1
|
Jiang F, Hua C, Pan J, Peng S, Ning D, Chen C, Li S, Xu X, Wang L, Zhang C, Li M. Effect fraction of Bletilla striata (Thunb.) Reichb.f. alleviates LPS-induced acute lung injury by inhibiting p47 phox/NOX2 and promoting the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155186. [PMID: 38387272 DOI: 10.1016/j.phymed.2023.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND & AIMS The effect fraction of Bletilla striata (Thunb.) Reichb.f. (EFBS), a phenolic-rich extract, has significant protective effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI), but its composition and molecular mechanisms are unclear. This study elucidated its chemical composition and possible protective mechanisms against LPS-induced ALI from an antioxidant perspective. METHODS EFBS was prepared by ethanol extraction, enriched by polyamide column chromatography, and characterized using ultra-performance liquid chromatography/time-of-flight mass spectrometry. The LPS-induced ALI model and the RAW264.7 model were used to evaluate the regulatory effects of EFBS on oxidative stress, and transcriptome analysis was performed to explore its possible molecular mechanism. Then, the pathway by which EFBS regulates oxidative stress was validated through inhibitor intervention, flow cytometry, quantitative PCR, western blotting, and immunofluorescence techniques. RESULTS A total of 22 compounds in EFBS were identified. The transcriptome analyses of RAW264.7 cells indicated that EFBS might reduce reactive oxygen species (ROS) production by inhibiting the p47phox/NADPH oxidase 2 (NOX2) pathway and upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Both in vitro and in vivo data confirmed that EFBS significantly inhibited the expression and phosphorylation of p47phox protein, thereby weakening the p47phox/NOX2 pathway and reducing ROS production. EFBS significantly increased the expression of Nrf2 in primary peritoneal macrophages and lung tissue and promoted its nuclear translocation, dose-dependent increase in HO-1 levels, and enhancement of antioxidant activity. In vitro, both Nrf2 and HO-1 inhibitors significantly reduced the scavenging effects of EFBS on ROS, further confirming that EFBS exerts antioxidant effects at least partially by upregulating the Nrf2/HO-1 pathway. CONCLUSIONS EFBS contains abundant phenanthrenes and dibenzyl polyphenols, which can reduce ROS production by inhibiting the p47phox/NOX2 pathway and enhance ROS clearance activity by upregulating the Nrf2/HO-1 pathway, thereby exerting regulatory effects on oxidative stress and improving LPS-induced ALI.
Collapse
Affiliation(s)
- Fusheng Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenglong Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Suyu Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cheng Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohua Xu
- People's Hospital of Quzhou, Quzhou 324002, China
| | - Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chunchun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Meiya Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
3
|
Arias A, Costa CE, Moreira MT, Feijoo G, Domingues L. Resveratrol-based biorefinery models for favoring its inclusion along the market value-added chains: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168199. [PMID: 37914108 DOI: 10.1016/j.scitotenv.2023.168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Resveratrol, a natural organic polyhydroxyphenolic compound, has gained significant attention in the last years given its potential health benefits, including antioxidant, anti-cancer, and anti-inflammatory properties. It can be directly extracted from plants, vegetables, and related products and waste resources, but also chemically/enzymatically/microbially synthesized. However, certain process strategies have some limitations, such as high costs, reduced yield or high energy demand, thus implying significant environmental loads. In this context, the search for more sustainable and circular process schemes is key to the integration of resveratrol into the market value chain of the food, cosmetic and pharmaceutical sectors. The extraction of resveratrol has traditionally been based on conventional methods such as solvent extraction, but advanced green extraction techniques offer more efficient and environmentally friendly alternatives. This review analyses both conventional and green alternative extraction technologies, as well as its bioproduction through microbial fermentation, in terms of production capacity, yield, purity and sustainability. It also presents alternative biorefinery models based on resveratrol bioproduction using by-products and waste streams as resources, specifically considering wine residues, peanut shells and wood bark as input resources, and also following a circular approach. This critical review provides some insight into the opportunities that resveratrol offers for promoting sustainable development and circularity in the related market value chains, and thus provides some criteria for decision making for biorefinery models in which resveratrol is one of the targeted high value-added products. It also identifies the future challenges to promote the inclusion of resveratrol in value chains, with the scale-up of green technologies and its demonstrated economic feasibility being the most prominent.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carlos E Costa
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Teresa Moreira
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucília Domingues
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH, Singh SK. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 2023; 43:1835-1877. [PMID: 37132460 DOI: 10.1002/med.21965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.
Collapse
Affiliation(s)
- Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Dibbanti H Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
5
|
Russo C, Valle MS, Malaguarnera L, Romano IR, Malaguarnera L. Comparison of Vitamin D and Resveratrol Performances in COVID-19. Nutrients 2023; 15:nu15112639. [PMID: 37299603 DOI: 10.3390/nu15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Over the last few years, we have experienced the infection generated by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) often resulting in an exaggerated immune reaction and systemic inflammation. The preferred treatments against SARS-CoV-2 were those that mitigated immunological/inflammatory dysfunction. A variety of observational epidemiological studies have reported that vitamin D deficiency is often a crucial factor in many inflammatory diseases and autoimmune diseases, as well as the susceptibility to contract infectious diseases, including acute respiratory infections. Similarly, resveratrol regulates immunity, modifying the gene expression and the release of proinflammatory cytokines in the immune cells. Therefore, it plays an immunomodulatory role that can be beneficial in the prevention and development of non-communicable diseases associated with inflammation. Since both vitamin D and resveratrol also act as immunomodulators in inflammatory pathologies, many studies have paid particular attention to an integrated treatment of either vitamin D or resveratrol in the immune reaction against SARS-CoV-2 infections. This article offers a critical evaluation of published clinical trials that have examined the use of vitamin D or resveratrol as adjuncts in COVID-19 management. Furthermore, we aimed to compare the anti-inflammatory and antioxidant properties linked to the modulation of the immune system, along with antiviral properties of both vitamin D and resveratrol.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Luisa Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Mao Y, Ren J, Yang L. FUN14 Domain Containing 1 (FUNDC1): A Promising Mitophagy Receptor Regulating Mitochondrial Homeostasis in Cardiovascular Diseases. Front Pharmacol 2022; 13:887045. [PMID: 35645834 PMCID: PMC9136072 DOI: 10.3389/fphar.2022.887045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria, the intracellular organelles for cellular aerobic respiration and energy production, play an important role in the regulation of cell metabolism and cell fate. Mitophagy, a selective form of autophagy, maintains dynamic homeostasis of cells through targeting long-lived or defective mitochondria for timely clearance and recycling. Dysfunction in mitophagy is involved in the molecular mechanism responsible for the onset and development of human diseases. FUN14 domain containing 1 (FUNDC1) is a mitochondrial receptor located in the outer mitochondria membrane (OMM) to govern mitophagy process. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to the occurrence, progression and prognosis of cardiovascular diseases, indicating a novel role for this mitophagy receptor in the regulation of mitochondrial homeostasis in cardiovascular system. Here we review mitophagy mediated by FUNDC1 in mitochondria and its role in various forms of cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- *Correspondence: Jun Ren, ; Lifang Yang,
| | - Lifang Yang
- Department of Anesthesiology, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Jun Ren, ; Lifang Yang,
| |
Collapse
|
7
|
Olas B. The Antioxidant, Anti-Platelet and Anti-Coagulant Properties of Phenolic Compounds, Associated with Modulation of Hemostasis and Cardiovascular Disease, and Their Possible Effect on COVID-19. Nutrients 2022; 14:nu14071390. [PMID: 35406002 PMCID: PMC9003312 DOI: 10.3390/nu14071390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Patients affected by coronavirus disease 2019 (COVID-19) demonstrate a range of hemostasis dysfunctions, such as coagulation dysfunction and changes in blood platelet function, this being a major cause of death. These complications may also be associated with oxidative stress. Recently, various papers, including some reviews, have suggested that the use of dietary bioactive compounds, including phenolic compounds, may play a significant role in the treatment of COVID-19. However, while some phenolic compounds, such as curcumin, resveratrol, myricetin and scutellarian, have been found to have antiviral effects against COVID-19, recommendations regarding the use of such compounds to prevent or reduce the risk of CVDs during COVID-19 infection remain tentative. The present mini-review examines the antioxidant, anti-platelet and anticoagulant and antiviral activities of selected phenolic compounds and the possible implications for their use in treating CVDs associated with COVID-19. This review also examines whether these phenolic compounds can be promising agents in the modulation of hemostasis and CVDs during COVID-19. While their properties have been well documented in various in vitro and in vivo studies, particularly their positive role in the prophylaxis and treatment of CVDs, less is known regarding their prophylactic potential against CVDs during COVID-19, and no credible evidence exists for their efficiency in humans or animals. In such cases, no in vitro or in vivo studies are available. Therefore, it cannot be unequivocally stated whether treatment with these phenolic compounds offers benefits against CVDs in patients with COVID-19.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Liu X, Zu E, Chang X, Ma X, Wang Z, Song X, Li X, Yu Q, Kamei KI, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T, Wang DO. Bi-phasic effect of gelatin in myogenesis and skeletal muscle regeneration. Dis Model Mech 2021; 14:273524. [PMID: 34821368 PMCID: PMC8713995 DOI: 10.1242/dmm.049290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle regeneration requires extracellular matrix (ECM) remodeling, including an acute and transient breakdown of collagen that produces gelatin. Although the physiological function of this process is unclear, it has inspired the application of gelatin to injured skeletal muscle for a potential pro-regenerative effect. Here, we investigated a bi-phasic effect of gelatin in skeletal muscle regeneration, mediated by the hormetic effects of reactive oxygen species (ROS). Low-dose gelatin stimulated ROS production from NADPH oxidase 2 (NOX2) and simultaneously upregulated the antioxidant system for cellular defense, reminiscent of the adaptive compensatory process during mild stress. This response triggered the release of the myokine IL-6, which stimulates myogenesis and facilitates muscle regeneration. By contrast, high-dose gelatin stimulated ROS overproduction from NOX2 and the mitochondrial chain complex, and ROS accumulation by suppressing the antioxidant system, triggering the release of TNFα, which inhibits myogenesis and regeneration. Our results have revealed a bi-phasic role of gelatin in regulating skeletal muscle repair mediated by intracellular ROS, the antioxidant system and cytokine (IL-6 and TNFα) signaling. Summary: Application of high- and low-dose gelatin to skeletal muscle revealed a bi-phasic role of gelatin in regulating skeletal muscle repair, which has translational implications for regenerative medicine.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Er Zu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Chang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ziqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangru Li
- School of Life Science and Biopharmaceutic, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ken-Ichiro Kamei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-850, Japan
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Department of Chemistry and Life Science, School of Advance Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Center for Biosystems Dynamics Research (BDR), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
9
|
Mota-Lugo E, Dolores-Hernández M, Morales-Hipólito EA, Blanco-Alcántara IA, Cuatecontzi-Flores H, López-Arellano R. Development and Validation of a Stability-Indicating HPLC Method for the Simultaneous Determination of trans-Resveratrol and cis-Resveratrol in an Injectable Solution. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8402157. [PMID: 34812295 PMCID: PMC8605923 DOI: 10.1155/2021/8402157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
trans-Resveratrol, a phytochemical compound with antioxidant power and various therapeutic effects, such as cardioprotective, chemopreventive, and neuroprotective, among others, has disadvantages of poor solubility and limited stability, creating difficulties for the development of new strategies for its quantification. This study developed and validated an analytical stability method for trans-resveratrol by high-pressure liquid chromatography with photodiode-array detection (HPLC-PDA), which allowed its quantification in the presence of its degradation products. The quantification of trans-resveratrol occurred at a retention time of 2.6 min, with ammonium formate (10 mM, pH = 4)/acetonitrile, 70/30 v/v, as mobile phase. The validation met the ICH Q2 criteria of specificity, method linearity (2.8-4.2 μg/ml), precision and accuracy, robustness, quantification limit (0.176 μg/ml), and detection (0.058 μg/ml). As degradation products, cis-resveratrol was observed at 3.9 min, which could be resveratrone in 3.2 min and five unidentified products in 0.7, 1.0, 1.4, 1.8, and 5 min. Some solutions subjected to temperature stress of 40 and 60°C, UV light, and acidic and basic hydrolysis exhibited colour changes. An analytical method was obtained by HPLC-PDA, which allowed quantifying the stability of trans-resveratrol in a fast and specific manner in the presence of its degradation products.
Collapse
Affiliation(s)
- Esmeralda Mota-Lugo
- Laboratory of Pharmaceutical Development Tests, Multidisciplinary Research Unit, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Carr. Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, 54714 Cuautitlán Izcalli, Mexico
| | - Mariana Dolores-Hernández
- Laboratory of Pharmaceutical Development Tests, Multidisciplinary Research Unit, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Carr. Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, 54714 Cuautitlán Izcalli, Mexico
| | - Elvia A. Morales-Hipólito
- Laboratory of Pharmaceutical Development Tests, Multidisciplinary Research Unit, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Carr. Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, 54714 Cuautitlán Izcalli, Mexico
| | - Iris A. Blanco-Alcántara
- Laboratory of Pharmaceutical Development Tests, Multidisciplinary Research Unit, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Carr. Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, 54714 Cuautitlán Izcalli, Mexico
| | - Hugo Cuatecontzi-Flores
- Laboratory of Pharmaceutical Development Tests, Multidisciplinary Research Unit, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Carr. Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, 54714 Cuautitlán Izcalli, Mexico
| | - Raquel López-Arellano
- Laboratory of Pharmaceutical Development Tests, Multidisciplinary Research Unit, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Carr. Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, 54714 Cuautitlán Izcalli, Mexico
| |
Collapse
|
10
|
Diabetes and Thrombosis: A Central Role for Vascular Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10050706. [PMID: 33946846 PMCID: PMC8146432 DOI: 10.3390/antiox10050706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus is the fifth most common cause of death worldwide. Due to its chronic nature, diabetes is a debilitating disease for the patient and a relevant cost for the national health system. Type 2 diabetes mellitus is the most common form of diabetes mellitus (90% of cases) and is characteristically multifactorial, with both genetic and environmental causes. Diabetes patients display a significant increase in the risk of developing cardiovascular disease compared to the rest of the population. This is associated with increased blood clotting, which results in circulatory complications and vascular damage. Platelets are circulating cells within the vascular system that contribute to hemostasis. Their increased tendency to activate and form thrombi has been observed in diabetes mellitus patients (i.e., platelet hyperactivity). The oxidative damage of platelets and the function of pro-oxidant enzymes such as the NADPH oxidases appear central to diabetes-dependent platelet hyperactivity. In addition to platelet hyperactivity, endothelial cell damage and alterations of the coagulation response also participate in the vascular damage associated with diabetes. Here, we present an updated interpretation of the molecular mechanisms underlying vascular damage in diabetes, including current therapeutic options for its control.
Collapse
|
11
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
12
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118927. [PMID: 33310067 DOI: 10.1016/j.bbamcr.2020.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Platelets are small enucleated cell fragments specialized in the control of hemostasis, but also playing a role in angiogenesis, inflammation and immunity. This plasticity demands a broad range of physiological processes. Platelet functions are mediated through a variety of receptors, the concerted action of which must be tightly regulated, in order to allow specific and timely responses to different stimuli. Protein phosphorylation is one of the main key regulatory mechanisms by which extracellular signals are conveyed. Despite the importance of platelets in health and disease, the molecular pathways underlying the activation of these cells are still under investigation. Here, we review current literature on signaling platelet biology and in particular emphasize the newly emerging role of phosphatases in these processes.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands; Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Vara D, Tarafdar A, Celikag M, Patinha D, Gulacsy CE, Hounslea E, Warren Z, Ferreira B, Koeners MP, Caggiano L, Pula G. NADPH oxidase 1 is a novel pharmacological target for the development of an antiplatelet drug without bleeding side effects. FASEB J 2020; 34:13959-13977. [PMID: 32851720 DOI: 10.1096/fj.202001086rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Growing evidence supports a central role of NADPH oxidases (NOXs) in the regulation of platelets, which are circulating cells involved in both hemostasis and thrombosis. Here, the use of Nox1-/- and Nox1+/+ mice as experimental models of human responses demonstrated a critical role of NOX1 in collagen-dependent platelet activation and pathological arterial thrombosis, as tested in vivo by carotid occlusion assays. In contrast, NOX1 does not affect platelet responses to thrombin and normal hemostasis, as assayed in tail bleeding experiments. Therefore, as NOX1 inhibitors are likely to have antiplatelet effects without associated bleeding risks, the NOX1-selective inhibitor 2-acetylphenothiazine (2APT) and a series of its derivatives generated to increase inhibitory potency and drug bioavailability were tested. Among the 2APT derivatives, 1-(10H-phenothiazin-2-yl)vinyl tert-butyl carbonate (2APT-D6) was selected for its high potency. Both 2APT and 2APT-D6 inhibited collagen-dependent platelet aggregation, adhesion, thrombus formation, superoxide anion generation, and surface activation marker expression, while responses to thrombin or adhesion to fibrinogen were not affected. In vivo administration of 2APT or 2APT-D6 led to the inhibition of mouse platelet aggregation, oxygen radical output, and thrombus formation, and carotid occlusion, while tail hemostasis was unaffected. Differently to in vitro experiments, 2APT-D6 and 2APT displayed similar potency in vivo. In summary, NOX1 inhibition with 2APT or its derivative 2APT-D6 is a viable strategy to control collagen-induced platelet activation and reduce thrombosis without deleterious effects on hemostasis. These compounds should, therefore, be considered for the development of novel antiplatelet drugs to fight cardiovascular diseases in humans.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Anuradha Tarafdar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Meral Celikag
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Ellie Hounslea
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zach Warren
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Barbara Ferreira
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Maarten P Koeners
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lorenzo Caggiano
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Spasov AA, Kucheryavenko AF, Gaidukova KA, Kosolapov VA, Zhukovskaya ON. Antiplatelet activity of new derivatives of benzimidazole containing sterically hindered phenolic group in their structure. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.50373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: Cardiovascular diseases are currently the leading cause of global disability and mortality. According to the centers for disease control and prevention, the average life expectancy of a person would be 10 years longer but for a high prevalence of cardiovascular diseases, and if antiplatelet drugs and special therapy were used.
Materials and methods: Antiplatelet activity of the novel benzimidazole derivatives containing a sterically hindered phenolic group in their structure has been investigated in vitro, using a model of ADP-induced platelet aggregation of rabbit’s plasma. The compounds exhibiting high antiplatelet activity and acetylsalicylic acid, as a reference drug, were examined for antioxidant properties in an ascorbate-dependent model of lipid peroxidation.
Results: It was established that the compounds with high antiplatelet activity demonstrated the pronounced antioxidant action. The compound RU-1144 (1-(3,5-ditretbutyl-4-hydroxyphenyl) -1-hydroxypropyl)-phenyl-pyrimidobenzimidazole hydrochloride), in in vitro experiments, had a pronounced antiplatelet activity, surpassing the reference drug acetylsalicylic acid by 21.8 times; in the study of antioxidant activity, the leader compound was inferior to the reference drug dibunol by 1.7 times. By inhibiting intravascular platelet aggregation in vivo, this compound exceeded acetylsalicylic acid by 1.5 times and was slightly inferior to clopidogrel by 1.4 times.
Discussion: Benzimidazole derivatives with a hindered phenolic substituent in their structure exhibited antiplatelet and antioxidant properties. It was established that the compounds with high antiplatelet activity demonstrated the pronounced antioxidant action.
Conclusion: The chemical class of benzimidazole derivatives with a hindered phenolic substituent in their structure is promising for the search for new antiaggregant and antioxidant drugs.
Collapse
|
15
|
Li Z, Chen QQ, Lam CWK, Guo JR, Zhang WJ, Wang CY, Wong VKW, Yao MC, Zhang W. Investigation into perturbed nucleoside metabolism and cell cycle for elucidating the cytotoxicity effect of resveratrol on human lung adenocarcinoma epithelial cells. Chin J Nat Med 2020; 17:608-615. [PMID: 31472898 DOI: 10.1016/s1875-5364(19)30063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 01/15/2023]
Abstract
In an effort to understand the molecular events contributing to the cytotoxicity activity of resveratrol (RSV), we investigated its effects on human lung adenocarcinoma epithelial cell line A549 at different concentrations. Cellular nucleoside metabolic profiling was determined by an established liquid chromatography-mass spectrometry method in A549 cells. RSV resulted in significant decreases and imbalances of deoxyribonucleoside triphosphates (dNTPs) pools suppressing subsequent DNA synthesis. Meanwhile, RSV at high concentration caused significant cell cycle arrest at S phase, in which cells required the highest dNTPs supply than other phases for DNA replication. The inhibition of DNA synthesis thus blocked subsequent progression through S phase in A549 cells, which may partly contribute to the cytotoxicity effect of RSV. However, hydroxyurea (HU), an inhibitor of RNR activity, caused similar dNTPs perturbation but no S phase arrest, finally no cytotoxicity effect. Therefore, we believed that the dual effect of high concentration RSV, including S phase arrest and DNA synthesis inhibition, was required for its cytotoxicity effect on A549 cells. In summary, our results provided important clues to the molecular basis for the anticancer effect of RSV on epithelial cells.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Qian-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Wei-Jia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
16
|
Vara D, Cifuentes-Pagano E, Pagano PJ, Pula G. A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli. Haematologica 2019; 104:1879-1891. [PMID: 30679320 PMCID: PMC6717585 DOI: 10.3324/haematol.2018.208819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/18/2019] [Indexed: 01/12/2023] Open
Abstract
The regulation of platelets by oxidants is critical for vascular health and may explain thrombotic complications in diseases such as diabetes and dementia, but remains poorly understood. Here, we describe a novel technique combining electron paramagnetic resonance spectroscopy and turbidimetry, which has been utilized to monitor simultaneously platelet activation and oxygen radical generation. This technique has been used to investigate the redox-dependence of human and mouse platelets. Using selective peptide inhibitors of NADPH oxidases (NOXs) on human platelets and genetically modified mouse platelets (NOX1-/- or NOX2-/-), we discovered that: 1) intracellular but not extracellular superoxide anion generated by NOX is critical for platelet activation by collagen; 2) superoxide dismutation to hydrogen peroxide is required for thrombin-dependent activation; 3) NOX1 is the main source of oxygen radicals in response to collagen, while NOX2 is critical for activation by thrombin; 4) two platelet modulators, namely oxidized low density lipoproteins (oxLDL) and amyloid peptide β (Aβ), require activation of both NOX1 and NOX2 to pre-activate platelets. This study provides new insights into the redox dependence of platelet activation. It suggests the possibility of selectively inhibiting platelet agonists by targeting either NOX1 (for collagen) or NOX2 (for thrombin). Selective inhibition of either NOX1 or NOX2 impairs the potentiatory effect of tested platelet modulators (oxLDL and Aβ), but does not completely abolish platelet hemostatic function. This information offers new opportunities for the development of disease-specific antiplatelet drugs with limited bleeding side effects by selectively targeting one NOX isoenzyme.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giordano Pula
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
17
|
Kanubaddi KR, Yang SH, Wu LW, Lee CH, Weng CF. Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int J Nanomedicine 2018; 13:8473-8485. [PMID: 30587972 PMCID: PMC6294069 DOI: 10.2147/ijn.s179484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, the most common causes of dementia is a multifactorial pathology categorized by a complex etiology. Numerous nutraceuticals have been clinically evaluated, but some of the trials failed. However, natural compounds have some limitations due to their poor bioavailability, ineffective capability to cross the blood-brain barrier, or less therapeutic effects on AD. To overcome these disadvantages, nanoparticle-conjugated natural products could promote the bioavailability and enhance the therapeutic efficacy of AD when compared with a naked drug. This application generates and implements new prospect for drug discovery in neurodegenerative diseases. In this article, we confer AD pathology, review natural products in clinical trials, and ascertain the importance of nanomedicine coupled with natural compounds for AD.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Shin-Han Yang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Li-Wei Wu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| |
Collapse
|
18
|
Liu X, Long X, Liu W, Zhao Y, Hayashi T, Yamato M, Mizuno K, Fujisaki H, Hattori S, Tashiro SI, Ogura T, Atsuzawa Y, Ikejima T. Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-β1 activation. Biochimie 2018; 150:110-130. [PMID: 29777737 DOI: 10.1016/j.biochi.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
In organ fibrosis, mechanical stress and transforming growth factor beta-1 (TGF-β1) promote differentiation into myofibroblast from mesenchymal cells, leading to extracellular matrix (ECM) remodeling or active synthesis, deposition or degradation of ECM components. A major component of ECM, type I collagen (col I) triple helical molecules assemble into fibrils or are denatured to gelatin without triple-helicity in remodeling. However, whether changes of ECM components in remodeling have influence on mesenchymal cell differentiation remains elusive. This study adopted three states of collagen I existing in ECM remodeling: molecular collagen, fibrillar collagen and gelatin to see what are characteristics in the effects on two cell lines of mesenchymal origin, murine 3T3-L1 embryonic fibroblast and murine C2C12 myoblasts. The results showed that all three forms of collagen I were capable of inducing these two cells to differentiate into myofibroblasts characterized by increased expression of alpha-smooth muscle actin (α-SMA) mRNA. The expression of α-SMA is positively regulated by TGF-β1. Nuclear translocation of Yes-associated protein (YAP) is involved in this process. Focal adhesion kinase (FAK) is activated in the cells cultured on molecular collagen-coated plates, contributing to YAP activation. On the other hand, in the cells cultured on fibrillar collagen gel or gelatin-coated plates, oxidative stress but not FAK induce YAP activation. In conclusion, the three physicochemically distinct forms of col I induce the differentiation of mesenchymal cells into myofibroblasts through different pathways.
Collapse
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, 603-8072, Japan
| | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Yuji Atsuzawa
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
19
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2018; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
20
|
Zhou X, Zhang H, He L, Wu X, Yin Y. Long-Term l-Serine Administration Reduces Food Intake and Improves Oxidative Stress and Sirt1/NFκB Signaling in the Hypothalamus of Aging Mice. Front Endocrinol (Lausanne) 2018; 9:476. [PMID: 30190704 PMCID: PMC6115525 DOI: 10.3389/fendo.2018.00476] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Serine has recently been shown to reduce oxidative stress and inflammation, which, when occurring in the hypothalamus, contribute to age-related obesity. To explore whether long-term serine administration reduces oxidative stress and body weight in aging mice, various concentrations of l-serine dissolved in water were administered to 18-month-old C57BL/6J mice for 6 months. The results showed that the administration of 0.5% (w/v) l-serine significantly reduced food intake and body weight gain during the experiment. Moreover, the administration of 0.5% l-serine decreased the concentrations of leptin, malondialdehyde, interleukin-1β, and interleukin-6, while it increased those of superoxide dismutase and glutathione, in both the serum and hypothalamus. Reactive oxygen species and the activity of nicotinamide adenine dinucleotide phosphate oxidase were reduced in the hypothalamus of aging mice treated with l-serine as compared with untreated control mice. Additionally, the expression of the leptin receptor increased while the levels of neuropeptide Y and agouti-related protein decreased in mice that had been treated with 0.5% l-serine. The expression of Sirt1 and phosphorylated signal transducers and activators of transcription 3 (pSTAT3) increased, while that of phosphorylated NFκB decreased in the mice treated with 0.5% l-serine. These results indicated that long-term l-serine administration reduces body weight by decreasing orexigenic peptide expression and reduces oxidative stress and inflammation during aging in mice, possibly by modulating the Sirt1/NFκB pathway. Thus, l-serine has the potential to be used in the prevention of age-related obesity.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Haikou, China
| | - Liuqin He
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Xin Wu
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
21
|
Ge L, Li C, Wang Z, Zhang Y, Chen L. Suppression of Oxidative Stress and Apoptosis in Electrically Stimulated Neonatal Rat Cardiomyocytes by Resveratrol and Underlying Mechanisms. J Cardiovasc Pharmacol 2017; 70:396-404. [PMID: 28857948 DOI: 10.1097/fjc.0000000000000534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE We explored the effects of resveratrol on oxidative stress in cardiomyocytes subjected to rapid electrical stimulation (RES) and also investigated the underlying mechanisms. METHODS Cultured ventricular myocytes of neonatal rat were subjected to RES at 4.0 Hz, with or without resveratrol, an NADPH oxidase inhibitor apocyanin (APO) or a Ca/calmodulin-dependent protein kinase II (CaMKII) inhibitor autocamtide-2-inhibitory peptide (AIP). Cell counts, to optimize resveratrol concentration, and angiotensin II content were evaluated. Reactive oxygen species (ROS), intracellular Ca in cardiomyocytes, and cardiomyocyte apoptosis were also assessed. Levels of methionine sulfoxide reductase A (MsrA), Nox, oxidative CaMKII (OX-CaMKII), and cleaved caspase-3 in cardiomyocytes were examined. RESULTS Resveratrol treatment, as compared with APO and AIP, significantly decreased ROS levels, improved Ca amplitudes, and intracellular Ca transient decay rates, and inhibited cardiomyocyte apoptosis. Resveratrol also increased MsrA protein levels. In cardiomyocytes subjected to RES, after pretreatment with resveratrol or APO, protein levels of Nox4, Nox2, OX-CaMKII, and cleaved caspase-3 were decreased. In comparison, with AIP pretreatment, only Nox2, OX-CaMKII, and cleaved caspase-3 were decreased. However, in the presence of dimethyl sulfoxide, a competitive inhibitor of MsrA function, a decrease in cleaved caspase-3 did not occur. CONCLUSIONS Resveratrol decreased ROS, partially through the inhibition of NADPH oxidase activity and upregulation of MsrA expression.
Collapse
Affiliation(s)
- Liqi Ge
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chengzong Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhirong Wang
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yao Zhang
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Chen
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J Pineal Res 2017; 63. [PMID: 28749565 DOI: 10.1111/jpi.12438] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
Abstract
Platelet activation is a major (patho-) physiological mechanism that underlies ischemia/reperfusion (I/R) injury. In this study, we explored the molecular signals for platelet hyperactivity and investigated the beneficial effects of melatonin on platelet reactivity in response to I/R injury. After reperfusion, peroxisome proliferator-activated receptor γ (PPARγ) was progressively downregulated in patients with acute myocardial infarction undergoing coronary artery bypass grafting (CABG) surgery and in mice with I/R injury model. Loss of PPARγ was closely associated with FUN14 domain containing 1 (FUNDC1) dephosphorylation and mitophagy activation, leading to increased mitochondrial electron transport chain complex (ETC.) activity, enhanced mitochondrial respiratory function, and elevated ATP production. The improved mitochondrial function strongly contributed to platelet aggregation, spreading, expression of P-selectin, and final formation of micro-thromboses, eventually resulting in myocardial dysfunction and microvascular structural destruction. However, melatonin powerfully suppressed platelet activation via restoration of the PPARγ content in platelets, which subsequently blocked FUNDC1-required mitophagy, mitochondrial energy production, platelet hyperactivity, and cardiac I/R injury. In contrast, genetic ablation of PPARγ in platelet abolished the beneficial effects of melatonin on mitophagy, mitochondrial ATP supply, and platelet activation. Our results lay the foundation for the molecular mechanism of platelet activation in response to I/R injury and highlight that the manipulation of the PPARγ/FUNDC1/mitophagy pathway by melatonin could be a novel strategy for cardioprotection in the setting of cardiac I/R injury.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Tianwen Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
DiNicolantonio JJ, O'Keefe JH, McCarty MF. Targeting aspirin resistance with nutraceuticals: a possible strategy for reducing cardiovascular morbidity and mortality. Open Heart 2017; 4:e000642. [PMID: 28912955 PMCID: PMC5589004 DOI: 10.1136/openhrt-2017-000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - James H O'Keefe
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, USA
| | | |
Collapse
|
24
|
Corona de la Peña N, Gutiérrez-Aguilar M, Hernández-Reséndiz I, Marín-Hernández Á, Rodríguez-Enríquez S. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets. PLoS One 2017; 12:e0182374. [PMID: 28817667 PMCID: PMC5560607 DOI: 10.1371/journal.pone.0182374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.
Collapse
Affiliation(s)
- Norma Corona de la Peña
- Unidad de Investigación en Trombosis, Hemostasia y Aterogénesis, Hospital Carlos McGregor, México City, México
- * E-mail: (SRE); (NCP)
| | - Manuel Gutiérrez-Aguilar
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States of America
| | | | | | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México City, México
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, México City, México
- * E-mail: (SRE); (NCP)
| |
Collapse
|
25
|
Kim YJ, Chung SO, Kim JK, Park SU. Recent studies on resveratrol and its biological and pharmacological activity. EXCLI JOURNAL 2017; 16:602-608. [PMID: 28694761 PMCID: PMC5491918 DOI: 10.17179/excli2017-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sang Un Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
26
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
27
|
Houston SA, Ugusman A, Gnanadesikan S, Kennedy S. An investigation of the antiplatelet effects of succinobucol (AGI-1067). Platelets 2016; 28:295-300. [PMID: 27681689 DOI: 10.1080/09537104.2016.1218456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Succinobucol is a phenolic antioxidant with anti-inflammatory and antiplatelet effects. Given the importance of oxidant stress in modulating platelet-platelet and platelet-vessel wall interactions, the aim of this study was to establish if antioxidant activity was responsible for the antiplatelet activity of succinobucol. Platelet aggregation in response to collagen and adenosine diphosphate (ADP) was studied in rabbit whole blood and platelet-rich plasma using impedance aggregometry. The effect of oxidant stress on aggregation, platelet lipid peroxides, and vascular tone was studied by incubating platelets, washed platelets or preconstricted rabbit iliac artery rings respectively with a combination of xanthine and xanthine oxidase (X/XO). To study the effect of succinobucol in vivo, anaesthetized rats were injected with up to 150 mg/kg succinobucol and aggregation measured in blood removed 15 mins later. Succinobucol (10-5-10-4 M) significantly attenuated platelet aggregation to collagen and ADP in whole blood and platelet-rich plasma. X/XO significantly increased aggregation to collagen and platelet lipid peroxides and this was reversed by succinobucol. Addition of X/XO to denuded rabbit iliac arteries caused a dose-dependent relaxation which was significantly inhibited by succinobucol. In vivo administration up to 150 mg/kg had no effect on heart rate or mean arterial blood pressure but significantly inhibited platelet aggregation to collagen ex vivo. In conclusion, succinobucol displays anti-platelet activity in rabbit and rat blood and reverses the increase in platelet aggregation in response to oxidant stress.
Collapse
Affiliation(s)
- Stephanie A Houston
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK.,b Manchester Immunology Group , Manchester , UK
| | - Azizah Ugusman
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK.,c Department of Physiology, Faculty of Medicine , National University of Malaysia Medical Centre , Kuala Lumpur , Malaysia
| | - Sukanya Gnanadesikan
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - Simon Kennedy
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|