1
|
Matos IDA, Dallazen JL, Reis LR, Souza LF, Bevevino RC, de Moura RD, Ronsein GE, Hoch NC, da Costa Júnior NB, Costa SKP, Meotti FC. Targeting Myeloperoxidase Ameliorates Gouty Arthritis: A Virtual Screening Success Story. J Med Chem 2024; 67:12012-12032. [PMID: 38991154 DOI: 10.1021/acs.jmedchem.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This study presents a new approach for identifying myeloperoxidase (MPO) inhibitors with strong in vivo efficacy. By combining inhibitor-like rules and structure-based virtual screening, the pipeline achieved a 70% success rate in discovering diverse, nanomolar-potency reversible inhibitors and hypochlorous acid (HOCl) scavengers. Mechanistic analysis identified RL6 as a genuine MPO inhibitor and RL7 as a potent HOCl scavenger. Both compounds effectively suppressed HOCl production in cells and neutrophils, with RL6 showing a superior inhibition of neutrophil extracellular trap release (NETosis). In a gout arthritis mouse model, intraperitoneal RL6 administration reduced edema, peroxidase activity, and IL-1β levels. RL6 also exhibited oral bioavailability, significantly reducing paw edema when administered orally. This study highlights the efficacy of integrating diverse screening methods to enhance virtual screening success, validating the anti-inflammatory potential of potent inhibitors, and advancing the MPO inhibitor research.
Collapse
Affiliation(s)
- Isaac de A Matos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jorge L Dallazen
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lorenna R Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Felipe Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Regina C Bevevino
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rafael D de Moura
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Graziella E Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nicolas Carlos Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Soraia Kátia P Costa
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Grudzinska FS, Jasper A, Sapey E, Thickett DR, Mauro C, Scott A, Barlow J. Real-time assessment of neutrophil metabolism and oxidative burst using extracellular flux analysis. Front Immunol 2023; 14:1083072. [PMID: 37180154 PMCID: PMC10166867 DOI: 10.3389/fimmu.2023.1083072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophil responses are critical during inflammatory and infective events, and neutrophil dysregulation has been associated with poor patient outcomes. Immunometabolism is a rapidly growing field that has provided insights into cellular functions in health and disease. Neutrophils are highly glycolytic when activated, with inhibition of glycolysis associated with functional deficits. There is currently very limited data available assessing metabolism in neutrophils. Extracellular flux (XF) analysis assesses real time oxygen consumption and the rate of proton efflux in cells. This technology allows for the automated addition of inhibitors and stimulants to visualise the effect on metabolism. We describe optimised protocols for an XFe96 XF Analyser to (i) probe glycolysis in neutrophils under basal and stimulated conditions, (ii) probe phorbol 12-myristate 13-acetate induced oxidative burst, and (iii) highlight challenges of using XF technology to examine mitochondrial function in neutrophils. We provide an overview of how to analyze XF data and identify pitfalls of probing neutrophil metabolism with XF analysis. In summary we describe robust methods for assessing glycolysis and oxidative burst in human neutrophils and discuss the challenges around using this technique to assess mitochondrial respiration. XF technology is a powerful platform with a user-friendly interface and data analysis templates, however we suggest caution when assessing neutrophil mitochondrial respiration.
Collapse
Affiliation(s)
- Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Alice Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- PIONEER Health Data Research- UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan Barlow
- Cellular Health and Metabolism Facility, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Geng R, Zhang Y, Liu M, Deng S, Ding J, Zhong H, Tu Q. Elevated serum uric acid is associated with cognitive improvement in older American adults: A large, population-based-analysis of the NHANES database. Front Aging Neurosci 2022; 14:1024415. [PMID: 36570535 PMCID: PMC9772611 DOI: 10.3389/fnagi.2022.1024415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background The many studies revealing a connection between serum uric acid (SUA) and dementia have reported conflicting results. This study sought to investigate the relations between SUA and cognitive function in older adults. Materials and methods The sample was 2,767 American adults aged ≥60 years from the National Health and Nutrition Examination Survey 2011-2014. Cognitive performance was evaluated by the Consortium to Establish a Registry for Alzheimer's Disease test, animal fluency test, digit symbol substitution test, and composite z-score. Multivariate linear regression analyses were conducted to estimate the association between SUA and cognitive function. Results SUA level and cognitive function were significantly, positively correlated. Age significantly correlated with the association between SUA and cognitive function. Conclusion These findings support a connection between SUA and cognition, showing a positive link between SUA and cognitive scores among older American adults. We contend that a slight rise in uric acid within the normal range is advantageous for enhanced cognition. To confirm the precise dose-time-response relation, more tests will be needed.
Collapse
|
4
|
Vankova D, Kiselova-Kaneva Y, Ivanova D. Uric acid effects on glutathione metabolism estimated by induction of glutamate-cysteine ligase, glutathione reductase and glutathione synthetase in mouse J744A.1 macrophage cell line. Folia Med (Plovdiv) 2022; 64:762-769. [PMID: 36876528 DOI: 10.3897/folmed.64.e65507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Elevated plasma levels of uric acid (UA) are considered an independent risk factor for hypertension, diabetes, cardiovascular disease, endothelial and vascular damage, obesity, and metabolic syndrome. Even physiological concentrations of soluble UA have been proved to induce gene expression of macrophage-secreted inflammatory cytokines and stimulate production of reactive oxygen species in mature adipocytes. UA is also described as a powerful endogenous plasma antioxidant, which reveals a paradox of duality for this parameter.
Collapse
|
5
|
Dempsey B, Cruz LC, Mineiro MF, da Silva RP, Meotti FC. Uric Acid Reacts with Peroxidasin, Decreases Collagen IV Crosslink, Impairs Human Endothelial Cell Migration and Adhesion. Antioxidants (Basel) 2022; 11:antiox11061117. [PMID: 35740014 PMCID: PMC9220231 DOI: 10.3390/antiox11061117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Uric acid is considered the main substrate for peroxidases in plasma. The oxidation of uric acid by human peroxidases generates urate free radical and urate hydroperoxide, which might affect endothelial function and explain, at least in part, the harmful effects of uric acid on the vascular system. Peroxidasin (PXDN), the most recent heme-peroxidase described in humans, catalyzes the formation of hypobromous acid, which mediates collagen IV crosslinks in the extracellular matrix. This enzyme has gained increasing scientific interest since it is associated with cardiovascular disease, cancer, and renal fibrosis. The main objective here was to investigate whether uric acid would react with PXDN and compromise the function of the enzyme in human endothelial cells. Urate decreased Amplex Red oxidation and brominating activity in the extracellular matrix (ECM) from HEK293/PXDN overexpressing cells and in the secretome of HUVECs. Parallelly, urate was oxidized to 5-hydroxyisourate. It also decreased collagen IV crosslink in isolated ECM from PFHR9 cells. Urate, the PXDN inhibitor phloroglucinol, and the PXDN knockdown impaired migration and adhesion of HUVECs. These results demonstrated that uric acid can affect extracellular matrix formation by competing for PXDN. The oxidation of uric acid by PXDN is likely a relevant mechanism in the endothelial dysfunction related to this metabolite.
Collapse
|
6
|
Wang M, Lin X, Yang X, Yang Y. Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease. Ren Fail 2022; 44:615-624. [PMID: 35382689 PMCID: PMC9004527 DOI: 10.1080/0886022x.2022.2036620] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Hyperuricemia is an independent risk factor for the progression of chronic kidney disease. High levels of uric acid can lead to a series of pathological conditions, such as gout, urinary stones, inflammation, and uric acid nephropathy. There is a close relationship between uric acid and the NLRP3 inflammasome. NLRP3 inflammasome activation can cause cell damage and even death through endoplasmic reticulum stress, lysosome destruction, mitochondrial dysfunction, and the interaction between the Golgi apparatus and extracellular vesicles. In addition, the NLRP3 inflammasome acts as a molecular platform, triggering the activation of caspase-1 and the lysis of IL-1β, IL-18 and Gasdermin D (GSDMD) through different molecular mechanisms. Cleaved NT-GSDMD forms pores in the cell membrane and triggers pyrophosphorylation, thereby inducing cell death and releasing many intracellular proinflammatory molecules. In recent years, studies have found that hyperuricemia or uric acid crystals can activate NLRP3 inflammasomes, and the activation of NLRP3 inflammasomes plays an important role in kidney disease. This article reviews the possible pathophysiological mechanisms by which uric acid activates inflammasomes and induces kidney damage at the cellular and molecular levels.
Collapse
Affiliation(s)
- Miao Wang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xin Lin
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoming Yang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanlang Yang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Rocha LS, Silva BPD, Correia TML, Silva RPD, Meireles DDA, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biol 2021; 46:102075. [PMID: 34315109 PMCID: PMC8327333 DOI: 10.1016/j.redox.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium in patients with cystic fibrosis and hospital acquired infections. It presents a plethora of virulence factors and antioxidant enzymes that help to subvert the immune system. In this study, we identified the 2-Cys peroxiredoxin, alkyl-hydroperoxide reductase C1 (AhpC1), as a relevant scavenger of oxidants generated during inflammatory oxidative burst and a mechanism of P. aeruginosa (PA14) escaping from killing. Deletion of AhpC1 led to a higher sensitivity to hypochlorous acid (HOCl, IC50 3.2 ± 0.3 versus 19.1 ± 0.2 μM), hydrogen peroxide (IC50 91.2 ± 0.3 versus 496.5 ± 6.4 μM) and the organic peroxide urate hydroperoxide. ΔahpC1 strain was more sensitive to the killing by isolated neutrophils and less virulent in a mice model of infection. All mice intranasally instilled with ΔahpC1 survived as long as they were monitored (15 days), whereas 100% wild-type and ΔahpC1 complemented with ahpC1 gene (ΔahpC1 attB:ahpC1) died within 3 days. A significantly lower number of colonies was detected in the lung and spleen of ΔahpC1-infected mice. Total leucocytes, neutrophils, myeloperoxidase activity, pro-inflammatory cytokines, nitrite production and lipid peroxidation were much lower in lungs or bronchoalveolar liquid of mice infected with ΔahpC1. Purified AhpC neutralized the inflammatory organic peroxide, urate hydroperoxide, at a rate constant of 2.3 ± 0.1 × 106 M-1s-1, and only the ΔahpC1 strain was sensitive to this oxidant. Incubation of neutrophils with uric acid, the urate hydroperoxide precursor, impaired neutrophil killing of wild-type but improved the killing of ΔahpC1. Hyperuricemic mice presented higher levels of serum cytokines and succumbed much faster to PA14 infection when compared to normouricemic mice. In summary, ΔahpC1 PA14 presented a lower virulence, which was attributed to a poorer ability to neutralize the oxidants generated by inflammatory oxidative burst, leading to a more efficient killing by the host. The enzyme is particularly relevant in detoxifying the newly reported inflammatory organic peroxide, urate hydroperoxide.
Collapse
Affiliation(s)
- Leonardo Silva Rocha
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil
| | | | - Thiago M L Correia
- Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil
| | | | - Diogo de Abreu Meireles
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Rafael Pereira
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil; Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Brazil.
| |
Collapse
|
8
|
Urate hydroperoxide oxidizes endothelial cell surface protein disulfide isomerase-A1 and impairs adherence. Biochim Biophys Acta Gen Subj 2019; 1864:129481. [PMID: 31734460 DOI: 10.1016/j.bbagen.2019.129481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Extracellular surface protein disulfide isomerase-A1 (PDI) is involved in platelet aggregation, thrombus formation and vascular remodeling. PDI performs redox exchange with client proteins and, hence, its oxidation by extracellular molecules might alter protein function and cell response. In this study, we investigated PDI oxidation by urate hydroperoxide, a newly-described oxidant that is generated through uric acid oxidation by peroxidases, with a putative role in vascular inflammation. METHODS Amino acids specificity and kinetics of PDI oxidation by urate hydroperoxide was evaluated by LC-MS/MS and by stopped-flow. Oxidation of cell surface PDI and other thiol-proteins from HUVECs was identified using impermeable alkylating reagents. Oxidation of intracellular GSH and GSSG was evaluated with specific LC-MS/MS techniques. Cell adherence, detachment and viability were assessed using crystal violet staining, cellular microscopy and LDH activity, respectively. RESULTS Urate hydroperoxide specifically oxidized cysteine residues from catalytic sites of recombinant PDI with a rate constant of 6 × 103 M-1 s-1. Incubation of HUVECs with urate hydroperoxide led to oxidation of cell surface PDI and other unidentified cell surface thiol-proteins. Cell adherence to fibronectin coated plates was impaired by urate hydroperoxide, as well as by other oxidants, thiol alkylating agents and PDI inhibitors. Urate hydroperoxide did not affect cell viability but significantly decreased GSH/GSSG ratio. CONCLUSIONS Our results demonstrated that urate hydroperoxide affects thiol-oxidation of PDI and other cell surface proteins, impairing cellular adherence. GENERAL SIGNIFICANCE These findings could contribute to a better understanding of the mechanism by which uric acid affects endothelial cell function and vascular homeostasis.
Collapse
|
9
|
Increased Trimethylamine N-Oxide Is Not Associated with Oxidative Stress Markers in Healthy Aged Women. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6247169. [PMID: 31636806 PMCID: PMC6766136 DOI: 10.1155/2019/6247169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
Increased plasma trimethylamine N-oxide (TMAO) levels have been associated with cardiovascular diseases (CVD). L-carnitine induces TMAO elevation in human blood, and thus, it has been suggested as developing atherosclerosis. The aim of this study was to determine the relation between selected markers of oxidative stress and plasma TMAO concentration induced by L-carnitine supplementation for 24 weeks in healthy aged women. Twenty aged women were supplemented during 24 weeks with either 1500 mg L-carnitine-L-tartrate (n = 11) or isonitrogenous placebo (n = 9) per day. Fasting blood samples were taken from antecubital vein. L-carnitine supplementation induced an increase in TMAO, but not in γ-butyrobetaine (GBB). Moreover, there were no significant changes in serum ox-LDL, myeloperoxidase, protein carbonyls, homocysteine, and uric acid concentrations due to supplementation. Significant reduction in white blood cell counts has been observed following 24-week supplementation, but not attributable to L-carnitine. Our results in healthy aged women indicated no relation between TMAO and any determined marker of oxidative stress over the period of 24 weeks. At the same time, plasma GBB levels were not affected by L-carnitine supplementation. Further clinical studies of plasma GBB level as a prognostic marker are needed.
Collapse
|
10
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|