1
|
Zhang L, Lu J. Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024; 177:106074. [PMID: 38906386 DOI: 10.1016/j.fitote.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Lu
- China Animal Husbandry Group, Beijing 100070, China
| |
Collapse
|
2
|
Milusheva M, Stoyanova M, Gledacheva V, Stefanova I, Todorova M, Pencheva M, Stojnova K, Tsoneva S, Nedialkov P, Nikolova S. 2-Amino- N-Phenethylbenzamides for Irritable Bowel Syndrome Treatment. Molecules 2024; 29:3375. [PMID: 39064953 PMCID: PMC11280360 DOI: 10.3390/molecules29143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) disorder characterized by abdominal pain or discomfort. Mebeverine is an antispasmodic that has been widely used in clinical practice to relieve the symptoms of IBS. However, its systemic use usually leads to side effects. Therefore, the current paper aimed to synthesize more effective medicines for IBS treatment. We used ring opening of isatoic anhydride for the synthesis in reaction with 2-phenylethylamine. In silico simulation predicted spasmolytic activity for 2-amino-N-phenethylbenzamides. The newly synthesized compounds demonstrated a relaxation effect similar to mebeverine but did not affect the serotonin or Ca2+-dependent signaling pathway of contractile activity (CA) in contrast. Having in mind the anti-inflammatory potential of antispasmodics, the synthesized molecules were tested in vitro and ex vivo for their anti-inflammatory effects. Four of the newly synthesized compounds demonstrated very good activity by preventing albumin denaturation compared to anti-inflammatory drugs/agents well-established in medicinal practice. The newly synthesized compounds also inhibited the expression of interleukin-1β and stimulated the expression of neuronal nitric oxide synthase (nNOS), and, consequently, nitric oxide (NO) synthesis by neurons of the myenteric plexus. This characterizes the newly synthesized compounds as biologically active relaxants, offering a cleaner and more precise application in pharmacological practice, thereby enhancing their potential therapeutic value.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| |
Collapse
|
3
|
Zhuang C, Sun R, Zhang Y, Zou Q, Zhou J, Dong N, Zhao X, Fu W, Geng X, Wang J, Li Q, Zhao RC. Treatment of Rheumatoid Arthritis Based on the Inherent Bioactivity of Black Phosphorus Nanosheets. Aging Dis 2024:AD.2024.0319. [PMID: 38913037 DOI: 10.14336/ad.2024.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects the living quality of patients, especially the elderly population. RA-related morbidity and mortality increase significantly with age, while current clinical drugs for RA are far from satisfactory and may have serious side effects. Therefore, the development of new drugs with higher biosafety and efficacy is demanding. Black phosphorus nanosheets (BPNSs) have been widely studied because of their excellent biocompatibility. Here, we focus on the inherent bioactivity of BPNSs, report the potential of BPNSs as a therapeutic drug for RA and elucidate the underlying therapeutic mechanism. We find that BPNSs inhibit autophagy at an early stage via the AMPK-mTOR pathway, switch the energy metabolic pathway to oxidative phosphorylation, increase intracellular ATP levels, suppress apoptosis, reduce inflammation and oxidative stress, and down-regulate senescence-associated secretory phenotype (SASP)-related genes in rheumatoid arthritis synovial fibroblasts (RA-SFs). Further, BPNSs induce the apoptosis of macrophages and promote their transition from the M1 to the M2 phenotype by regulating related cytokines. Significantly, the administration of BPNSs can alleviate key pathological features of RA in mice, revealing great therapeutic potential. This study provides a novel option for treating RA, with BPNSs emerging as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruiqi Sun
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yuchen Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Qing Zou
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jianxin Zhou
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xuyu Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaoke Geng
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
- Cell Energy Life Sciences Group Co. LTD, Qingdao, China, 266200
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| |
Collapse
|
4
|
Wan SS, Li XY, Liu SR, Tang S. The function of carnosic acid in lipopolysaccharides-induced hepatic and intestinal inflammation in poultry. Poult Sci 2024; 103:103415. [PMID: 38215508 PMCID: PMC10821594 DOI: 10.1016/j.psj.2023.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Inflammatory processes are often accompanied by oxidative stress and lipid peroxidation, which might lead to cellular and organ damage. Carnosic acid (CA), an active component found in rosemary, exhibits pharmacological properties including antioxidative, anti-inflammatory, and antiviral effects. The aim of this research was to investigate whether CA can mitigate lipopolysaccharide (LPS)-induced oxidative stress and inflammatory responses in poultry and to understand its underlying mechanisms. We administered CA to broiler chickens via oral gavage and treated them with LPS, followed by analysis of the effects of different dosages of CA on body weight, antioxidative capacity, and inflammatory factors. Carnosic acid had no significant impact on the body weight of broiler chickens. However, serum analysis indicated that the middle dose of CA effectively enhanced the antioxidative capacity and reduced levels of oxidative stress and inflammation-related factors. Moreover, in the liver, CA demonstrated the ability to regulate the expression of proteins such as heat shock protein 60 (HSP60), heat shock protein 70 (HSP70), and P38 mitogen-activated protein kinase (P38), suggesting its protective role against liver damage induced by LPS. In the intestinal tract of broiler chickens, CA regulated the expression and localization of proteins including HSP60, HSP70, NFE2 like bZIP transcription factor 2 (Nrf2), and P38, while also influencing the expression of inflammatory markers such as protein tyrosine phosphatase receptor type C (CD45), and connexin (Cx). These findings revealed the potential protective mechanisms of CA in alleviating oxidative stress and inflammatory damage induced by LPS in poultry. Carnosic acid notably enhanced the chickens' antioxidative capacity by modulating the expression of key proteins, thereby reducing oxidative stress and inflammatory response levels. This study provides a deeper comprehension of the protective mechanisms of CA and its potential impact on avian health.
Collapse
Affiliation(s)
- Shuang-Shuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue-Yuan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Tao H, Li X, Wang Q, Yu L, Yang P, Chen W, Yang X, Zhou J, Geng D. Redox signaling and antioxidant defense in osteoclasts. Free Radic Biol Med 2024; 212:403-414. [PMID: 38171408 DOI: 10.1016/j.freeradbiomed.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Bone remodeling is essential for the repair and replacement of damaged or aging bones. Continuous remodeling is necessary to prevent the accumulation of bone damage and to maintain bone strength and calcium balance. As bones age, the coupling mechanism between bone formation and absorption becomes dysregulated, and bone loss becomes dominant. Bone development and repair rely on interaction and communication between osteoclasts and surrounding cells. Osteoclasts are specialized cells that are accountable for bone resorption and degradation, and any abnormalities in their activity can result in notable alterations in bone structure and worsen disease symptoms. Recent findings from transgenic mouse models and bone analysis have greatly enhanced our understanding of the origin, differentiation pathway, and activation stages of osteoclasts. In this review, we explore osteoclasts and discuss the cellular and molecular events that drive their generation, focusing on intracellular oxidative and antioxidant signaling. This knowledge can help develop targeted therapies for diseases associated with osteoclast activation.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Rana N, Gupta P, Singh H, Nagarajan K. Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:353-385. [PMID: 37711009 DOI: 10.2174/1386207326666230914103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.
Collapse
Affiliation(s)
- Neha Rana
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Piyush Gupta
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, 201204, Ghaziabad, Uttar Pradesh, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
7
|
Lin G, Li N, Li D, Chen L, Deng H, Wang S, Tang J, Ouyang W. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int Immunopharmacol 2023; 116:109819. [PMID: 36738671 DOI: 10.1016/j.intimp.2023.109819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Carnosic acid (CA) is a polyphenolic diterpene from rosemary extract with anti-tumor and anti-inflammatory activities. Numerous reports have focused on its anti-tumor ability, while the exact mechanisms underlying its anti-inflammation remains unclear. Here, we have identified that CA is a potent inhibitor of NLRP3 inflammasome in vitro and in vivo. CA not only reduces NLRP3 expression by blocking NF-κB activation, but also inhibits NLRP3 inflammasome assembly and activation by suppressing mitochondrial ROS production and interrupting NLRP3-NEK7 interaction. Furthermore, in mouse models, CA alleviates lipopolysaccharide-induced acute systemic inflammation and MSU-induced peritonitis via NLRP3. Taken together, our data demonstrated the inhibitory effect of CA on NLRP3 inflammasome and pointed out the potential application of CA in the treatment of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Guoxin Lin
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Nannan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Dan Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Lu Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Saiying Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| |
Collapse
|
8
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
9
|
Tsai YF, Yang SC, Hsu YH, Chen CY, Chen PJ, Syu YT, Lin CH, Hwang TL. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci 2022; 321:121334. [PMID: 36587789 DOI: 10.1016/j.lfs.2022.121334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
AIMS Infiltration of activated neutrophils into the lungs is a hallmark of acute respiratory distress syndrome (ARDS). Neutrophilic inflammation, particularly neutrophil extracellular traps (NETs), is proposed as a useful target for treating ARDS. Carnosic acid (CA) is a food additive; however, its anti-neutrophilic activity in the treatment of ARDS has not been well established. The hypothesis of present study is to confirm that CA alleviates ARDS by suppressing neutrophilic inflammation and oxidative damage. MAIN METHODS Generation of superoxide anions and reactive oxygen species (ROS), induction of elastase degranulation, and formation of NETs by human neutrophils were assayed using spectrophotometry, flow cytometry, and immunofluorescent microscopy. Immunoblotting was performed to determine the cellular mechanisms involved. Cell-free radical systems were used to test antioxidant activities. The therapeutic effect of CA was evaluated in a lipopolysaccharide (LPS)-induced ARDS mouse model. KEY FINDINGS CA greatly reduced superoxide anion production, ROS production, elastase release, cluster of differentiation 11b expression, and cell adhesion in activated human neutrophils. Mechanistic studies have demonstrated that CA suppresses phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase in activated neutrophils. CA effectively scavenges reactive oxygen and nitrogen species, but not superoxide anions. This is consistent with the finding that CA is effective against ROS-dependent NET formation. CA treatment significantly improved pulmonary neutrophil infiltration, oxidative damage, NET formation, and alveolar damage in LPS-induced mice. SIGNIFICANCE Our data suggested the potential application of CA for neutrophil-associated ARDS therapy.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yun-Hsuan Hsu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
10
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Misra S, Ikbal AMA, Bhattacharjee D, Hore M, Mishra S, Karmakar S, Ghosh A, Srinivas R, Das A, Agarwal S, Saha KD, Bhardwaj P, Ubhadia IB, Ghosh P, De S, Tiwari ON, Chattopadhyay D, Palit P. Validation of antioxidant, antiproliferative, and in vitro anti-rheumatoid arthritis activities of epigallo-catechin-rich bioactive fraction from Camellia sinensis var. assamica, Assam variety white tea, and its comparative evaluation with green tea fraction. J Food Biochem 2022; 46:e14487. [PMID: 36309930 DOI: 10.1111/jfbc.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 01/14/2023]
Abstract
The epigallocatechin-rich polyphenolic fraction of Assam variety white tea, traditionally used for the management of diverse inflammatory ailments and health drink, was investigated through eco-friendly green aqueous extraction, TLC, and HPLC characterization, phytochemical screening, in vitro DPPH assay, anti-proteinase, MTT assay on synovial fibroblast and colon cancer cells, apoptotic FACS analysis, cytokine ELISA, p-STAT3 western blotting, and in silico docking analysis. HPLC-TLC standardized white tea fraction (WT-F) rendered higher extractive-yield (21%, w/w), than green tea fraction(GT-F) (12%, w/w). WT-F containing flavonoids and non-hydrolysable polyphenols showed better antioxidant activity, rather than equivalent GT-F. WT-F demonstrated remarkable anti-rheumatoid-arthritis activity via killing of synovial fibroblast cells (66.1%), downregulation of TNF-α (93.33%), IL-6 (87.97%), and p-STAT3 inhibition (77.75%). Furthermore, WT-F demonstrated better anti-proliferative activity against colon cancer cells (HCT-116). Collectively, our study revealed that the white tea fraction has boundless potential as anti-rheumatoid arthritis and anti-proliferative agent coupled with apoptotic, antioxidant anti-proteinase, and anti-inflammatory properties. PRACTICAL APPLICATIONS: Our eco-friendly extracted bioactive aqueous fraction of white tea, characterized by TLC-HPLC study and phytochemical screening have demonstrated remarkable anti-rheumatoid arthritis property and anti-proliferative action on colon cancer cells including potential anti-oxidant, anti-inflammatory, and anti-proteinase efficacy. The test WT-F sample has shown impressive safety on normal mammalian cells. WT-F has demonstrated better efficacy against rheumatoid arthritis and cancer model compared to equivalent green tea fraction. Traditionally, it is extensively used for boosting immunity, and energy, with cosmetic, and agricultural applications by the native inhabitants. So, the aqueous fraction of WT is suggested to be used as a prophylactic nutraceutical supplement and or therapeutic agent in commercial polyherbal formulation to attenuate and management of auto-inflammatory rheumatoid arthritis and carcinogenesis of colon. It is additionally suggested to establish in vivo rheumatoid arthritis animal and clinical study to validate their pharmacokinetic stability and dose optimization coupled with anti-inflammatory, cytotoxicity, and anti-oxidant property.
Collapse
Affiliation(s)
- Sanchaita Misra
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Dipanjan Bhattacharjee
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Minakshi Hore
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | | | - Sankha Karmakar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Alakendu Ghosh
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | | | - Abhik Das
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | | | | | - Prashant Bhardwaj
- ICMR-Virus Unit (Presently ICMR-National Institute of Cholera & Enteric Diseases), Kolkata, India
| | - Ishvarlal Bhudarbhai Ubhadia
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India.,Rosekandi Tea Estate, Grant Pt I, Assam, India
| | - Parasar Ghosh
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Onkar Nath Tiwari
- Department of Computer Science and Engineering, National Institute of Technology, Agartala, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Belagavi, India.,Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India.,NSHM Knowledge Campus, Kolkata, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| |
Collapse
|
12
|
Combination Therapy of Carnosic Acid and Methotrexate Effectively Suppressed the Inflammatory Markers and Oxidative Stress in Experimental Arthritis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207115. [PMID: 36296709 PMCID: PMC9612293 DOI: 10.3390/molecules27207115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Background: Combination therapy with methotrexate (MTX) is the most common therapeutic strategy used for the treatment of patients with rheumatoid arthritis (RA). In this study, we combined the natural compound carnosic acid (CA) with MTX to reduce inflammation and oxidative stress in adjuvant arthritis (AA). Methods: AA was induced in 6–8 rats per group. MTX was administrated twice a week at a dose of 0.3 mg/kg b.w., while CA was administered daily at a dose of 100 mg/kg both in monotherapy and in combination with MTX. Plasma samples were collected on the 14th, 21st, and 28th day. Body weight and hind paw volume were measured once a week. Results: We found that, mainly, the CA + MTX combination significantly reduced the hind paw swelling, the levels of IL-17A, MMP-9, and MCP-1 in plasma, and GGT activity in joint homogenates. The mRNA expression of HO-1, catalase, and IL-1β in the liver were significantly improved by CA + MTX only. Our results indicate that adding CA to MTX treatment could be a good therapeutic option for patients suffering from RA. Conclusions: The addition of CA to methotrexate treatment significantly improved its efficacy in decreasing the development of AA by inhibiting the markers of inflammation and oxidative stress.
Collapse
|
13
|
Effect of Saffron Extract, Astaxanthin, and Carnosic Acid on the Levels of Matrix Metalloproteinase-9 and on Body Weight Changes in Arthritis Experiments. EUROPEAN PHARMACEUTICAL JOURNAL 2022. [DOI: 10.2478/afpuc-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
AIM
The aim of this study was to explore the potential effect of natural compounds and their combination with methotrexate (M) on levels of matrix metalloproteinase-9 (MMP-9) as a key biochemical parameter in rat adjuvant arthritis. Further change of body weight was selected as one of clinical parameters monitored in this animal model.
MATERIALS AND METHODS
Adjuvant arthritis (AA) was induced in Lewis rats. Methotrexate (M) was administrated twice a week in a dose of 0.3 mg/kg b.w. The saffron extract was administrated daily in two doses: 25 mg/kg b.w. (SF1) and 50 mg/kg b.w. (SF2). Both doses were administrated alone and in combination with M. Astaxanthin was administrated also daily in two doses: 1 mg/kg b.w. (AS1) and 5 mg/kg b.w. (AS2) only as monotherapy. Carnosic acid was administrated daily in one dose: 100 mg/kg (C) in monotherapy and in combination with M. All compounds and M were administrated orally. Plasma samples were collected on the 21st experimental day and used for ELISA determination. The 21st experimental day was used also for the analysis of body weight changes.
RESULTS
We observed a significant decrease of MMP-9 plasmatic levels in SF1 and SF2 monotherapy in AA animal groups. The decrease in levels of MMP-9 in combined therapy of SF1 and M had higher significance than the effect of M only in AA. The same decreasing effect on the levels of MMP-9 was observed in the combined therapy of C and M. Astaxanthin and saffron extract had a very similar effect on clinical parameters and the change in body weight: both have significantly increased body weight in monotherapy in both doses used. The combined therapy of M and saffron extract doses showed no significant difference from M itself. Carnosic acid did not affect the change of body weight, and the combination of C with M reached the same level as M alone.
CONCLUSION
Astaxanthin in monotherapy and saffron extract in monotherapy and in combined therapy with M have significantly decreased plasmatic levels of MMP-9 and increased body weight in animals suffering from AA. Lower doses were more efficient for both experiments: astaxanthin and saffron extract. Carnosic acid has no effect in monotherapy in both parameters, but a combination with M has a significant effect with respect to the improvement of cachexia as well as the inhibition of inflammation.
Collapse
|
14
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
15
|
Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4787643. [PMID: 35368757 PMCID: PMC8975657 DOI: 10.1155/2022/4787643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.
Collapse
|
16
|
Yang L, Wang D, Zhang Z, Jiang Y, Liu Y. Isoliquiritigenin alleviates diabetic symptoms via activating AMPK and inhibiting mTORC1 signaling in diet-induced diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153950. [PMID: 35114453 DOI: 10.1016/j.phymed.2022.153950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To determine the effects of isoliquiritigenin (ISL), a chalcone compound isolated from licorice, on type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS 8-week-old C7BL/6 mice were used to establish the T2DM animal model by feeding with high-fat-high-glucose diet (HFD) combined with intraperitoneal injection of streptozotocin. The animals were treated with ISL for 3 weeks. Blood glucose levels, oral glucose tolerance, and insulin tolerance were examined, serum parameters were determined, histologic sections were prepared, activities of enzymes related to glucolipid metabolism were analyzed, and the mitochondrial function was investigated to evaluate effects of ISL on metabolism. The underlying mechanisms of ISL alleviating insulin resistance and restoring metabolic homeostasis were analyzed in HepG2 and INS-1 cells. RESULTS ISL exhibits a potent activity in relieving hyperglycemia of type 2 diabetic mice. It alleviates insulin resistance and restores metabolic homeostasis without obvious adversary effects in HFD-induced diabetic mice. The metabolic benefits of ISL treatment include promoting hepatic glycogenesis, inhibiting hepatic lipogenesis, reducing hepatic steatosis, and sensitizing insulin signaling. Mechanistically, ISL activates adenosine monophosphate-activated protein kinase (AMPK) and inhibits mammalian target of rapamycin complex 1 (mTORC1). It also suppresses mitochondrial function and reduces ATP production. CONCLUSION Our findings demonstrate that ISL is able to significantly reduce blood glucose level and alleviate insulin resistance without obvious side effects in diabetic mice, hence uncovering a great potential of ISL as a novel drug candidate in prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
17
|
El-Huneidi W, Anjum S, Saleh MA, Bustanji Y, Abu-Gharbieh E, Taneera J. Carnosic Acid Protects INS-1 β-Cells against Streptozotocin-Induced Damage by Inhibiting Apoptosis and Improving Insulin Secretion and Glucose Uptake. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072102. [PMID: 35408495 PMCID: PMC9000724 DOI: 10.3390/molecules27072102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Carnosic acid (CA), a natural polyphenolic diterpene derived from Rosmarinus officinalis, has been proven to possess a broad spectrum of medicinal properties. Nevertheless, no studies on its impact on pancreatic β-cells have been conducted to date. Herein, clonal rat INS-1 (832/13) cells were pretreated with CA for 24 h and then incubated with streptozotocin (STZ) for 3 h. Several functional experiments were performed to determine the effect of CA on STZ-induced pancreatic β-cell damage, including cell viability assay, apoptosis analysis, and measurement of the level of insulin secretion, glucose uptake, malondialdehyde (MDA), reactive oxygen species (ROS), and proteins expression. STZ treatment decreased cell survival, insulin secretion, glucose uptake, and increased apoptosis, MDA, and ROS production in INS-1 cells. Furthermore, protein expression/phosphorylation analysis showed significant down-regulation in insulin, PDX-1, PI3K, AKT/p-AKT, and Bcl2. On the other hand, expression of BAX and BAD and cleaved PARP were significantly increased. Interestingly, preincubation with CA reversed the adverse impact of STZ at the cellular and protein expression levels. In conclusion, the data indicate that CA protects β-cells against STZ-induced damage, presumably through its modulatory effect on the different pathways, including the Pi3K/AKT/PDX-1/insulin pathway and mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Correspondence: (W.E.-H.); (J.T.); Tel.: +971-6-505-7222 (W.E.-H.); +971-6-505-7743 (J.T.)
| | - Shabana Anjum
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
| | - Mohamed A. Saleh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (S.A.); (M.A.S.); (E.A.-G.)
- Correspondence: (W.E.-H.); (J.T.); Tel.: +971-6-505-7222 (W.E.-H.); +971-6-505-7743 (J.T.)
| |
Collapse
|
18
|
Paul AK, Jahan R, Paul A, Mahboob T, Bondhon TA, Jannat K, Hasan A, Nissapatorn V, Wilairatana P, de Lourdes Pereira M, Wiart C, Rahmatullah M. The Role of Medicinal and Aromatic Plants against Obesity and Arthritis: A Review. Nutrients 2022; 14:nu14050985. [PMID: 35267958 PMCID: PMC8912584 DOI: 10.3390/nu14050985] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a significant health concern, as it causes a massive cascade of chronic inflammations and multiple morbidities. Rheumatoid arthritis and osteoarthritis are chronic inflammatory conditions and often manifest as comorbidities of obesity. Adipose tissues serve as a reservoir of energy as well as releasing several inflammatory cytokines (including IL-6, IFN-γ, and TNF-α) that stimulate low-grade chronic inflammatory conditions such as rheumatoid arthritis, osteoarthritis, diabetes, hypertension, cardiovascular disorders, fatty liver disease, oxidative stress, and chronic kidney diseases. Dietary intake, low physical activity, unhealthy lifestyle, smoking, alcohol consumption, and genetic and environmental factors can influence obesity and arthritis. Current arthritis management using modern medicines produces various adverse reactions. Medicinal plants have been a significant part of traditional medicine, and various plants and phytochemicals have shown effectiveness against arthritis and obesity; however, scientifically, this traditional plant-based treatment option needs validation through proper clinical trials and toxicity tests. In addition, essential oils obtained from aromatic plants are being widely used as for complementary therapy (e.g., aromatherapy, smelling, spicing, and consumption with food) against arthritis and obesity; scientific evidence is necessary to support their effectiveness. This review is an attempt to understand the pathophysiological connections between obesity and arthritis, and describes treatment options derived from medicinal, spice, and aromatic plants.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Private Bag 26, Hobart, TAS 7001, Australia
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
- Correspondence: (A.K.P.); (P.W.); (M.R.)
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Tooba Mahboob
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.M.); (V.N.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.M.); (V.N.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.K.P.); (P.W.); (M.R.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
- Correspondence: (A.K.P.); (P.W.); (M.R.)
| |
Collapse
|
19
|
Potential Anti-Inflammatory Effect of Rosmarinus officinalis in Preclinical In Vivo Models of Inflammation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030609. [PMID: 35163873 PMCID: PMC8840442 DOI: 10.3390/molecules27030609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
This systematic review aimed to evaluate the potential anti-inflammatory effect of Rosmarinus officinalis in preclinical in vivo models of inflammation. A search was conducted in the databases PubMed, Scopus, and Web of Science, with related keywords. The inclusion criteria were inflammation, plant, and studies on rats or mice; while, the exclusion criteria were reviews, studies with in vitro models, and associated plants. The predominant animal models were paw edema, acute liver injury, and asthma. Rosemary was more commonly used in its entirety than in compounds, and the prevalent methods of extraction were maceration and hydrodistillation. The most common routes of administration reported were gavage, intraperitoneal, and oral, on a route-dependent dosage. Treatment took place daily, or was single-dose, on average for 21 days, and it more often started before the induction. The most evaluated biomarkers were tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, myeloperoxidase (MPO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA), and superoxide dismutase (SOD). The best results emerged at a dose of 60 mg/kg, via IP of carnosic acid, a dose of 400 mg/kg via gavage of Rosmarinus officinalis, and a dose of 10 mg/kg via IP of rosmarinic acid. Rosmarinus officinalis L. showed anti-inflammatory activity before and after induction of treatments.
Collapse
|
20
|
Carnosic Acid Attenuates the Free Fatty Acid-Induced Insulin Resistance in Muscle Cells and Adipocytes. Cells 2022; 11:cells11010167. [PMID: 35011728 PMCID: PMC8750606 DOI: 10.3390/cells11010167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance.
Collapse
|
21
|
Braveboy-Wagner J, Sharoni Y, Lelkes PI. Nutraceuticals Synergistically Promote Osteogenesis in Cultured 7F2 Osteoblasts and Mitigate Inhibition of Differentiation and Maturation in Simulated Microgravity. Int J Mol Sci 2021; 23:136. [PMID: 35008559 PMCID: PMC8745420 DOI: 10.3390/ijms23010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023] Open
Abstract
Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.
Collapse
Affiliation(s)
- Justin Braveboy-Wagner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Peter I. Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
22
|
Li L, Pan Z, Ning D, Fu Y. Rosmanol and Carnosol Synergistically Alleviate Rheumatoid Arthritis through Inhibiting TLR4/NF-κB/MAPK Pathway. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010078. [PMID: 35011304 PMCID: PMC8746366 DOI: 10.3390/molecules27010078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
Callicarpalongissima has been used as a Yao folk medicine to treat arthritis for years in China, although its active anti-arthritic moieties have not been clarified so far. In this study, two natural phenolic diterpenoids with anti-rheumatoid arthritis (RA) effects, rosmanol and carnosol, isolated from the medicinal plant were reported on for the first time. In type II collagen-induced arthritis DBA/1 mice, both rosmanol (40 mg/kg/d) and carnosol (40 mg/kg/d) alone alleviated the RA symptoms, such as swelling, redness, and synovitis; decreased the arthritis index score; and downregulated the serum pro-inflammatory cytokine levels of interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor α (TNF-α). Additionally, they blocked the activation of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways. Of particular interest was that when they were used in combination (20 mg/kg/d each), the anti-RA effect and inhibitory activity on the TLR4/NF-κB/MAPK pathway were significantly enhanced. The results demonstrated that rosmanol and carnosol synergistically alleviated RA by inhibiting inflammation through regulating the TLR4/NF-κB/MAPK pathway, meaning they have the potential to be developed into novel, safe natural combinations for the treatment of RA.
Collapse
|
23
|
Nair DS, Niharika D, Madhavan A, Sharma S, Joshi AKR. Recent updates on antidiabetic and antiobesity potential of carnosic acid. EXCLI JOURNAL 2021; 20:1476-1481. [PMID: 34803556 PMCID: PMC8600157 DOI: 10.17179/excli2021-4259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Diya S Nair
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Digumarthy Niharika
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Aishwariya Madhavan
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Shweta Sharma
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Apurva Kumar Ramesh Joshi
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| |
Collapse
|
24
|
Montoya T, Sánchez-Hidalgo M, Castejón ML, Rosillo MÁ, González-Benjumea A, Alarcón-de-la-Lastra C. Dietary Oleocanthal Supplementation Prevents Inflammation and Oxidative Stress in Collagen-Induced Arthritis in Mice. Antioxidants (Basel) 2021; 10:antiox10050650. [PMID: 33922438 PMCID: PMC8145376 DOI: 10.3390/antiox10050650] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oleocanthal (OLE), a characteristic and exclusive secoiridoid of Oleoaceae family, is mainly found in extra virgin olive oil (EVOO). Previous studies have reported its antioxidant, anti-inflammatory, antimicrobial, anticancer and neuroprotective effects. Since the pathogenesis of rheumatoid arthritis (RA) involves inflammatory and oxidative components, this study was designed to evaluate the preventive role of dietary OLE-supplemented effects in collagen-induced arthritis (CIA) murine model. Animals were fed with a preventive OLE-enriched dietary during 6 weeks previous to CIA induction and until the end of experiment time. At day 43 after first immunization, mice were sacrificed: blood was recollected and paws were histological and biochemically processed. Dietary OLE prevented bone, joint and cartilage rheumatic affections induced by collagen. Levels of circulatory matrix metalloproteinase (MMP)-3 and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-17, IFN-γ) were significantly decreased in secoiridoid fed animals. Besides, dietary OLE was able to diminish COX-2, mPGES-1 and iNOS protein expressions and, also, PGE2 levels. The mechanisms underlying these protective effects could be related to Nrf-2/HO-1 axis activation and the inhibition of relevant signaling pathways including JAK-STAT, MAPKs and NF-κB, thus controlling the production of inflammatory and oxidative mediators. Overall, our results exhibit preliminary evidences about OLE, as a novel dietary tool for the prevention of autoimmune and inflammatory disorders, such as RA.
Collapse
Affiliation(s)
- Tatiana Montoya
- Department of Pharmacology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (T.M.); (M.S.-H.); (M.L.C.); (M.Á.R.)
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (T.M.); (M.S.-H.); (M.L.C.); (M.Á.R.)
| | - María Luisa Castejón
- Department of Pharmacology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (T.M.); (M.S.-H.); (M.L.C.); (M.Á.R.)
| | - María Ángeles Rosillo
- Department of Pharmacology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (T.M.); (M.S.-H.); (M.L.C.); (M.Á.R.)
| | | | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (T.M.); (M.S.-H.); (M.L.C.); (M.Á.R.)
- Correspondence: ; Tel.: +34-95-455-9877
| |
Collapse
|
25
|
Liu J, Liu S, Pan W, Li Y. Wogonoside attenuates the articular cartilage injury and the infiltration of Th1/Th2-type cytokines in papain-induced osteoarthritis in rat model via inhibiting the NF-κB and ERK1/2 activation. Immunopharmacol Immunotoxicol 2021; 43:343-352. [PMID: 33881378 DOI: 10.1080/08923973.2021.1913503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTS Osteoarthritis is the most common joint disease and a major cause of functional limitation and pain in adults. This study aims to investigate the effect of wogonoside (WOG) on the progression of knee osteoarthritis (KOA) in model rats. MATERIALS AND METHODS Rats KOA models were established and treated with different doses of WOG (10 mg/kg, 20 mg/kg and 30 mg/kg). The degree of cartilage injury was detected by Mankin scores via HE/Alcian blue staining. The levels of IFN-γ and IL-4 in peripheral blood and synovial fluid and the Th1/Th2 ratio were detected by flow cytometry. The model mice were injected with NF-κB p65 or ERK1/2 inhibitors or activators to further investigate the effect of WOG on KOA. RESULTS WOG significantly improved cartilage tissue damage and reduced the Mankins score. WOG down-regulated the level of IFN-γ while up-regulated the expression of IL-4, which maintained the balance of Th1/Th2 cells. Further studies showed that the expression of NF-κB p65, phosphorylated p65, cytoplasmic ERK1/2 and nuclear ERK1/2 were all inhibited by WOG. The results of reverse verification experiments showed that the activator of NF-κB p65 and ERK1/2 weakened the protective effect of WOG on KOA, and the inhibitor of NF-κB p65ERK1/2 enhanced the protective effect of WOG on KOA. CONCLUSIONS WOG inhibited the activation of NF-κB and ERK1/2 to alleviate the articular cartilage injury and Th1/th2 cytokine infiltration in KOA rats.
Collapse
Affiliation(s)
- Juan Liu
- Department of Rheumatology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shanshan Liu
- Department of Rheumatology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Wenyou Pan
- Department of Rheumatology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yongsheng Li
- Department of Rheumatology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
26
|
Etsassala NGER, Cupido CN, Iwuoha EI, Hussein AA. Abietane Diterpenes as Potential Candidates for the Management of Type 2 Diabetes. Curr Pharm Des 2021; 26:2885-2891. [PMID: 32228419 DOI: 10.2174/1381612826666200331082917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is considered one of the most common metabolic disorders with an elevated morbidity and mortality rate. It is characterised by a deficiency in insulin secretion or degradation of secreted insulin. Many internal and external factors, such as oxidative stress, obesity and sedentary lifestyle, among others, have been suggested as the major causes of these cell alterations. Diabetes I and II are the most common types of diabetes. Treatment of type I requires insulin injection, while type II can be managed using different synthetic antidiabetic agents. However, their effectiveness is limited as a result of low bioavailability, high cost of drug production, and unfavourable side effects. There is a great need to develop alternative and more active antidiabetic drugs from natural sources. Different forms of natural products have been used since time immemorial as a source of medicine for the purpose of curing numerous human diseases, including diabetes. Secondary metabolites such as polyphenols, flavonoids, terpenoids, alkaloids and several other constituents have direct and indirect roles in controlling such diseases; among them, abietane diterpenes have been reported to display a broad spectrum of promising biological activities including diabetes. This review aimed to summarize existing data from SciFinder (2005-2018) on the biological importance of abietane diterpenes in the prevention and management of type 2 diabetes and closely related diseases.
Collapse
Affiliation(s)
- Ninon G E R Etsassala
- Chemistry Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Christopher N Cupido
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Emmanuel I Iwuoha
- Chemistry Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd. Bellville 7535, South Africa
| |
Collapse
|
27
|
Santos WHD, Yoguim MI, Daré RG, da Silva-Filho LC, Lautenschlager SOS, Ximenes VF. Development of a caffeic acid–phthalimide hybrid compound for NADPH oxidase inhibition. RSC Adv 2021; 11:17880-17890. [PMID: 35480205 PMCID: PMC9033209 DOI: 10.1039/d1ra01066b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
NADPH oxidases are pharmacological targets for the treatment of inflammation-based diseases. This work presents the synthesis and study of a caffeic acid/phthalimide hybrid compound (C2) as a potential inhibitor of NADPH oxidases. Throughout the study, we have compared compound C2 with its precursor caffeic acid (C1). The redox properties were compared using three different antioxidant methodologies and showed that C2 was slightly less effective than C1, a well-established and robust antioxidant. However, C2 was three-fold more effective than albumin (used as a model protein). This chemical feature was decisive for the higher efficiency of C2 as an inhibitor of the release of superoxide anions by stimulated neutrophils and enzymatic activity of cell-free NADPH oxidase. Docking simulation studies were performed using the crystal structure of the recombinant dehydrogenase domain of the isoform NOX5 of C. stagnale, which retains the FAD cofactor (PDB: 5O0X). Considering that C2 could bind at the FAD redox site of NOX5, studies were conducted by comparing the interactions and binding energies of C1 and C2. The binding energies were −50.30 (C1) and −74.88 (C2) (kJ mol−1), which is in agreement with the higher efficacy of the latter as an NADPH oxidase inhibitor. In conclusion, incorporating the phthalimide moiety into caffeic acid was decisive for its effectiveness as an NADPH oxidase inhibitor. The incorporation of the phthalimide moiety into caffeic acid was decisive for its effectiveness as an NADPH oxidase inhibitor.![]()
Collapse
Affiliation(s)
| | - Maurício Ikeda Yoguim
- Department of Chemistry
- Faculty of Sciences
- UNESP – São Paulo State University
- Bauru
- Brazil
| | - Regina Gomes Daré
- Department of Pharmaceutical Sciences
- Maringa State University (UEM)
- Maringa
- Brazil
| | | | | | | |
Collapse
|
28
|
Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants (Basel) 2020; 9:antiox9111157. [PMID: 33233648 PMCID: PMC7699719 DOI: 10.3390/antiox9111157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation is characterized by an overproduction of several inflammatory mediators (e.g., reactive species and interleukins -IL) that play a central role in numerous diseases. The available therapies are often associated with serious side effects and, consequently, the need for safer drugs is of utmost importance. A plant traditionally used in the treatment of inflammatory conditions is Salvia officinalis. Therefore, conventional maceration and infusion of its leaves were performed to obtain hydroethanolic (HE-T) and aqueous extracts (AE-T), respectively. Their efficacy was compared to soxhlet extracts, namely aqueous (AE-S), hydroethanolic (HE-S), and ethanolic extracts (EE-S). Thin-layer chromatography demonstrated the presence of rosmarinic acid, carnosol, and/or carnosic acid in the different extracts. Generally, soxhlet provided extracts with higher antioxidant activities than traditional extraction. Moreover, under an inflammatory scenario, EE-S were the most effective, followed by HE-S, HE-T, AE-T, and AE-S, in the reduction of IL-6 and TNF-α production. Interestingly, the extracts presented higher or similar anti-inflammatory activity than diclofenac, salicylic acid, and celecoxib. In conclusion, the extraction method and the solvents of extraction influenced the antioxidant activity, but mainly the anti-inflammatory activity of the extracts. Therefore, this natural resource can enable the development of effective treatments for oxidative stress and inflammatory diseases.
Collapse
|
29
|
Cheng Q, Wu H, Du Y. The roles of small-molecule inflammatory mediators in rheumatoid arthritis. Scand J Immunol 2020; 93:e12982. [PMID: 33025632 DOI: 10.1111/sji.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and joint destruction. Although great progress has been made in the treatment of RA with antagonists of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1, the disease remains refractory in some patients. Previous studies have found that small-molecule inflammatory mediators, such as prostaglandins, leukotrienes, reactive oxygen species, nitric oxide, lipoxins and platelet-activating factor, play a significant role in the development of RA. Such compounds help to induce, maintain or reduce inflammation and could therefore be potential therapeutic targets. In this review, we describe the roles of various classes of small-molecule inflammatory mediators in RA and discuss the effects of some drugs that modulate their activity. Many drugs targeting these mediators have demonstrated good efficacy in mouse models of RA but not in patients. However, it is clear that many small-molecule inflammatory mediators play key roles in the pathogenesis of RA, and a better understanding of the underlying molecular pathways may assist in the development of targeted therapies that are efficacious in RA patients.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Poutoglidou F, Pourzitaki C, Dardalas I, Manthou ΜE, Samoladas E, Kouvelas D. The Use of Collagen-Induced Arthritis Animal Model on Studying Bone Metabolism. Calcif Tissue Int 2020; 107:109-120. [PMID: 32356018 DOI: 10.1007/s00223-020-00697-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
CIA is a well-studied animal model of autoimmune arthritis. It resembles rheumatoid arthritis as far as histopathological changes and molecular pathogenesis are concerned. CIA is induced by immunization with collagen type II in susceptible strains. The purpose of this review is to assess the use of CIA animal model on bone metabolism and the potential therapeutic agents that could reverse this effect. A database search from their inception to 2019 was conducted to identify experimental animal studies pertinent to CIA model and bone examination. Studies including ovariectomy or without a direct comparison between control and CIA groups were excluded. Forty-eight articles were considered suitable for inclusion. Imaging techniques, biomechanical analysis, histopathological studies, and molecular biology techniques were employed. A decrease in bone mineral density in CII arthritic animals was established. Bone loss was either periarticular, generalized or both. Although trabecular bone loss was clear, the effect on cortical bone is yet to be determined. The proposed mechanism is an imbalance between bone formation and resorption as a result of osteoclast activation. The signal pathways implicated appear to be the RANKL/RANK/OPG and the Wnt pathway. Many therapeutic targets were investigated with promising results.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Μaria-Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Efthimios Samoladas
- Faculty of Medicine, Orthopeadics Division of Genimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
31
|
Zhang Y, Zhou S, Cai W, Han G, Li J, Chen M, Li H. Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 2020; 22:265-276. [PMID: 32377698 PMCID: PMC7248463 DOI: 10.3892/mmr.2020.11102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) may play an important role via senescence in the mechanism of osteoarthritis (OA) development. The synovial membrane is highly sensitive to H/R due to its oxygen consumption feature. Excessive mechanical loads and oxidative stress caused by H/R induce a senescence-associated secretory phenotype (SASP), which is related to the development of OA. The aim of the present study was to investigate the differences of SASP manifestation in synovial tissue masses between tissues from healthy controls and patients with OA. The present study used tumor necrosis factor-α (TNF-α) to pre-treat synovial tissue and fibroblast-like synoviocytes (FLS) to observe the effect of inflammatory cytokines on the synovial membrane before H/R. It was determined that H/R increased interleukin (IL)-1β and IL-6 expression levels in TNF-α-induced cell culture supernatants, increased the proportion of SA-β-gal staining, and increased the expression levels of high mobility group box 1, caspase-8, p16, p21, matrix metalloproteinase (MMP)-3 and MMP-13 in the synovium. Furthermore, H/R opened the mitochondrial permeability transition pore, caused the loss of mitochondrial membrane potential (ΔΨm) and increased the release of reactive oxygen species (ROS). Moreover, H/R caused the expansion of the mitochondrial matrix and rupture of the mitochondrial extracorporeal membrane, with a decrease in the number of cristae. In addition, H/R induced activation of the JNK signaling pathway in FLS to induce cell senescence. Thus, the present results indicated that H/R may cause inflammation and escalate synovial inflammation induced by TNF-α, which may lead to the pathogenesis of OA by increasing changes in synovial SASP and activating the JNK signaling pathway. Therefore, further studies expanding on the understanding of the pathogenesis of H/R etiology in OA are required.
Collapse
Affiliation(s)
- Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mao Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
32
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
33
|
Li Q, Liu L, Sun H, Cao K. Carnosic acid protects against lipopolysaccharide-induced acute lung injury in mice. Exp Ther Med 2019; 18:3707-3714. [PMID: 31611929 PMCID: PMC6781802 DOI: 10.3892/etm.2019.8042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome is a well-known inflammatory disease associated with high rates of morbidity and mortality due to a lack of effective treatment methods. Carnosic acid (CA) is a phenolic diterpene compound that serves a central role in cytoprotective responses to inflammation. In the present study, the protective mechanism of CA on acute lung injury (ALI) induced by lipopolysaccharide (LPS) was investigated. Mice were randomly assigned to the following five groups: Control group, LPS group, and LPS plus CA groups (at 10, 20 and 40 mg/kg doses). Following pre-treatment with vehicle or CA, ALI was induced by the administration of LPS. At 6 h after LPS treatment, mice were sacrificed and lung tissues were harvested for histologic analysis and the determination of wet-to-dry ratio, myeloperoxidase activity and toll-like receptor 4 (TLR4) and NF-κB expression. Additionally, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were determined in bronchoalveolar lavage fluid (BALF) and lung tissues, as well as the rate of apoptosis of the isolated neutrophils from BALF. The alleviation of LPS-induced ALI by CA was confirmed by histologic results and a reduction in the wet-to-dry ratio of lung tissues. Additionally, CA was revealed to significantly suppress the inhibitory effect of LPS on neutrophil apoptosis and the promoting effects of LPS on IL-1β, IL-6, TNF-α, TLR4 and NF-κB expression, and NF-κB phosphorylation. The current results indicated that CA protects against LPS-induced ALI via a mechanism that inhibits inflammation.
Collapse
Affiliation(s)
- Quan Li
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Ling Liu
- Intensive Care Unit, Zhongda Hospital Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Sun
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Kunyue Cao
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
34
|
Wang Y, Xie J, Ai Z, Su J. Nobiletin-loaded micelles reduce ovariectomy-induced bone loss by suppressing osteoclastogenesis. Int J Nanomedicine 2019; 14:7839-7849. [PMID: 31576127 PMCID: PMC6769031 DOI: 10.2147/ijn.s213724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background Nobiletin (NOB), a polymethoxy flavonoid, possesses anti-cancer and anti-inflammatory activities, has been reported that it played role in anti-osteoporosis treatment. However, previous research did not focus on practical use due to lack of hydrophilicity and cytotoxicity at high concentrations. The aim of this study was to develop a therapeutic formulation for osteoporosis based on the utilization of NOB. Methods In this study, NOB-loaded poly(ethylene glycol)-block-poly(e-caprolactone) (NOB-PEG-PCL) was prepared by dialysis method. The effects on osteoclasts and anti-osteoporosis functions were investigated in a RANKL-induced cell model and ovariectomized (OVX) mice. Results Dynamic light scattering and transmission electron microscopy examination results revealed that the NOB-PEG-PCL had a round shape, with a mean diameter around 124 nm. The encapsulation efficiency and drug loading were 76.34±3.25% and 7.60±0.48%, respectively. The in vitro release of NOB from NOB-PEG-PCL showed a remarkably sustained releasing characteristic and could be retained at least 48 hrs in pH 7.4 PBS. Anti-osteoclasts effects demonstrated that the NOB-PEG-PCL significantly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells stimulated by RANKL. Furthermore, the NOB-PEG-PCL did not produce cytotoxicity on bone marrow-derived macrophages (BMMs). The mRNA expressions of genetic markers of osteoclasts including TRAP and cathepsin K were significantly decreased in the presence of NOB-PEG-PCL. In addition, the NOB-PEG-PCL inhibited OC differentiation of BMMs through RANKL-induced MAPK signal pathway. After administration of the NOB-PEG-PCL, NOB-PEG-PCL prevented bone loss and improved bone density in OVX mice. These findings suggest that NOB-PEG-PCL might have great potential in the treatment of osteoporosis. Conclusion The results suggested that NOB-PEG-PCL micelles could effectively prevent NOB fast release from micelles and extend circulation time. The NOB-PEG-PCL delivery system may be a promising way to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Yabing Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, People's Republic of China
| | - Jian Xie
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, People's Republic of China
| | - Zexin Ai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, People's Republic of China
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, People's Republic of China
| |
Collapse
|
35
|
Wang J, Mao N, Liu Y, Xie X, Tian J, Li F, Chen J. Inhibition of miR-16 enhances the sensitivity of fibroblast-like synovial cells to methotrexate by restraining MDR1/P-gp expression via NF-κB pathway. RSC Adv 2019; 9:26619-26627. [PMID: 35528582 PMCID: PMC9070447 DOI: 10.1039/c9ra04991f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are demonstrated to contribute to the regulation of drug resistance in a number of diseases. Nevertheless, little is known about the role and the underlying mechanism of miR-16 in rheumatoid arthritis (RA) methotrexate resistance. In this study, we firstly examined the miR-16 expression in the serum and synovial fluid from RA patients who were unresponsive to methotrexate monotherapy (UR-MTX patients) and responsive RA patients (R-MTX patients). Secondly, the miR-16 expression was measured in both fibroblast-like synovial cells (FLS) and methotrexate resistance RA-FLS cells (FLS-MTX). FLS cells used in this study were isolated from synovial tissue specimens obtained from patients with RA who underwent total joint replacement. FLS-MTX cells were conducted by gradually increasing the concentration of methotrexate in the medium. The construction of FLS-MTX cells was confirmed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. Thirdly, in order to further investigate the role of miR-16 in FLS-MTX cells, we introduced miR-16 inhibitor into FLS-MTX cells to knockdown the expression of miR-16, used fluorescence quantitative PCR to detect the inhibition efficiency. The effects of miR-16 inhibition on cell viability, cell cycle arrest and apoptosis in FLS-MTX cells were monitored with MTT and flow cytometry analysis, respectively. And the regulation of miR-16 on P-glycoprotein (P-gp) was performed using qRT-PCR, western blotting, and immunofluorescence staining. Fourthly, ammonium pyrrolidinedithiocarbamate (PDTC), a NF-κB pathway inhibitor, was applied to verify the mechanism by which miR-16 involved in to regulate the P-gp expression, and thus contributing to the methotrexate resistance in FLS-MTX cells. MiR-16 was upregulated in the in serum and synovial fluid from UR-MTX patients as well as in FLS-MTX cells. Inhibition of miR-16 re-sensitized the FLS-MTX cells to methotrexate by suppressing the cell viability, cell promoting cycle arrest at G0/G1 phase and enhancing apoptosis. Knockdown of miR-16 significantly reduced MDR1 mRNA expression and P-gp protein expression in FLS-MTX cells. Furthermore, inhibition of NF-κB pathway by PDTC reinforced the effect of miR-16 knockdown on P-gp expression, cell viability, cell cycle arrest and apoptosis. In conclusion, our study illustrated that inhibition of miR-16 in FLS-MTX cells alleviated methotrexate resistance by inhibiting MDR1/P-gp expression through inactivation of the NF-κB pathway. MicroRNAs (miRNAs) are demonstrated to contribute to the regulation of drug resistance in a number of diseases.![]()
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province Kunming 650034 Yunnan Province China.,Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| | - Ni Mao
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| | - Yiming Liu
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| | - Xi Xie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| | - Jinwei Chen
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University No. 139 Middle Renmin Road Changsha 410011 Hunan Province China +86-731-85533525 +86-731-85295888
| |
Collapse
|
36
|
Jing W, Zhang X, Zhou H, Wang Y, Yang M, Long L, Gao H. Naturally occurring cassane diterpenoids (CAs) of Caesalpinia: A systematic review of its biosynthesis, chemistry and pharmacology. Fitoterapia 2019; 134:226-249. [DOI: 10.1016/j.fitote.2019.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
|
37
|
Liu Z, Hou Y, Li L, Yang Y, Jia J, Hong Z, Li T, Xu Y, Fu J, Sun Y, Yamamoto M, Wang H, Pi J. Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic. Toxicol Appl Pharmacol 2019; 367:62-70. [DOI: 10.1016/j.taap.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
|
38
|
Zhang QL, Yang JJ, Zhang HS. Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother 2018; 109:71-83. [PMID: 30396094 DOI: 10.1016/j.biopha.2018.07.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is a wide spectrum antitumor drug. However, its clinical application is limited due to the cardiotoxicity. Carvedilol (CAR) is a β-blocker used to treat high blood pressure and heart failure. Accordingly, supplementation with natural antioxidants or plant extracts exerts protective effects against various injury in vivo. Carnosic acid (CAA), the principal constituent of rosemary, has various biological activities, including antioxidant, antitumor, and anti-inflammatory. Here, heart injury mouse model was established using DOX (20 mg/kg) in vivo. And cardiac muscle cell line of H9C2 was subjected to 0.5 μM of DOX for 24 h in vitro. Then, the protective effects of CAA and CAR alone, or the two in combination on DOX-induced cardiotoxicity in vivo and in vitro were explored. The results indicated that both CAA and CAR, when used alone, were moderately effective in attenuating DOX-induced cardiotoxicity. The combination of two drugs functioned synergistically to ameliorate cardiac injury caused by DOX, as evidenced by the significantly reduced collagen accumulation and improved dysfunction of heart. CAA and CAR exhibited stronger anti-oxidative role in DOX-treated mice partly by augmenting the expression and activities of the anti-oxidative enzymes. In addition, inflammatory response was significantly suppressed by the two in combination, proved by the decreased pro-inflammatory cytokines (COX2, TNF-α, IL-6, IL-1β and IL-18), which was associated with the inactivation of nuclear factor κB (NF-κB). Furthermore, DOX-stirred apoptosis and autophagy were dramatically attenuated by the co-treatments of CAA and CAR through down-regulating cleaved Caspase-3 and LC3B signaling pathways. The effects of CAA and CAR combination against cardiotoxicity were observed in H9C2 cells with DOX stimulation. Our findings above suggested that the use of CAR and CAA in combination could be expected to have synergistic efficacy and significant potential against cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Qiu-Lan Zhang
- Department of Cardiology, Jining Second People's Hospital, Jining 272000, China
| | - Jing-Jie Yang
- Department of Emergency, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Hong-Sheng Zhang
- Department of Cardiology, Affiliated Hospital of Jining Medical University, 272000, China.
| |
Collapse
|
39
|
McGarry T, Orr C, Wade S, Biniecka M, Wade S, Gallagher L, Low C, Veale DJ, Fearon U. JAK/STATBlockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:1959-1970. [DOI: 10.1002/art.40569] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Trudy McGarry
- Trinity College Dublin and St. Vincent's University Hospital University College Dublin Dublin Ireland
| | - Carl Orr
- St. Vincent's University Hospital University College Dublin Dublin Ireland
| | | | - Monika Biniecka
- Trinity College Dublin and St. Vincent's University Hospital University College Dublin Dublin Ireland
| | | | | | - Candice Low
- St. Vincent's University Hospital University College Dublin Dublin Ireland
| | - Douglas J. Veale
- St. Vincent's University Hospital University College Dublin Dublin Ireland
| | | |
Collapse
|
40
|
Sujitha S, Dinesh P, Rasool M. Berberine modulates ASK1 signaling mediated through TLR4/TRAF2 via upregulation of miR-23a. Toxicol Appl Pharmacol 2018; 359:34-46. [PMID: 30240693 DOI: 10.1016/j.taap.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
Abstract
The current study was designed to explore the underlying therapeutic effect of berberine (BBR), an alkaloid compound against LPS (1 μg/ml)/TNFα (10 ng/ml) mediated apoptosis signal-regulating kinase 1 (ASK1) signaling in RAW 264.7 macrophages and adjuvant-induced arthritic synovial macrophages (AA-SM) with relation to miR-23a levels. LPS and TNFα stimulation abrogated the expression of miR-23a resulting in TLR4/TRAF2 mediated ASK1 activation and downstream phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). BBR (25-75 μM) treatment ameliorated the gene expression levels of TLR4, TRAF2, TNFα, IL-6, and IL-23 through the upregulation of miR-23a. Subsequently, BBR suppressed the levels of TLR4/TRAF2 mediated phosphorylation of ASK1/p38 and attenuated the expression of various pro-inflammatory cytokines (TNFα, IL-6 & IL-23) in RAW 264.7 macrophages and AA-SM cells. BBR was able to counteract these factors through activation of miR-23a levels in LPS/TNFα stimulated RAW 264.7 macrophages and AA-SM cells. NQDI1 (30 μM) treatment inhibited ASK1 activation resulting in basal levels of miR-23a, owing to the conclusion that ASK1 activation downregulates miR-23a levels inside the cells. Overall, our current findings predict that BBR is a potential candidate for therapeutic targeting of TLR4/TRAF2 mediated ASK1 activation in inflammatory and in RA pathogenesis possibly through post-transcriptional gene silencing via upregulation of miR-23a.
Collapse
Affiliation(s)
- Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
41
|
Wang LC, Wei WH, Zhang XW, Liu D, Zeng KW, Tu PF. An Integrated Proteomics and Bioinformatics Approach Reveals the Anti-inflammatory Mechanism of Carnosic Acid. Front Pharmacol 2018; 9:370. [PMID: 29713284 PMCID: PMC5911474 DOI: 10.3389/fphar.2018.00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Drastic macrophages activation triggered by exogenous infection or endogenous stresses is thought to be implicated in the pathogenesis of various inflammatory diseases. Carnosic acid (CA), a natural phenolic diterpene extracted from Salvia officinalis plant, has been reported to possess anti-inflammatory activity. However, its role in macrophages activation as well as potential molecular mechanism is largely unexplored. In the current study, we sought to elucidate the anti-inflammatory property of CA using an integrated approach based on unbiased proteomics and bioinformatics analysis. CA significantly inhibited the robust increase of nitric oxide and TNF-α, downregulated COX2 protein expression, and lowered the transcriptional level of inflammatory genes including Nos2, Tnfα, Cox2, and Mcp1 in LPS-stimulated RAW264.7 cells, a murine model of peritoneal macrophage cell line. The LC-MS/MS-based shotgun proteomics analysis showed CA negatively regulated 217 LPS-elicited proteins which were involved in multiple inflammatory processes including MAPK, nuclear factor (NF)-κB, and FoxO signaling pathways. A further molecular biology analysis revealed that CA effectually inactivated IKKβ/IκB-α/NF-κB, ERK/JNK/p38 MAPKs, and FoxO1/3 signaling pathways. Collectively, our findings demonstrated the role of CA in regulating inflammation response and provide some insights into the proteomics-guided pharmacological mechanism study of natural products.
Collapse
Affiliation(s)
- Li-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wen-Hui Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Zhao Y, Shi X, Ding C, Feng D, Li Y, Hu Y, Wang L, Gao D, Tian X, Yao J. Carnosic acid prevents COL1A2 transcription through the reduction of Smad3 acetylation via the AMPKα1/SIRT1 pathway. Toxicol Appl Pharmacol 2017; 339:172-180. [PMID: 29253500 DOI: 10.1016/j.taap.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/25/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Abstract
Carnosic acid (CA), a major bioactive component in rosemary extract, has many biological and pharmaceutical activities. Smad3 acetylation can regulate the transcription of type I α2 collagen (COL1A2), which is the major component of the extracellular matrix (ECM). The aim of the current study was to evaluate whether CA inhibits COL1A2 transcription via the reduction of Smad3 acetylation against liver fibrosis. The results showed that CA treatment significantly suppressed COL1A2 transcription and markedly decreased the deposition of ECM induced by dimethylamine (DMN) in rats. Importantly, the suppression of COL1A2 transcription following CA treatment depended on the reduction of Smad3 acetylation via the activation of Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase. SIRT1 siRNA increased the acetylation of Smad3 and blocked CA-down-regulated Smad3 deacetylation. Notably, CA-mediated AMP-activated protein kinase-α1 (AMPKα1) activation not only increased AMPKα1 phosphorylation but also increased SIRT1 expression, thus leading to a significant reduction in Smad3 acetylation. Furthermore, CA-mediated SIRT1 activation was inhibited by AMPKα1 siRNA. Collectively, CA can inhibit the transcription of COL1A2 through SIRT1-mediated Smad3 deacetylation, and the activation of SIRT1 by CA involves the AMPKα1/SIRT1 pathway in liver fibrosis.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xue Shi
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China; Department of Pharmacy, First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Chunchun Ding
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China; Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Dongcheng Feng
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yang Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yan Hu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Li Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
43
|
Zuo J, Dou DY, Wang HF, Zhu YH, Li Y, Luan JJ. Reactive oxygen species mediated NF-κB/p38 feedback loop implicated in proliferation inhibition of HFLS-RA cells induced by 1,7-dihydroxy-3,4-dimethoxyxanthone. Biomed Pharmacother 2017; 94:1002-1009. [PMID: 28810523 DOI: 10.1016/j.biopha.2017.07.164] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/18/2022] Open
Abstract
1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN) is a bioactive compound isolated from Securidaca inappendiculata Hassk. and exerts the inhibitory effects on fibroblast-like synoviocytes by targeting NF-κB and p38. This study was designed to elucidate mechanisms underlying the divergent regulation on the two pathways in HFLS-RA cells by XAN. Expressions of hallmark proteins and transcription of GADD45α mRNA were determined by Western-blot and RT-qPCR methods, respectively. Fluorescence staining was employed to evaluate intracellular oxidative stress. Effects of XAN and N-acetyl-l-cysteine (NAC) on the proliferation of cells were investigated by MTT assay, and pro-apoptotic effects of XAN were assessed by Annexin V-FITC/PI method. It was found XAN blocked NF-κB signaling in HFLS-RA cells shortly after treatment. Moreover, it up-regulated both transcription and expression of GADD45α, and subsequently activated p38 pathway. As time went on, XAN significantly promoted the generation of reactive oxygen species (ROS), which accompanied with sustained up-regulation of p-p38 and increased apoptosis. 48H later, dual-effects of XAN on NF-κB and p38 were reversed. As activation of p38 and increased apoptosis induced by XAN were antagonized by NAC, they were deemed as ROS mediated effects. Furthermore, the accumulated ROS should also account for the activation of NF-κB in the late stage of treatments via interfering in p38/MSK1/NF-κB feedback. Altogether, these findings suggested XAN-induced ROS contributed great importance to the proliferation inhibition of HFLS-RA cells by mediating NF-κB/p38 feedback loop and apoptosis, which provided us a panoramic view of potential target in the therapy of RA by XAN.
Collapse
Affiliation(s)
- Jian Zuo
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241000, PR China.
| | - De-Yu Dou
- Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Hui-Fang Wang
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Yan-Hong Zhu
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Yan Li
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Jia-Jie Luan
- Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241000, PR China.
| |
Collapse
|
44
|
Yang G, Li S, Yuan L, Yang Y, Pan MH. Effect of nobiletin on the MAPK/NF-κB signaling pathway in the synovial membrane of rats with arthritis induced by collagen. Food Funct 2017; 8:4668-4674. [DOI: 10.1039/c7fo01311f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) is a natural compound in the fruit peel of citrus fruit in the Rutaceae family.
Collapse
Affiliation(s)
- Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
- Department of Food Science
- Rutgers University
| | - Li Yuan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
| | - Yiwen Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
| | - Min-Hsiung Pan
- Institute of Food Science and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Medical Research
| |
Collapse
|