1
|
Feng J, He L, Hui JQ, Kavithaa K, Xu Z. Synthesis of Bimetallic Palladium/Zinc Oxide Nanocomposites Using Crocus sativus and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Appl Biochem Biotechnol 2024; 196:6893-6914. [PMID: 38421572 DOI: 10.1007/s12010-024-04877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Palladium (Pd) and zinc oxide (ZnO) (Pd/ZnO NPs) bimettalic nanocomposites still lag much too far behind other nanoparticles investigated for various biological uses in the area of cancer treatments. Chemically created nanoparticles agglomerate under physiological conditions, impeding their use in biomedical applications. In this study, a straightforward and environmentally friendly method for creating bimetallic nanoparticles (NPs) by combining palladium (Pd) and zinc oxide (ZnO) using Crocus sativus extract (CS-Pd/ZnO NCs) was reported; the bio-synthesize bimetallic palladium/zinc oxide nanocomposites and their antioxidant and anti-cancer properties were assessed. The developed Pd/ZnO NPs were characterized using different approaches, including UV-vis, DLS, FTIR, EDX, and SEM analyses. The present investigation shows how nanocomposites are made, their distinctive properties, antioxidant activity, anticancer mechanisms, and their potential therapeutic applications. DPPH and ABTS tests were used to investigate antioxidant activity. Further, the effects of CS-Pd/ZnO NCs on HeLa cells were assessed using the cell viability, ROS generation, MMP levels, and induced apoptosis. Apoptosis induction was measured using an Annexin V-fluorescein isothicyanate assay. Cell DNA was stained with propidium iodide to evaluate the impact upon this cell cycle. Time-dependent cell death was carried on by CS-Pd/ZnO NCs. The maximum inhibitory effect was 59 ± 3.2 when dosages of 4.5 µg/mL or higher were delivered after 24 h of treatment. Additionally, the CS-Pd/ZnO NCs caused HeLa cells to undergo apoptosis. Apoptotic HeLa cells were present in 35.64% of the treated cells at 4.5 µg/mL, and the cell cycle arrest at G0/G1 phase occurred concurrently. According to these findings, the CS-Pd/ZnO NCs may be a promising candidate for the creation of brand-new cervical cancer treatment.
Collapse
Affiliation(s)
- Jun Feng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou Jiangsu, 215000, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Jin Qing Hui
- Department of Surgical, Shaanxi Kangfu Hospital, Xian, 710065, Shaanxi, China
| | | | - Zhengzheng Xu
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430000, Hubei, China.
| |
Collapse
|
2
|
Grabowska K, Galanty A, Pecio Ł, Stojakowska A, Malarz J, Żmudzki P, Zagrodzki P, Podolak I. Selectivity Screening and Structure-Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wiade Panel of Human Cancer Cell Lines. Molecules 2024; 29:3794. [PMID: 39202875 PMCID: PMC11357256 DOI: 10.3390/molecules29163794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Plants from the Amaranthaceae family are a source of oleanolic acid (OA)-type saponins with cytotoxic activity. Two known OA-type saponins, calenduloside E and chikusetsusaponin IVa, were isolated from the roots of Chenopodium strictum Roth. Their structures were confirmed using MS and NMR techniques. This constitutes the inaugural report of the saponins in Ch. strictum. Both the isolated saponins and structurally similar compounds, momordin Ic and OA, were compared for their cytotoxicity against various cancer and normal cell lines (including skin, breast, thyroid, gastrointestinal, and prostate panels). Their effects were dose- and time-dependent, varying with the specific cell line and compound structure. A chemometric approach demonstrated the effects of the compounds on the cell lines. The study discusses the structure-activity observations. The key structural elements for potent cytotoxic activity included the free carboxyl group 28COOH in the sapogenin structure (OA) and the presence of a sugar moiety. The monodesmosides with glucuronic acid (GlcA) at the C3 position of OA were generally more cytotoxic than bidesmosides or OA alone. The addition of xylose in the sugar chain modified the activity towards the cancer cells depending on the specific cell line. OA-type saponins with GlcA (particularly calenduloside E and momordin Ic) represent a promising avenue for further investigation as potential anticancer agents.
Collapse
Affiliation(s)
- Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation–State Research Institute, ul. Czartoryskich 8, 24-100 Puławy, Poland;
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (A.S.); (J.M.)
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (A.S.); (J.M.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland;
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna, 30-688 Kraków, Poland;
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| |
Collapse
|
3
|
Wang C, Jiao S, Zhou R, Huang P, Zeng B, Yang Z, Wang J. Momordin Ic ameliorates psoriasis skin damage in mice via the IL-23/IL-17 axis. Arch Dermatol Res 2024; 316:474. [PMID: 39007937 DOI: 10.1007/s00403-024-03023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 07/16/2024]
Abstract
Psoriasis, a chronic and easily recurring inflammatory skin disease, causes a great economic burden to the patient's family because the etiology and mechanism are still unclear and the treatment cycle is long. In this study, the function and related mechanisms of Momordin Ic in psoriasis were investigated. The IMQ-induced mouse psoriasis model was constructed. The protective effects of different doses of Momordin Ic on psoriasis skin damage in mice were detected by PASI score, HE staining and Ki-67 staining. A psoriasis-like keratinocyte model was established at the cellular level using M5 (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α) triggered HaCaT. The effects of Momordin Ic upon HaCaT cell biological behavior were examined using MTT and CCK-8 assays. In terms of mechanism, the expression level of each inflammatory factor was assessed using IHC staining and/or ELISA, qRT-PCR, the expression of oxidative stress-related indicators was detected biochemically, and western blot was performed to detect the levels of key proteins of the Wnt signaling and VEGF. As the results shown, at the in vivo level, Momordin Ic significantly alleviated skin damage, reduced PASI score and inhibited hyperproliferation of keratinized cells in psoriasis mice. At the cellular level, Momordin Ic also significantly reversed M5-induced hyperproliferation of HaCaT keratinocytes. In terms of mechanism, Momordin Ic significantly inhibited the IL-23/IL-17 axis, dramatically elevated the levels of intracellular antioxidants including SOD, GSH-Px, and CAT, and significantly down-regulated the levels of the indicator of oxidative damage, malondialdehyde (MDA). In addition, Momordin Ic also significantly inhibited the level of β-catenin, a pivotal protein of the Wnt signaling, C-Myc, a target gene of the Wnt signaling, and VEGF, a critical protein of angiogenesis. In conclusion, Momordin Ic can be involved in the skin-protective effects of psoriasis by multiple mechanisms, including inhibition of the Wnt signaling pathway and the IL-23/IL-17 axis, and suppression of oxidative damageand VEGF expression. Momordin Ic has been proven to be an underlying therapeutic drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Chang Wang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Simin Jiao
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Rong Zhou
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Pan Huang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Bijun Zeng
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zhibo Yang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Junwen Wang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-Class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China.
| |
Collapse
|
4
|
Sen MG, Sanislav O, Fisher PR, Annesley SJ. The Multifaceted Interactions of Dictyostelium Atg1 with Mitochondrial Function, Endocytosis, Growth, and Development. Cells 2024; 13:1191. [PMID: 39056773 PMCID: PMC11274416 DOI: 10.3390/cells13141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne 3086, Australia; (M.G.S.); (O.S.); (P.R.F.)
| |
Collapse
|
5
|
Li Z, Sun Z. Fabrication of Nickel/Zinc Oxide Nanocomposites from Citrus sinensis Extract Prompts Apoptosis Through Impeding JAK/STAT3 Signaling in Gastric Cancer. Appl Biochem Biotechnol 2024; 196:3534-3552. [PMID: 37713061 DOI: 10.1007/s12010-023-04707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
In this study, we sought to fabricate nickel/zinc oxide nanocomposites utilizing Citrus sinensis (C. sinensis) peel extract (CS-Ni/ZnO NCs) and investigate their ability to impede the JAK/STAT3 signaling pathway in gastric cancer AGS cells. Different methods, including UV-Vis spectral analysis, FT-IR, XRD, FE-SEM, EDAX, DLS, and zeta potential, were used to characterize the fabricated CS-Ni/ZnO NCs. By measuring ROS, MMP, and apoptotic cell death using the appropriate fluorescence describing procedures, the anticancer potential of CS-Ni/ZnO NCs was examined against AGS cells. The synthesized CS-Ni/ZnO NCs displayed a rod structure with a diameter of 74.76 nm. The cytotoxicity assay showed that the CS-Ni/ZnO NCs diminished the viability of the AGS cells in a dosage-dependent manner. Results from the fluorescence probe assay showed that the CS-Ni/ZnO NCs caused apoptosis in AGS cells. JAK/STAT-3 over expressions thought to expand the transcriptional regulation of proliferation and anti-apoptosis. Hence, inhibition of JAK/STAT-3 expression is considered a crucial target for impeding the expansion of gastric cancer proliferation. The JAK/STAT3 signaling cascade was successfully blocked by CS-Ni/ZnO NCs treatment, which also started the apoptotic pathway in the AGS cells. The findings conclude that CS-Ni/ZnO NCs might serve as a promising chemo-preventive agent for treating GC.
Collapse
Affiliation(s)
- Zhifei Li
- Oncology Department, Jinan Municipal Hospital of Traditional Chinese Medicine, No. 76, Gongqingtuan Road, Shandong Province, Jinan, 250012, China
| | - Zhongwei Sun
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Shandong Province, Jinan, 250013, China.
| |
Collapse
|
6
|
Jiang Y, Xu S, Guo M, Lu Z, Wei X, An F, Xin X. DMC triggers MDA-MB-231 cells apoptosis via inhibiting protective autophagy and PI3K/AKT/mTOR pathway by enhancing ROS level. Toxicol In Vitro 2024; 97:105809. [PMID: 38521250 DOI: 10.1016/j.tiv.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
DMC, a kind of compound derived from the dry flower buds of Cleistocalyx operculatus, has been shown to inhibit the growth of various cancer cells, but research on triple-negative breast cancer cells remains scarce. To explore this issue, MDA-MB-231 cells were selected, and the results showed that DMC has strong proliferation inhibit effects on this kind of cells. The inhibit rate of 30 μM DMC incubated for 24 h was 56.25%, and 40.6% cells were arrested under the G2/M phase. The levels of pro-apoptosis protein Bax and active caspase-3, cleaved PARP and cell cycle related proteins, such as p21 and p27 increased, but apoptosis regulators, like Bcl-2, Cdc 2, Cyclin B1, and LC3 II decreased dramatically. In addition, DMC induced the accumulation of autophagosomes and autophagic substrates, and the combination of DMC with CQ promoted apoptosis of MDA-MB-231 cells, which suggested that DMC induced apoptosis partly by blocking autophagy flow. Moreover, the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and its mechanistic target of rapamycin kinase (mTOR) were also decreased after 30 μM DMC incubating for 24 h. The proteins play a critical role in cell proliferation, apoptosis, and autophagy modulation. The inhibition of autophagy flow and PI3K/AKT/mTOR pathway could be reversed after being treated with ROS scavenger NAC. Altogether, the results of the present study suggest that DMC effectively induces apoptosis and growth inhibition in MDA-MB-231 cells through blocking autophagy flow and regulating the PI3K/AKT/mTOR pathway by increasing ROS level.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sunjie Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miaomiao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Beijing 100048, China
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Cosmetics Co. Ltd., 121 Chengyin Road, Shanghai 200083, China
| | - Xing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, No.4 Lane 218, Haiji Sixth Road, Shanghai 201306, China.
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Zhao M, Wen Y, Yang Y, Pan H, Xie S, Shen C, Liao W, Chen N, Zheng Q, Zhang G, Li Y, Gong D, Tang J, Zhao Z, Zeng J. (-)-Asarinin alleviates gastric precancerous lesions by promoting mitochondrial ROS accumulation and inhibiting the STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155348. [PMID: 38335913 DOI: 10.1016/j.phymed.2024.155348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.
Collapse
Affiliation(s)
- Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shunkai Xie
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caifei Shen
- Department of Endoscopy Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Nianzhi Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Yuchen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shi-er-Qiao Road, Chengdu, Sichuan 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
8
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Alorini M, Alnasser SM, Elhasadi I, El-Nagdy SA. Trigonelline Chloride Ameliorated Triphenyltin-Induced Testicular Autophagy, Inflammation, and Apoptosis: Role of Recovery. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:133-150. [PMID: 38156731 DOI: 10.1093/micmic/ozad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Triphenyltin chloride (TPT-Cl) is an organometallic organotin. This study aimed to investigate the role of trigonelline (TG) along with the impact of TPT withdrawal on the testicular toxicity induced by TPT-Cl. Thirty-six adult male albino rats were divided into control, TG (40 mg/kg/day), TPT-Cl (0.5 mg/kg/day), TG + TPT-Cl, and recovery groups. Animals were daily gavaged for 12 weeks. Both TG and TPT-Cl withdrawal improved TPT-Cl-induced testicular toxicity features involving testis and relative testis weight reduction, luteinizing hormone, follicular stimulating hormone, and sex hormone-binding globulin elevation, reduction of inhibin B, free testosterone levels, and sperm count reduction with increased abnormal sperm forms. Moreover, both TG and TPT-Cl withdrawal reduced inflammatory activin A, follistatin, tumor necrosis factor α, interleukin-1β, and proapoptotic Bax and elevated antiapoptotic Bcl2 in testicular tissues mediated by TPT-Cl. TG and TPT-Cl withdrawal restored the excessive autophagy triggered by TPT-Cl via elevation of mTOR, AKT, PI3K, and P62/SQSTM1 and reduction of AMPK, ULK1, Beclin1, and LC3 mRNA gene expressions and regained the deteriorated testicular structure. In conclusion, TG and TPT-Cl withdrawal had an ameliorative role in partially reversing TPT-Cl-induced testicular toxicity. However, the findings indicated that the use of TG as an adjunctive factor is more favorable than TPT-Cl withdrawal, suggesting the capability of the testis for partial self-improvement.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 51911, Saudi Arabia
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Samah A El-Nagdy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Zhao X, Chinnathambi A, Alharbi SA, Natarajan N, Raman M. Nerolidol, Bioactive Compound Suppress Growth of HCT-116 Colorectal Cancer Cells Through Cell Cycle Arrest and Induction of Apoptosis. Appl Biochem Biotechnol 2024; 196:1365-1375. [PMID: 37395945 DOI: 10.1007/s12010-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Nuclear Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nandakumar Natarajan
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, 75708, USA
| | - Muthusamy Raman
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
10
|
Karuppaiya V, Annamalai A, Krishnamurthy S, Soundarapandian K. Dieckol prevents prostate cancer cell proliferation by transcriptionally attenuating JAK/STAT3 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1187-1196. [PMID: 37886886 DOI: 10.1002/tox.24006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
This study delved at how the natural substance dieckol (DCL) prevents prostate cancerous cells from proliferating and migrating by blocking the JAK/STAT3 signaling pathway in PC-3 cells. For numerous tests, the cells were treated to DCL at a range of concentrations (0-20 μM) for 24 h. DCL mediated cytotoxicity was analyzed by MTT assay. To evaluate ROS, DCFH-DA staining was employed. Dual (AO/EtBr) staining was utilized to examine apoptotic changes, and MMP levels in PC-3 cells were examined using the appropriate fluorescent staining assays. By using flow cytometry and western blotting, the protein expressions of cell survival, cell cycle, proliferation, and apoptosis were assessed. The results showed that DCL significantly cytotoxically affects PC-3, and the IC50 was discovered to be 12 μM for 24 h exposure. Furthermore, after DCL treatment in PC-3, considerable ROS generation and increased apoptotic signals were detected. STAT3, JAK1, PCNA, and cyclins D1 and E1 are all suppressed by DCL in PC-3. In addition, DCL therapy in PC-3 dramatically increased pro-apoptotic proteins such Bax, caspase-3, and cytochrome C. Therefore, DCL has been regarded as a chemotherapeutic agent because to its ability to decrease the expression of proteins that control cell proliferation, including STAT3, JAK1, PCNA, and cyclins D1 and E1.
Collapse
Affiliation(s)
- Vimala Karuppaiya
- Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, India
| | - Shanthi Krishnamurthy
- Department of Biochemistry, Prof. Dhanapalan College of Science and Management, Chennai, India
| | - Kannan Soundarapandian
- Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem, India
| |
Collapse
|
11
|
Qiu K, Xia Q, Chen H, Ye Q, Mao H, Tian M, Gan Y, Huang Q, Wang H, Duan S. Exploring the anticancer potential of Actinidia chinensis Planch root extracts ( acRoots) on hepatocellular carcinoma: A molecular mechanism study. Heliyon 2023; 9:e21851. [PMID: 38027882 PMCID: PMC10656260 DOI: 10.1016/j.heliyon.2023.e21851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC), ranking as the seventh most prevalent cancer worldwide, poses a significant health challenge. Actinidia chinensis Planch Root extracts (acRoots), a traditional Chinese medicine, has exhibited promising inhibitory effects on the proliferation, invasion, and migration of various cancer cell types. Nevertheless, its specific impact and underlying mechanisms concerning HCC remain unclear. This research aimed to elucidate the anticancer properties and potential molecular mechanisms of acRoots in the HepG2 and LM3 cell lines. Our findings demonstrate that acRoots effectively hampers the in vitro proliferation, migration, and invasion of HCC cells. Furthermore, acRoots induces apoptosis and autophagy by impeding the AKT/mTOR signaling pathway, with its inhibitory effects on cells being restored under AKT activator induction. This study, for the first time, elucidates that acRoots can suppress HepG2 and LM3 cell proliferation by blocking the Akt/mTOR pathway, thereby activating apoptosis and autophagy. These results underscore the potential of acRoots as a promising antitumor agent for HCC.
Collapse
Affiliation(s)
- Kaijie Qiu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310014, China
| | - Hao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Qiong Ye
- Department of Orthopaedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Haixiang Mao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310014, China
| | - Yichao Gan
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310014, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
12
|
Zhang LQ, Sun L, Zhou YQ, Liu JJ, Wang QD, Mo WB, Cheng KG. Pentacyclic triterpene-amino acid derivatives induced apoptosis and autophagy in tumor cells, affected the JNK and PI3K/AKT/mTOR pathway. Bioorg Med Chem 2023; 94:117478. [PMID: 37742398 DOI: 10.1016/j.bmc.2023.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
A series of pentacyclic triterpene-amino acid derivatives were synthesized and tested for anti-proliferative activity. The results showed that most of the target compounds had good anti-proliferative activity. 2c did not contain protecting groups and hydrochloride, had excellent cytotoxicity, so it had been selected for further study in the mechanism of action in T24 cells. The data from transcriptome sequencing indicated that 2c was found to be closely related to apoptosis and autophagy. Observation of fluorescence staining and analysis from flow cytometry demonstrated that 2c induced apoptosis and cause cell cycle arrest in S/G2 phase in T24 cells. Molecular mechanism studies exhibited that 2c induced apoptosis in the intrinsic and extrinsic pathways. 2c also induced cellular autophagy in T24 cells. Results from Western Blotting showed that 2c could activate JNK pathway and inhibit PI3K/AKT/mTOR pathway. In conclusion, 2c was deserved further investigation in the field of anti-tumor.
Collapse
Affiliation(s)
- Li-Qiong Zhang
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Sun
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yu-Qing Zhou
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing-Jing Liu
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Quan-de Wang
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Wei-Bin Mo
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; College of Physical and Health Education, Guangxi Normal University, Guilin 541006, China.
| | - Ke-Guang Cheng
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
13
|
Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, Chen X, Yao X, Gu X, Qi L, Zhou C, Sun H. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol 2023:115664. [PMID: 37331636 DOI: 10.1016/j.bcp.2023.115664] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, PR China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Chun Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
14
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
15
|
Zhang H, Zheng Y, Liu X, Zha X, Elsabagh M, Ma Y, Jiang H, Wang H, Wang M. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. ENVIRONMENT INTERNATIONAL 2023; 173:107806. [PMID: 36841186 DOI: 10.1016/j.envint.2023.107806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA)-induced oxidative stress (OS) and its potentially associated autophagy and apoptosis have not been studied previously in pregnant ewes. Accordingly, this study investigated the underlying mechanisms of BPA-induced autophagy and apoptosis in the placenta and primary trophoblasts of pregnant ewes exposed to BPA both in vivo and in vitro. In vivo experiment, pregnant Hu ewes (n = 8) were exposed to 5 mg/kg/d of BPA compared to control ewes (n = 8) receiving only corn oil from day 40 through day 110 of gestation. Exposure to BPA during gestation resulted in placental insufficiency, fetal growth restriction (FGR), autophagy, endoplasmic reticulum stress (ERS), mitochondrial dysfunction, OS, and apoptosis in type A placentomes. Regarding in vitro model, primary ovine trophoblasts were exposed to BPA, BPA plus chloroquine (CQ; an autophagy inhibitor) or BPA plus rapamycin (RAP; an autophagy activator) for 12 h. Data illustrated that exposure to BPA enhanced autophagy (ULK1, Beclin-1, LC3, Parkin, and PINK1), ERS (GRP78, CHOP10, ATF4, and ATF6) and apoptosis (Caspase 3, Bcl-2, Bax, P53) but decreased the antioxidant (CAT, Nrf2, HO-1, and NQO1)-related mRNA and protein expressions as well as impaired the mitochondrial function. Moreover, treatment with CQ exacerbated the BPA-mediated OS, mitochondrial dysfunction, apoptosis, and ERS. On the contrary, RAP treatment counteracted the BPA-induced trophoblast dysfunctions mentioned above. Overall, the findings illustrated that BPA exposure could contribute to autophagy in the ovine placenta and trophoblasts and that autophagy, in turn, could alleviate BPA-induced apoptosis, mitochondrial dysfunction, ERS, and OS. These results offer new mechanistic insights into the role of autophagy in mitigating BPA-induced placental dysfunctions and FGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde Ömer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Honghua Jiang
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China.
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
16
|
Lv Y, Du Y, Li K, Ma X, Wang J, Du T, Ma Y, Teng Y, Tang W, Ma R, Wu J, Wu J, Feng J. The FACT-targeted drug CBL0137 enhances the effects of rituximab to inhibit B-cell non-Hodgkin's lymphoma tumor growth by promoting apoptosis and autophagy. Cell Commun Signal 2023; 21:16. [PMID: 36691066 PMCID: PMC9869543 DOI: 10.1186/s12964-022-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/25/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Aggressive B-cell non-Hodgkin's lymphoma (B-NHL) patients often develop drug resistance and tumor recurrence after conventional immunochemotherapy, for which new treatments are needed. METHODS We investigated the antitumor effects of CBL0137. In vitro, cell proliferation was assessed by CCK-8 and colony formation assay. Flow cytometry was performed to analyze cell cycle progression, apoptosis, mitochondrial depolarization, and reactive oxygen species (ROS) production. Autophagy was detected by transmission electron microscopy and mGFP-RFP-LC3 assay, while western blotting was employed to detect proteins involved in apoptosis and autophagy. RNA-sequencing was conducted to analyze the transcription perturbation after CBL0137 treatment in B-NHL cell lines. Finally, the efficacy and safety of CBL0137, rituximab, and their combination were tested in vivo. RESULTS CBL0137, a small molecule anticancer agent that has significant antitumor effects in B-NHL. CBL0137 sequesters the FACT (facilitates chromatin transcription) complex from chromatin to produce cytotoxic effects in B-NHL cells. In addition, we discovered novel anticancer mechanisms of CBL0137. CBL0137 inhibited human B-NHL cell proliferation by inducing cell cycle arrest in S phase via the c-MYC/p53/p21 pathway. Furthermore, CBL0137 triggers ROS generation and induces apoptosis and autophagy in B-NHL cells through the ROS-mediated PI3K/Akt/mTOR and MAPK signaling pathways. Notably, a combination of CBL0137 and rituximab significantly suppressed B-NHL tumor growth in subcutaneous models, consistent with results at the cellular level in vitro. CONCLUSIONS CBL0137 has potential as a novel approach for aggressive B-NHL, and its combination with rituximab can provide new therapeutic options for patients with aggressive B-NHL. Video Abstract.
Collapse
Affiliation(s)
- Yan Lv
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Yuxin Du
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China.
| | - Kening Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Juan Wang
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Tongde Du
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Yuxin Ma
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Yue Teng
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Weiyan Tang
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Rong Ma
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Jianqiu Wu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Jianzhong Wu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Jifeng Feng
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
17
|
Dai W, Dai YG, Ren DF, Zhu DW. Dieckol, a natural polyphenolic drug, inhibits the proliferation and migration of colon cancer cells by inhibiting PI3K, AKT, and mTOR phosphorylation. J Biochem Mol Toxicol 2023; 37:e23313. [PMID: 36683349 DOI: 10.1002/jbt.23313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
This study investigated that dieckol (DKL), a natural drug, inhibits colon cancer cell proliferation and migration by inhibiting phosphoinositide-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) phosphorylation in HCT-116 cells. The cells were treated with DKL in various concentrations (32 and 50 μM) for 24 h and then analyzed for various experiments. MTT (tetrazolium bromide) and crystal violet assay investigated DKL-mediated cytotoxicity. Dichlorodihydrofluorescein diacetate staining was used to assess the reactive oxygen species (ROS) measurement, and apoptotic changes were studied by dual acridine orange and ethidium bromide staining. Protein expression of cell survival, cell cycle, proliferation, and apoptosis protein was evaluated by western blot analysis. Results indicated that DKL produces significant cytotoxicity in HCT-116, and the half-maximal inhibitory concentration was found to be 32 μM for 24-h incubation. Moreover, effective production of ROS and enhanced apoptotic signs were observed upon DKL treatment in HCT-116. DKL induces the expression of phosphorylated PI3K, AKT, and mToR-associated enhanced expression of cyclin-D1, proliferating cell nuclear antigen, cyclin-dependent kinase (CDK)-4, CDK-6, and Bcl-2 in HCT-116. In addition, proapoptotic proteins such as Bax, caspase-9, and caspase-3 were significantly enhanced by DKL treatment in HCT-116. Hence, DKL has been considered a chemotherapeutic drug by impeding the expression of PI3K-, AKT-, and mTOR-mediated inhibition of proliferation and cell cycle-regulating proteins.
Collapse
Affiliation(s)
- Wei Dai
- Department of Clinical Laboratory, Ganzhou People's Hospital, Jiangxi, Ganzhou, China
| | - Yong Gang Dai
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Dong Feng Ren
- Department of Oncology, The First Hospital of Yulin, Shaanxi, Yulin, China
| | - Da Wei Zhu
- Department of Gastroenterology, Hongze District People's Hospital, Jiangsu, Huai'an, China
| |
Collapse
|
18
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
19
|
Li G, Huang D, Zou Y, Kidd J, Gehr TWB, Li N, Ritter JK, Li PL. Impaired autophagic flux and dedifferentiation in podocytes lacking Asah1 gene: Role of lysosomal TRPML1 channel. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119386. [PMID: 36302466 PMCID: PMC9869931 DOI: 10.1016/j.bbamcr.2022.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Podocytopathy and associated nephrotic syndrome have been reported in a mouse strain (Asah1fl/fl/Podocre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy in these mice remains unclear. The present study tested whether Ac deficiency impairs autophagic flux in podocytes through blockade of transient receptor potential mucolipin 1 (TRPML1) channel as a potential pathogenic mechanism of podocytopathy in Asah1fl/fl/Podocre mice. We first demonstrated that impairment of autophagic flux occurred in podocytes lacking Asah1 gene, which was evidenced by autophagosome accumulation and reduced lysosome-autophagosome interaction. TRPML1 channel agonists recovered lysosome-autophagosome interaction and attenuated autophagosome accumulation in podocytes from Asah1fl/fl/Podocre mice, while TRPML1 channel inhibitors impaired autophagic flux in WT/WT podocytes and worsened autophagic deficiency in podocytes lacking Asah1 gene. The effects of TRPML1 channel agonist were blocked by dynein inhibitors, indicating a critical role of dynein activity in the control of lysosome movement due to TRPML1 channel-mediated Ca2+ release. It was also found that there is an enhanced phenotypic transition to dedifferentiation status in podocytes lacking Asah1 gene in vitro and in vivo. Such podocyte phenotypic transition was inhibited by TRPML1 channel agonists but enhanced by TRPML1 channel inhibitors. Moreover, we found that TRPML1 gene silencing induced autophagosome accumulation and dedifferentiation in podocytes. Based on these results, we conclude that Ac activity is essential for autophagic flux and maintenance of differentiated status of podocytes. Dysfunction or deficiency of Ac may impair autophagic flux and induce podocyte dedifferentiation, which may be an important pathogenic mechanism of podocytopathy and associated nephrotic syndrome.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
20
|
Wang F, Yan X, Hua Y, Song J, Liu D, Yang C, Peng F, Kang F, Hui Y. PI3K/AKT/mTOR pathway and its related molecules participate in PROK1 silence-induced anti-tumor effects on pancreatic cancer. Open Life Sci 2023; 18:20220538. [PMID: 37070074 PMCID: PMC10105552 DOI: 10.1515/biol-2022-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 04/19/2023] Open
Abstract
The PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway can be initiated by PROK1 (prokineticin 1), but its effect and mechanism of action in pancreatic carcinoma (PC) are not fully understood. In this study, we elucidated the roles of PROK1 and its related molecules in PC in vivo. PANC-1 cells with PROK1 knockdown were injected into BALB/c nude mice. The growth and weight of the tumor were monitored and measured, which was followed by TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling), immunohistochemical staining, and hematoxylin and eosin staining. The key proteins related to proliferation, apoptosis, and the PI3K/AKT/mTOR pathway were determined by Western blotting. We also used public databases to identify the molecules related to PROK1. The reduction of PROK1 inhibited angiopoiesis and promoted apoptosis in vivo. PCNA-1, cyclin D1, and Bcl-2 decreased considerably, while Bax and cleaved caspase-3 increased significantly after PROK1 inhibition. The PI3K/AKT/mTOR signal inhibition was also closely associated with PROK1 knockdown. The possible related molecules of PROK1, such as von Willebrand factor, were screened and considered to be involved in the aberrant activation of PI3K/AKT. In conclusion, PROK1 knockdown significantly prevented tumor growth and promoted apoptosis of human PC cells in vivo, where the PI3K/AKT/mTOR pathway was probably inhibited. Therefore, PROK1, along with its related molecules, might be important targets for PC therapy.
Collapse
Affiliation(s)
- Feng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan750001, Ningxia, China
- Ningxia Clinical Medical Research Center of Hepatobiliary and Pancreatic Surgical Diseases, Yinchuan750001, China
| | - Xiaogang Yan
- Department of Surgical Oncology, The First People’s Hospital of Yinchuan, Yinchuan750001, China
| | - Yongqiang Hua
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan750001, Ningxia, China
- Ningxia Clinical Medical Research Center of Hepatobiliary and Pancreatic Surgical Diseases, Yinchuan750001, China
| | - Di Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan750001, Ningxia, China
- Ningxia Clinical Medical Research Center of Hepatobiliary and Pancreatic Surgical Diseases, Yinchuan750001, China
| | - Chun Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan750001, China
| | - Fei Peng
- Department of Hepatobiliary Pancreatic Surgery, Edong Healthcare Huangshi Central Hospital, Huangshi435002, Hubei, China
| | - Fuping Kang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan750001, Ningxia, China
- Ningxia Clinical Medical Research Center of Hepatobiliary and Pancreatic Surgical Diseases, Yinchuan750001, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan750001, Ningxia, China
- Ningxia Clinical Medical Research Center of Hepatobiliary and Pancreatic Surgical Diseases, Yinchuan750001, China
| |
Collapse
|
21
|
ArulJothi KN, Kumaran K, Senthil S, Nidhu AB, Munaff N, Janitri VB, Kirubakaran R, Singh SK, Gupt G, Dua K, Krishnan A. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med Oncol 2023; 40:43. [PMID: 36472716 PMCID: PMC9734980 DOI: 10.1007/s12032-022-01900-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the second (11.4%) most commonly diagnosed cancer and the first (18%) to cause cancer-related deaths worldwide. The incidence of lung cancer varies significantly among men, women, and high and low-middle-income countries. Air pollution, inhalable agents, and tobacco smoking are a few of the critical factors that determine lung cancer incidence and mortality worldwide. Reactive oxygen species are known factors of lung carcinogenesis resulting from the xenobiotics and their mechanistic paths are under critical investigation. Reactive oxygen species exhibit dual roles in cells, as a tumorigenic and anti-proliferative factor, depending on spatiotemporal context. During the precancerous state, ROS promotes cancer origination through oxidative stress and base-pair substitution mutations in pro-oncogenes and tumor suppressor genes. At later stages of tumor progression, they help the cancer cells in invasion, and metastases by activating the NF-kB and MAPK pathways. However, at advanced stages, when ROS exceeds the threshold, it promotes cell cycle arrest and induces apoptosis in cancer cells. ROS activates extrinsic apoptosis through death receptors and intrinsic apoptosis through mitochondrial pathways. Moreover, ROS upregulates the expression of beclin-1 which is a critical component to initiate autophagy, another form of programmed cell death. ROS is additionally involved in an intermediatory step in necroptosis, which catalyzes and accelerates this form of cell death. Various therapeutic interventions have been attempted to exploit this cytotoxic potential of ROS to treat different cancers. Growing body of evidence suggests that ROS is also associated with chemoresistance and cancer cell immunity. Considering the multiple roles of ROS, this review highlights the exploitation of ROS for various therapeutic interventions. However, there are still gaps in the literature on the dual roles of ROS and the involvement of ROS in cancer cell immunity and therapy resistance.
Collapse
Affiliation(s)
- K. N. ArulJothi
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - K. Kumaran
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Sowmya Senthil
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - A. B. Nidhu
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Nashita Munaff
- grid.412742.60000 0004 0635 5080Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - V. B. Janitri
- grid.262613.20000 0001 2323 3518Rochester Institute of Technology, Rochester, NY USA
| | - Rangasamy Kirubakaran
- grid.444708.b0000 0004 1799 6895Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Missions Research Foundation, Salem, Tamil Nadu India
| | - Sachin Kumar Singh
- grid.449005.cSchool of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab India ,grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Gaurav Gupt
- grid.448952.60000 0004 1767 7579School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017 India ,grid.412431.10000 0004 0444 045XDepartment of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India ,grid.449906.60000 0004 4659 5193Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia ,grid.117476.20000 0004 1936 7611Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Anand Krishnan
- grid.412219.d0000 0001 2284 638XDepartment of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| |
Collapse
|
22
|
Zhao Z, Wang Y, Gong Y, Wang X, Zhang L, Zhao H, Li J, Zhu J, Huang X, Zhao C, Yang L, Wang L. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer. J Transl Med 2022; 20:525. [PMID: 36371217 PMCID: PMC9652895 DOI: 10.1186/s12967-022-03741-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common lung cancer with high mortality across the world, but it is challenging to develop an effective therapy for NSCLC. Celastrol is a natural bioactive compound, which has been found to possess potential antitumor activity. However, the underlying molecular mechanisms of celastrol activity in NSCLC remain elusive. Methods Cellular function assays were performed to study the suppressive role of celastrol in human NSCLC cells (H460, PC-9, and H520) and human bronchial epithelial cells BEAS-2B. Cell apoptosis levels were analyzed by flow cytometry, Hoechst 33342, caspase-3 activity analysis, and western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry and fluorescence microscope. Expression levels of endoplasmic reticulum (ER) stress-related proteins and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) were identified via western blot analysis. A heterograft model in nude mice was employed to evaluate the effect of celastrol in vivo. Results Celastrol suppressed the growth, proliferation, and metastasis of NSCLC cells. Celastrol significantly increased the level of intracellular ROS; thus, triggering the activation of the ER stress pathway and inhibition of the P-STAT3 pathway, and eventually leading to cell apoptosis, and the effects were reversed by the pre-treatment with N-Acetyl-l-cysteine (NAC). Celastrol also suppressed tumor growth in vivo. Conclusion The outcomes revealed that celastrol plays a potent suppressive role in NSCLC in vitro and in vivo. Celastrol induces apoptosis via causing mitochondrial ROS accumulation to suppress the STAT3 pathway. Celastrol may have potential application prospects in the therapy of NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03741-9.
Collapse
|
23
|
Tan M, Zhao Q, Wang X, Zhao B. Study on extraction, isolation and biological activity of saponins from quinoa bran. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University,Dalian 116034
| | - Qingsheng Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Xiaodong Wang
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| | - Bing Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| |
Collapse
|
24
|
Fan CW, Tang J, Jiang JC, Zhou MM, Li MS, Wang HS. Pentagalloylglucose suppresses the growth and migration of human nasopharyngeal cancer cells via the GSK3β/β-catenin pathway in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154192. [PMID: 35636179 DOI: 10.1016/j.phymed.2022.154192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant squamous cell tumour originating from the nasopharynx epithelium. Pentagalloylglucose (PGG) is a natural polyphenolic compound that exerts anticancer effects in many types of tumours. However, the role and underlying mechanism of PGG in NPC cells have not been fully defined. PURPOSE This study aimed to investigate the anticancer activity of PGG as well as the potential mechanism in NPC cells. METHODS The effects of PGG on the proliferation, apoptosis and cell cycle distribution of CNE1 and CNE2 cells were assessed by MTT and flow cytometry assays. Cell migration was evaluated using wound healing and transwell assays. The expression of microtubule-associated protein 1 light chain 3 beta (LC3B) was observed by immunofluorescence staining. Western blotting was used to explore the levels of related proteins and signalling pathway components. Furthermore, the effects of PGG on NPC cell growth were analysed in a xenograft mouse model in vivo using cisplatin as a positive control. RESULTS PGG dose-dependently inhibited the proliferation of CNE1 and CNE2 cells. PGG regulated the cell cycle by altering p53, cyclin D1, CDK2, and cyclin E1 protein levels. PGG induced apoptosis and autophagy in NPC cells and elevated the Bax/Bcl-2 ratio and the protein levels of LC3B. Moreover, PGG decreased NPC cell migration by increasing E-cadherin and decreasing N-cadherin, vimentin and CD44 protein levels. Mechanistically, PGG treatment downregulated p-mTOR and β-catenin expression but upregulated p-p38 MAPK and p-GSK3β expression. In addition, PGG significantly inhibited NPC cell tumour growth and lung metastasis in vivo. CONCLUSION PGG may suppress cell proliferation, induce apoptosis and autophagy, and decrease the metastatic capacity of NPC cells through the p38 MAPK/mTOR and Wnt/β-catenin pathways. The present study provides evidence for PGG as a potential therapy for NPC.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Research Center for Science, Guilin Medical University, Guilin 541199, China
| | - Juan Tang
- Department of Pathology, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Jing-Chen Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Mei-Mei Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
25
|
Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022; 13:866625. [PMID: 35645810 PMCID: PMC9130700 DOI: 10.3389/fphar.2022.866625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites, including the gut, may also be its minor source. Melatonin regulates various functions, including circadian rhythm, reproduction, temperature regulation, immune system, cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable modulation of bone metabolism by melatonin. This narrative review gives a comprehensive account of the current understanding of melatonin at the cell/molecular to the systems levels. Melatonin predominantly acts through its cognate receptors, of which melatonin receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic differentiation of hematopoietic stem cells. Produced from osteoblastic cells, osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors osteogenic function and antagonizes the osteoclastogenic function with the participation of SIRT signaling, various miRNAs also mediate the effects of the hormone on bone cells. In rodent models of osteoporosis, melatonin has been unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate the bone mass conserving effect of melatonin in aging/postmenopausal osteoporosis. This review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis therapy through the critical assessment of the available literature.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoxi Shao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xingang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Zhang H, Liu X, Zheng Y, Zha X, Elsabagh M, Zhang Y, Ma Y, Loor JJ, Wang M, Wang H. Effects of the maternal gut microbiome and gut-placental axis on melatonin efficacy in alleviating cadmium-induced fetal growth restriction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113550. [PMID: 35487173 DOI: 10.1016/j.ecoenv.2022.113550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a major environmental stressor that induces fetal growth restriction (FGR). Also, changes in gut microbiome diversity-which can be modulated positively by melatonin (Mel) have implications on fetal development and placental functions. Therefore, this study aimed to explore whether the role of Mel in counteracting the Cd-induced FGR by regulating placental barrier injury, endoplasmic reticulum stress (ERS) and mitophagy in pregnant mice is mediated-in part- via the gut microbiota modulations. Pregnant mice were intraperitoneally injected with CdCl2 (5 mg/kg) and Mel (5 mg/kg) once daily, respectively, at the same time from gestational day (GD) 8 to GD18, and then the maternal colon and placental tissues were collected for detection. To investigate the inner relationship between intestinal flora and the protection of Mel on FGR caused by Cd, gut microbiota transplantation (GMT) was carried out from GD0 to GD18 after the removal of intestinal microbiota by antibiotics. Results indicated that Mel relieved barrier injury, ERS and mitophagy in the placenta, and reversed the maternal gut microbiota dysbiosis. The GMT approach suggested a role of intestinal microbiota in placental barrier injury, ERS and mitophagy induced by Cd. Overall, the results highlighted that the intestinal microbiota and gut-placental axis play a central role in the protective effect of Mel against Cd-induced FGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
27
|
Tacrolimus Induces Apoptosis in Leukemia Jurkat Cells through Inactivation of the Reactive Oxygen Species-dependent Phosphoinositide-3-Kinase/Akt Signaling Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Yang L, An L, Wang Y, Li J. Protective effect of isopsoralen on UVB-induced injury in HaCaT cells via the ER and p38MAPK signaling pathways. J Food Biochem 2022; 46:e14163. [PMID: 35415935 DOI: 10.1111/jfbc.14163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the protective effect of isopsoralen on UVB-induced damage in HaCaT cells and its molecular mechanism. The cytotoxicity of isopsoralen and its effects on the viability of HaCaT cells were examined using the MTT assay. The effects of UVB irradiation and isopsoralen on the intracellular glutathione (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS) content were examined using commercially available assay kits. Further, the effects of UVB irradiation and isopsoralen on the levels of the inflammatory cytokines TNF-α, IL-6, and IL-1α were examined using enzyme-linked immunosorbent assay. Finally, we examined the effect of adding the estrogen receptor (ER) antagonist ICI182780,780 and the p38MAPK antagonist SB203580 on the changes in inflammatory cytokines induced by isopsoralen treatment and UVB irradiation. Isopsoralen pretreatment markedly inhibited UVB-induced reduction in the viability and proliferation of HaCaT cells. Isopsoralen also reduced UVB-induced increase in the expression of the inflammatory cytokines and the level of free radicals (ROS and MDA), and reversed the UVB-induced suppression of antioxidant activity. Additionally, inhibition of ER and p38MAPK via the addition of their respective antagonists reversed the observed anti-inflammatory effects of Isopsoralen. Isopsoralen can efficiently provide protection against UVB-induced damage in HaCaT cells brought about via oxidation and inflammatory reactions, and the underlying mechanisms involve the ER and p38MAPK pathways. Therefore, Isopsoralen could be used in therapeutic solutions for UVB-induced skin conditions. PRACTICAL APPLICATIONS: Isopsoralen shows antioxidant and anti-inflammatory effects. As natural, healthy, and effective additives, isopsoralen has been widely used in cosmetics and botanical medicine products. The results of this study reveal the molecular mechanisms underlying isopsoralen effects, showing that isopsoralen reverses the effects of UVB irradiation regulating ER and p38MAPK signaling pathways. Consequently, isopsoralen regulates the expression of ER and p38MAPK signaling pathways, thereby reducing the activation of antioxidant and anti-inflammatory activity. These findings suggest that isopsoralen can be used as the base ingredient for antiphotoaging cosmetics and botanical medicine products. This study provides both theoretical and experimental background for isopsoralen deep processing and utilization.
Collapse
Affiliation(s)
- Liu Yang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lifeng An
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Yeqiu Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Jianmin Li
- Hospital of the First Auxiliary, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
Antar SA, El-Gammal MA, Hazem RM, Moustafa YM. Etanercept Mitigates Cadmium Chloride-induced Testicular Damage in Rats "An Insight into Autophagy, Apoptosis, Oxidative Stress and Inflammation". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28194-28207. [PMID: 34993805 DOI: 10.1007/s11356-021-18401-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Cadmium (Cd) is an environmental and occupational toxin that represents a serious health hazard to humans and other animals. One of the negative consequences of cadmium exposure is testicular injury. OBJECTIVE This study aimed to investigate the therapeutic effect of etanercept against cadmium chloride-induced testicular damage and the probable underlying mechanisms of its action. METHODS A total of sixty rats were divided into six groups: control, cadmium chloride (CdCl2) (7 mg/ kg i.p.), and CdCl2 treated with etanercept (5,10 and 15 mg/kg s.c.) and etanercept only (15 mg/kg s.c.). CdCl2 was administrated as a single dose, while etanercept was administered every 3 days for 3 weeks. RESULTS CdCl2 reduced serum testosterone, testicular glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). However, it elevated the levels of malondialdehyde (MDA) and microtubule-associated protein light chain 3B (LC3B) in the testes. Cadmium caused pathogenic alterations as well as increased levels of inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB). Besides, the gene expressions of caspase-3 and inducible nitric oxide synthase (i-NOS) and Beclin-1 protein increased with CdCl2 exposure. Interestingly, etanercept relieved the previous toxic effects induced by CdCl2 in a dose-dependent manner as evidenced by inhibition of oxidative stress, inflammatory markers, Beclin-1, LC3B, and caspase-3 accompanied by improvement in histopathological changes. CONCLUSION Etanercept provides a potential therapeutic approach to treat testicular tissue against the damaging effects of Cd by reducing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Badr University Cairo, 11829, Egypt
| |
Collapse
|
30
|
Guo J, Zhang S, Wang J, Zhang P, Lu T, Zhang L. Hinokiflavone Inhibits Growth of Esophageal Squamous Cancer By Inducing Apoptosis via Regulation of the PI3K/AKT/mTOR Signaling Pathway. Front Oncol 2022; 12:833719. [PMID: 35178352 PMCID: PMC8844566 DOI: 10.3389/fonc.2022.833719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background Globally, esophageal cancer ranks as the seventh most common cancer. Esophageal squamous cell carcinoma (ESCC) is one of its major histological types. ESCC accounts for the vast majority of cases in China, and the mortality rate is high. Cisplatin, the standard adjuvant chemotherapy drug for ESCC, has a modest response rate due to the development of drug resistance. Hinokiflavone (HF) is a natural biflavonoid compound with anti-melanoma activity. However, its anti-tumor effect on ESCC and the underlying mechanisms remain largely unknown. Methods The ESCC cell lines KYSE150 and TE14 were used. The cell counting kit-8 assay and flow cytometry analysis, along with colony formation, EdU, wound healing, and Transwell migration assays, were performed to assess cell characteristics (viability, migration, invasion, and apoptosis) following treatment with HF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), western blotting, and molecular docking were used to investigate the pathways potentially modulated by HF. In vivo anti-tumor effects of HF were also investigated using a mouse xenograft model. Results Our findings revealed that HF inhibited ESCC cell proliferation. Hoechst 33342 staining, annexin V-FITC/PI staining, and western blotting confirmed that HF causes caspase-dependent apoptosis. KEGG pathway enrichment analysis and western blotting indicated that the PI3K/AKT/mTOR pathway played an important role in the process of HF-induced apoptosis. Furthermore, HF effectively impaired the migration and invasion abilities of KYSE150 cells and downregulated the expression of the matrix metalloproteinases (MMP) MMP2 and MMP9. HF inhibited tumor growth and exhibited minimal toxicity in the organs of the KYSE150 xenograft model. Conclusion This is the first study to demonstrate the inhibition of ESCC growth and progression by HF. The underlying mechanism is through blocking the PI3K/AKT/mTOR signaling pathway, thereby inhibiting cell proliferation and inducing apoptosis. HF can be used as a complementary/alternative agent for ESCC therapy.
Collapse
Affiliation(s)
- Jida Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Shengqiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Mohseni AH, Casolaro V, Bermúdez-Humarán LG, Keyvani H, Taghinezhad-S S. Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 2022; 13:1-17. [PMID: 33615993 PMCID: PMC7899637 DOI: 10.1080/19490976.2021.1886844] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B or Akt (PKB/Akt) signaling pathways are considered as two but somewhat interconnected significant immune pathways which play complex roles in a variety of physiological processes as well as pathological conditions. Aberrant activation of PI3K/Akt/mTOR signaling pathways has been reported to be associated in a wide variety of human diseases. Over the past few years, growing evidence in in vitro and in vivo models suggest that this sophisticated and subtle cascade mediates the orchestration of the immune response in health and disease through exposure to probiotics. An expanding body of literature has highlighted the contribution of probiotics and PI3K/Akt/mTOR signaling pathways in gastrointestinal disorders, metabolic syndrome, skin diseases, allergy, salmonella infection, and aging. However, longitudinal human studies are possibly required to verify more conclusively whether the investigational tools used to understand the regulation of these pathways might provide effective approaches in the prevention and treatment of various disorders. In this Review, we summarize the experimental evidence from recent peer-reviewed studies and provide a brief overview of the causal relationship between the effects of probiotics and their metabolites on the components of PI3K/Akt/mTOR signaling pathways and human disease.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | | | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Hossein Keyvani Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran, Tel +98 21 88715350
| | - Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran,CONTACT Sedigheh Taghinezhad-S Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
32
|
|
33
|
Lihui X, Jinming G, Yalin G, Hemeng W, Hao W, Ying C. Albicanol inhibits the toxicity of profenofos to grass carp hepatocytes cells through the ROS/PTEN/PI3K/AKT axis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:325-336. [PMID: 34856373 DOI: 10.1016/j.fsi.2021.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Profenofos (PFF) as an environmental pollutant seriously harms the health of aquatic animals, and even endangers human safety through the food chain. Albicanol, a sesquiterpenoid extraction from the Dryopteris fragrans, has previously been shown to effectively exhibit anti-aging, anti-oxidant, and antagonize the toxicity of heavy metals. However, the mechanism of hepatocyte toxicity caused by PFF and the role that Albicanol plays in this process are still unclear. In this study, a PFF poisoning model was established by treating grass carp hepatocytes cells with PFF (150 μM) for 24 h The results of AO/EB staining, Tunel staining and flow cytometry showed that the proportion of apoptotic liver cells increased significantly after exposure. The results of ROS staining show that compared with the control group, ROS levels and PTEN/PI3K/AKT-related gene expression were up-regulated after PFF exposure. RT-qPCR and Western blotting results showed that the expression of PTEN/PI3K/AKT related genes was up-regulated. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT. We further found that the expressions of Bax, CytC, Caspase-3, Caspase-9, Caspase-8 and TNFR1 after PFF exposure were significantly higher than those of the control group, and Bcl-2/Bax was significantly lower than that of the control group. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT and activate mitochondrial apoptosis. Using Albicanol (5 × 10-5 μg mL-1) can significantly reduce the above-mentioned effects of PFF exposure on grass carp hepatocytes cells. In summary, Albicanol inhibits PFF-induced apoptosis by regulating the ROS/PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guan Yalin
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wang Hemeng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wu Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
34
|
Park C, Choi EO, Hwangbo H, Lee H, Jeong JW, Han MH, Moon SK, Yun SJ, Kim WJ, Kim GY, Hwang HJ, Choi YH. Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway. Nutr Res Pract 2022; 16:330-343. [PMID: 35663445 PMCID: PMC9149322 DOI: 10.4162/nrp.2022.16.3.330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/OBJECTIVES Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan 47340, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| |
Collapse
|
35
|
Yu L, Chen Y, Yuan S, Cao Y, Bi Z. Peiminine Induces G0/G1-Phase Arrest, Apoptosis, and Autophagy via the ROS/JNK Signaling Pathway in Human Osteosarcoma Cells in Vitro and in Vivo. Front Pharmacol 2021; 12:770846. [PMID: 34867399 PMCID: PMC8633898 DOI: 10.3389/fphar.2021.770846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Aims: Peiminine has been reported to have various pharmacological properties, including anticancer activity. In this study, we investigated the effect of this alkaloid on osteosarcoma and explored the underlying mechanisms. Methods: To evaluate the antiosteosarcoma effects of peiminine in vitro, cell viability was assessed by CCK-8 and live/dead assays; the effects of the drug on apoptosis and the cell cycle were examined by flow cytometry; the effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively, while its effects on autophagy were observed by transmission electron microscopy and an LC3 fluorescent puncta formation assay. The role of autophagy in the peiminine-mediated effects in osteosarcoma cells was evaluated by CCK-8 assay and western blotting after the application of the autophagy inhibitor chloroquine. The effect of peiminine on reactive oxygen species (ROS) production was analyzed using fluorescence confocal microscopy and spectrophotometry. Additionally, peiminine-treated osteosarcoma cells were exposed to SP600125, a JNK inhibitor, and N-acetylcysteine, a ROS scavenger, after which the contribution of the ROS/JNK signaling pathway to osteosarcoma was assessed using cell viability and LC3 fluorescent puncta formation assays, flow cytometry, and western blotting. A xenograft mouse model of osteosarcoma was generated to determine the antitumor effects of peiminine in vivo. Results: Peiminine suppressed proliferation and metastasis and induced cell cycle arrest, apoptosis, and autophagy in osteosarcoma cells. These anticancer effects of peiminine were found to be dependent on intracellular ROS generation and activation of the JNK pathway. In line with these results, peiminine significantly inhibited xenograft tumor growth in vivo. Conclusions: Peiminine induced G0/G1-phase arrest, apoptosis, and autophagy in human osteosarcoma cells via the ROS/JNK signaling pathway both in vitro and in vivo. Our study may provide an experimental basis for the evaluation of peiminine as an alternative drug for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Northern Translational Medicine Research and Cooperation Center, Harbin Medical University, Harbin, China
| | - Yuxi Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaohui Yuan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Zhang Y, Huang S, Tan S, Chen M, Yang S, Chen S. 3-methyadenine inhibits lipopolysaccharides-induced pulmonary inflammation at the early stage of silicosis via blocking NF-κB signaling pathway. Toxicol Ind Health 2021; 37:662-673. [PMID: 34565256 DOI: 10.1177/07482337211039426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Occupational exposure to silica dust is related to pulmonary inflammation and silicosis. Lipopolysaccharides (LPSs) could aggravate apoptosis in alveolar macrophages (AMs) of human silicosis through autophagy, yet how the reduction of autophagy attenuated LPS-induced lung injury and the related mechanisms need to be investigated. In the study, we aim to understand the role of 3-methyladenine (3-MA), an inhibitor of autophagy, in LPS-mediated inflammatory responses and fibrosis. We collected AMs from observers/silicosis patients. The results showed that LPS induced NF-κB-related pulmonary inflammation in observers and silicosis patients, as confirmed by an increase in the expression of IL-1β, IL-6, TNF-α, and p65, which could be inhibited by 3-MA treatment. In mice models, at the early stage (7d) of silicosis, but not the late (28d) stage, blocking autophagy reversed the increased levels of IL-1β, IL-6, TNF-α, and p65 caused by LPS. Mechanism study revealed that LPS triggered the expression of LC3 II, p62, and cleaved caspase-3 at the early stage exposed to silica, which could be restored by 3-MA, while there was no difference in the expression of LAMP1 either at the early or late stage of silicosis in different groups. Similarly, 3-MA treatment did not prevent fibrosis characterized by destroyed alveoli, collagen deposition, and increased expression of α-SMA and Col-1 induced by LPS at the late stage of silicosis. The results suggested that 3-MA has a role in the protection of lung injury at the early stage of silicosis and provided an experimental basis for preventive strategies of pulmonary inflammation and silicosis.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shuai Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shiyi Tan
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Mingke Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, 12568Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
37
|
Zhang S, Ren H, Sun H, Cao S. Dieckol exerts anticancer activity in human osteosarcoma (MG-63) cells through the inhibition of PI3K/AKT/mTOR signaling pathway. Saudi J Biol Sci 2021; 28:4908-4915. [PMID: 34466065 PMCID: PMC8381078 DOI: 10.1016/j.sjbs.2021.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant bone cancer with more metastasis and increased occurrence in children and teen-agers and being responsible for more number of morbidity and mortality worldwide. Objective The current exploration was planned study the in vitro anticancer actions of dieckol against human OS MG-63 cells via PI3K/AKT/mTOR signaling inhibition. Methodology The cytotoxicity of dieckol was scrutinized by MTT assay. Effects of dieckol on the ROS accumulation, apoptotic cell death, and MMP level in the MG-63 cells were studied by respective fluorescence staining assays. The levels of proliferative, inflammatory, and apoptotic markers in the dieckol treated MG-63 cells were scrutinized by marker specific kits. The expressions of PI3K, AKT, and mTOR was assayed by RT-PCR. Results The MTT assay revealed that the dieckol dose dependently prevented MG-63 cells viability and the IC50 was found at 15 µM. Dieckol treatment effectively reduced the MMP level and improved the ROS generation and apoptosis in MG-63 cells. Dieckol also regulated the proliferative (cyclin D1), inflammatory (COX-2, IL-6, TNF-α, and NF-κB), and apoptotic (caspase-3, Bax, Bcl-2) markers in the MG-63 cells. The PI3K/AKT/mTOR signaling in the MG-63 cells were effectively inhibited by the dieckol treatment. Conclusion In conclusion, our findings from this study recommends that the dieckol could be a talented anticancer candidate for the OS management in the future.
Collapse
Affiliation(s)
- Shouqiang Zhang
- Department of Orthopaedic & Trauma Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Hui Ren
- Department of Cardiothoracic Surgery, Xinwen Mining Group Central Hospital, Xintai City, Shandong Province 271200, China
| | - Hanting Sun
- Department of Orthopaedic Surgery, ZouPing Hospital of TCM, ZouPing City, Shandong Province 256200, China
| | - Songhua Cao
- Department of Hand Surgery/Foot & Ankle Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong 250033, China
| |
Collapse
|
38
|
Kochia scoparia Saponin Momordin Ic Modulates HaCaT Cell Proliferation and Apoptosis via the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5522164. [PMID: 34326883 PMCID: PMC8310444 DOI: 10.1155/2021/5522164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Psoriasis is a chronic, recurrent, immunoinflammatory disease. For a long period, Traditional Chinese Medicine (TCM) is considered a reliable alternative therapy for patients with psoriasis. Fructus Kochiae (or Kochia scoparia) and its principle saponin, Momordin Ic, have been reported to protect against inflammation. Herein, we demonstrated that Momordin Ic could inhibit HaCaT cell proliferation and enhance cell apoptosis. In the meantime, Momordin Ic alters Wnt/β-catenin pathway activation by affecting β-catenin nuclear distribution. The Wnt/β-catenin signaling activator LiCl partially reversed the effects of Momordin Ic on HaCaT phenotypes and the Wnt/β-catenin pathway factors. Altogether, we demonstrate the inhibitory effects of Momordin Ic, one of the major saponin constituents of Fructus Kochiae, on HaCaT cell proliferation and Momordin Ic-induced alteration within the Wnt/β-catenin pathway. Momordin Ic might act on HaCaT cells by modulating the Wnt/β-catenin pathway.
Collapse
|
39
|
Lu H, Mei C, Yang L, Zheng J, Tong J, Duan F, Liang H, Hong L. PPM-18, an Analog of Vitamin K, Induces Autophagy and Apoptosis in Bladder Cancer Cells Through ROS and AMPK Signaling Pathways. Front Pharmacol 2021; 12:684915. [PMID: 34305598 PMCID: PMC8299005 DOI: 10.3389/fphar.2021.684915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
PPM-18, identified as a novel analog of vitamin K, has been reported to play a critical role in the suppression of seizures. However, the concerns that whether PPM-18, like vitamin K, exerts anticancer activity remain to be further investigated. Here, we found that PPM-18 remarkably suppressed the proliferation and induced apoptosis in bladder cancer cells. Furthermore, a significant autophagic effect of PPM-18 on bladder cancer cells was also demonstrated, which profoundly promoted apoptotic cell death. Mechanistically, PPM-18 activated AMP-activated protein kinase (AMPK), whereas it repressed PI3K/AKT and mTORC1 pathways in bladder cancer cells. Inhibition of AMPK markedly relieved PPM-18–induced autophagy and apoptosis, indicating that PPM-18 is able to induce autophagy and apoptosis in bladder cancer cells via AMPK activation. Moreover, reactive oxygen species (ROS) were notably accumulated in PPM-18–treated bladder cancer cells, and treatment with ROS scavengers not only eliminated ROS production but also abrogated AMPK activation, which eventually rescued bladder cancer cells from PPM-18–triggered autophagy and apoptotic cell death. In bladder cancer xenografts, the anticancer activities of PPM-18, including suppressing the growth of tumors and inducing autophagy and apoptosis in tumor cells, were also established. Collectively, this study was the first to demonstrate the anticancer effect of PPM-18 on bladder cancer cells in vitro and in vivo through eliciting autophagy and apoptosis via ROS and AMPK pathways, which might provide new insights into the potential utilization of PPM-18 for future bladder cancer treatment.
Collapse
Affiliation(s)
- Huiai Lu
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luhao Yang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyan Zheng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengsen Duan
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hong
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Ye M, He J, Zhang J, Liu B, Liu X, Xie L, Wei M, Dong R, Li K, Ma D, Dong K. USP7 promotes hepatoblastoma progression through activation of PI3K/AKT signaling pathway. Cancer Biomark 2021; 31:107-117. [PMID: 33780361 DOI: 10.3233/cbm-200052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatoblastoma (HB) is an embryonic solid tumor and the most common primary malignant liver tumor in children. HB usually occurs in infants and children. Although treatment diversity is increasing, some patients still have very poor prognosis. Many studies have investigated USP7 inhibitors for tumors. Using database information, we found that USP7 is highly expressed in HB. METHODS Lentivirus-mediated USP7 knockdown and overexpression was performed in HB cell lines HepG2 and Huh6. CCK8 and transwell assays were used to determine cell viability and metastasis. Flow cytometry was used to study cell cycle and apoptosis. Levels of proteins were detected using western blots. RESULTS Downregulation of USP7 resulted in significant decrease in cell proliferation, clonal formation, and cell migration and invasion. With overexpression of USP7, cellular malignant behavior increased. Cell cycle assays showed that USP7 knockdown inhibited G1 to S phase transition in the cell cycle. Upregulation of USP7 promoted the transition. Animal experiments showed USP7 facilitated tumor growth in vivo. Western blots indicated that USP7 may affect HB tumorigenesis through the PI3K/AKT signaling pathway. Furthermore, USP7 inhibitor P5091 inhibited HB development and PI3K/AKT pathway. CONCLUSION USP7 upregulation contributed to HB genesis and development through the PI3K/AKT signaling pathway. USP7 could be a potential target for future HB treatment.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jiajun He
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
41
|
Xianjun F, Xirui X, Jie T, Huiwen M, Shaojun Z, Qiaoyun L, Yunxin L, Xuqun S. Momordin Ic induces G0/1 phase arrest and apoptosis in colon cancer cells by suppressing SENP1/c-MYC signaling pathway. J Pharmacol Sci 2021; 146:249-258. [PMID: 34049792 DOI: 10.1016/j.jphs.2021.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 01/02/2023] Open
Abstract
Momordin Ic (MI) is a natural pentacyclic triterpenoid enriched in various Chinese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. Studies have shown that MI presents antitumor properties in liver and prostate cancers. However, the activity and potential mechanisms of MI against colorectal cancer remain elusive. Here, we showed that MI inhibited cell proliferation with G0/1 phase cell cycle arrest in colon cancer cells. Moreover, it was observed that MI increased apoptosis compared to untreated cells. Further investigation showed that the SUMOylation of c-Myc was enhanced by MI and led to the down-regulated protein level of c-Myc, which is involved in regulating cell proliferation and apoptosis. SENP1 has been demonstrated to be critical for the SUMOylation of c-Myc. Meanwhile, knockdown of SENP1 by siRNA abolished the effects of MI on c-Myc level and cell viability in colon cancer cells. Together, these results revealed that MI exerted an anti-tumor activity in colon cancer cells via SENP1/c-Myc signaling pathway. These finding provide an insight into the potential of MI for colon cancer therapy.
Collapse
Affiliation(s)
- Fang Xianjun
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Xian Xirui
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tang Jie
- Controlled Release Pharmaceutical Preparation Laboratory of Hefei University of Technology, Anhui, Hefei, 230000, PR China
| | - Mu Huiwen
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zheng Shaojun
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ling Qiaoyun
- School of Pharmacy, Anhui Medical University, Anhui, Hefei, 230032, PR China
| | - Liu Yunxin
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Sun Xuqun
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China.
| |
Collapse
|
42
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
43
|
Zhang H, Yan A, Liu X, Ma Y, Zhao F, Wang M, Loor JJ, Wang H. Melatonin ameliorates ochratoxin A induced liver inflammation, oxidative stress and mitophagy in mice involving in intestinal microbiota and restoring the intestinal barrier function. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124489. [PMID: 33359973 DOI: 10.1016/j.jhazmat.2020.124489] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 05/10/2023]
Abstract
The mycotoxin ochratoxin A (OTA) is a widespread contaminant in human and animal food products. Previous studies in rats revealed that melatonin (Mel) exhibits a preventive effect against OTA-induced oxidative stress in liver. However, it remains unknown whether gut microbiota respond to Mel and, if so, whether it can prevent OTA-induced inflammation and mitophagy in the liver. In the present study, mice received an oral gavage of Mel and OTA for 3 weeks before harvesting colonic digesta and liver tissue for analyses. In another study, the role of intestinal microbiota on the effects of Mel on OTA-induced liver inflammation and mitophagy was assessed through clearance of intestinal microbiota with antibiotics followed by gut microbiota transplantation (GMT). Oral Mel supplementation ameliorated mitophagy in the liver and reversed gut microbiota dysbiosis. Intriguingly, in antibiotic-treated mice, Mel and OTA failed to induce mitophagy in the liver. Using the GMT approach in which mice were colonised with intestinal microbiota from control-, OTA-, or Mel + OTA-treated mice led us to elucidated the involvement of intestinal microbiota in liver inflammation and mitophagy induced by OTA. The findings suggested that intestinal microbiota play some role in the Mel-induced amelioration of liver inflammation and mitophagy induced by OTA.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Ani Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Jaun J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, Urbana, IL 61801, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
44
|
Autophagy in the HTR-8/SVneo Cell Oxidative Stress Model Is Associated with the NLRP1 Inflammasome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2353504. [PMID: 33854691 PMCID: PMC8019638 DOI: 10.1155/2021/2353504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022]
Abstract
We investigated whether there was activation of NLRP1 inflammasomes and excessive autophagy in oxidative stress damage. And we further demonstrate whether there is a cascade relationship between the activation of NLRP1 inflammasomes and the phenomenon of excessive autophagy. To observe the expression level of the NLRP1 inflammasome group in the pathological process of trophoblast cell oxidative stress, western blot, immunofluorescence, and qRT-PCR were performed. Autophagy in trophoblast cells after the action of H2O2 was detected by using normal trophoblast cells' NLRP1-specific activator (MDP) as a positive control. The presence of excessive autophagy was determined by comparing it with the autophagy-related proteins in normal trophoblast cells. Through siRNA-NLRP1, we investigated the role of oxidative stress and the NLRP1 inflammasome in autophagy in cells. 100 μmol MDP for 24 hours can be used as the optimal concentration of the NLRP1 activator. In human placental trophoblast oxidative stress, the model group significantly increased the expression level of inflammasome IL-1β, CASP1, and NLRP1, compared with the control group NLRP3, and LC3-II, Beclin-1, ATG5, ATG7, and p62 overactivated the autophagy ability of cells. After the activation of NLRP1, the expression of these inflammasomes increased, accompanied by the decrease in autophagy. After the expression of NLRP1 was silenced by RNAi, the expression of inflammasome IL-1β, CASP1, and NLRP3 was also decreased. Still, the autophagy level was increased, which was manifested by the high expression of LC3-II, Beclin-1, ATG5, and ATG7 and the decrease in p62. Trophoblast cells showed the expression of NLRP1 protein and excessive autophagy under oxidative stress. Simultaneously, the NLRP1 inflammasome of trophoblast cells in the state of oxidative stress was correlated with autophagy. Inflammasome activation and autophagy were shown to be linked and to influence each other mutually. These may also provide new therapeutic targets in a pathological pregnancy.
Collapse
|
45
|
Kochiae Fructus, the Fruit of Common Potherb Kochia scoparia (L.) Schrad: A Review on Phytochemistry, Pharmacology, Toxicology, Quality Control, and Pharmacokinetics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5382684. [PMID: 33603816 PMCID: PMC7868135 DOI: 10.1155/2021/5382684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Kochiae Fructus (KF) is the fruit of an annual potherb Kochia scoparia (Linn.) Schrad and has been traditionally used for the treatment of diseases in the skin, eyes, and urinary tract for thousands of years in China. Recent studies have showed its anti-inflammatory, antifungal, antiallergic, and antipruritogenic effects to clarify the mechanisms of these actions. Meanwhile, its other effects, such as anticancer, hypoglycemic, and hepatoprotective effects, also have been reported. The achievement of these therapeutic effects is contributed by its chemical constituents. A total of 153 compounds have been identified in KF, mainly including triterpenoids, flavonoids, carbohydrates, amino acids, organic acids, and essential oils. Momordin Ic is the representative triterpene glycoside compound, which is used as a phytochemical marker for the quality control of Kochiae Fructus. The research on toxicity is insufficient, and only one article reported that the LD50 was 7.15 ± 0.03 g/kg for water extract of KF after oral administration in KM mice. In addition, the pharmacokinetic study was carried out on momordin Ic with linear pharmacokinetic characteristics. Above all, this review provides comprehensive information about Kochiae Fructus and may provide the theoretic foundation of its clinical application and further development.
Collapse
|
46
|
Han B, He C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol Res 2021; 166:105428. [PMID: 33540047 DOI: 10.1016/j.phrs.2021.105428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a ubiquitous mechanism for maintaining cellular homeostasis through the degradation of long-lived proteins, insoluble protein aggregates, and superfluous or damaged organelles. Dysfunctional autophagy is observed in a variety of human diseases. With advanced research into the role that autophagy plays in physiological and pathological conditions, targeting autophagy is becoming a novel tactic for disease management. Saponins are naturally occurring glycosides containing triterpenoids or steroidal sapogenins as aglycones, and some saponins are reported to modulate autophagy. Research suggests that saponins may have therapeutic and preventive efficacy against many autophagy-related diseases. Therefore, this review comprehensively summarizes and discusses the reported saponins that exhibit autophagy regulating activities. In addition, the relevant signaling pathways that the mechanisms involved in regulating autophagy and the targeted diseases were also discussed. By regulating autophagy and related pathways, saponins exhibit bioactivities against cancer, neurodegenerative diseases, atherosclerosis and other cardiac diseases, kidney diseases, liver diseases, acute pancreatitis, and osteoporosis. This review provides an overview of the autophagy-regulating activity of saponins, the underlying mechanisms and potential applications for managing various diseases.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
47
|
Ye Y, Ye F, Li X, Yang Q, Zhou J, Xu W, Aschner M, Lu R, Miao S. 3,3'-diindolylmethane exerts antiproliferation and apoptosis induction by TRAF2-p38 axis in gastric cancer. Anticancer Drugs 2021; 32:189-202. [PMID: 33315588 PMCID: PMC7790923 DOI: 10.1097/cad.0000000000000997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,3'-diindolylmethane (DIM), an active phytochemical derivative extracted from cruciferous vegetables, possesses anticancer effects. However, the underlying anticancer mechanism of DIM in gastric cancer remains unknown. Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), one of the signal transduction proteins, plays critical role in proliferation and apoptosis of human gastric cancer cells, but there are still lack of practical pharmacological modulators for potential clinical application. Here, we further explored the role of TRAF2 in inhibiting cell proliferation and inducing apoptosis by DIM in human gastric cancer BGC-823 and SGC-7901 cells. After treating BGC-823 and SGC-7901 cells with DIM for 24 h, cell proliferation, apoptosis and TRAF2-related protein were measured. Our findings showed that DIM inhibited the expressions of TRAF2, activated p-p38 and its downstream protein p-p53, which were paralleled with DIM-triggered cells proliferation, inhibition and apoptosis induction. These effects of DIM were reversed by TRAF2 overexpression or p38 mitogen-activated protein kinase (MAPK)-specific inhibitor (SB203580). Taken together, our data suggest that regulating TRAF2/p38 MAPK signaling pathway is essential for inhibiting gastric cancer proliferation and inducing apoptosis by DIM. These findings broaden the understanding of the pharmacological mechanism of DIM's action as a new modulator of TRAF2, and provide a new therapeutic target for human gastric cancer.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fen Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qi Yang
- Department of Pathology, Zhenjiang First People's Hospital, Zhenjiang 212002, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University School of Medicine, Kunshan, Suzhou, Jiangsu 215132, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang 212001, China
| |
Collapse
|
48
|
Guo JM, Xing HJ, Cai JZ, Zhang HF, Xu SW. H 2S exposure-induced oxidative stress promotes LPS-mediated hepatocyte autophagy through the PI3K/AKT/TOR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111801. [PMID: 33383342 DOI: 10.1016/j.ecoenv.2020.111801] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S), a common air pollutant and toxic gas, is detrimental to organisms and the environment. Exposure to highly concentrated H2S can induce oxidative stress and autophagy. However, the mechanism underlying the liver damage caused by H2S has not been identified. Lipopolysaccharide (LPS), the key component of endotoxin, can induce oxidative stress and autophagy. For this experiment, we used one-day-old chickens as model organisms to evaluate the effects of H2S combined with LPS on oxidative stress and autophagy. The four groups (control group, LPS group, H2S group and H2S-LPS group) were observed by electron microscopy, detected by oxidative stress kit, analyzed by quantitative real-time quantitative PCR, and analyzed by Western blot. We found that the activities of antioxidant enzymes (superoxide dismutase, antioxidant glutathione, catalase, and glutathione peroxidase) decreased in the H2S group compared to those in the control group; however, malondialdehyde levels in the H2S group increased. Molecular-level studies showed that the expression of genes associated with the PI3K/ AKT/ TOR pathways in the H2S group decreased, whereas the expression of other autophagy-related genes (Beclin1, ATG5 and the ratio of LC3-II/ LC3-I) increased compared to that in the control group. These findings suggest that H2S caused oxidative stress and induced autophagy through the PI3K/ AKT/ TOR pathway in chicken liver cells. Additionally, exposure to H2S aggravated LPS-induced oxidative stress and autophagy injury. Capsule: Aerial exposure to H2S can cause oxidative stress in chicken livers and induce autophagy through the PI3K/AKT/TOR pathway, and can aggravate LPS-induced oxidative stress and autophagy.
Collapse
Affiliation(s)
- Jin-Ming Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Hou-Juan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing-Zeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Hong-Fu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
49
|
Zhou S, Sun L, Qian S, Ma Y, Ma R, Dong Y, Shi Y, Jiang S, Ye H, Shen Z, Zhang S, Shen J, Yu K, Wang S. Iron overload adversely effects bone marrow haematogenesis via SIRT-SOD2-mROS in a process ameliorated by curcumin. Cell Mol Biol Lett 2021; 26:2. [PMID: 33435886 PMCID: PMC7805071 DOI: 10.1186/s11658-020-00244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/25/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Iron overload, which is common in patients with haematological disorders, is known to have a suppressive effect on haematogenesis. However, the mechanism for this effect is still unclear. The antioxidant curcumin has been reported to protect against iron overload-induced bone marrow damage through an as-yet-unknown mechanism. METHODS We established iron overload cell and mouse models. Mitochondrial reactive oxygen species (mROS) levels, autophagy levels and the SIRT3/SOD2 pathway were examined in the models and in the bone marrow of patients with iron overload. RESULTS Iron overload was shown to depress haematogenesis and induce mitochondrion-derived superoxide anion-dependent autophagic cell death. Iron loading decreased SIRT3 protein expression, promoted an increase in SOD2, and led to the elevation of mROS. Overexpression of SIRT3 reversed these effects. Curcumin treatment ameliorated peripheral blood cells generation, enhanced SIRT3 activity, decreased SOD2 acetylation, inhibited mROS production, and suppressed iron loading-induced autophagy. CONCLUSIONS Our results suggest that curcumin exerts a protective effect on bone marrow by reducing mROS-stimulated autophagic cell death in a manner dependent on the SIRT3/SOD2 pathway.
Collapse
Affiliation(s)
- Shujuan Zhou
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lan Sun
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shanhu Qian
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yongyong Ma
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Ruye Ma
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yuqing Dong
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yifen Shi
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Songfu Jiang
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Haige Ye
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Zhijian Shen
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shenghui Zhang
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jianping Shen
- Department of Haematology, The First Affiliated Hospital of Zhejiang Chinese Medical University; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, People's Republic of China.
| | - Kang Yu
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Siqian Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
50
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|