1
|
Kukri A, Czékus Z, Gallé Á, Nagy G, Zsindely N, Bodai L, Galgóczy L, Hamow KÁ, Szalai G, Ördög A, Poór P. Exploring the effects of red light night break on the defence mechanisms of tomato against fungal pathogen Botrytis cinerea. PHYSIOLOGIA PLANTARUM 2024; 176:e14504. [PMID: 39191700 DOI: 10.1111/ppl.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Plant infections caused by fungi lead to significant crop losses worldwide every year. This study aims to better understand the plant defence mechanisms regulated by red light, in particular, the effects of red light at night when most phytopathogens are highly infectious. Our results showed that superoxide production significantly increased immediately after red light exposure and, together with hydrogen peroxide levels, was highest at dawn after 30 min of nocturnal red-light treatment. In parallel, red-light-induced expression and increased the activities of several antioxidant enzymes. The nocturnal red light did not affect salicylic acid but increased jasmonic acid levels immediately after illumination, whereas abscisic acid levels increased 3 h after nocturnal red-light exposure at dawn. Based on the RNAseq data, red light immediately increased the transcription of several chloroplastic chlorophyll a-b binding protein and circadian rhythm-related genes, such as Constans 1, CONSTANS interacting protein 1 and zinc finger protein CONSTANS-LIKE 10. In addition, the levels of several transcription factors were also increased after red light exposure, such as the DOF zinc finger protein and a MYB transcription factor involved in the regulation of circadian rhythms and defence responses in tomato. In addition to identifying these key transcription factors in tomato, the application of red light at night for one week not only reactivated key antioxidant enzymes at the gene and enzyme activity level at dawn but also contributed to a more efficient and successful defence against Botrytis cinerea infection.
Collapse
Affiliation(s)
- András Kukri
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Zumsteg J, Bossard E, Gourguillon L, Villette C, Heintz D. Comparison of nocturnal and diurnal metabolomes of rose flowers and leaves. Metabolomics 2023; 20:4. [PMID: 38066353 DOI: 10.1007/s11306-023-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Roses are one of the most essential ornamental flowers and are commonly used in perfumery, cosmetics, and food. They are rich in bioactive compounds, which are of interest for therapeutic effects. OBJECTIVES The objective of this study was to understand the kinds of changes that occur between the nocturnal and diurnal metabolism of rose and to suggest hypotheses. METHODS Reversed-phase ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry or triple quadrupole mass spectrometry (TQ MS/MS) was used for nontargeted metabolomics and hormonal profiling respectively. For metabolite annotation, accurate mass spectra were compared with those in databases. RESULTS The hormonal profile of flowers showed an increase in jasmonate at night, while that of leaves indicated an increase in the salicylic acid pathway. Nontargeted analyses of the flower revealed a switch in the plant's defense mechanisms from glycosylated metabolites during the day to acid metabolites at night. In leaves, a significant decrease in flavonoids was observed at night in favor of acid metabolism to maintain a level of protection. Moreover, it might be possible to place back some of the annotated molecules on the shikimate pathway. CONCLUSION The influence of day and night on the metabolome of rose flowers and leaves has been clearly demonstrated. The hormonal modulations occurring during the night and at day are consistent with the plant circadian cycle. A proposed management of the sesquiterpenoid and triterpenoid biosynthetic pathway may explain these changes in the flower. In leaves, the metabolic differences may reflect night-time regulation in favor of the salicylic acid pathway.
Collapse
Affiliation(s)
- Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Elodie Bossard
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Lorène Gourguillon
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
3
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
4
|
Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling. Nat Commun 2023; 14:713. [PMID: 36759607 PMCID: PMC9911384 DOI: 10.1038/s41467-023-36382-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Many plant pathogens induce water-soaked lesions in infected tissues. In the case of Pseudomonas syringae (Pst), water-soaking effectors stimulate abscisic acid (ABA) production and signaling, resulting in stomatal closure. This reduces transpiration, increases water accumulation, and induces an apoplastic microenvironment favorable for bacterial growth. Stomata are sensitive to environmental conditions, including light. Here, we show that a period of darkness is required for water-soaking, and that a constant light regime abrogates stomatal closure by Pst. We find that constant light induces resistance to Pst, and that this effect requires salicylic acid (SA). Constant light did not alter effector-induced accumulation of ABA, but induced greater SA production, promoting stomatal opening despite the presence of ABA. Furthermore, application of a SA analog was sufficient to prevent pathogen-induced stomatal closure and water-soaking. Our results suggest potential approaches for interfering with a common virulence strategy, as well as providing a physiological mechanism by which SA functions in defense against pathogens.
Collapse
|
5
|
Pseudophosphorylation of Arabidopsis jasmonate biosynthesis enzyme lipoxygenase 2 via mutation of Ser 600 inhibits enzyme activity. J Biol Chem 2023; 299:102898. [PMID: 36639029 PMCID: PMC9947334 DOI: 10.1016/j.jbc.2023.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.
Collapse
|
6
|
Biniaz Y, Tahmasebi A, Tahmasebi A, Albrectsen BR, Poczai P, Afsharifar A. Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. BIOLOGY 2022; 11:1155. [PMID: 36009782 PMCID: PMC9404733 DOI: 10.3390/biology11081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Benedicte Riber Albrectsen
- Department of Plant Physiology, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden;
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| |
Collapse
|
7
|
Geissmann Q, Abram PK, Wu D, Haney CH, Carrillo J. Sticky Pi is a high-frequency smart trap that enables the study of insect circadian activity under natural conditions. PLoS Biol 2022; 20:e3001689. [PMID: 35797311 PMCID: PMC9262196 DOI: 10.1371/journal.pbio.3001689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
In the face of severe environmental crises that threaten insect biodiversity, new technologies are imperative to monitor both the identity and ecology of insect species. Traditionally, insect surveys rely on manual collection of traps, which provide abundance data but mask the large intra- and interday variations in insect activity, an important facet of their ecology. Although laboratory studies have shown that circadian processes are central to insects' biological functions, from feeding to reproduction, we lack the high-frequency monitoring tools to study insect circadian biology in the field. To address these issues, we developed the Sticky Pi, a novel, autonomous, open-source, insect trap that acquires images of sticky cards every 20 minutes. Using custom deep learning algorithms, we automatically and accurately scored where, when, and which insects were captured. First, we validated our device in controlled laboratory conditions with a classic chronobiological model organism, Drosophila melanogaster. Then, we deployed an array of Sticky Pis to the field to characterise the daily activity of an agricultural pest, Drosophila suzukii, and its parasitoid wasps. Finally, we demonstrate the wide scope of our smart trap by describing the sympatric arrangement of insect temporal niches in a community, without targeting particular taxa a priori. Together, the automatic identification and high sampling rate of our tool provide biologists with unique data that impacts research far beyond chronobiology, with applications to biodiversity monitoring and pest control as well as fundamental implications for phenology, behavioural ecology, and ecophysiology. We released the Sticky Pi project as an open community resource on https://doc.sticky-pi.com.
Collapse
Affiliation(s)
- Quentin Geissmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver (Unceded xʼməθkʼəýəm Musqueam Territory), British Columbia, Canada
| | - Paul K. Abram
- Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada
| | - Di Wu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver (Unceded xʼməθkʼəýəm Musqueam Territory), British Columbia, Canada
| | - Cara H. Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Juli Carrillo
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver (Unceded xʼməθkʼəýəm Musqueam Territory), British Columbia, Canada
| |
Collapse
|
8
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
9
|
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, Schmülling T. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:838284. [PMID: 35646013 PMCID: PMC9134115 DOI: 10.3389/fpls.2022.838284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana. Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen.
Collapse
Affiliation(s)
- Anne Cortleven
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Venja M. Roeber
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Manuel Frank
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vivien Lortzing
- Institute of Biology/Applied Zoology—Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Wei Y, Zhao S, Liu N, Zhang Y. Genome-wide identification, evolution, and expression analysis of the NPR1-like gene family in pears. PeerJ 2021; 9:e12617. [PMID: 35003927 PMCID: PMC8684321 DOI: 10.7717/peerj.12617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) plays a master regulatory role in the salicylic acid (SA) signal transduction pathway and plant systemic acquired resistance (SAR). Members of the NPR1-like gene family have been reported to the associated with biotic/abiotic stress in many plants, however the genome-wide characterization of NPR1-like genes has not been carried out in Chinese pear (Pyrus bretschneideri Reld). In this study, a systematic analysis was conducted on the characteristics of the NPR1-like genes in P. bretschneideri Reld at the whole-genome level. A total nine NPR1-like genes were detected which eight genes were located on six chromosomes and one gene was mapped to scaffold. Based on the phylogenetic analysis, the nine PbrNPR1-like proteins were divided into three clades (Clades I–III) had similar gene structure, domain and conserved motifs. We sorted the cis-acting elements into three clades, including plant growth and development, stress responses, and hormone responses in the promoter regions of PbrNPR1-like genes. The result of qPCR analysis showed that expression diversity of PbrNPR1-like genes in various tissues. All the genes were up-regulated after SA treatment in leaves except for Pbrgene8896. PbrNPR1-like genes showed circadian rhythm and significantly different expression levels after inoculation with Alternaria alternata. These findings provide a solid insight for understanding the functions and evolution of PbrNPR1-like genes in Chinese pear.
Collapse
Affiliation(s)
- Yarui Wei
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China
| | - Shuliang Zhao
- Hebei University of Engineering, School of Landscape and Ecological Engineering, Handan, Hebei, China
| | - Na Liu
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China
| | - Yuxing Zhang
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China
| |
Collapse
|
11
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
13
|
The Effect of Photoperiod on Necrosis Development, Photosynthetic Efficiency and 'Green Islands' Formation in Brassica juncea Infected with Alternaria brassicicola. Int J Mol Sci 2021; 22:ijms22168435. [PMID: 34445145 PMCID: PMC8395102 DOI: 10.3390/ijms22168435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/06/2023] Open
Abstract
The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a ‘green island’ phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast’s ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of ‘green islands’ formation in this pathosystem.
Collapse
|
14
|
Czékus Z, Kukri A, Hamow KÁ, Szalai G, Tari I, Ördög A, Poór P. Activation of Local and Systemic Defence Responses by Flg22 Is Dependent on Daytime and Ethylene in Intact Tomato Plants. Int J Mol Sci 2021; 22:ijms22158354. [PMID: 34361121 PMCID: PMC8348740 DOI: 10.3390/ijms22158354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
- Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary
| | - András Kukri
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Kamirán Áron Hamow
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, 2462 Martonvásár, Hungary; (K.Á.H.); (G.S.)
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, 2462 Martonvásár, Hungary; (K.Á.H.); (G.S.)
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
- Correspondence:
| |
Collapse
|
15
|
Czékus Z, Iqbal N, Pollák B, Martics A, Ördög A, Poór P. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153461. [PMID: 34217837 DOI: 10.1016/j.jplph.2021.153461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Plant defence responses can be triggered by the application of elicitors for example chitosan (β-1,4-linked glucosamine; CHT). It is well-known that CHT induces rapid, local production of reactive oxygen species (ROS) and nitric oxide (NO) resulting in fast stomatal closure. Systemic defence responses are based primarily on phytohormones such as ethylene (ET) and salicylic acid (SA), moreover on the expression of hormone-mediated defence genes and proteins. At the same time, these responses can be dependent also on external factors, such as light but its role was less-investigated. Based on our result in intact tomato plants (Solanum lycopersicum L.), CHT treatment not only induced significant ET emission and stomatal closure locally but also promoted significant production of superoxide which was also detectable in the distal, systemic leaves. However, these changes in ET and superoxide accumulation were detected only in wild type (WT) plants kept in light and were inhibited under darkness as well as in ET receptor Never ripe (Nr) mutants suggesting pivotal importance of ET and light in inducing resistance both locally and systemically upon CHT. Interestingly, CHT-induced NO production was mostly independent of ET or light. At the same time, expression of Pathogenesis-related 3 (PR3) was increased locally in both genotypes in the light and in WT leaves under darkness. This was also observed in distal leaves of WT plants. The CHT-induced endoplasmic reticulum (ER) stress, as well as unfolded protein response (UPR) were examined for the first time, via analysis of the lumenal binding protein (BiP). Whereas local expression of BiP was not dependent on the availability of light or ET, systemically it was mediated by ET.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Boglárka Pollák
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Atina Martics
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| |
Collapse
|
16
|
Liu X, Xiao W, Jiang Y, Zou L, Chen F, Xiao W, Zhang X, Cao Y, Xu L, Zhu Y. Bmal1 Regulates the Redox Rhythm of HSPB1, and Homooxidized HSPB1 Attenuates the Oxidative Stress Injury of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542815. [PMID: 34239687 PMCID: PMC8238613 DOI: 10.1155/2021/5542815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Oxidative stress is the main cause of acute myocardial infarction (AMI), which is related to the disorder of the regulation of Bmal1 on the redox state. HSPB1 form homologous-oxidized HSPB1 (homooxidized HSPB1) to resist oxidative damage via S-thiolated modification. However, it is still unclarified whether there is an interaction between the circadian clock and HSPB1 in myocardial injury. A total of 118 AMI patients admitted and treated in our hospital from Sep. 2019 to Sep. 2020 were selected to detect the plasma HSPB1 expression and the redox state. We divided the AMI patients into three subgroups: morning-onset AMI (5 : 00 am to 8 : 00 am; Am-subgroup, n = 38), noon-onset AMI (12 : 00 pm to 15 : 00; Pm-subgroup, n = 45), and night-onset AMI (20 : 00 pm to 23 : 00 pm; Eve-subgroup, n = 35) according to the circadian rhythm of onset. The Am-subgroup had remarkably higher cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and B-type natriuretic peptide (BNP) but lower left ventricular ejection fraction (LVEF) than the Pm-subgroup and Eve-subgroup. Patients complicated with cardiogenic shock were significantly higher in the Am-subgroup than in the other two groups. The homooxidized HSPB1 in plasma markedly decreased in the Am-subgroup. The HSPB1C141S mutant accelerated H9c2 cell apoptosis, increased reactive oxygen species (ROS), and decreased reduced-glutathione (GSH) and the ratio of reduced-GSH and GSSG during oxidative stress. Importantly, we found that the redox state of HSPB1 was consistent with the oscillatory rhythm of Bmal1 expression in normal C57B/L mice. The circadian rhythm disorder contributed to decrease Bmal1 and homooxidized HSPB1 in cardiomyocytes of C57BL/6 mice. In addition, Bmal1 and homooxidized HSPB1 decreased in neonatal rat cardiomyocytes exposed to H2O2. Knockdown of Bmal1 led to significant attenuation in homooxidized HSPB1 expression, whereas overexpression of Bmal1 increased homooxidized HSPB1 expression in response to H2O2. Our findings indicated that the homooxidized HSPB1 reduced probably the AMI patients' risk of shock and target organ damage, which was associated with Bmal1 regulating the redox state of HSPB1.
Collapse
Affiliation(s)
- Xiehong Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Wen Xiao
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Lianhong Zou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Weiwei Xiao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xingwen Zhang
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yan Cao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Lei Xu
- Public Health Clinical Center, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yimin Zhu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| |
Collapse
|
17
|
Plant Defence Mechanisms Are Modulated by the Circadian System. BIOLOGY 2020; 9:biology9120454. [PMID: 33317013 PMCID: PMC7763185 DOI: 10.3390/biology9120454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary The circadian clock is an endogenous time keeping mechanism found in living organisms and their respective pathogens. Numerous studies demonstrate that rhythms generated by this internal biological oscillator regulate and modulate most of the physiological, developmental, and biochemical processes of plants. Importantly, plant defence responses have also been shown to be modulated by the host circadian clock and vice versa. In this review we discuss the current understanding of the interactions between plant immunity and the circadian system. We also describe the possibility of pathogens directly or indirectly influencing plants’ circadian rhythms and suggest that these interactions could help us devise better disease management strategies for plants. Our review raises further research questions and we conclude that experimentation should be completed to unravel the complex mechanisms underlying interactions between plant defence and the circadian system. Abstract Plant health is an important aspect of food security, with pathogens, pests, and herbivores all contributing to yield losses in crops. Plants’ defence against pathogens is complex and utilises several metabolic processes, including the circadian system, to coordinate their response. In this review, we examine how plants’ circadian rhythms contribute to defence mechanisms, particularly in response to bacterial pathogen attack. Circadian rhythms contribute to many aspects of the plant–pathogen interaction, although significant gaps in our understanding remain to be explored. We conclude that if these relationships are explored further, better disease management strategies could be revealed.
Collapse
|
18
|
Wang K, Li C, Lei C, Jiang Y, Qiu L, Zou X, Zheng Y. β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:552-565. [PMID: 33059266 DOI: 10.1016/j.plaphy.2020.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/19/2020] [Indexed: 05/18/2023]
Abstract
Either NPR1 or TGA1 serve as master redox-sensitive transcriptional regulators for the transcription of PR genes in plants. The redox modification of the two co-activators involved in BABA-induced priming resistance against Botrytis cinerea in grapes was examined in this study. The results showed that 10 mmol L-1 BABA could effectively trigger a priming defense in grapes as manifested by augmented expression levels of PR genes upon inoculation with B. cinerea. Moreover, transcriptome profiling analysis revealed that all of the sets of key genes in the enzymatic ROS scavenging system, the PPP and AsA-GSH cycle were in harmony and were transcriptionally induced in BABA-primed grapes with pathogenic infection; in addition, this enhanced expression caused the accelerated accumulation of reductive substances, namely, AsA, GSH and NADPH, resulting in reduced intercellular conditions. Under reduced conditions, the interaction of VvTGA1 and VvNPR1 in the Y2H assay implied that VvTGA1 can provide the DNA binding capacity required by VvNPR1 for activation of VvPR genes. Consequently, the transactivation of VvNPR1 by the promoters of VvPR1, VvPR2 and VvPR5 was determined via a DLR assay, and it induced the transcription of the VvPR genes. In parallel, the redox-modified reducing condition achieved with an abundant supply of reductive substances was closely associated with the translocation of NPR1 for interaction with TGA in the nucleus. Thus, the posttranslational modification and subsequent interaction of the two redox-sensitive co-activators of VvNPR1 and VvTGA1 under reduced conditions may be responsible for BABA-induced priming for effective disease resistance in grapes.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China; College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Changyi Lei
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yongbo Jiang
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Linglan Qiu
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Xinyi Zou
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
19
|
Herlihy JH, Long TA, McDowell JM. Iron homeostasis and plant immune responses: Recent insights and translational implications. J Biol Chem 2020; 295:13444-13457. [PMID: 32732287 DOI: 10.1074/jbc.rev120.010856] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.
Collapse
Affiliation(s)
- John H Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
20
|
Philippou K, Davis AM, Davis SJ, Sánchez-Villarreal A. Chemical Perturbation of Chloroplast-Related Processes Affects Circadian Rhythms of Gene Expression in Arabidopsis: Salicylic Acid Application Can Entrain the Clock. Front Physiol 2020; 11:429. [PMID: 32625102 PMCID: PMC7314985 DOI: 10.3389/fphys.2020.00429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
The plant circadian system reciprocally interacts with metabolic processes. To investigate entrainment features in metabolic–circadian interactions, we used a chemical approach to perturb metabolism and monitored the pace of nuclear-driven circadian oscillations. We found that chemicals that alter chloroplast-related functions modified the circadian rhythms. Both vitamin C and paraquat altered the circadian period in a light-quality-dependent manner, whereas rifampicin lengthened the circadian period under darkness. Salicylic acid (SA) increased oscillatory robustness and shortened the period. The latter was attenuated by sucrose addition and was also gated, taking place during the first 3 h of the subjective day. Furthermore, the effect of SA on period length was dependent on light quality and genotype. Period lengthening or shortening by these chemicals was correlated to their inferred impact on photosynthetic electron transport activity and the redox state of plastoquinone (PQ). Based on these data and on previous publications on circadian effects that alter the redox state of PQ, we propose that the photosynthetic electron transport and the redox state of PQ participate in circadian periodicity. Moreover, coupling between chloroplast-derived signals and nuclear oscillations, as observed in our chemical and genetic assays, produces traits that are predicted by previous models. SA signaling or a related process forms a rhythmic input loop to drive robust nuclear oscillations in the context predicted by the zeitnehmer model, which was previously developed for Neurospora. We further discuss the possibility that electron transport chains (ETCs) are part of this mechanism.
Collapse
Affiliation(s)
- Koumis Philippou
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Amanda M Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biology, University of York, York, United Kingdom
| | - Seth J Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biology, University of York, York, United Kingdom.,Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Alfredo Sánchez-Villarreal
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
21
|
Lacchini E, Goossens A. Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annu Rev Cell Dev Biol 2020; 36:291-313. [PMID: 32559387 DOI: 10.1146/annurev-cellbio-011620-031429] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
22
|
Time-Dependent Effects of Bentazon Application on the Key Antioxidant Enzymes of Soybean and Common Ragweed. SUSTAINABILITY 2020. [DOI: 10.3390/su12093872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence or absence of light is one of the most significant environmental factors affecting plant growth and defence. Therefore, the selection of the most appropriate time of application may maximize the benefits of photosynthetic inhibitors. In this work, the concentration and daytime or night-time-dependent effects of bentazon were tested in soybean and common ragweed. The recommended dose (1440 g ha−1) and also half the recommended dose significantly reduced the maximum quantum yield (Fv/Fm) and increased H2O2 levels in common ragweed. Interestingly, bentazon did not change Fv/Fm in soybean. The activity of superoxide dismutase changed in a dose-dependent manner only in common ragweed. The activity of ascorbate peroxidase, catalase and glutathione S-transferase (GST), as well as the contents of ascorbate (AsA) and glutathione (GSH) did not change significantly in this plant species. In soybean, alterations in H2O2 levels were lower but GST and APX activity, as well as AsA and GSH levels were higher compared to common ragweed. At the same time, the rate of lipid peroxidation and ion leakage increased upon bentazon, and were higher in the light phase-treated leaves in the case of both plant species. These results can contribute to optimizing the effects and uses of herbicides in agriculture.
Collapse
|
23
|
Czékus Z, Poór P, Tari I, Ördög A. Effects of Light and Daytime on the Regulation of Chitosan-Induced Stomatal Responses and Defence in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E59. [PMID: 31906471 PMCID: PMC7020449 DOI: 10.3390/plants9010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Closure of stomata upon pathogenesis is among the earliest plant immune responses. However, our knowledge is very limited about the dependency of plant defence responses to chitosan (CHT) on external factors (e.g., time of the day, presence, or absence of light) in intact plants. CHT induced stomatal closure before dark/light transition in leaves treated at 17:00 hrs and stomata were closed at 09:00 hrs in plants treated at dawn and in the morning. CHT was able to induce generation of reactive oxygen species (ROS) in guard cells in the first part of the light phase, but significant nitric oxide production was observable only at 15:00 hrs. The actual quantum yield of PSII electron transport (ΦPSII) decreased upon CHT treatments at 09:00 hrs in guard cells but it declined only at dawn in mesophyll cells after the treatment at 17:00 hrs. Expression of Pathogenesis-related 1 (PR1) and Ethylene Response Factor 1 were already increased at dawn in the CHT-treated leaves but PR1 expression was inhibited in the dark. CHT-induced systemic response was also observed in the distal leaves of CHT-treated ones. Our results suggest a delayed and daytime-dependent defence response of tomato plants after CHT treatment at night and under darkness.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| | - Irma Tari
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| |
Collapse
|
24
|
Saijo Y, Loo EPI. Plant immunity in signal integration between biotic and abiotic stress responses. THE NEW PHYTOLOGIST 2020; 225:87-104. [PMID: 31209880 DOI: 10.1111/nph.15989] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Plants constantly monitor and cope with the fluctuating environment while hosting a diversity of plant-inhabiting microbes. The mode and outcome of plant-microbe interactions, including plant disease epidemics, are dynamically and profoundly influenced by abiotic factors, such as light, temperature, water and nutrients. Plants also utilize associations with beneficial microbes during adaptation to adverse conditions. Elucidation of the molecular bases for the plant-microbe-environment interactions is therefore of fundamental importance in the plant sciences. Following advances into individual stress signaling pathways, recent studies are beginning to reveal molecular intersections between biotic and abiotic stress responses and regulatory principles in combined stress responses. We outline mechanisms underlying environmental modulation of plant immunity and emerging roles for immune regulators in abiotic stress tolerance. Furthermore, we discuss how plants coordinate conflicting demands when exposed to combinations of different stresses, with attention to a possible determinant that links initial stress response to broad-spectrum stress tolerance or prioritization of specific stress tolerance.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
25
|
Abstract
In the past four decades, tremendous progress has been made in understanding how plants respond to microbial colonization and how microbial pathogens and symbionts reprogram plant cellular processes. In contrast, our knowledge of how environmental conditions impact plant-microbe interactions is less understood at the mechanistic level, as most molecular studies are performed under simple and static laboratory conditions. In this review, we highlight research that begins to shed light on the mechanisms by which environmental conditions influence diverse plant-pathogen, plant-symbiont, and plant-microbiota interactions. There is a great need to increase efforts in this important area of research in order to reach a systems-level understanding of plant-microbe interactions that are more reflective of what occurs in nature.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Li Zhang
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Sheng Yang He
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilient Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
The Multifaceted Roles of Plant Hormone Salicylic Acid in Endoplasmic Reticulum Stress and Unfolded Protein Response. Int J Mol Sci 2019; 20:ijms20235842. [PMID: 31766401 PMCID: PMC6928836 DOI: 10.3390/ijms20235842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Different abiotic and biotic stresses lead to the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress. In response to ER stress, cells activate various cytoprotective responses, enhancing chaperon synthesis, protein folding capacity, and degradation of misfolded proteins. These responses of plants are called the unfolded protein response (UPR). ER stress signaling and UPR can be regulated by salicylic acid (SA), but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in ER stress and UPR is summarized in model plants and crops to gain a better understanding of SA-regulated processes at the physiological, biochemical, and molecular levels.
Collapse
|
27
|
Filgueiras CC, Martins AD, Pereira RV, Willett DS. The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. Int J Mol Sci 2019; 20:E5851. [PMID: 31766518 PMCID: PMC6928651 DOI: 10.3390/ijms20235851] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.
Collapse
|
28
|
Zhang Y, Bo C, Wang L. Novel Crosstalks between Circadian Clock and Jasmonic Acid Pathway Finely Coordinate the Tradeoff among Plant Growth, Senescence and Defense. Int J Mol Sci 2019; 20:ijms20215254. [PMID: 31652760 PMCID: PMC6862349 DOI: 10.3390/ijms20215254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/31/2023] Open
Abstract
Circadian clock not only functions as a cellular time-keeping mechanism, but also acts as a master regulator to coordinate the tradeoff between plant growth and defense in higher plants by timing a few kinds of phytohormone biosynthesis and signaling, including jasmonic acid (JA). Notably, circadian clock and JA pathway have recently been shown to intertwine with each other to ensure and optimize the plant fitness in an ever-changing environment. It has clearly demonstrated that there are multiple crosstalk pathways between circadian clock and JA at both transcriptional and post-transcriptional levels. In this scenario, circadian clock temporally modulates JA-mediated plant development events, herbivory resistance and susceptibility to pathogen. By contrast, the JA signaling regulates clock activity in a feedback manner. In this review, we summarized the cross networks between circadian clock and JA pathway at both transcriptional and post-transcriptional levels. We proposed that the novel crosstalks between circadian clock and JA pathway not only benefit for the understanding the JA-associated circadian outputs including leaf senescence, biotic, and abiotic defenses, but also put timing as a new key factor to investigate JA pathway in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Abstract
The blast disease, caused by the ascomycete Magnaporthe oryzae, poses a great threat to rice production worldwide. Increasing use of fungicides and/or blast-resistant varieties of rice (Oryza sativa) has proved to be ineffective in long-term control of blast disease under field conditions. To develop effective and durable resistance to blast, it is important to understand the cellular mechanisms underlying pathogenic development in M. oryzae. In this review, we summarize the latest research in phototropism, autophagy, nutrient and redox signaling, and intrinsic phytohormone mimics in M. oryzae for cellular and metabolic adaptation(s) during its interactions with the host plants.
Collapse
Affiliation(s)
- Yi Zhen Deng
- Integrative Microbiology Research Centre and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore 117604;
| |
Collapse
|
30
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
31
|
Klem K, Gargallo-Garriga A, Rattanapichai W, Oravec M, Holub P, Veselá B, Sardans J, Peñuelas J, Urban O. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:1026. [PMID: 31475023 PMCID: PMC6703096 DOI: 10.3389/fpls.2019.01026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/23/2019] [Indexed: 05/04/2023]
Abstract
Light quality modulates plant growth, development, physiology, and metabolism through a series of photoreceptors perceiving light signal and related signaling pathways. Although the partial mechanisms of the responses to light quality are well understood, how plants orchestrate these impacts on the levels of above- and below-ground tissues and molecular, physiological, and morphological processes remains unclear. However, the re-allocation of plant resources can substantially adjust plant tolerance to stress conditions such as reduced water availability. In this study, we investigated in two spring barley genotypes the effect of ultraviolet-A (UV-A), blue, red, and far-red light on morphological, physiological, and metabolic responses in leaves and roots. The plants were grown in growth units where the root system develops on black filter paper, placed in growth chambers. While the growth of above-ground biomass and photosynthetic performance were enhanced mainly by the combined action of red, blue, far-red, and UV-A light, the root growth was stimulated particularly by supplementary far-red light to red light. Exposure of plants to the full light spectrum also stimulates the accumulation of numerous compounds related to stress tolerance such as proline, secondary metabolites with antioxidative functions or jasmonic acid. On the other hand, full light spectrum reduces the accumulation of abscisic acid, which is closely associated with stress responses. Addition of blue light induced accumulation of γ-aminobutyric acid (GABA), sorgolactone, or several secondary metabolites. Because these compounds play important roles as osmolytes, antioxidants, UV screening compounds, or growth regulators, the importance of light quality in stress tolerance is unequivocal.
Collapse
Affiliation(s)
- Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Albert Gargallo-Garriga
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
- Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF), Barcelona, Spain
| | | | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Barbora Veselá
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Jordi Sardans
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
- Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF), Barcelona, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Josep Peñuelas
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
- Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF), Barcelona, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
32
|
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. Int J Mol Sci 2019; 20:ijms20051211. [PMID: 30857376 PMCID: PMC6429127 DOI: 10.3390/ijms20051211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.
Collapse
|
33
|
Gallé Á, Czékus Z, Bela K, Horváth E, Ördög A, Csiszár J, Poór P. Plant Glutathione Transferases and Light. FRONTIERS IN PLANT SCIENCE 2019; 9:1944. [PMID: 30687349 PMCID: PMC6333738 DOI: 10.3389/fpls.2018.01944] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
The activity and expression of glutathione transferases (GSTs) depend on several less-known endogenous and well-described exogenous factors, such as the developmental stage, presence, and intensity of different stressors, as well as on the absence or presence and quality of light, which to date have received less attention. In this review, we focus on discussing the role of circadian rhythm, light quality, and intensity in the regulation of plant GSTs. Recent studies demonstrate that diurnal regulation can be recognized in GST activity and gene expression in several plant species. In addition, the content of one of their co-substrates, reduced glutathione (GSH), also shows diurnal changes. Darkness, low light or shade mostly reduces GST activity, while high or excess light significantly elevates both the activity and expression of GSTs and GSH levels. Besides the light-regulated induction and dark inactivation of GSTs, these enzymes can also participate in the signal transduction of visible and UV light. For example, red light may alleviate the harmful effects of pathogens and abiotic stressors by increasing GST activity and expression, as well as GSH content in leaves of different plant species. Based on this knowledge, further research on plants (crops and weeds) or organs and temporal regulation of GST activity and gene expression is necessary for understanding the complex regulation of plant GSTs under various light conditions in order to increase the yield and stress tolerance of plants in the changing environment.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Edit Horváth
- Biological Research CentreInstitute of Plant Biology, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
35
|
Guo J, Qi J, He K, Wu J, Bai S, Zhang T, Zhao J, Wang Z. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:88-102. [PMID: 29754404 PMCID: PMC6330542 DOI: 10.1111/pbi.12949] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 05/14/2023]
Abstract
The Asian corn borer (Ostrinia furnacalis Guenée) is a destructive pest of maize (Zea mays L.). Despite large-scale commercial maize production, little is known about the defensive responses of field-grown commercial maize to O. furnacalis herbivory, and how these responses result in direct and indirect defence against this pest. To elucidate the maize transcriptome response to O. furnacalis feeding, leaves of maize hybrid Jingke968 were infested with O. furnacalis for 0, 2, 4, 12 and 24 h. Ostrinia furnacalis feeding elicited stronger and more rapid changes in the defence-related gene expression (i.e. after 2 h), and more differentially expressed genes (DEGs) were up-regulated than down-regulated at all times post-induction (i.e. 2, 4, 12 and 24 h) in the O. furnacalis pre-infested maize plants. KEGG pathway analysis indicated that the DEGs in the O. furnacalis pre-infested maize are involved in benzoxazinoids, phytohormones, volatiles, and other metabolic pathways related to maize resistance to herbivores. In addition, the maize leaves previously infested by O. furnacalis for 24 h showed an obvious inhibition of the subsequent O. furnacalis performance, and maize volatiles induced by O. furnacalis feeding for 24 and 48 h attracted the parasitic wasp, Macrocentrus cingulum Brischke. The increased direct and indirect defences induced by O. furnacalis feeding were correlated with O. furnacalis-induced phytohormones, benzoxazinoids, and volatiles. Together, our findings provide new insights into how commercial maize orchestrates its transcriptome and metabolome to directly and indirectly defend against O. furnacalis at the mid-whorl stage in the field.
Collapse
Affiliation(s)
- Jingfei Guo
- State Key Laboratory for Biology of Plant Diseases and Insect PestsMOA – CABI Joint Laboratory for Bio‐safetyInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jinfeng Qi
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsMOA – CABI Joint Laboratory for Bio‐safetyInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jianqiang Wu
- Department of Economic Plants and BiotechnologyYunnan Key Laboratory for Wild Plant ResourcesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect PestsMOA – CABI Joint Laboratory for Bio‐safetyInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsMOA – CABI Joint Laboratory for Bio‐safetyInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jiuran Zhao
- Maize Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsMOA – CABI Joint Laboratory for Bio‐safetyInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
36
|
Krasensky-Wrzaczek J, Kangasjärvi J. The role of reactive oxygen species in the integration of temperature and light signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3347-3358. [PMID: 29514325 DOI: 10.1093/jxb/ery074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
The remarkable plasticity of the biochemical machinery in plants allows the integration of a multitude of stimuli, enabling acclimation to a wide range of growth conditions. The integration of information on light and temperature enables plants to sense seasonal changes and adjust growth, defense, and transition to flowering according to the prevailing conditions. By now, the role of reactive oxygen species (ROS) as important signaling molecules has been established. Here, we review recent data on ROS as important components in the integration of light and temperature signaling by crosstalk with the circadian clock and calcium signaling. Furthermore, we highlight that different environmental conditions critically affect the interpretation of stress stimuli, and consequently defense mechanisms and stress outcome. For example, day length plays an important role in whether enhanced ROS production under stress conditions is directed towards activation of redox poising mechanisms or triggering programmed cell death (PCD). Furthermore, a mild increase in temperature can cause down-regulation of immunity and render plants more sensitive to biotrophic pathogens. Taken together, the evidence presented here demonstrates the complexity of signaling pathways and outline the importance of their correct interpretation in context with the given environmental conditions.
Collapse
Affiliation(s)
- Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finl
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finl
| |
Collapse
|
37
|
Young ME, Reddy AB, Pollock DM. Introduction to special issue: Circadian regulation of metabolism, redox signaling and function in health and disease. Free Radic Biol Med 2018; 119:1-2. [PMID: 29604398 PMCID: PMC6348105 DOI: 10.1016/j.freeradbiomed.2018.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Akhilesh B Reddy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|