1
|
She J, Zhang H, Xu H, Li YY, Wu JC, Han R, Lin F, Wang Y, Sheng R, Gu JH, Qin ZH. Nicotinamide riboside restores nicotinamide adenine dinucleotide levels and alleviates brain injury by inhibiting oxidative stress and neuroinflammation in a mouse model of intracerebral hemorrhage. Mol Neurobiol 2025; 62:1321-1336. [PMID: 38981960 PMCID: PMC11772386 DOI: 10.1007/s12035-024-04335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hua Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hui Xu
- Department of Pharmacy and Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China
| | - Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fang Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jin-Hua Gu
- Department of Pharmacy and Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Health Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science and Technology Tower, Hi-Tech Area, Suzhou, 215163, China.
| |
Collapse
|
2
|
Rahimpour S, Clary BL, Nasoohi S, Berhanu YS, Brown CM. Immunometabolism In Brain Aging and Neurodegeneration: Bridging Metabolic Pathways and Immune Responses. Aging Dis 2024:AD.2024.1293. [PMID: 39751865 DOI: 10.14336/ad.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction. The first part of the review summarizes the contributions of critical immune cell populations such as microglia, astrocytes, and infiltrating immune cells in mediating inflammation and metabolism in CNS disorders. The remainder of the review addresses the impact of metabolic changes on immune cell activation and disease progression in brain aging, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury. Furthermore, we also address the therapeutic potential of targeting immunometabolic pathways to reduce neuroinflammation and slow disease progression. By focusing on the interactions among brain immune cells and the metabolic mechanisms they recruit in disease, we present a comprehensive overview of brain immunometabolism in human health and disease.
Collapse
Affiliation(s)
- Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Briana L Clary
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Sanaz Nasoohi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Yohanna S Berhanu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
3
|
Chen SY, Xu H, Qin Y, He TQ, Shi RR, Xing YR, Xu J, Cong RC, Wang MR, Yang JS, Gu JH, He BS. Nicotinamide adenine dinucleotide phosphate alleviates intestinal ischemia/reperfusion injury via Nrf2/HO-1 pathway. Int Immunopharmacol 2024; 143:113478. [PMID: 39471691 DOI: 10.1016/j.intimp.2024.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a critical condition in the abdomen that has significant morbidity and fatality rates. Prior studies have noted the defensive role of the coenzymatic antioxidant reduced nicotinamide adenine dinucleotide phosphate (NADPH) in heart and brain I/R damage, yet its impact on intestinal I/R trauma required further exploration. Through the application of an in vitro oxygen-glucose deprivation-reoxygenation model and a mouse model of short-term intestinal I/R, this study clarified the defensive mechanisms of NADPH against intestinal I/R injury. We demonstrated that intraperitoneal NADPH administration markedly reduced interleukin-1β (IL-1β) levels and blocked NLRP3 inflammasome activation, hence reducing inflammation. The antioxidative properties of NADPH were established by the reduction of oxidative stress markers and enhancement of glutathione levels. Importantly, NADPH improved intestinal barrier integrity, indicated by an upregulation of zonula occludens-1 and the promotion of a balanced gut microbiome profile. Furthermore, we identified the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathway as a crucial conduit for NADPH's beneficence. When this pathway was inhibited by ML385, the favorable outcomes conferred by NADPH were significantly abrogated. These results demonstrate that NADPH functions as an antioxidative, anti-inflammatory, microbiota-balancing, barrier-strengthening, and anti-inflammatory agent against intestinal I/R damage through activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Su-Ying Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Ultrasonography, Wuxi City Rehabilitation Hospital, Liangxi District Chinese Medicine Hospital, Wuxi 214000, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Yan Qin
- Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Yu-Run Xing
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China
| | - Ruo-Chen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Mei-Rong Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ju-Shun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China; Department of Pharmacy, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong 226001, China.
| | - Bo-Sheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Medical School of Nantong University, Nantong 226001, China; Translational Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
de Diego-Otero Y, El Bekay R, García-Guirado F, Sánchez-Salido L, Giráldez-Pérez RM. Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model. Biomedicines 2024; 12:2887. [PMID: 39767793 PMCID: PMC11673502 DOI: 10.3390/biomedicines12122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fragile X Syndrome (FXS) is associated with intellectual disability, hyperactivity, social anxiety and signs of autism. Hyperactivation of NADPH oxidase has been previously described in the brain of the male Fmr1-KO mouse. This work aims to demonstrate the efficacy of Apocynin, a specific NADPH oxidase inhibitor, in treating Fragile X mouse hallmarks. Methods: Free radicals, lipid and protein oxidation markers and behavioural and learning paradigms were measured after chronic treatment with orally administered vehicle, 10 mg/kg/day or 30 mg/kg/day of Apocynin. Results: The results revealed a reduction in testis weight, an increase in peritoneal fat, and no variation in body weight after chronic treatment. Furthermore, a reduction in hyperactivity was detected in Apocynin-treated male Fmr1-KO mice. Additionally, the higher dose of 30 mg/kg/day also improves behaviour and learning in the male Fmr1-KO mice, normalising free radical production and oxidative parameters. Moreover, a reduction in phospho-EKR1 and P47-Phox protein signals was observed in specific brain areas. Conclusions: Thus, chronic treatment with Apocynin could lead to a new therapeutic option for the Fragile X Syndrome.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, 14014 Córdoba, Spain;
| | - Rajaa El Bekay
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
- Endocrinology and Nutrition Clinic Unit, Regional University Hospital of Málaga, 29009 Málaga, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco García-Guirado
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
| | - Lourdes Sánchez-Salido
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
5
|
Castillo RL, Farías J, Sandoval C, González-Candia A, Figueroa E, Quezada M, Cruz G, Llanos P, Jorquera G, Kostin S, Carrasco R. Role of NLRP3 Inflammasome in Heart Failure Patients Undergoing Cardiac Surgery as a Potential Determinant of Postoperative Atrial Fibrillation and Remodeling: Is SGLT2 Cotransporter Inhibition an Alternative for Cardioprotection? Antioxidants (Basel) 2024; 13:1388. [PMID: 39594530 PMCID: PMC11591087 DOI: 10.3390/antiox13111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
In heart failure (HF) patients undergoing cardiac surgery, an increased activity of mechanisms related to cardiac remodeling may determine a higher risk of postoperative atrial fibrillation (POAF). Given that atrial fibrillation (AF) has a negative impact on the course and management of HF, including the need for anticoagulation therapy, identifying the factors associated with AF occurrence after cardiac surgery is crucial for the prognosis of these patients. POAF is thought to occur when various clinical and biochemical triggers act on susceptible cardiac tissue (first hit), with oxidative stress and inflammation during cardiopulmonary bypass (CPB) surgery being potential contributing factors (second hit). However, the molecular mechanisms involved in these processes remain poorly characterized. Recent research has shown that patients who later develop POAF often have pre-existing abnormalities in calcium handling and activation of NLRP3-inflammasome signaling in their atrial cardiomyocytes. These molecular changes may make cardiomyocytes more susceptible to spontaneous Ca2+-releases and subsequent arrhythmias, particularly when exposed to inflammatory mediators. Additionally, some clinical studies have linked POAF with elevated preoperative inflammatory markers, but there is a need for further research in order to better understand the impact of CPB surgery on local and systemic inflammation. This knowledge would make it possible to determine whether patients susceptible to POAF have pre-existing inflammatory conditions or cellular electrophysiological factors that make them more prone to developing AF and cardiac remodeling. In this context, the NLRP3 inflammasome, expressed in cardiomyocytes and cardiac fibroblasts, has been identified as playing a key role in the development of HF and AF, making patients with pre-existing HF with reduced ejection fraction (HFrEF) the focus of several clinical studies with interventions that act at this level. On the other hand, HFpEF has been linked to metabolic and non-ischemic risk factors, but more research is needed to better characterize the myocardial remodeling events associated with HFpEF. Therefore, since ventricular remodeling may differ between HFrEF and HFpEF, it is necessary to perform studies in both groups of patients due to their pathophysiological variations. Clinical evidence has shown that pharmacological therapies that are effective for HFrEF may not provide the same anti-remodeling benefits in HFpEF patients, particularly compared to traditional adrenergic and renin-angiotensin-aldosterone system inhibitors. On the other hand, there is growing interest in medications with pleiotropic or antioxidant/anti-inflammatory effects, such as sodium-glucose cotransporter 2 inhibitors (SGLT-2is). These drugs may offer anti-remodeling effects in both HFrEF and HFpEF by inhibiting pro-inflammatory, pro-oxidant, and NLRP3 signaling pathways and their mediators. The anti-inflammatory, antioxidant, and anti-remodeling effects of SGLT-2 i have progressively expanded from HFrEF and HFpEF to other forms of cardiac remodeling. However, these advances in research have not yet encompassed POAF despite its associations with inflammation, oxidative stress, and remodeling. Currently, the direct or indirect effects of NLRP3-dependent pathway inhibition on the occurrence of POAF have not been clinically assessed. However, given that NLRP3 pathway inhibition may also indirectly affect other pathways, such as inhibition of NF-kappaB or inhibition of matrix synthesis, which are strongly linked to POAF and cardiac remodeling, it is reasonable to hypothesize that this type of intervention could play a role in preventing these events.
Collapse
Affiliation(s)
- Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro González-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Esteban Figueroa
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Mauricio Quezada
- Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Gonzalo Cruz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
| | - Gonzalo Jorquera
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8331051, Chile;
| | - Sawa Kostin
- Faculty of Health Sciences, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany;
| | - Rodrigo Carrasco
- Departamento de Cardiología, Clínica Alemana de Santiago, Santiago 7500922, Chile;
| |
Collapse
|
6
|
El-Kashef DH, Abdel-Rahman N, Sharawy MH. Apocynin alleviates thioacetamide-induced acute liver injury: Role of NOX1/NOX4/NF-κB/NLRP3 pathways. Cytokine 2024; 183:156747. [PMID: 39236429 DOI: 10.1016/j.cyto.2024.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
The liver has a distinctive capacity to regenerate, yet severe acute injury can be life-threatening if not treated appropriately. Inflammation and oxidative stress are central processes implicated in the pathophysiology of acute livery injury. NOX isoforms are important enzymes for ROS generation, NF-κB and NLRP3 activation, its inhibition could be vital in alleviating acute liver injury (ALI). Here in our study, we used apocynin, a natural occurring potent NOX inhibitor, to exploreits potential protective effect against thioacetamide (TAA)-induced ALI through modulating crucial oxidative and inflammatory pathways. Rats were injected once with TAA (500 mg/kg/i.p) and treated with apocynin (10 mg/kg/i.p) twice before TAA challenge. Sera and hepatic tissues were collected for biochemical, mRNA expression, western blot analysis and histopathological assessments. Pretreatment with apocynin improved liver dysfunction evidenced by decreased levels of aminotransferases, ALP, GGT and bilirubin. Apocynin reduced mRNA expression of NOX1 and NOX4 which in turn alleviated oxidative stress, as shown by reduction in MDA and NOx levels, and elevation in GSH levels andcatalase and SOD activities. Moreover, apocynin significantly reduced MPO gene expression. We also demonstrate that apocynin ameliorated inflammation through activating IκBα and suppressing IKKα, IKKβ, NF-κBp65 and p-NF-κBp65, IL-6 andTNF-α. Additionally, apocynin potentiated the gene expression of anti-inflammatory IL-10 and reduced levels of hepatic NLRP3, Caspase-1 and IL-1β. These results suggest that apocynin protects against ALI in association with the inhibition of NOX1 and NOX4 and regulating oxidative and inflammatory pathways.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Pan SY, Gu YR, Zhao G, Wang Y, Qin ZH, Tang QY, Qin YY, Li Luo. NADPH mimics the antidepressant effects of exercise in a chronic unpredictable stress rat model. Biochem Biophys Res Commun 2024; 731:150360. [PMID: 39018970 DOI: 10.1016/j.bbrc.2024.150360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/26/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.
Collapse
Affiliation(s)
- Shan-Yao Pan
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yan-Rong Gu
- Changshu Xupu High School, Suzhou, 215513, China
| | - Gang Zhao
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yao Wang
- Department of Rehabilitation Medicine, Nan'ao People's Hospital of Dapeng New District, Shenzhen, 518121, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou, 215123, China.
| | - Qiu-Yue Tang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Yuan-Yuan Qin
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu Province, China.
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
8
|
Choi DH, Choi IA, Lee J. Role of NADPH Oxidases in Stroke Recovery. Antioxidants (Basel) 2024; 13:1065. [PMID: 39334724 PMCID: PMC11428334 DOI: 10.3390/antiox13091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is one of the most significant causes of death and long-term disability globally. Overproduction of reactive oxygen species by NADPH oxidase (NOX) plays an important role in exacerbating oxidative stress and causing neuronal damage after a stroke. There is growing evidence that NOX inhibition prevents ischemic injury and that the role of NOX in brain damage or recovery depends on specific post-stroke phases. In addition to studies on post-stroke neuroprotection by NOX inhibition, recent reports have also demonstrated the role of NOX in stroke recovery, a critical process for brain adaptation and functional reorganization after a stroke. Therefore, in this review, we investigated the role of NOX in stroke recovery with the aim of integrating preclinical findings into potential therapeutic strategies to improve stroke recovery.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Medical Science, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Occupational Therapy, Division of Health, Baekseok University, Cheonan-si 31065, Republic of Korea
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Ertik O, Sezen Us A, Gul IB, Us H, Coremen M, Karabulut Bulan O, Yanardag R. Reduction of oxidative damage in prostate tissue caused by radiation and/or chloroquine by apocynin. Free Radic Res 2024; 58:458-475. [PMID: 39148420 DOI: 10.1080/10715762.2024.2393147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Prostate damage can occur in men due to age and genetic factors, especially when exposed to external factors. Radiation (RAD) is a prominent factor leading to oxidative stress and potential prostate damage. Additionally, chloroquine (CQ), used in malaria treatment, can induce oxidative stress in a dose-dependent manner. Therefore, reducing and preventing oxidative damage in prostate tissue caused by external factors is crucial. Rats used in the study were divided into seven groups, CQ, apocynin (APO), RAD, CQ + APO, CQ + RAD, APO + RAD, CQ + APO + RAD. Subsequently, in vivo biochemical parameters of prostate tissues were examined, including reduced glutathione, lipid peroxidation, superoxide dismutase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase activities, and total antioxidant status, total oxidant status, reactive oxygen species, oxidative stress index, advanced oxidation protein products and histologically. The in vivo results presented in our study showed that APO reduced oxidative stress and had a protective effect on prostate tissue in the CQ, RAD, and CQ + RAD groups as a results of biochemical and histological experiments. Additionally, in silico studies revealed a higher binding affinity of diapocynin to target proteins compared to APO. As a histological results, RAD and CQ alone or in combination did not induce damage in prostate tissues, whereas mild histopathological findings such as hyperemia and haemorrhage were observed in all APO-treated groups. The results suggest that the use of APO for the treatment of oxidative damage induced by CQ and RAD in rats.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Chemistry, Faculty of Engineering and Science, Bursa Technical University, Bursa, Türkiye
| | - Ayca Sezen Us
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ilknur Bugan Gul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Huseyin Us
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
10
|
Zhang L, Yang S, Liu X, Wang C, Tan G, Wang X, Liu L. Association between dietary niacin intake and risk of Parkinson's disease in US adults: cross-sectional analysis of survey data from NHANES 2005-2018. Front Nutr 2024; 11:1387802. [PMID: 39091685 PMCID: PMC11291445 DOI: 10.3389/fnut.2024.1387802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and involves various pathogenic mechanisms, including oxidative stress and neuroinflammation. Niacin, an important cofactor in mitochondrial energy metabolism, may play a key role in the pathogenesis of PD. An in-depth exploration of the relationship between niacin and mitochondrial energy metabolism may provide new targets for the treatment of PD. The present study was designed to examine the association between dietary niacin intake and the risk of PD in US adults. Data from adults aged 40 years and older collected during cycles of the United States (US) National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018 were used. A multiple logistic regression model was used to analyze the relationship between dietary niacin intake and the risk of PD. Further linear tests using restricted cubic splines (RCS) were performed to explore the shape of the dose-response relationship. Subgroup stratification and interaction analyses were conducted according to years of education, marital status, smoking, and hypertension to evaluate the stability of the association between different subgroups. A total of 20,211 participants were included in this study, of which 192 were diagnosed with PD. In the fully adjusted multiple logistic regression model, dietary niacin intake was negatively associated with the risk of PD (OR: 0.77, 95%CI: 0.6-0.99; p = 0.042). In the RCS linear test, the occurrence of PD was negatively correlated with dietary niacin intake (nonlinearity: p = 0.232). In stratified analyses, dietary niacin intake was more strongly associated with PD and acted as an important protective factor in patients with fewer years of education (OR: 0.35, 95%CI: 0.13-0.93), married or cohabitating (OR: 0.71, 95%CI: 0.5-0.99), taking dietary supplements (OR: 0.6, 95%CI: 0.37 0.97), non-smokers (OR: 0.57, 95%CI: 0.39-0.85), those with hypertension (OR: 0.63, 95%CI: 0.63-0.95), coronary artery disease (OR: 0.77, 95%CI: 0.6-1), and stroke (OR: 0.75, 95%CI: 0.88-0.98), but the interaction was not statistically significant in all subgroups. Dietary niacin intake was inversely associated with PD risk in US adults, with a 23% reduction in risk for each 10 mg increase in niacin intake.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Shaojie Yang
- Department of Neurology, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Xiaoyan Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Chunxia Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, 363 Hospital, Chengdu, China
| | - Ge Tan
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xueping Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ling Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Krishnaswamy K, Manasa V, Khan MT, Serva Peddha M. Apocynin exerts neuroprotective effects in fumonisin b1-induced neurotoxicity via attenuation of oxidative stress and apoptosis in an animal model. J Food Sci 2024; 89:1280-1293. [PMID: 38193205 DOI: 10.1111/1750-3841.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
The Fusarium verticillioides produces a mycotoxin, that is, fumonisin b1 (Fb1), which commonly infects corn and agricultural commodities. The Fb1 showed hepatotoxicity, neurotoxicity, and carcinogenicity in animals. Hence, the present investigation aimed to evaluate the effect of apocynin (AP) on Fb1-induced neurotoxic effects and its mechanism in the mice model and cell line. The male Balb/c mice, with the 6.75 mg/kg bwt of Fb1 were injected subcutaneously for 5 days to induce neurotoxicity. A significant elevation of serotonin (5-HT) was observed in mice treated with Fb1 in the whole brain showing biogenic amines may reflect Fb1 neurotoxicity, but the negatively regulated mechanisms were attenuated by the pretreatment of AP. In addition, AP pretreatment normalized apoptotic changes in histology and immunohistochemistry studies. In Western blotting studies, apoptotic genes were upregulated and oxidative stress genes were downregulated due to Fb1 treatment; while treating with AP, these gene expressions were rectified. Further cell cytotoxicity was investigated by MTT and lactate dehydrogenase (LDH) assays in SH-SY5Y cell line. MTT and LDH assays indicated the IC50 value to be 150 µM of Fb1, which was protected by 100 µg of AP. The electron microscopy evaluated the Fb1-induced apoptotic conditions and its cell morphology recovery by AP. These results suggest that nicotinamide adenine dinucleotide phosphate hydrogen oxidase-mediated reactive oxygen species is the primary upstream signal leading to increased Fb1-mediated neurotoxicity in mice. The use of the antioxidant AP reversed the toxin-induced oxidative stress and apoptosis by its antioxidant potency.
Collapse
Affiliation(s)
- Krupashree Krishnaswamy
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
| | - Vallamkondu Manasa
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
| | - Mohammed Touseef Khan
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
13
|
Abstract
The deterioration of the brain's microvasculature, particularly in the hippocampus, appears to be a very early event in the development of Alzheimer's disease (AD), preceding even the deposition of amyloid-β. A damaged microvasculature reduces the supply of oxygen and glucose to this region and limits the production of energy, ATP. The damage may be a function of the rise with age in the expression and activity of NADPH oxidase (NOX) in these microvessels. This rise renders these vessels vulnerable to the effects of oxidative stress and inflammation. The rise in NOX activity with age is even more marked in the AD brain where an inverse correlation has been demonstrated between NOX activity and cognitive ability. Apocynin, a putative NOX inhibitor, has been shown to block the damaging effects of NOX activation. Apocynin acts as a strong scavenger of H2O2, and as a weak scavenger of superoxide. Like apocynin, sodium oxybate (SO) has also been shown to block the toxic effects of NOX activation. The application of SO generates NADPH and ATP. SO inhibits oxidative stress and maintains normal cerebral ATP levels under hypoxic conditions. Moreover, it acts epigenetically to attenuate the expression of NOX. SO may delay the onset and slow the progress of AD by suppling energy and maintaining an antioxidative environment in the brain throughout the night. The slow wave activity produced by SO may also activate the glymphatic system and promote the clearance of amyloid-β from the brain.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Qian K, Tang J, Ling YJ, Zhou M, Yan XX, Xie Y, Zhu LJ, Nirmala K, Sun KY, Qin ZH, Sheng R. Exogenous NADPH exerts a positive inotropic effect and enhances energy metabolism via SIRT3 in pathological cardiac hypertrophy and heart failure. EBioMedicine 2023; 98:104863. [PMID: 37950995 PMCID: PMC10663691 DOI: 10.1016/j.ebiom.2023.104863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Therapies are urgently required to ameliorate pathological cardiac hypertrophy and enhance cardiac function in heart failure. Our preliminary experiments have demonstrated that exogenous NADPH exhibits a positive inotropic effect on isolated heart. This study aims to investigate the positive inotropic effects of NADPH in pathological cardiac hypertrophy and heart failure, as well as the underlying mechanisms involved. METHODS Endogenous plasma NADPH contents were determined in patients with chronic heart failure and control adults. The positive inotropic effects of NADPH were investigated in isolated toad heart or rat heart. The effects of NADPH were investigated in isoproterenol (ISO)-induced cardiac hypertrophy or transverse aortic constriction (TAC)-induced heart failure. The underlying mechanisms of NADPH were studied using SIRT3 knockout mice, echocardiography, Western blotting, transmission electron microscopy, and immunoprecipitation. FINDINGS The endogenous NADPH content in the blood of patients and animals with pathological cardiac hypertrophy or heart failure was significantly reduced compared with age-sex matched control subjects. Exogenous NADPH showed positive inotropic effects on the isolated normal and failing hearts, while antagonism of ATP receptor partially abolished the positive inotropic effect of NADPH. Exogenous NADPH administration significantly reduced heart weight indices, and improved cardiac function in the mice with pathological cardiac hypertrophy or heart failure. NADPH increased SIRT3 expression and activity, deacetylated target proteins, improved mitochondrial function and facilitated ATP production in the hypertrophic myocardium. Importantly, inhibition of SIRT3 abolished the positive inotropic effect of NADPH, and the anti-heart failure effect of NADPH was significantly reduced in the SIRT3 Knockout mice. INTERPRETATION Exogenous NADPH shows positive inotropic effect and improves energy metabolism via SIRT3 in pathological cardiac hypertrophy and heart failure. NADPH thus may be one of the potential candidates for the treatment of pathological cardiac hypertrophy or heart failure. FUNDING This work was supported by grants from the National Natural Science Foundation of China (No. 81973315, 82173811, 81730092), Natural Science Foundation of Jiangsu Higher Education (20KJA310008), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003) and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD).
Collapse
Affiliation(s)
- Ke Qian
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Yue-Juan Ling
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Xin-Xin Yan
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Yu Xie
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Lu-Jia Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Koju Nirmala
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Kang-Yun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol 2023; 16:116. [PMID: 38037103 PMCID: PMC10687997 DOI: 10.1186/s13045-023-01512-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Inflammation is a fundamental defensive response to harmful stimuli, but the overactivation of inflammatory responses is associated with most human diseases. Reactive oxygen species (ROS) are a class of chemicals that are generated after the incomplete reduction of molecular oxygen. At moderate levels, ROS function as critical signaling molecules in the modulation of various physiological functions, including inflammatory responses. However, at excessive levels, ROS exert toxic effects and directly oxidize biological macromolecules, such as proteins, nucleic acids and lipids, further exacerbating the development of inflammatory responses and causing various inflammatory diseases. Therefore, designing and manufacturing biomaterials that scavenge ROS has emerged an important approach for restoring ROS homeostasis, limiting inflammatory responses and protecting the host against damage. This review systematically outlines the dynamic balance of ROS production and clearance under physiological conditions. We focus on the mechanisms by which ROS regulate cell signaling proteins and how these cell signaling proteins further affect inflammation. Furthermore, we discuss the use of potential and currently available-biomaterials that scavenge ROS, including agents that were engineered to reduce ROS levels by blocking ROS generation, directly chemically reacting with ROS, or catalytically accelerating ROS clearance, in the treatment of inflammatory diseases. Finally, we evaluate the challenges and prospects for the controlled production and material design of ROS scavenging biomaterials.
Collapse
Affiliation(s)
- Jiatong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tingyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, 610041, China.
| |
Collapse
|
16
|
Marques SM, Melo MR, Zoccal DB, Menani JV, Colombari DSA, Ferreira-Neto ML, Xavier CH, Colombari E, Pedrino GR. Acute inhibition of nicotinamide adenine dinucleotide phosphate oxidase in the commissural nucleus of the solitary tract reduces arterial pressure and renal sympathetic nerve activity in renovascular hypertension. J Hypertens 2023; 41:1634-1644. [PMID: 37466439 DOI: 10.1097/hjh.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND A growing body of evidence suggests that oxidative stress plays a role in the pathophysiology of hypertension. However, the involvement of the reactive oxygen species (ROS) in the commissural nucleus of the solitary tract (commNTS) in development the of hypertension remains unclear. METHOD We evaluated the hemodynamic and sympathetic responses to acute inhibition of NADPH oxidase in the commNTS in renovascular hypertensive rats. Under anesthesia, male Holtzman rats were implanted with a silver clip around the left renal artery to induce 2-kidney 1-clip (2K1C) hypertension. After six weeks, these rats were anesthetized and instrumented for recording mean arterial pressure (MAP), renal blood flow (RBF), renal vascular resistance (RVR), and renal sympathetic nerve activity (RSNA) during baseline and after injection of apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor), NSC 23766 (RAC inhibitor) or saline into the commNTS. RESULTS Apocynin into the commNTS decreased MAP, RSNA, and RVR in 2K1C rats. NSC 23766 into the commNTS decreased MAP and RSNA, without changing RVR in 2K1C rats. CONCLUSION These results demonstrate that the formation of ROS in the commNTS is important to maintain sympathoexcitation and hypertension in 2K1C rats and suggest that NADPH oxidase in the commNTS could be a potential target for therapeutics in renovascular hypertension.
Collapse
Affiliation(s)
- Stefanne M Marques
- Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, GO
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mariana R Melo
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcos L Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia
| | - Carlos H Xavier
- Systems Neurobiology Laboratory. Department of Physiological Sciences, Institute of Biological Science, Federal University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, GO
| |
Collapse
|
17
|
Zhou R, Jin C, Jiao L, Zhang S, Tian M, Liu J, Yang S, Yao W, Zhou F. Geranylgeranylacetone, an inducer of heat shock protein 70, attenuates pulmonary fibrosis via inhibiting NF-κB/NOX4/ROS signalling pathway in vitro and in vivo. Chem Biol Interact 2023; 382:110603. [PMID: 37307957 DOI: 10.1016/j.cbi.2023.110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive pulmonary disease which is characterized by epithelial cell damage and extracellular collagen deposition. To date, the therapeutic options for IPF are still very limited, so the relevant mechanisms need to be explored. Heat shock protein 70 (HSP70), which has protective versus antitumor effects on cells under stress, is a member of the heat shock protein family. In the current study, qRT-PCR, western blotting, immunofluorescence staining, and migration assays were used to explore the Epithelial-mesenchymal transition (EMT) process in BEAS-2B cells. Moreover, the role of GGA in the process of pulmonary fibrosis was detected by HE, Masson staining, pulmonary function test and immunohistochemistry in C57BL/6 mice. Our results indicated that GGA, as an inducer of HSP70, enhanced the transformation of BEAS-2B cells from epithelial to mesenchymal cells through the NF-κB/NOX4/ROS (reactive oxygen species) signalling pathway and could significantly reduce apoptosis of BEAS-2B cells induced by TGF-β1(Transforming growth factor β1) in vitro. In vivo studies demonstrated that HSP70-inducing drugs, such as GGA, attenuated pulmonary fibrosis progression induced by bleomycin (BLM). Collectively, these results suggested that overexpression of HSP70 attenuated pulmonary fibrosis induced by BLM in C57BL/6 mice and EMT process induced by TGF-β1 through NF-κB/NOX4/ROS pathway in vitro. Thus, HSP70 might be a potential therapeutic strategy for human lung fibrosis.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Chaomei Jin
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Linlin Jiao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Siyu Zhang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Mei Tian
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Jiamin Liu
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Songtai Yang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Wu Yao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Fang Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| |
Collapse
|
18
|
Han J, Liu M, Ling Y, Ren Y, Qiu Y, Liu Y, Yin Y. The Role of Endophilin A1 in Lipopolysaccharide-Induced Parkinson's Disease Model Mice. JOURNAL OF PARKINSON'S DISEASE 2023; 13:743-756. [PMID: 37334616 PMCID: PMC10473136 DOI: 10.3233/jpd-225098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Endophilin A1 (EPA1) is encoded by the SH3GL2 gene, and SH3GL2 was designated as a Parkinson's disease (PD) risk locus by genome-wide association analysis, suggesting that EPA1 may be involved in the occurrence and development of PD. OBJECTIVE To investigate the role of EPA1 in lipopolysaccharide (LPS)-induced PD model mice. METHODS The mice PD model was prepared by injecting LPS into the substantia nigra (SN), and the changes in the behavioral data of mice in each group were observed. The damage of dopaminergic neurons, activation of microglia, and reactive oxygen species (ROS) generation were detected by immunofluorescence method; calcium ion concentration was detected by calcium content detection kit; EPA1 and inflammation and its related indicators were detected by western blot method. EPA1 knockdown was performed by an adeno-associated virus vector containing EPA1-shRNA-eGFP infusion. RESULTS LPS-induced PD model mice developed behavioral dysfunction, SN dopaminergic nerve damage, significantly increased calcium ion, calpain 1, and ROS production, activated NLRP1 inflammasome and promoted pro-inflammatory cell release, and SN EPA1 knockdown improves behavioral disorders, alleviates dopaminergic neuron damage, reduces calcium, calpain 1, ROS generation, and blocks NLRP1 inflammasome-driven inflammatory responses. CONCLUSION The expression of EPA1 in the SN of LPS-induced PD model mice was increased, and it played a role in promoting the occurrence and development of PD. EPA1 knockdown inhibited the NLRP1 inflammasome activation, decreased the release of inflammatory factors and ROS generation, and alleviated dopaminergic neuron damage. This indicated that EPA1 may participating in the occurrence and development of PD.
Collapse
Affiliation(s)
- Junhui Han
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yi Ling
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yubo Ren
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yue Qiu
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yi Liu
- Stomatological Hospital & College, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
19
|
Xing C, Lv J, Zhu Z, Cong W, Bian H, Zhang C, Gu R, Chen D, Tan X, Su L, Zhang Y. Regulation of microglia related neuroinflammation contributes to the protective effect of Gelsevirine on ischemic stroke. Front Immunol 2023; 14:1164278. [PMID: 37063929 PMCID: PMC10098192 DOI: 10.3389/fimmu.2023.1164278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Stroke, especially ischemic stroke, is an important cause of neurological morbidity and mortality worldwide. Growing evidence suggests that the immune system plays an intricate function in the pathophysiology of stroke. Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to decrease inflammation and neuralgia in osteoarthritis previously, but its role in stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO) mice model was used to evaluate the protective effect of Gs on stroke, and the administration of Gs significantly improved infarct volume, Bederson score, neurobiological function, apoptosis of neurons, and inflammation state in vivo. According to the data in vivo and the conditioned medium (CM) stimulated model in vitro, the beneficial effect of Gs came from the downregulation of the over-activity of microglia, such as the generation of inflammatory factors, dysfunction of mitochondria, production of ROS and so on. By RNA-seq analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical role in the anti-inflammatory effect of Gs. According to the results of molecular docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2 inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and downregulated the phosphorylation of STAT3. Over-expression of a gain-of-function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-inflammatory effect on microglia in stroke. Our study revealed that Gs was benefit to stroke treatment by decreasing neuroinflammation in stroke as a potential drug candidate regulating the JAK2-STAT3 signal pathway.
Collapse
Affiliation(s)
- Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhihui Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ruxin Gu
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| |
Collapse
|
20
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Huang B, Lang X, Li X. The role of TIGAR in nervous system diseases. Front Aging Neurosci 2022; 14:1023161. [DOI: 10.3389/fnagi.2022.1023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) mainly regulates pentose phosphate pathway by inhibiting glycolysis, so as to synthesize ribose required by DNA, promote DNA damage repair and cell proliferation, maintain cell homeostasis and avoid body injury. Its physiological functions include anti-oxidative stress, reducing inflammation, maintaining mitochondrial function, inhibiting apoptosis, reducing autophagy etc. This paper reviews the research of TIGAR in neurological diseases, including stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), seizures and brain tumors, aiming to provide reference for the development of new therapeutic targets.
Collapse
|
22
|
Tao YW, Yang L, Chen SY, Zhang Y, Zeng Y, Wu JS, Meng XL. Pivotal regulatory roles of traditional Chinese medicine in ischemic stroke via inhibition of NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115316. [PMID: 35513214 DOI: 10.1016/j.jep.2022.115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have demonstrated the powerful neuroprotection abilities of multiple traditional Chinese medicines (TCMs) against NLRP3 inflammasome-mediated ischemic cerebral injury. These TCMs may be in the form of TCM prescriptions, Chinese herbal medicines and their extracts, and TCM monomers. AIM OF THE STUDY This review aimed to analyze and summarize the existing knowledge on the assembly and activation of the NLRP3 inflammasome and its role in the pathogenesis of ischemic stroke (IS). We also summarized the mechanism of action of the various TCMs on the NLRP3 inflammasome, which may provide new insights for the management of IS. MATERIALS AND METHODS We reviewed recently published articles by setting the keywords "NLRP3 inflammasome" and "traditional Chinese medicines" along with "ischemic stroke"; "NLRP3 inflammasome" and "ischemic stroke" along with "natural products" and so on in Pubmed and GeenMedical. RESULTS According to recent studies, 16 TCM prescriptions (officially authorized products and clinically effective TCM prescriptions), 7 Chinese herbal extracts, and 29 TCM monomers show protective effects against IS through anti-inflammatory, anti-oxidative stress, anti-apoptotic, and anti-mitochondrial autophagy effects. CONCLUSIONS In this review, we analyzed studies on the involvement of NLRP3 in IS therapy. Further, we comprehensively and systematically summarized the current knowledge to provide a reference for the further application of TCMs in the treatment of IS.
Collapse
Affiliation(s)
- Yi-Wen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shi-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia-Si Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
23
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
24
|
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19:184. [PMID: 35836200 PMCID: PMC9281066 DOI: 10.1186/s12974-022-02551-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.
Collapse
Affiliation(s)
- Ye Yingze
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Zhihong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yina
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Xiaoxing
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gu Lijuan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
25
|
Alfieri A, Koudelka J, Li M, Scheffer S, Duncombe J, Caporali A, Kalaria RN, Smith C, Shah AM, Horsburgh K. Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline. J Cereb Blood Flow Metab 2022; 42:1176-1191. [PMID: 35102790 PMCID: PMC9207496 DOI: 10.1177/0271678x221077766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease.
Collapse
Affiliation(s)
- Alessio Alfieri
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- National Heart and Lung Institute, Vascular Science, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Juraj Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mosi Li
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrea Caporali
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rajesh N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Wang Y, Zhang JJ, Hou JG, Li X, Liu W, Zhang JT, Zheng SW, Su FY, Li W. Protective Effect of Ginsenosides from Stems and Leaves of Panax ginseng against Scopolamine-Induced Memory Damage via Multiple Molecular Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1113-1131. [PMID: 35475974 DOI: 10.1142/s0192415x22500458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although growing evidence has shown that ginsenosides from stems and leaves of Panax ginseng (GSLS) exercise a protective impact on the central nervous system, in the model of memory damage induced by scopolamine, it is still rarely reported. Thus, the mechanism of action needs to be further explored. This study was to investigate the effect of GSLS on scopolamine (SCOP)-induced memory damage and the underlying mechanism. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days, with or without GSLS (75 and 150 mg/kg) treatment for 14 days. After GSLS treatment, the memory damage induced by SCOP was significantly ameliorated as shown by the improvement of cholinergic function (AChE and ChAT), brain tissue hippocampus morphology (H&E staining), and oxidative stress (MDA, GSH, and NO). Meanwhile, immunohistochemical assay suggested that GSLS increased the expression of brain-derived neurotrophic factor (BDNF) and Tyrosine Kinase receptor B (TrkB). Further mechanism research indicated that GSLS inhibited the Tau hyperphosphorylation and cell apoptosis by regulating the PI3K/AKT pathway and inhibited neuroinflammation by regulating the NF-κB pathway, thereby exerting a cognitive impairment improvement effect. This work suggested that GSLS could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress, inhibiting neuroinflammation and cell apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| | - Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Si-Wen Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Feng-Yan Su
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
27
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
28
|
Chou WC, Rampanelli E, Li X, Ting JPY. Impact of intracellular innate immune receptors on immunometabolism. Cell Mol Immunol 2022; 19:337-351. [PMID: 34697412 PMCID: PMC8891342 DOI: 10.1038/s41423-021-00780-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Immunometabolism, which is the metabolic reprogramming of anaerobic glycolysis, oxidative phosphorylation, and metabolite synthesis upon immune cell activation, has gained importance as a regulator of the homeostasis, activation, proliferation, and differentiation of innate and adaptive immune cell subsets that function as key factors in immunity. Metabolic changes in epithelial and other stromal cells in response to different stimulatory signals are also crucial in infection, inflammation, cancer, autoimmune diseases, and metabolic disorders. The crosstalk between the PI3K-AKT-mTOR and LKB1-AMPK signaling pathways is critical for modulating both immune and nonimmune cell metabolism. The bidirectional interaction between immune cells and metabolism is a topic of intense study. Toll-like receptors (TLRs), cytokine receptors, and T and B cell receptors have been shown to activate multiple downstream metabolic pathways. However, how intracellular innate immune sensors/receptors intersect with metabolic pathways is less well understood. The goal of this review is to examine the link between immunometabolism and the functions of several intracellular innate immune sensors or receptors, such as nucleotide-binding and leucine-rich repeat-containing receptors (NLRs, or NOD-like receptors), absent in melanoma 2 (AIM2)-like receptors (ALRs), and the cyclic dinucleotide receptor stimulator of interferon genes (STING). We will focus on recent advances and describe the impact of these intracellular innate immune receptors on multiple metabolic pathways. Whenever appropriate, this review will provide a brief contextual connection to pathogenic infections, autoimmune diseases, cancers, metabolic disorders, and/or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Elena Rampanelli
- Amsterdam UMC (University Medical Center, location AMC), Department of Experimental Vascular Medicine, AGEM (Amsterdam Gastroenterology Endocrinology Metabolism) Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xin Li
- Comparative Immunology Research Center, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
29
|
Jaiswal G, Kumar P. Neuroprotective role of apocynin against pentylenetetrazole kindling epilepsy and associated comorbidities in mice by suppression of ROS/RNS. Behav Brain Res 2022; 419:113699. [PMID: 34856299 DOI: 10.1016/j.bbr.2021.113699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023]
Abstract
Epilepsy is a neurological disease that transpires due to the unusual synchronized neuronal discharge within the central nervous system, which drives repetitious unprovoked seizures. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a complex enzyme accountable for reactive oxygen species (ROS) production, neurodegeneration, neurotoxicity, memory impairment, vitiates normal cellular processes, long term potentiation, and thus, implicated in the pathogenesis of epilepsy. Therefore, the present study was sketched to examine the neuroprotective effect of apocynin, NADPH oxidase inhibitor in pentylenetetrazole kindling epilepsy, and induced comorbidities in mice. Mice (either sex) were given pentylenetetrazole (35 mg/kg, i.p.) every other day up to 29 days, and a challenge test was executed on the 33rd day. Pretreatment with apocynin (25, 50, and 100 mg/kg, i.p.) was carried out from 1st to 33rd day. Rotarod and open field test were performed on the 1st, 10th, 20th, and 30th days of the study. Animals were tutored on the morris water maze from 30th to 33rd day, and the retention was registered on the 34th day. Tail suspension test and elevated plus maze were sequentially performed on the 32nd and 33rd day of the study. On the 34th day, animals were sacrificed, and their brains were isolated to conduct biochemical estimation. NADPH oxidase activation due to chronic pentylenetetrazole treatment resulted in generalized tonic-clonic seizures, enhanced oxidative stress, remodeled neurotransmitters' level, and resulted in comorbidities (anxiety, depression, and memory impairment). Pretreatment with apocynin significantly restricted the pentylenetetrazole induced seizure severity, ROS production, neurotransmitter alteration, and comorbid conditions by inhibiting the NADPH oxidase enzyme.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India.
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India; Department of Pharmacology, Central University of Punjab, Bathinda (Punjab), India.
| |
Collapse
|
30
|
Wang R, Liu Y, Jing L. MiRNA-99a alleviates inflammation and oxidative stress in lipopolysaccharide-stimulated PC-12 cells and rats post spinal cord injury. Bioengineered 2022; 13:4248-4259. [PMID: 35135443 PMCID: PMC8974123 DOI: 10.1080/21655979.2022.2031386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Spinal cord injury (SCI) is caused by spinal fracture after the displacement of the spine or broken bone fragments protruding into the spinal canal, resulting in different degrees of injury to the spinal cord or spinal nerves. Expression levels of miR-99a and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in cerebrospinal fluid of SCI patients were analyzed. Rat adrenal gland pheochromocytoma cell line PC-12 were stimulated with lipopolysaccharide (LPS) to mimic the in vitro environment of SCI. A rat mode of SCI was established by laminectomy. Reactive oxygen species (ROS) levels were measured by 2’,7’-Dichlorodihydrofluorescein diacetate staining assay. Western blot was conducted to evaluate the expression levels of apoptotic indexes and proinflammatory cytokines. The interaction between miR-99a and NOX4 was verified by dual-luciferase reporter assay. The expression level of miR-99a was reduced while NOX4 expression was upregulated in cerebrospinal fluid of SCI patients and LPS-treated PC-12 cells. LPS impeded cell viability and promoted inflammation, apoptosis and ROS levels of PC-12 cells. Overexpression of miR-99a significantly promoted cell viability and reduced inflammation, apoptosis and oxidative stress in LPS-stimulated PC-12 cells. Dual-luciferase reporter assays verified that NOX4 was a target of miR-99a. Moreover, the expression of NOX4 was reduced in PC-12 cells after transfection with miR-99a mimic. Overexpression of NOX4 partly abolished the protective effect of miR-99a in LPS-treated PC-12 cells. To sum up, miR-99a suppresses NOX4 expression to relieve the LPS-induced inflammation, apoptosis and the progression of oxidative stress in SCI.
Collapse
Affiliation(s)
- Ruihong Wang
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Yang Liu
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Li Jing
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
31
|
Nakka VP, Gogada R, Simhadri PK, Qadeer MA, Phanithi PB. Post-treatment with apocynin at a lower dose regulates the UPR branch of eIF2α and XBP-1 pathways after stroke. Brain Res Bull 2022; 182:1-11. [PMID: 35143926 DOI: 10.1016/j.brainresbull.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Stroke leads to disturbance in the physiology of the ER (Endoplasmic Reticulum) that triggers UPR (Unfolded Protein Response) pathways aimed to compensate neuronal cell damage. However, sustained UPR causes stressful conditions in the ER lumen forming abnormal protein aggregates. Stroke-induced oxidative stress also amalgamates with UPR to safeguard and ensure the proper functioning of brain cells. Thus we tested the effect of apocynin (a potent antioxidant) post-treatment in experimental stroke on the outcome of ER stress and UPR branch pathways. We administered a low dose of apocynin at 1 mg/kg (intraperitoneal) to adult Sprague-Dawley rats subjected to Middle Cerebral Artery Occlusion (MCAO) for two-time points. The first dose immediately after re-establishing the blood flow and another at 6 h of reperfusion. Apocynin post-treatment significantly reduced ROS (Reactive Oxygen Species) generation at an early reperfusion time point of 4 h. It preserved neuronal morphology, dendritic spine density, reduced protein aggregation, and brain damage after 24 h of reperfusion. Apocynin post-treatment regulates the two UPR branch pathways in our experimental paradigm. 1) Down-regulation of eIF2α (Eukaryotic Initiation Factor 2α) phosphorylation, and CHOP (C/EBP homologous protein) 2) by reducing the XBP-1 (X-Box binding Protein-1) mRNA splicing downstream to PERK (Protein Kinase RNA-Like ER Kinase) and IRE1α (Inositol Requiring Enzyme 1alpha) UPR pathways, respectively. Bioinformatics prediction showed that apocynin has binding sites for PERK (Protein Kinase RNA-Like ER Kinase) and IRE1α proteins. The amino acid residues interacting with apocynin were Cys891 and Gln889 (for PERK), and the amino acids Ser726, Arg722, and Ala719 (for IRE1α) lying within their activation loop. Overall, these studies indicate that apocynin post-treatment might regulate ER stress/UPR pathways and minimize stroke brain damage, thus having implications for developing newer strategies for stroke treatment.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, 500046, India; Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh 522510, India
| | - Raghu Gogada
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, 500046, India; Department of Biochemistry and Plant Physiology, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Praveen Kumar Simhadri
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, 500046, India
| | | | - Prakash Babu Phanithi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, 500046, India.
| |
Collapse
|
32
|
Oxidative Injury in Ischemic Stroke: A Focus on NADPH Oxidase 4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1148874. [PMID: 35154560 PMCID: PMC8831073 DOI: 10.1155/2022/1148874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. Thus, it is urgent to explore its pathophysiological mechanisms and find new therapeutic strategies for its successful treatment. The relationship between oxidative stress and ischemic stroke is increasingly appreciated and attracting considerable attention. ROS serves as a source of oxidative stress. It is a byproduct of mitochondrial metabolism but primarily a functional product of NADPH oxidases (NOX) family members. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is most closely related to the formation of ROS during ischemic stroke. Its expression is significantly upregulated after cerebral ischemia, making it a promising target for treating ischemic stroke. Several drugs targeting NOX4, such as SCM-198, Iso, G-Rb1, betulinic acid, and electroacupuncture, have shown efficacy as treatments of ischemic stroke. MTfp-NOX4 POC provides a novel insight for the treatment of stroke. Combinations of these therapies also provide new approaches for the therapy of ischemic stroke. In this review, we summarize the subcellular location, expression, and pathophysiological mechanisms of NOX4 in the occurrence and development of ischemic stroke. We also discuss the therapeutic strategies and related regulatory mechanisms for treating ischemic stroke. We further comment on the shortcomings of current NOX4-targeted therapy studies and the direction for improvement.
Collapse
|
33
|
Que R, Zheng J, Chang Z, Zhang W, Li H, Xie Z, Huang Z, Wang HT, Xu J, Jin D, Yang W, Tan EK, Wang Q. Dl-3-n-Butylphthalide Rescues Dopaminergic Neurons in Parkinson's Disease Models by Inhibiting the NLRP3 Inflammasome and Ameliorating Mitochondrial Impairment. Front Immunol 2021; 12:794770. [PMID: 34925379 PMCID: PMC8671881 DOI: 10.3389/fimmu.2021.794770] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Neuroinflammation and mitochondrial impairment play important roles in the neuropathogenesis of Parkinson’s disease (PD). The activation of NLRP3 inflammasome and the accumulation of α-synuclein (α-Syn) are strictly correlated to neuroinflammation. Therefore, the regulation of NLRP3 inflammasome activation and α-Syn aggregation might have therapeutic potential. It has been indicated that Dl-3-n-butylphthalide (NBP) produces neuroprotection against some neurological diseases such as ischemic stroke. We here intended to explore whether NBP suppressed NLRP3 inflammasome activation and reduced α-Syn aggregation, thus protecting dopaminergic neurons against neuroinflammation. Methods In our study, we established a MPTP-induced mouse model and 6-OHDA-induced SH-SY5Y cell model to examine the neuroprotective actions of NBP. We then performed behavioral tests to examine motor dysfunction in MPTP-exposed mice after NBP treatment. Western blotting, immunofluorescence staining, flow cytometry and RT-qPCR were conducted to investigate the expression of NLRP3 inflammasomes, neuroinflammatory cytokines, PARP1, p-α-Syn, and markers of microgliosis and astrogliosis. Results The results showed that NBP exerts a neuroprotective effect on experimental PD models. In vivo, NBP ameliorated behavioral impairments and reduced dopaminergic neuron loss in MPTP-induced mice. In vitro, treatment of SH-SY5Y cells with 6-OHDA (100uM,24 h) significantly decreased cell viability, increased intracellular ROS production, and induced apoptosis, while pretreatment with 5uM NBP could alleviated 6-OHDA-induced cytotoxicity, ROS production and cell apoptosis to some extent. Importantly, both in vivo and in vitro, NBP suppressed the activation of the NLRP3 inflammasome and the aggregation of α-Syn, thus inhibited neuroinflammation ameliorated mitochondrial impairments. Conclusions In summary, NBP rescued dopaminergic neurons by reducing NLRP3 inflammasome activation and ameliorating mitochondrial impairments and increases in p-α-Syn levels. This current study may provide novel neuroprotective mechanisms of NBP as a potential therapeutic agent.
Collapse
Affiliation(s)
- Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hualing Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Tao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dana Jin
- College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.,Department of Neurology, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
Ju Y, Feng Y, Hou X, Wu L, Yang H, Zhang H, Ma Y. Combined apocyanin and aspirin treatment activates the PI3K/Nrf2/HO-1 signaling pathway and ameliorates preeclampsia symptoms in rats. Hypertens Pregnancy 2021; 41:39-50. [PMID: 34875953 DOI: 10.1080/10641955.2021.2014518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pre-eclampsia (PE) is a pregnancy-associated disease characterized by placental dysfunction and increased oxidative stress. Apocyanin is a potent antioxidant and anti-inflammatory which has shown beneficial effects on PE pathogenesis. Aspirin is recognized as the recommendable drug in PE prevention and therapy. Therefore, we aimed to investigate the effects of combining apocyanin and aspirin to treat PE on rat models induced by N-nitro-L-arginine methyl ester (L-NAME) from gestational day (GD) 6 to 16 and elucidate the potential mechanisms. METHODS First, female pregnant rats were divided into five different groups: pregnant control, PE, PE + apocyanin, PE + aspirin, and PE + apocyanin + aspirin. Animals received apocyanin (16 mg/kg/day) orally or aspirin by gavage (1.5 mg/kg BM/day) from GD 4 to 16. Blood pressure and urine protein content were monitored every 4 days. RESULTS In the PE rat model, elevated systolic blood pressure and proteinuria were ameliorated by the combination of apocyanin and aspirin. Meanwhile, compared with single-dose apocyanin or aspirin, the combined treatment significantly corrected abnormal pregnancy outcomes, decreased sFlt-1 and PlGF, and alleviated oxidative stress both in blood and placental tissues. Moreover, the combined treatment upregulated PI3K, Akt, Nrf2, and HO-1 protein levels in the placental tissues from PE rats.Conclusion: Overall, our results suggested that combined treatment of apocyanin and aspirin ameliorates the PE symptoms compared with single-dose apocyanin or aspirin in a PE rat model. Also, we demonstrated that activating the PI3K/Nrf2/HO-1 pathway can be a valuable therapeutic target to improve the pregnancy outcomes of PE.
Collapse
Affiliation(s)
- Yaru Ju
- Perinatal Center, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xiaolin Hou
- Prenatal Diagnostic, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Lixia Wu
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang; Hebei, China
| | - Huixia Yang
- Department of Obstetrics, Gaoyi County People's Hospital, Shijiazhuang, Hebei, China
| | - Hongjuan Zhang
- Department of Obstetrics, Xiongxian Maternal and Child Health Care Hospital, Baoding, Hebei China
| | - Yan'Na Ma
- Department of Obstetrics, Xiongxian Maternal and Child Health Care Hospital, Baoding, Hebei China
| |
Collapse
|
35
|
Wang YY, Lin SY, Chang CY, Wu CC, Chen WY, Liao SL, Chen YF, Wang WY, Chen CJ. Jak2 Inhibitor AG490 Improved Poststroke Central and Peripheral Inflammation and Metabolic Abnormalities in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:antiox10121958. [PMID: 34943061 PMCID: PMC8750281 DOI: 10.3390/antiox10121958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Poststroke hyperglycemia and inflammation have been implicated in the pathogenesis of stroke. Janus Kinase 2 (Jak2), a catalytic signaling component for cytokine receptors such as Interleukin-6 (IL-6), has inflammatory and metabolic properties. This study aimed to investigate the roles of Jak2 in poststroke inflammation and metabolic abnormality in a rat model of permanent cerebral ischemia. Pretreatment with Jak2 inhibitor AG490 ameliorated neurological deficit, brain infarction, edema, oxidative stress, inflammation, caspase-3 activation, and Zonula Occludens-1 (ZO-1) reduction. Moreover, in injured cortical tissues, Tumor Necrosis Factor-α, IL-1β, and IL-6 levels were reduced with concurrent decreased NF-κB p65 phosphorylation, Signal Transducers and Activators of Transcription 3 phosphorylation, Ubiquitin Protein Ligase E3 Component N-Recognin 1 expression, and Matrix Metalloproteinase activity. In the in vitro study on bEnd.3 endothelial cells, AG490 diminished IL-6-induced endothelial barrier disruption by decreasing ZO-1 decline. Metabolically, administration of AG490 lowered fasting glucose, with improvements in glucose intolerance, plasma-free fatty acids, and plasma C Reactive Proteins. In conclusion, AG490 improved the inflammation and oxidative stress of neuronal, hepatic, and muscle tissues of stroke rats as well as impairing insulin signaling in the liver and skeletal muscles. Therefore, Jak2 blockades may have benefits for combating poststroke central and peripheral inflammation, and metabolic abnormalities.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
36
|
Wang Y, Jin H, Wang Y, Yao Y, Yang C, Meng J, Tan X, Nie Y, Xue L, Xu B, Zhao H, Wang F. Sult2b1 deficiency exacerbates ischemic stroke by promoting pro-inflammatory macrophage polarization in mice. Am J Cancer Res 2021; 11:10074-10090. [PMID: 34815805 PMCID: PMC8581421 DOI: 10.7150/thno.61646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Stroke is a leading causes of human death worldwide. Ischemic damage induces the sterile neuroinflammation, which directly determines the recovery of patients. Lipids, a major component of the brain, significantly altered after stroke. Cholesterol sulfate, a naturally occurring analog of cholesterol, can directly regulate immune cell activation, indicating the possible involvement of cholesterol metabolites in neuroinflammation. Sulfotransferase family 2b member 1 (Sult2b1) is the key enzyme that catalyzes the synthesis of cholesterol sulfate. This study aimed to investigate the function of Sult2b1 and cholesterol sulfate in the neuroinflammation after ischemic stroke. Methods and Results: Sult2b1-/- and wild-type mice were subjected to transient middle cerebral artery occlusion. Our data showed that Sult2b1-/- mice had larger infarction and worse neurological scores. To determine whether immune cells were involved in the worsening stroke outcome in Sult2b1-/- mice, bone marrow transplantation, immune cell depletion, and adoptive monocyte transfer were performed. Combined with CyTOF and immunofluorescence techniques, we demonstrated that after stroke, the peripheral monocyte-derived macrophages were the dominant cell type promoting the pro-inflammatory status in Sult2b1-/-mice. Using primary bone marrow-derived macrophages, we showed that cholesterol sulfate could attenuate the pro-inflammatory polarization of macrophages under both normal and oxygen-glucose deprivation conditions by regulating the levels of nicotinamide adenine dinucleotide phosphate (NADPH), reactive oxygen species (ROS), and activating the AMP-activated protein kinase (AMPK) - cAMP responsive element-binding protein (CREB) signaling pathway. Conclusions:Sult2b1-/- promoted the polarization of macrophages into pro-inflammatory status. This trend could be attenuated by adding cholesterol sulfate, which promotes the polarization of macrophages into anti-inflammatory status by metabolic regulation. In this study, we established an inflammation-metabolism axis during the macrophage polarization after ischemic stroke.
Collapse
|
37
|
Zhang H, Su Y, Sun Z, Chen M, Han Y, Li Y, Dong X, Ding S, Fang Z, Li W, Li W. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice. J Ginseng Res 2021; 45:665-675. [PMID: 34764721 PMCID: PMC8569324 DOI: 10.1016/j.jgr.2021.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, may be a potential agent for the treatment of Alzheimer’s disease (AD). However, the protective effect of Rg1 on neurodegeneration in AD and its mechanism of action are still incompletely understood. Methods Wild type (WT) and APP/PS1 AD mice, from 6 to 9 months old, were used in the experiment. The open field test (OFT) and Morris water maze (MWM) were used to detect behavioral changes. Neuronal damage was assessed by hematoxylin and eosin (H&E) and Nissl staining. Immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction (q-PCR) were used to examine postsynaptic density 95 (PSD95) expression, amyloid beta (Aβ) deposition, Tau and phosphorylated Tau (p-Tau) expression, reactive oxygen species (ROS) production, and NAPDH oxidase 2 (NOX2) expression. Results Rg1 treatment for 12 weeks significantly ameliorated cognitive impairments and neuronal damage and decreased the p-Tau level, amyloid precursor protein (APP) expression, and Aβ generation in APP/PS1 mice. Meanwhile, Rg1 treatment significantly decreased the ROS level and NOX2 expression in the hippocampus and cortex of APP/PS1 mice. Conclusions Rg1 alleviates cognitive impairments, neuronal damage, and reduce Aβ deposition by inhibiting NOX2 activation in APP/PS1 mice. Rg1 treatment significantly alleviated cognitive dysfunction and neuronal damage in APP/PS1 mice. Rg1 treatment significantly reduced APP expression and Aβ deposition in APP/PS1 mice. The expression of NOX2 and ROS production were significantly increased in APP/PS1 mice. Rg1 treatment significantly decreased NOX2 expression and ROS accumulation in APP/PS1 mice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Zhirui Fang
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Role of NADPH Oxidase-Induced Hypoxia-Induced Factor-1 α Increase in Blood-Brain Barrier Disruption after 2-Hour Focal Ischemic Stroke in Rat. Neural Plast 2021; 2021:9928232. [PMID: 34434231 PMCID: PMC8382561 DOI: 10.1155/2021/9928232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
We recently showed that inhibition of hypoxia-induced factor-1α (HIF-1α) decreased acute ischemic stroke-induced blood-brain barrier (BBB) damage. However, factors that induce the upregulation of HIF-1α expression remain unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase played a critical role in reperfusion-induced BBB damage after stroke. However, the role of NADPH oxidase in BBB injury during the acute ischemia stage remains unclear. This study is aimed at investigating the role of NADPH oxidase in BBB injury and the expression of HIF-1α after acute ischemic stroke. A sutured middle cerebral artery occlusion (MCAO) model was used to mimic ischemic stroke in rats. Our results show that the inhibition of NADPH oxidase by apocynin can significantly reduce the BBB damage caused by 2 h ischemic stroke accompanied by reducing the degradation of tight junction protein occludin. In addition, treatment with apocynin significantly decreased the upregulation of HIF-1α induced by 2 h MCAO. More importantly, apocynin could also inhibit the MMP-2 upregulation. Of note, HIF-1α was not colocalized with a bigger blood vessel. Taken together, our results showed that inhibition of NADPH oxidase-mediated HIF-1α upregulation reduced BBB damage accompanied by downregulating MMP-2 expression and occludin degradation after 2 h ischemia stroke. These results explored the mechanism of BBB damage after acute ischemic stroke and may help reduce the associated cerebral hemorrhage transformation after thrombolysis and endovascular treatment after ischemic stroke.
Collapse
|
40
|
Han Y, Li X, Yang L, Zhang D, Li L, Dong X, Li Y, Qun S, Li W. Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice. J Ginseng Res 2021; 46:515-525. [PMID: 35818419 PMCID: PMC9270650 DOI: 10.1016/j.jgr.2021.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background The incidence of ischemic cerebrovascular disease is increasing in recent years and has been one of the leading causes of neurological dysfunction and death. Ginsenoside Rg1 has been found to protect against neuronal damage in many neurodegenerative diseases. However, the effect and mechanism by which Rg1 protects against cerebral ischemia-reperfusion injury (CIRI) are not fully understood. Here, we report the neuroprotective effects of Rg1 treatment on CIRI and its possible mechanisms in mice. Methods A bilateral common carotid artery ligation was used to establish a chronic CIRI model in mice. HT22 cells were treated with Rg1 after OGD/R to study its effect on [Ca2+]i. The open-field test and pole-climbing experiment were used to detect behavioral injury. The laser speckle blood flowmeter was used to measure brain blood flow. The Nissl and H&E staining were used to examine the neuronal damage. The Western blotting was used to examine MAP2, PSD95, Tau, p-Tau, NOX2, PLC, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging was used to test the level of [Ca2+]i. Results Rg1 treatment significantly improved cerebral blood flow, locomotion, and limb coordination, reduced ROS production, increased MAP2 and PSD95 expression, and decreased p-Tau, NOX2, p-PLC, CN, NFAT1, and NLRP1 expression. Calcium imaging results showed that Rg1 could inhibit calcium overload and resist the imbalance of calcium homeostasis after OGD/R in HT22 cells. Conclusion Rg1 plays a neuroprotective role in attenuating CIRI by inhibiting oxidative stress, calcium overload, and neuroinflammation. Rg1 ameliorates I/R-induced motor dysfunction and neuronal damage in mice. Rg1 decreases NOX2 expression and ROS accumulation in cerebral I/R mice. Rg1 inhibits calcium overload and CN-NFAT1 signaling in cerebral I/R mice. Rg1 down-regulates NLRP1 inflammasome in cerebral I/R mice.
Collapse
|
41
|
Liu X, Guo Y, Yang Y, Qi C, Xiong T, Chen Y, Wu G, Zeng C, Wang D. DRD4 (Dopamine D4 Receptor) Mitigate Abdominal Aortic Aneurysm via Decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) Axis-Associated Oxidative Stress. Hypertension 2021; 78:294-307. [PMID: 34176291 DOI: 10.1161/hypertensionaha.120.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fuzhou, China (Y.G.)
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| | - Chunlei Qi
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| |
Collapse
|
42
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
43
|
Li QQ, Li JY, Zhou M, Qin ZH, Sheng R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem Int 2021; 148:105081. [PMID: 34082063 DOI: 10.1016/j.neuint.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/22/2021] [Indexed: 01/30/2023]
Abstract
Cerebral ischemia is a disease of ischemic necrosis of brain tissue caused by intracranial artery stenosis or occlusion and cerebral artery embolization. Neuroinflammation plays an important role in the pathophysiology of cerebral ischemia. Microglia, astrocytes, leukocytes and other cells that release a variety of inflammatory factors involved in neuroinflammation may play a damaging or protective role during the process of cerebral ischemia. TP53-induced glycolysis and apoptotic regulators (TIGAR) may facilitate the production of nicotinamide adenine dinucleotide phosphoric acid (NADPH) via the pentose phosphate pathway (PPP) to inhibit oxidative stress and neuroinflammation. TIGAR can also directly inhibit NF-κB to inhibit neuroinflammation. TIGAR thus protect against cerebral ischemic injury. Exogenous NADPH can inhibit neuroinflammation by inhibiting oxidative stress and regulating a variety of signals. However, since NADPH oxidase (NOX) may use NADPH as a substrate to generate reactive oxygen species (ROS) to mediate neuroinflammation, the combination of NADPH and NOX inhibitors may produce more powerful anti-neuroinflammatory effects. Here, we review the cells and regulatory signals involved in neuroinflammation during cerebral ischemia, and discuss the possible mechanisms of targeting neuroinflammation in the treatment of cerebral ischemia with TIGAR/NADPH axis, so as to provide new ideas for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
45
|
Lin SY, Wang YY, Chang CY, Wu CC, Chen WY, Liao SL, Chen CJ. TNF-α Receptor Inhibitor Alleviates Metabolic and Inflammatory Changes in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:antiox10060851. [PMID: 34073455 PMCID: PMC8228519 DOI: 10.3390/antiox10060851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia and inflammation, with their augmented interplay, are involved in cases of stroke with poor outcomes. Interrupting this vicious cycle thus has the potential to prevent stroke disease progression. Tumor necrosis factor-α (TNF-α) is an emerging molecule, which has inflammatory and metabolic roles. Studies have shown that TNF-α receptor inhibitor R-7050 possesses neuroprotective, antihyperglycemic, and anti-inflammatory effects. Using a rat model of permanent cerebral ischemia, pretreatment with R-7050 offered protection against poststroke neurological deficits, brain infarction, edema, oxidative stress, and caspase 3 activation. In the injured cortical tissues, R-7050 reversed the activation of TNF receptor-I (TNFRI), NF-κB, and interleukin-6 (IL-6), as well as the reduction of zonula occludens-1 (ZO-1). In the in vitro study on bEnd.3 endothelial cells, R-7050 reduced the decline of ZO-1 levels after TNF-α-exposure. R-7050 also reduced the metabolic alterations occurring after ischemic stroke, such as hyperglycemia and increased plasma corticosterone, free fatty acids, C reactive protein, and fibroblast growth factor-15 concentrations. In the gastrocnemius muscles of rats with stroke, R-7050 improved activated TNFRI/NF-κB, oxidative stress, and IL-6 pathways, as well as impaired insulin signaling. Overall, our findings highlight a feasible way to combat stroke disease based on an anti-TNF therapy that involves anti-inflammatory and metabolic mechanisms.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
46
|
Gou X, Xu D, Li F, Hou K, Fang W, Li Y. Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies. J Physiol Biochem 2021; 77:511-529. [PMID: 33942252 DOI: 10.1007/s13105-021-00817-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a common disease with high mortality and disability worldwide. Different forms of cell deaths, including apoptosis and necrosis, occur in ischemic or hemorrhagic brain tissue, among which pyroptosis, a newly discovered inflammation-related programmed cell death, is generally divided into two main pathways, the canonical inflammasome pathway and the non-canonical inflammasome pathway. Caspase-mediated pyroptosis requires the assembly of inflammasomes such as NLRP3, which leads to the release of inflammatory cytokines IL-1β and IL-18 through the pores formed in the plasma membrane by GSDMD followed by neuroinflammation. Recently, pyroptosis and its relationship with inflammation have attracted more and more attention in the study of cerebral ischemia or hemorrhage. In addition, many inhibitors of pyroptosis targeting caspase, NLRP3, and the upstream pathway have been found to reduce brain tissue damage after stroke. In this review, we mainly introduce the pathology of stroke, the molecular mechanism, and process of pyroptosis, as well as the pivotal roles of pyroptosis in stroke, in order to provide new insights for the treatment of stroke.
Collapse
Affiliation(s)
- Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.,Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
47
|
Gao M, Han J, Zhu Y, Tang C, Liu L, Xiao W, Ma X. Blocking endothelial TRPV4-Nox2 interaction helps reduce ROS production and inflammation, and improves vascular function in obese mice. J Mol Cell Cardiol 2021; 157:66-76. [PMID: 33932464 DOI: 10.1016/j.yjmcc.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
Obesity induces inflammation and oxidative stress, and ultimately leads to vasodilatory dysfunction in which Transient receptor potential vanilloid type 4 (TRPV4) and Nicotinamide Adenine Dinucleotide Phosphate Oxidase (Nox2) have been reported to be involved. However, little attention has been paid to the role of the TRPV4-Nox2 complex in these problems. The purpose of this study was to figure out the role of the TRPV4-Nox2 complex in obesity-induced inflammation, oxidative stress, and vasodilatory dysfunction. Using fluorescence resonance energy transfer and immunoprecipitation assays, we found enhanced TRPV4 and Nox2 interactions in obese mice. Using q-PCR, fluorescent dye dihydroethidium staining, and myotonic techniques, we found that obesity caused inflammation, oxidative stress, and vasodilatory dysfunction. Using adeno-associated viruses, we found that enhancement or attenuation of TRPV4-Nox2 interaction altered the vaso-function. Based on these findings, we found a small-molecule drug, M12, that interrupted the TRPV4-Nox2 interaction, thereby reducing inflammatory factors and reactive oxygen species production and helping to restore the vasodilatory function. In summary, our results revealed a new mechanism by which obesity-induced inflammation, oxidative stress, and vasodilatory dysfunction is caused by enhanced TRPV4-Nox2 interactions. Using M12 to interrupt the TRPV4-Nox2 interaction may have anti-inflammatory and anti-oxidative stress effects and help restore vasodilatory function and thus provide a new therapeutic approach to obesity.
Collapse
Affiliation(s)
- Mengru Gao
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jing Han
- School of Medicine, Jiangnan University, Wuxi, China
| | - Yifei Zhu
- School of Medicine, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | | | - Wang Xiao
- School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, China; School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| |
Collapse
|
48
|
Mi Y, Jiao K, Xu JK, Wei K, Liu JY, Meng QQ, Guo TT, Zhang XN, Zhou D, Qing DG, Sun Y, Li N, Hou Y. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113718. [PMID: 33352239 DOI: 10.1016/j.jep.2020.113718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferula sinkiangensis K. M. Shen is a traditional Chinese medicine that has a variety of pharmacological properties relevant to neurological disorders and inflammations. Kellerin, a novel compound extracted from Ferula sinkiangensis, exerts a strong anti-neuroinflammatory effect by inhibiting microglial activation. Microglial activation plays a vital role in ischemia-induced brain injury. However, the potential therapeutic effect of kellerin on focal cerebral ischemia is still unknown. AIM OF THE STUDY To explore the effect of kellerin on cerebral ischemia and clarify its possible mechanisms, we applied the middle cerebral artery occlusion (MCAO) model and the LPS-activated microglia model in our study. MATERIALS AND METHODS Neurological outcome was examined according to a 4-tiered grading system. Brain infarct size was measured using TTC staining. Brain edema was calculated using the wet weight minus dry weight method. Neuron damage and microglial activation were observed by immunofluorescence in MCAO model in rats. In in vitro studies, microglial activation was examined by flow cytometry and the viability of neuronal cells cultured in microglia-conditioned medium was measured using MTT assay. The levels of pro-inflammatory cytokines were measured by qRT-PCR and ELISA. The proteins involved in NF-κB signaling pathway were determined by western blot. Intracellular ROS was examined using DCFH-DA method and NADPH oxidase activity was measured using the NBT assay. RESULTS We found that kellerin improved neurological outcome, reduced brain infarct size and decreased brain edema in MCAO model in rats. Under the pathologic conditions of focal cerebral ischemia, kellerin alleviated neuron damage and inhibited microglial activation. Moreover, in in vitro studies of LPS-stimulated BV2 cells kellerin protected neuronal cells from being damaged by inhibiting microglial activation. Kellerin also reduced the levels of pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and decreased ROS generation and NADPH oxidase activity. CONCLUSIONS Our discoveries reveal that the neuroprotective effects of kellerin may largely depend on its inhibitory effect on microglial activation. This suggests that kellerin could serve as a novel anti-inflammatory agent which may have therapeutic effects in ischemic stroke.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ji-Kai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Jing-Yu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Qi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue-Ni Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - De-Gang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
49
|
Eyford BA, Singh CSB, Abraham T, Munro L, Choi KB, Hill T, Hildebrandt R, Welch I, Vitalis TZ, Gabathuler R, Gordon JA, Adomat H, Guns ES, Lu CJ, Pfeifer CG, Tian MM, Jefferies WA. A Nanomule Peptide Carrier Delivers siRNA Across the Intact Blood-Brain Barrier to Attenuate Ischemic Stroke. Front Mol Biosci 2021; 8:611367. [PMID: 33869275 PMCID: PMC8044710 DOI: 10.3389/fmolb.2021.611367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.
Collapse
Affiliation(s)
- Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chaahat S. B. Singh
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- Department of Neural and Behavioral Sciences and Microscopy Imaging Core Lab, Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Kyung Bok Choi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Tracy Hill
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rhonda Hildebrandt
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Welch
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Reinhard Gabathuler
- Bioasis Technologies Inc., Guilford, CT, United States
- King’s College London, London, United Kingdom
| | - Jacob A. Gordon
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emma S.T. Guns
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chieh-Ju Lu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mei Mei Tian
- Bioasis Technologies Inc., Guilford, CT, United States
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631805. [PMID: 33777315 PMCID: PMC7969100 DOI: 10.1155/2021/6631805] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
Stroke is a leading cause of death and disability in humans. The excessive production of reactive oxygen species (ROS) is an important contributor to oxidative stress and secondary brain damage after stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex consisting of membrane subunits and cytoplasmic subunits, regulates neuronal maturation and cerebrovascular homeostasis. However, NADPH oxidase overproduction contributes to neurotoxicity and cerebrovascular disease. NADPH oxidase has been implicated as the principal source of ROS in the brain, and numerous studies have shown that the knockout of NADPH exerts a protective effect in the model of ischemic stroke. In this review, we summarize the mechanism of activation of the NADPH oxidase family members, the pathophysiological effects of NADPH oxidase isoforms in ischemic stroke, and the studies of NADPH oxidase inhibitors to explore potential clinical applications.
Collapse
|