal treatment with the water extract of Moringa oleifera seeds (WEMoS) or the water-soluble M. oleifera seed lectin (WSMoL) prevents the oxidative stress induced by lipopolysaccharide (LPS) in pregnant rats, and the renal injury and hypertension in the adult offspring. The administration of WEMoS or WSMoL prevented the stimulatory effects of LPS on lipid peroxidation in the maternal-placenta-fetuses environment. The impact of WEMoS was linked to decreased superoxide anions production in the placenta. The effects of WSMoL were parallel to the inhibition of superoxide anion production and NADPH oxidase activity. The WSMoL also prevented increased NADPH oxidase activity in the fetal kidney. The LPS offspring presented higher systolic blood pressure (SBP) and increased lipid peroxidation, reactive oxygen species (ROS), NADPH oxidase activity, and nitrate/nitrite in the kidney; the maternal treatment with WEMoS and WSMoL prevented these changes. In conclusion, the present study demonstrates that WEMoS and WSMoL have protective effects on maternal endotoxemia, which involve antioxidant and anti-inflammatory actions that prevent the programming of hypertension.
Collapse
Affiliation(s)
- Jeoadã Karollyne Silva
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Alana Carolina C Veras
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Shirley Maria Sousa
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jessica S S Albuquerque
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Fernanda Priscila B Ribeiro
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Natalia Kryzia S Lima
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Laryssa Beatriz S Nascimento
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Robson R V Alves
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Regina S Aires
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Luana Cassandra B B Coelho
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Patrícia Maria G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Ana D Paixão
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Leucio D Vieira
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
2
|
Liu H, Li Y, Li M, Xie L, Li F, Pan R, Pei F. Follistatin-like 1 protects endothelial function in the spontaneously hypertensive rat by inhibition of endoplasmic reticulum stress through AMPK-dependent mechanism. Clin Exp Hypertens 2023; 45:2277654. [PMID: 37963199 DOI: 10.1080/10641963.2023.2277654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Endothelial dysfunction is a critical initiating factor in the development of hypertension and related complications. Follistatin-like 1 (FSTL1) can promote endothelial cell function and stimulates revascularization in response to ischemic insult. However, it is unclear whether FSTL1 has an effect on ameliorating endothelial dysfunction in spontaneously hypertensive rats (SHRs). METHODS Wistar Kyoto (WKY) and SHRs were treated with a tail vein injection of vehicle (1 mL/day) or recombinant FSTL1 (100 μg/kg body weight/day) for 4 weeks. Blood pressure was measured by tail-cuff plethysmograph, and vascular reactivity in mesenteric arteries was measured using wire myography. RESULTS We found that treatment with FSTL1 reversed impaired endothelium-dependent relaxation (EDR) in mesenteric arteries and lowered blood pressure of SHRs. Decreased AMP-activated protein kinase (AMPK) phosphorylation, elevated endoplasmic reticulum (ER) stress markers, increased reactive oxygen species (ROS), and reduction of nitric oxide (NO) production in mesenteric arteries of SHRs were also reversed by FSTL1 treatment. Ex vivo treatment with FSTL1 improved the impaired EDR in mesenteric arteries from SHRs and reversed tunicamycin (ER stress inducer)-induced ER stress and the impairment of EDR in mesenteric arteries from WKY rats. The effects of FSTL1 were abolished by cotreatment of compound C (AMPK inhibitor). CONCLUSIONS These results suggest that FSTL1 prevents endothelial dysfunction in mesenteric arteries of SHRs through inhibiting ER stress and ROS and increasing NO production via activation of AMPK signaling.
Collapse
Affiliation(s)
- Hanwen Liu
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Yanwen Li
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Maogang Li
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Linghai Xie
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Feng Li
- Department of Neurosurgery, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Runmei Pan
- Operating room, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Wang X, Luo T, Yang Y, Zhou Y, Hou J, Wang P. Unilateral chemical ablation of the adrenal gland lowers blood pressure and alleviates target organ damage in spontaneously hypertensive rats. Hypertens Res 2023; 46:2693-2704. [PMID: 37789113 DOI: 10.1038/s41440-023-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Adrenal gland hormones play a critical role in the development and maintenance of hypertension. Adrenal ablation has been used to treat primary aldosteronism but not essential hypertension. The present study aimed to investigate the effectiveness and safety of unilateral adrenal gland ablation in treating spontaneously hypertensive rats (SHR). SHR and Wistar-Kyoto rats (WKY) were subjected to unilateral adrenal ablation with injection of anhydrous ethanol or a sham procedure. Blood pressure was monitored by both tail-cuff plethysmography and telemetry until 6 months after the procedure. Adrenal ablation significantly lowered systolic and diastolic blood pressure of the SHR (P < 0.05 or P < 0.01) but not WKY from 4 to 24 weeks after the procedure. Adrenal ablation substantially damaged adrenal cortex and medulla with fibrosis in SHR and WKY rats. The ablation procedure remarkably reduced the levels of renin, angiotensin II, aldosterone, cortisol, noradrenaline, and epinephrine in SHR (all P < 0.05) but not in WKY. Hypokalemia in SHR was significantly improved by adrenal ablation (P < 0.05), while the serum sodium levels were not affected by adrenal ablation in either SHR or WKY rats. Additionally, adrenal ablation improved cardiac, renal, and vascular remodeling and function measured 3 months after the procedure in SHR. In conclusion, the present study shows that ethanol ablation of adrenal gland can effectively lower blood pressure and prevent target organ damage in SHR. These findings suggest that unilateral debulking of the adrenal gland using ethanol ablation is a promising therapeutic strategy for treating hypertension. METHODS Spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were subjected to unilateral adrenal ablation with injection of ethanol or a sham procedure. Blood pressure was monitored for 24 weeks. RESULTS Adrenal ablation significantly lowered systolic and diastolic blood pressure of SHR but not WKY from 4 to 24 weeks after the procedure. CONCLUSION Unilateral debulking of the adrenal gland using ethanol ablation is a promising therapeutic strategy for treating hypertension.
Collapse
Affiliation(s)
- Xinquan Wang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, 610500, China
| | - Tao Luo
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, 610500, China
| | - Yi Yang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, 610500, China
| | - Yaqiong Zhou
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, 610500, China
| | - Jixin Hou
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China.
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China.
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, 610500, China.
| | - Peijian Wang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China.
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China.
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
4
|
Cao N, Lan C, Chen C, Xu Z, Luo H, Zheng S, Gong X, Ren H, Li Z, Qu S, Yu C, Yang J, Jose PA, Chen Y, Wu G, Hu C, Yu J, Zeng C. Prenatal Lipopolysaccharides Exposure Induces Transgenerational Inheritance of Hypertension. Circulation 2022; 146:1082-1095. [PMID: 36004643 PMCID: PMC9529859 DOI: 10.1161/circulationaha.122.059891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Adverse environmental exposure during the prenatal period can lead to diseases in the offspring, including hypertension. Whether or not the hypertensive phenotype can be transgenerationally transmitted is not known. METHODS Pregnant Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) on gestation days 6, 8, 10, and 12 to generate the prenatal LPS exposure model. Blood pressure was monitored by both telemetry and tail-cuff method. RNA sequencing was performed to analyze transcriptome alteration in the kidney of the third generation. Tempol and spironolactone were used to test the potential preventative and therapeutic effect of targeting reactive oxygen species and mineralocorticoid receptor signaling, respectively. Molecular biological experiments were performed to illustrate the mechanism of epigenetic and transcription regulation. RESULTS Prenatal LPS exposure can impair the ability to excrete a salt load and induce hypertension from the first to the third generations, with the fourth and fifth generations, inducing salt-sensitive hypertension. Compared with control pups, the transcriptome in the kidney of the hypertensive third-generation prenatal LPS-exposed offspring have upregulation of the Ras-related C3 botulinum toxin substrate 1 (Rac1) gene and activation of mineralocorticoid receptor signaling. Furthermore, we found that LPS exposure during pregnancy triggered oxidative stress that upregulated KDM3B (histone lysine demethylase 3B) in the oocytes of first-generation female rats, leading to an inheritable low level of H3K9me2 (histone H3 lysine 9 dimethylation), resulting in the transgenerational upregulation of Rac1. Based on these findings, we treated the LPS-exposed pregnant rats with the reactive oxygen species scavenger, tempol, which successfully prevented hypertension in the first-generation offspring and the transgenerational inheritance of hypertension. CONCLUSIONS These findings show that adverse prenatal exposure induces transgenerational hypertension through an epigenetic-regulated mechanism and identify potentially preventive and therapeutic strategies for hypertension.
Collapse
Affiliation(s)
- Nian Cao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Cong Lan
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Zhuxin Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jining Yang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, The Third Military Medical University, Chongqing, P.R. China
| | - Pedro A. Jose
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yundai Chen
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Cardiology, Chongqing General Hospital, Chongqing, P. R. China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China
| |
Collapse
|
5
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
6
|
Luo H, Lan C, Fan C, Gong X, Chen C, Yu C, Wang J, Luo X, Hu C, Jose PA, Xu Z, Zeng C. Down-regulation of AMPK/PPARδ signalling promotes endoplasmic reticulum stress-induced endothelial dysfunction in adult rat offspring exposed to maternal diabetes. Cardiovasc Res 2021; 118:2304-2316. [PMID: 34415333 PMCID: PMC9890455 DOI: 10.1093/cvr/cvab280] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 01/29/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS Exposure to maternal diabetes is associated with increased prevalence of hypertension in the offspring. The mechanisms underlying the prenatal programming of hypertension remain unclear. Because endoplasmic reticulum (ER) stress plays a key role in vascular endothelial dysfunction in hypertension, we investigated whether aberrant ER stress causes endothelial dysfunction and high blood pressure in the offspring of dams with diabetes. METHODS AND RESULTS Pregnant Sprague-Dawley rats were intraperitoneally injected with streptozotocin (35 mg/kg) or citrate buffer at Day 0 of gestation. Compared with control mother offspring (CMO), the diabetic mother offspring (DMO) had higher blood pressure and impaired endothelium-dependent relaxation in mesenteric arteries, accompanied by decreased AMPK phosphorylation and PPARδ expression, increased ER stress markers, and reactive oxygen species (ROS) levels. The inhibition of ER stress reversed these aberrant changes in DMO. Ex vivo treatment of mesenteric arteries with an AMPK agonist (A769662) or a PPARδ agonist (GW1516) improved the impaired EDR in DMO and reversed the tunicamycin-induced ER stress, ROS production, and EDR impairment in mesenteric arteries from CMO. The effects of A769662 were abolished by co-treatment with GSK0660 (PPARδ antagonist), whereas the effects of GW1516 were unaffected by Compound C (AMPK inhibitor). CONCLUSION These results suggest an abnormal foetal programming of vascular endothelial function in offspring of rats with maternal diabetes that is associated with increased ER stress, which can be ascribed to down-regulation of AMPK/PPARδ signalling cascade.
Collapse
Affiliation(s)
| | | | | | - Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cheng Yu
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China,Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10 Changjiang Branch Rd, Chongqing 400042, P.R. China,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Pharmacology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA,Department of Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zaicheng Xu
- Corresponding author. Tel: +86 23 68757801; fax: +86 23 68757801, E-mail: (C.Z.); (Z.X.)
| | - Chunyu Zeng
- Corresponding author. Tel: +86 23 68757801; fax: +86 23 68757801, E-mail: (C.Z.); (Z.X.)
| |
Collapse
|
7
|
Yu C, Chen S, Wang X, Wu G, Zhang Y, Fu C, Hu C, Liu Z, Luo X, Wang J, Chen L. Exposure to maternal diabetes induces endothelial dysfunction and hypertension in adult male rat offspring. Microvasc Res 2021; 133:104076. [PMID: 32956647 DOI: 10.1016/j.mvr.2020.104076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
The adverse environment in early life can modulate adult phenotype, including blood pressure. Our previous study shows, in a rat streptozotocin (STZ)-induced maternal diabetes model, fetal exposure to maternal diabetes is characterized by established hypertension in the offspring. However, the exact mechanisms are not known. Our present study found, as compared with male control mother offspring (CMO), male diabetic mother offspring (DMO) had higher blood pressure with arterial dysfunction, i.e., decreased acetylcholine (Ach)-induced vasodilation. But there is no difference in blood pressure between female CMO and DMO. The decreased Ach-induced vasodilation was related to decreased nitric oxide (NO) production in the endothelium, not NO sensitivity in vascular smooth muscle because sodium nitroprusside (SNP)-mediated vasodilation was preserved; there was decreased NO production and lower eNOS phosphorylation in male DMO. The reactive oxygen species (ROS) level was increased in male DMO than CMO; normalized ROS levels with tempol increased NO production, normalized Ach-mediated vasodilation, and lowered blood pressure in male DMO rats. It indicates that diabetic programming hypertension is related to arterial dysfunction; normalizing ROS might be a potential strategy for the prevention of hypertension in the offspring.
Collapse
MESH Headings
- Age Factors
- Animals
- Arterial Pressure
- Blood Glucose/metabolism
- Cyclic GMP/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes, Gestational/blood
- Diabetes, Gestational/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Nitric Oxide/metabolism
- Oxidative Stress
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Sex Factors
- Vasodilation
- Rats
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Shuo Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Cuimei Hu
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Zhengbi Liu
- Center of Laboratory Animal, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University; Chongqing Institute of Cardiology, Chongqing, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Chao YM, Wu KLH, Tsai PC, Tain YL, Leu S, Lee WC, Chan JYH. Anomalous AMPK-regulated angiotensin AT 1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. J Biomed Sci 2020; 27:68. [PMID: 32446297 PMCID: PMC7245869 DOI: 10.1186/s12929-020-00660-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue oxidative stress, sympathetic activation and nutrient sensing signals are closely related to adult hypertension of fetal origin, although their interactions in hypertension programming remain unclear. Based on a maternal high-fructose diet (HFD) model of programmed hypertension, we tested the hypothesis that dysfunction of AMP-activated protein kinase (AMPK)-regulated angiotensin type 1 receptor (AT1R) expression and sirtuin1 (SIRT1)-dependent mitochondrial biogenesis contribute to tissue oxidative stress and sympathoexcitation in programmed hypertension of young offspring. METHODS Pregnant female rats were randomly assigned to receive normal diet (ND) or HFD (60% fructose) chow during pregnancy and lactation. Both ND and HFD offspring returned to ND chow after weaning, and blood pressure (BP) was monitored from age 6 to 12 weeks. At age of 8 weeks, ND and HFD offspring received oral administration of simvastatin or metformin; or brain microinfusion of losartan. BP was monitored under conscious condition by the tail-cuff method. Nutrient sensing molecules, AT1R, subunits of NADPH oxidase, mitochondrial biogenesis markers in rostral ventrolateral medulla (RVLM) were measured by Western blot analyses. RVLM oxidative stress was measured by fluorescent probe dihydroethidium and lipid peroxidation by malondialdehyde assay. Mitochondrial DNA copy number was determined by quantitative real-time polymerase chain reaction. RESULTS Increased systolic BP, plasma norepinephrine level and sympathetic vasomotor activity were exhibited by young HFD offspring. Reactive oxygen species (ROS) level was also elevated in RVLM where sympathetic premotor neurons reside, alongside augmented protein expressions of AT1R and pg91phox subunit of NADPH oxidase, decrease in superoxide dismutase 2; and suppression of transcription factors for mitochondrial biogenesis, peroxisome proliferator-activated receptor γ co-activator α (PGC-1α) and mitochondrial transcription factor A (TFAM). Maternal HFD also attenuated AMPK phosphorylation and protein expression of SIRT1 in RVLM of young offspring. Oral administration of a HMG-CoA reductase inhibitor, simvastatin, or an AMPK activator, metformin, to young HFD offspring reversed maternal HFD-programmed increase in AT1R and decreases in SIRT1, PGC-1α and TFAM; alleviated ROS production in RVLM, and attenuated sympathoexcitation and hypertension. CONCLUSION Dysfunction of AMPK-regulated AT1R expression and SIRT1-mediated mitochondrial biogenesis may contribute to tissue oxidative stress in RVLM, which in turn primes increases of sympathetic vasomotor activity and BP in young offspring programmed by excessive maternal fructose consumption.
Collapse
Affiliation(s)
- Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Pei-Chia Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung Univeristy College of Medicine, Kaohsiung, 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
9
|
Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease. Int J Mol Sci 2020; 21:ijms21062232. [PMID: 32210175 PMCID: PMC7139376 DOI: 10.3390/ijms21062232] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Light is a crucial environmental signal that affects elements of human health, including the entrainment of circadian rhythms. A suboptimal environment during pregnancy can increase the risk of offspring developing a wide range of chronic diseases in later life. Circadian rhythm disruption in pregnant women may have deleterious consequences for their progeny. In the modern world, maternal chronodisruption can be caused by shift work, jet travel across time zones, mistimed eating, and excessive artificial light exposure at night. However, the impact of maternal chronodisruption on the developmental programming of various chronic diseases remains largely unknown. In this review, we outline the impact of light, the circadian clock, and circadian signaling pathways in pregnancy and fetal development. Additionally, we show how to induce maternal chronodisruption in animal models, examine emerging research demonstrating long-term negative implications for offspring health following maternal chronodisruption, and summarize current evidence related to light and circadian signaling pathway targeted therapies in pregnancy to prevent the development of chronic diseases in offspring.
Collapse
|
10
|
Zou X, Wang J, Chen C, Tan X, Huang Y, Jose PA, Yang J, Zeng C. Secreted Monocyte miR-27a, via Mesenteric Arterial Mas Receptor-eNOS Pathway, Causes Hypertension. Am J Hypertens 2020; 33:31-42. [PMID: 31328772 DOI: 10.1093/ajh/hpz112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Essential hypertension is associated with increased plasma concentrations of extracellular vesicles (EVs). We aimed to determine the role of monocyte miR-27a in EVs on arterial Mas receptor expression, and its involvement in the pathogenesis of hypertension. METHODS THP-1 cells were transfected with miR-27a mimic and miR-27a inhibitor, and EVs were collected. Mas receptor expression and endothelial nitric oxide synthase (eNOS) phosphorylation were determined by immunoblotting. Sprague-Dawley (SD) rats received EVs via tail-vein injection. Blood pressure (BP) was measured with the tail-cuff method. The vasodilatory response of mesenteric arteries was measured using a small vessel myograph. RESULTS EVs from THP-1 cells increased rat BP by impairing Ang-(1-7)-mediated vasodilation in mesenteric arteries, which was further exaggerated by EVs from lipopolysaccharides-treated THP-1 cells. As the receptor and key signaling of Ang-(1-7), next experiments found that Mas receptor expression and eNOS phosphorylation were decreased in mesenteric arteries from EVs-treated SD rats. Screening studies found miR-27a in EVs may be involved in this process. Through transfection with miR-27a inhibitor or miR-27a mimic, we found that miR-27a downregulates Mas receptor expression in endothelial cells. Injection of EVs from miR-27a-transfected HEK-293 cells decreased Mas receptor and eNOS phosphorylation in mesenteric arteries, impaired Ang-(1-7)-mediated vasodilation and increased BP. Earlier effects were reversed using cells with downregulation of miR-27 in EVs. CONCLUSIONS Monocyte miR-27a in EVs decreases Mas receptor expression and eNOS phosphorylation in endothelium, impairs Ang-(1-7)-mediated vasodilation, and causes hypertension. Understanding the contributions of EVs in the pathogenesis of hypertension may facilitate their use as a diagnostic biomarker.
Collapse
Affiliation(s)
- Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Xiaorong Tan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Pedro A Jose
- Division of Renal Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| |
Collapse
|
11
|
Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clin Sci (Lond) 2019; 133:1097-1113. [PMID: 31015358 PMCID: PMC6833955 DOI: 10.1042/cs20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Environmental temperature plays a role in the variation of blood pressure. Maternal cold stress could affect the physiological phenotype of the offspring, including blood pressure elevation. In the present study, we found that adult offspring of dams exposed to cold have increased systolic and diastolic blood pressure, and decreased urine volume and sodium excretion, accompanied by increased heart rate and heart rate variability, secondary to increased activity of the sympathetic nervous system. Renal denervation or adrenergic receptor blockade decreased blood pressure and increased sodium excretion. The increase in peripheral sympathetic nerve activity can be ascribed to the central nervous system because administration of clonidine, a centrally acting α2 adrenergic receptor agonist, lowered blood pressure to a greater degree in the prenatal cold-exposed than control offspring. Moreover, these prenatal cold-exposed offspring had hypothalamic paraventricular nucleus (PVN) disorder because magnetic resonance spectroscopy showed decreased N-acetylaspartate and increased choline and creatine ratios in the PVN. Additional studies found that prenatal cold exposure impaired the balance between inhibitory and excitatory neurons. This led to PVN overactivation that was related to enhanced PVN-angiotensin II type 1 (AT1) receptor expression and function. Microinjection of the AT1 receptor antagonist losartan in the PVN lowered blood pressure to a greater extent in prenatal cold-exposed that control offspring. The present study provides evidence for overactive peripheral and central sympathetic nervous systems in the pathogenesis of prenatal cold-induced hypertension. Central AT1 receptor blockade in the PVN may be a key step for treatment of this type hypertension.
Collapse
|
12
|
Sun D, Chen K, Wang J, Zhou L, Zeng C. In-utero cold stress causes elevation of blood pressure via impaired vascular dopamine D1 receptor in offspring. Clin Exp Hypertens 2019; 42:99-104. [PMID: 30698033 DOI: 10.1080/10641963.2019.1571603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dongdong Sun
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
13
|
Vieira LD, Farias JS, de Queiroz DB, Cabral EV, Lima-Filho MM, Sant'Helena BR, Aires RS, Ribeiro VS, Santos-Rocha J, Xavier FE, Paixão AD. Oxidative stress induced by prenatal LPS leads to endothelial dysfunction and renal haemodynamic changes through angiotensin II/NADPH oxidase pathway: Prevention by early treatment with α-tocopherol. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3577-3587. [DOI: 10.1016/j.bbadis.2018.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
14
|
Wang J, Deng Y, Zou X, Luo H, Jose PA, Fu C, Yang J, Zeng C. Long-term low salt diet increases blood pressure by activation of the renin-angiotensin and sympathetic nervous systems. Clin Exp Hypertens 2018; 41:739-746. [PMID: 30451012 DOI: 10.1080/10641963.2018.1545850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The aim of this study was to investigate the effect of long-term low salt diet on blood pressure and its underlying mechanisms.Methods Male Sprague-Dawley (SD) rats were divided into normal salt diet group (0.4%) and low salt diet group (0.04%). Blood pressure was measured with the non-invasive tail-cuff method. The contractile response of isolated mesenteric arteries was measured using a small vessel myograph. The effects on renal function of the intrarenal arterial infusion of candesartan (10 μg/kg/min), an angiotensin II receptor type 1 (AT1R) antagonist, were also measured. The expressions of renal AT1R and mesenteric arterial α1A, α1B, and α1D adrenergic receptors were quantified by immunoblotting. Plasma levels of angiotensin II were also measured.Results Systolic blood pressure was significantly increased after 8 weeks of low salt diet. There were no obvious differences in the renal structure between the low and normal salt diet groups. However, the plasma angiotensin II levels and renal AT1R expression were higher in low than normal salt diet group. The intrarenal arterial infusion of candesartan increased urine flow and sodium excretion to a greater extent in the low than normal salt diet group. The expressions of α1A and α1D, but not α1B, adrenergic receptors, and phenylephrine-induced contraction were increased in mesenteric arteries from the low salt, relative to the normal salt diet group.Conclusion Activation of the renin-angiotensin and sympathetic nervous systems may be involved in the pathogenesis of long-term low salt diet-induced hypertension.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Yi Deng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
15
|
Deng Y, Song L, Nie X, Shou W, Li X. Prenatal inflammation exposure-programmed cardiovascular diseases and potential prevention. Pharmacol Ther 2018; 190:159-172. [PMID: 29803628 DOI: 10.1016/j.pharmthera.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, the rapid development of medical and pharmacological interventions has led to a steady decline in certain noncommunicable chronic diseases (NCDs), such as cancer. However, the overall incidence of cardiovascular diseases (CVDs) has not seemed to decline. CVDs have become even more prevalent in many countries and represent a global health threat and financial burden. An increasing number of epidemiological and experimental studies have demonstrated that maternal insults not only can result in birth defects but also can cause developmental functional defects that contribute to adult NCDs. In the current review, we provide an overview of evidence from both epidemiological investigations and experimental animal studies supporting the concept of developmental reprogramming of adult CVDs in offspring that have experienced prenatal inflammation exposure (PIE) during fetal development (PIE-programmed CVDs), a disease-causing event that has not been effectively controlled. This review describes the epidemiological observations, data from animal models, and related mechanisms for the pathogenesis of PIE-programmed CVDs. In addition, the potential therapeutic interventions of PIE-programmed CVDs are discussed. Finally, we also deliberate the need for future mechanistic studies and biomarker screenings in this important field, which creates a great opportunity to combat the global increase in CVDs by managing the adverse effects of inflammation for prepregnant and pregnant individuals who are at risk for PIE-programmed CVDs.
Collapse
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| | - Liang Song
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Weinian Shou
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4 W302D, Indianapolis, IN 46202, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| |
Collapse
|
16
|
Tiu AC, Bishop MD, Asico LD, Jose PA, Villar VAM. Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Curr Hypertens Rep 2017; 19:70. [PMID: 28780627 PMCID: PMC6314210 DOI: 10.1007/s11906-017-0768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA.
| | - Michael D Bishop
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| |
Collapse
|
17
|
Interplay between Oxidative Stress and Nutrient Sensing Signaling in the Developmental Origins of Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18040841. [PMID: 28420139 PMCID: PMC5412425 DOI: 10.3390/ijms18040841] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) presents a global health burden, despite recent advances in management. CVD can originate from early life by so-called “developmental origins of health and disease” (DOHaD). Epidemiological and experimental evidence supports that early-life insults can induce programming of later CVD. Underlying the DOHaD concept, early intervention may offset programming process to prevent the development of CVD, namely reprogramming. Oxidative stress and nutrient sensing signals have been considered to be major mechanisms of cardiovascular programming, while the interplay between these two mechanisms have not been examined in detail. This review summarizes current evidence that supports the link between oxidative stress and nutrient sensing signaling to cardiovascular programming, with an emphasis on the l-arginine–asymmetric dimethylarginine (ADMA)–nitric oxide (NO) pathway. This review provides an overview of evidence from human studies supporting fetal programming of CVD, insight from animal models of cardiovascular programming and oxidative stress, impact of the l-arginine–ADMA–NO pathway in cardiovascular programming, the crosstalk between l-arginine metabolism and nutrient sensing signals, and application of reprogramming interventions to prevent the programming of CVD. A greater understanding of the mechanisms underlying cardiovascular programming is essential to developing early reprogramming interventions to combat the globally growing epidemic of CVD.
Collapse
|
18
|
Jia G, Jia Y, Sowers JR. Contribution of Maladaptive Adipose Tissue Expansion to Development of Cardiovascular Disease. Compr Physiol 2016; 7:253-262. [PMID: 28135006 DOI: 10.1002/cphy.c160014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The overweight and obesity epidemic has led to an increase in the metabolic syndrome and associated cardiovascular disease (CVD). These abnormalities include insulin resistance, type 2 diabetes mellitus, vascular stiffness, hypertension, stroke, and coronary heart disease. Visceral white adipocyte tissue (WAT) expansion and associated fibrosis/stiffness of WAT promote insulin resistance and CVD through increases in proinflammatory adipokines, oxidative stress, activation of renin-angiotensin-aldosterone system, dysregulation of adipocyte apoptosis and autophagy, dysfunctional immune modulation, and adverse changes in the gut microbiome. The expansion of WAT is partly determined by activation of peroxisome proliferator-activated receptor gamma and mammalian target of rapamycin/ribosomal S6 kinase signaling pathways. Further, the chronic activation of these signaling pathways may not only induce adipocyte hypertrophy and fibrosis, but also contribute to systemic inflammation, and impairment of insulin metabolic signaling in fat, liver, and skeletal muscle tissue. Therefore, the interplay of adipocyte dysfunction, maladaptive immune and inflammatory responses, and associated metabolic disorders often coexist leading to systemic low-grade inflammation and insulin resistance that are associated with increased CVD in obese individuals. © 2017 American Physiological Society. Compr Physiol 7:253-262, 2017.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Yan Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA.,Dalton Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| |
Collapse
|