1
|
Zhang J, Lv W, Zhang G, Zeng M, Cao W, Su J, Cao K, Liu J. Nuclear Factor Erythroid 2 Related Factor 2 and Mitochondria Form a Mutually Regulating Circuit in the Prevention and Treatment of Metabolic Syndrome. Antioxid Redox Signal 2024; 41:744-768. [PMID: 38183629 DOI: 10.1089/ars.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Significance: Metabolic syndrome (MetS) has become a major global public health problem and there is an urgent need to elucidate its pathogenesis and find more effective targets and modalities for intervention. Recent Advances: Oxidative stress and inflammation are two of the major causes of MetS-related symptoms such as insulin resistance and obesity. Nuclear factor erythroid 2 related factor 2 (Nrf2) is one of the important systems responding to oxidative stress and inflammation. As cells undergo stress, cysteines within Kelch-like ECH-associated protein 1 (Keap1) are oxidized or electrophilically modified, allowing Nrf2 to escape ubiquitination and be translocated from the cytoplasm to the nucleus, facilitating the initiation of the antioxidant transcriptional program. Meanwhile, a growing body of evidence points out a specific modulation of mitochondrial homeostasis by Nrf2. After nuclear translocation, Nrf2 activates downstream genes involved in various aspects of mitochondrial homeostasis, including mitochondrial biogenesis and dynamics, mitophagy, aerobic respiration, and energy metabolism. In turn, mitochondria reciprocally activate Nrf2 by releasing reactive oxygen species and regulating antioxidant enzymes. Critical Issues: In this review, we first summarize the interactions between Nrf2 and mitochondria in the modulation of oxidative stress and inflammation to ameliorate MetS, then propose that Nrf2 and mitochondria form a mutually regulating circuit critical to maintaining homeostasis during MetS. Future Directions: Targeting the Nrf2-mitochondrial circuit may be a promising strategy to ameliorate MetS, such as obesity, diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jiawei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mengqi Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Hu W, Tu H, Wadman MC, Li YL, Zhang D. Renal denervation achieves its antiarrhythmic effect through attenuating macrophage activation and neuroinflammation in stellate ganglia in chronic heart failure. Cardiovasc Res 2024:cvae196. [PMID: 39321201 DOI: 10.1093/cvr/cvae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS Renal denervation (RDN) is widely investigated in multiple studies of sympathetically driven cardiovascular diseases. While the therapeutic potential of RDN for ventricular arrhythmia has been reported, the mechanisms responsible for its antiarrhythmic effect are poorly understood. Our recent study showed that macrophage expansion-induced neuroinflammation in the stellate ganglion (SG) was a critical factor for cardiac sympathetic overactivation and ventricular arrhythmogenesis in chronic heart failure (CHF). This study investigates if and how RDN decreases ventricular arrhythmias by attenuating neuroinflammation in cardiac sympathetic postganglionic (CSP) neurons in CHF. METHODS AND RESULTS Rat CHF was induced by surgical ligation of the left anterior descending coronary artery (LAD). At 12 weeks after LAD ligation, completed bilateral RDN was achieved by surgically cutting all the visible renal nerves around the renal artery and vein, followed by applying of 70% ethanol around the vessels. Immunofluorescence staining and Western blot data showed that expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor-α subunit (GM-CSFRα) in SGs was increased in CHF rats. RDN not only reduced CHF-elevated GM-CSF levels in kidney, serum and SGs, but also attenuated macrophage expansion and neuroinflammation in SGs from CHF rats. Using flow cytometry, we confirmed that RDN reduced the percentage of macrophages in SGs, which is pathologically increased in CHF. RDN also decreased CHF-enhanced N-type Ca2+ currents in CSP neurons and attenuated CHF-elevated cardiac sympathetic nerve activity. ECG data from 24-hour continuous telemetry recording in conscious rats revealed that RDN improved CHF-induced heterogeneity of ventricular electrical activities and reduced the duration of spontaneous ventricular tachyarrhythmias in CHF rats. CONCLUSIONS RDN alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis through attenuating GM-CSF-induced macrophage activation and neuroinflammation within SGs in CHF. This suggests that manipulation of the GM-CSF signaling pathway could be a novel strategy for achieving the antiarrhythmic effect of RDN in CHF.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Dhyani N, Tian C, Gao L, Rudebush TL, Zucker IH. Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse? Physiology (Bethesda) 2024; 39:0. [PMID: 38687468 PMCID: PMC11460534 DOI: 10.1152/physiol.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.
Collapse
Affiliation(s)
- Neha Dhyani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Tara L Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
4
|
Yang G, Zhang Q, Dong C, Hou G, Li J, Jiang X, Xin Y. Nrf2 prevents diabetic cardiomyopathy via antioxidant effect and normalization of glucose and lipid metabolism in the heart. J Cell Physiol 2024; 239:e31149. [PMID: 38308838 DOI: 10.1002/jcp.31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3β/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guowen Hou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Chen W, Ye Q, Dong Y. Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102717. [PMID: 37940009 DOI: 10.1016/j.nano.2023.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Myocardial infarction (MI) is a cardiovascular disease and troubles patients all over the world. Exosomes produced after long-term exercise training were discovered to mediate intercellular communication and alleviate MI-induced heart injury. However, the detailed roles of long-term exercise-derived exosomal long noncoding RNAs (LncRNAs) in MI remain uncovered. In this study, we collected and identified long-term exercise-derived exosomes, and established MI or hypoxia/reoxygenation (H/R) model after LncRNA colorectal neoplasia differentially expressed (CRNDE) depletion. This work proved that LncRNA CRNDE was highly expressed in long-term exercise-derived exosomes (p = 0.0078). CRNDE knockdown increased cardiomyocytes apoptosis and oxidative stress (p = 0.0036), and suppressed MI progress (p = 0.0005). CRNDE served as the sponge of miR-489-3p to affect Nrf2 expression (p = 0.0001). MiR-489-3p inhibition effectively reversed the effects of CRNDE depletion on hypoxia cardiomyocytes (p = 0.0002). These findings offered a promising therapeutic option for the treatment of MI.
Collapse
Affiliation(s)
- Wujun Chen
- Health Management Center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China.
| | - Qiaoyi Ye
- Health Management Center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
| | - Yi Dong
- Health Management Center, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China
| |
Collapse
|
6
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2023:S2090-1232(23)00402-2. [PMID: 38123019 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
7
|
Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol 2023; 14:1206527. [PMID: 37719456 PMCID: PMC10500196 DOI: 10.3389/fphys.2023.1206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Redox imbalance plays essential role in the pathogenesis of cardiovascular diseases. Chronic heart failure (CHF) and hypertension are associated with central oxidative stress, which is partly mediated by the downregulation of antioxidant enzymes in the central autonomic neurons that regulate sympathetic outflow, resulting in sympathoexcitation. Antioxidant proteins are partially regulated by the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2). Downregulation of Nrf2 is key to disrupting central redox homeostasis and mediating sympathetic nerve activity in the setting of Chronic heart failure and hypertension. Nrf2, in turn, is regulated by various mechanisms, such as extracellular vesicle-enriched microRNAs derived from several cell types, including heart and skeletal muscle. In this review, we discuss the role of Nrf2 in regulating oxidative stress in the brain and its impact on sympathoexcitation in Chronic heart failure and hypertension. Importantly, we also discuss interorgan communication via extracellular vesicle pathways that mediate central redox imbalance through Nrf2 signaling.
Collapse
Affiliation(s)
- Ahmed M. Wafi
- Physiology Department, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
8
|
Lu D, Wang K, Jiang W, Zhang H, Zhang H. Effect of renal denervation on cardiac remodelling and function in rats with chronic intermittent hypoxia. Clin Exp Pharmacol Physiol 2023. [PMID: 37311598 DOI: 10.1111/1440-1681.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Chronic intermittent hypoxia (CIH) mimicking obstructive sleep apnea elicits divergent outcomes in the cardiovascular systems. The effect of renal denervation (RDN) on the heart during CIH remains unclear. We aimed to explore the effect of RDN on cardiac remodelling in rats exposed to CIH and to discuss the underlying mechanisms. Adult Sprague Dawley rats were divided into four groups: control, control+RDN, CIH (CIH exposure for 6 weeks, nadir of 5%-7% to peak of 21% O2, 20 cycles/h, 8 h/day) and CIH+ RDN group. Echocardiography, cardiac fibrosis, left ventricle (LV) expressions of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and inflammatory factors were tested at the end of the study. Cardiac structural remodelling and dysfunction were induced by CIH and attenuated by RDN. Myocardial fibrosis was more severe in the CIH group than in the control group and improved in the CIH + RDN group. Sympathetic activity reflected by tyrosine hydroxylase (TH) expression and noradrenaline were significantly elevated after CIH but blunted by RDN. CIH downregulated LV protein expressions of Nrf2 and HO-1, which was activated by RDN. The downstream of Nrf2/HO-1, such as NQO1 and SOD expression, elevated following RDN. RDN also decreased the mRNA expression of IL-1β and IL-6. Notably, control+RDN did not affect cardiac remodelling and Nrf2/HO-1 compared with the control. Taken together, we found that RDN exerted cardio-protective effects in a rat model of CIH involving Nrf2/HO-1 pathway and inflammation.
Collapse
Affiliation(s)
- Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| | - Kai Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Hongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Yang K, Qiu X, Cao L, Qiu S. The role of melatonin in the development of postmenopausal osteoporosis. Front Pharmacol 2022; 13:975181. [PMID: 36278157 PMCID: PMC9585202 DOI: 10.3389/fphar.2022.975181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Melatonin is an important endogenous hormone that modulates homeostasis in the microenvironment. Recent studies have indicated that serum melatonin levels are closely associated with the occurrence and development of osteoporosis in postmenopausal women. Exogenous melatonin could also improve bone mass and increase skeletal strength. To determine the underlying mechanisms of melatonin in the prevention and treatment of postmenopausal osteoporosis, we performed this review to analyze the role of melatonin in bone metabolism according to its physiological functions. Serum melatonin is related to bone mass, the measurement of which is a potential method for the diagnosis of osteoporosis. Melatonin has a direct effect on bone remodeling by promoting osteogenesis and suppressing osteoclastogenesis. Melatonin also regulates the biological rhythm of bone tissue, which benefits its osteogenic effect. Additionally, melatonin participates in the modulation of the bone microenvironment. Melatonin attenuates the damage induced by oxidative stress and inflammation on osteoblasts and prevents osteolysis from reactive oxygen species and inflammatory factors. As an alternative drug for osteoporosis, melatonin can improve the gut ecology, remodel microbiota composition, regulate substance absorption and maintain metabolic balance, all of which are beneficial to the health of bone structure. In conclusion, our review systematically demonstrates the effects of melatonin on bone metabolism. Based on the evidence in this review, melatonin will play a more important role in the diagnosis, prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences Shenyang, Shenyang, Liaoning, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| |
Collapse
|
11
|
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with redox imbalance. Downregulation of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) plays important roles in disrupting myocardial redox homeostasis and mediating sympathetic nerve activity in the setting of CHF. However, it is unclear if circulating extracellular vesicles (EVs) elicit sympathetic excitation in CHF by disrupting central redox homeostasis. We tested the hypothesis that cardiac-derived EVs circulate to the presympathetic rostral ventrolateral medulla and contribute to oxidative stress and sympathetic excitation via EV-enriched microRNA-mediated Nrf2 downregulation. METHODS Data were collected on rats with CHF post-myocardial infarction (MI) and on human subjects with ischemic CHF. EVs were isolated from tissue and plasma, and we determined the miRNAs cargo that related to targeting Nrf2 translation. We tracked the distribution of cardiac-derived EVs using in vitro labeled circulating EVs and cardiac-specific membrane GFP+ transgenic mice. Finally, we tested the impact of exogenously loading of antagomirs to specific Nrf2-related miRNAs on CHF-EV-induced pathophysiological phenotypes in normal rats (eg, sympathetic and cardiac function). RESULTS Nrf2 downregulation in CHF rats was associated with an upregulation of Nrf2-targeting miRNAs, which were abundant in cardiac-derived and circulating EVs from rats and humans. EVs isolated from the brain of CHF rats were also enriched with Nrf2-targeting miRNAs and cardiac-specific miRNAs. Cardiac-derived EVs were taken up by neurons in the rostral ventrolateral medulla. The administration of cardiac-derived and circulating EVs from CHF rats into the rostral ventrolateral medulla of normal rats evoked an increase in renal sympathetic nerve activity and plasma norepinephrine compared with Sham-operated rats, which were attenuated by exogenously preloading CHF-EVs with antagomirs to Nrf2-targeting miRNAs. CONCLUSIONS Cardiac microRNA-enriched EVs from animals with CHF can mediate crosstalk between the heart and the brain in the regulation of sympathetic outflow by targeting the Nrf2/antioxidant signaling pathway. This new endocrine signaling pathway regulating sympathetic outflow in CHF may be exploited for novel therapeutics.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tara L. Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
12
|
Xiao YC, Wang W, Gao Y, Li WY, Tan X, Wang YK, Wang WZ. The Peripheral Circulating Exosomal microRNAs Related to Central Inflammation in Chronic Heart Failure. J Cardiovasc Transl Res 2022; 15:500-513. [PMID: 35501543 DOI: 10.1007/s12265-022-10266-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Sympathetic hyperactivity plays an important role in the progression of chronic heart failure (CHF). It is reported that inflammation in the rostral ventrolateral medulla (RVLM), a key region for sympathetic control, excites the activity of neurons and leads to an increase in sympathetic outflow. Exosome, as the carrier of microRNAs (miRNAs), has the function of crossing the blood-brain barrier. The present study was designed to investigate the effect of exosomal miRNAs on central inflammation via peripheral-central interaction in CHF. The miRNA microarray detection was performed to compare the difference between circulating exosomes and the RVLM in CHF rats. It was shown that the expression of miR-214-3p was significantly up-regulated, whereas let-7g-5p and let-7i-5p were significantly down-regulated in circulating exosomes and the RVLM. Further studies in PC12 cells revealed that miR-214-3p enhanced the inflammatory response, while let-7g-5p and let-7i-5p reduced the neuroinflammation. The direct interaction between the miRNA and its inflammatory target gene (miR-214-3p, Traf3; let-7g-5p, Smad2; and let-7i-5p, Mapk6) was confirmed by the dual-luciferase reporter assay. These results suggest that the circulating exosomes participate in the enhancement of inflammatory response in the RVLM through their packaged miRNAs, which may further contribute to sympathetic hyperactivity in CHF.
Collapse
Affiliation(s)
- Yu-Chen Xiao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuan Gao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wan-Yang Li
- School of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
13
|
Lu Y, An L, Taylor MRG, Chen QM. Nrf2 signaling in heart failure: expression of Nrf2, Keap1, antioxidant, and detoxification genes in dilated or ischemic cardiomyopathy. Physiol Genomics 2022; 54:115-127. [PMID: 35073209 PMCID: PMC8897001 DOI: 10.1152/physiolgenomics.00079.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased levels of oxidative stress have been found with heart failure. Whether failing hearts express antioxidant and detoxification enzymes have not been addressed systematically. Nrf2 gene encodes a transcription factor that regulates the expression of antioxidant and detoxification genes. Using RNA-Seq data set from explanted hearts of 37 patients with dilated cardiomyopathy (DCM), 13 patients with ischemic cardiomyopathy (ICM), and 14 nonfailure (NF) donors as a control, we addressed whether failing hearts change the expression of Nrf2, its negative regulator Keap1, and antioxidant or detoxification genes. Significant increases in the ratio of Nrf2 to Keap1 were found to associate with DCM or ICM. Antioxidant genes showed decreased expression in both types of heart failure, including NQO1, SOD1, GPX3, GPX4, GSR, PRDX1, and TXNRD1. Detoxification enzymes, GCLM and EPHX1, also showed decreased expression, whereas the CYP1B1 transcript was elevated in both DCM and ICM. The genes encoding metal-binding protein ferritin were decreased, whereas five out of 12 metallothionein genes showed elevated expression. Our finding on Nrf2 gene expression has been validated by meta-analysis of seven independent data sets of microarray or RNA-Seq for differential gene expression in DCM and ICM from NF controls. In conclusion, minor elevation of Nrf2 gene expression is not coupled to increases in antioxidant and detoxification genes, supporting an impairment of Nrf2 signaling in patients with heart failure. Decreases in multiple antioxidant and detoxification genes are consistent with the observed increases of oxidative stress in failing hearts.
Collapse
Affiliation(s)
- Yingying Lu
- 1Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona,2Interdisciplanary Program in Statistics and Data Science, University of Arizona, Tucson, Arizona
| | - Lingling An
- 3Department of Biosystems Engineering, University of Arizona, Tucson, Arizona
| | - Matthew R. G. Taylor
- 4Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Qin M. Chen
- 1Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Chen X, Wan W, Guo Y, Ye T, Fo Y, Sun Y, Qu C, Yang B, Zhang C. Pinocembrin ameliorates post-infarct heart failure through activation of Nrf2/HO-1 signaling pathway. Mol Med 2021; 27:100. [PMID: 34488618 PMCID: PMC8422663 DOI: 10.1186/s10020-021-00363-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background Oxidative stress is an important factor involved in the progress of heart failure. The current study was performed to investigate whether pinocembrin was able to ameliorate post-infarct heart failure (PIHF) and the underlying mechanisms. Methods Rats were carried out left anterior descending artery ligation to induce myocardial infarction and subsequently raised for 6 weeks to produce chronic heart failure. Then pinocembrin was administrated every other day for 2 weeks. The effects were evaluated by echocardiography, western blot, Masson’s staining, biochemical examinations, immunohistochemistry, and fluorescence. In vitro we also cultured H9c2 cardiomyocytes and cardiac myofibroblasts to further testify the mechanisms. Results We found that PIHF-induced deteriorations of cardiac functions were significantly ameliorated by administrating pinocembrin. In addition, the pinocembrin treatment also attenuated collagen deposition and augmented vascular endothelial growth factor receptor 2 in infarct border zone along with an attenuated apoptosis, which were related to an amelioration of oxidative stress evidenced by reduction of reactive oxygen species (ROS) in heart tissue and malondialdehyde (MDA) in serum, and increase of superoxide dismutase (SOD). This were accompanied by upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) pathway. In vitro experiments we found that specific Nrf2 inhibitor significantly reversed the effects resulted from pinocembrin including antioxidant, anti-apoptosis, anti-fibrosis and neovascularization, which further indicated the amelioration of PIHF by pinocembrin was in a Nrf2/HO-1 pathway-dependent manner. Conclusion Pinocembrin ameliorated cardiac functions and remodeling resulted from PIHF by ROS scavenging and Nrf2/HO-1 pathway activation which further attenuated collagen fibers deposition and apoptosis, and facilitated angiogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00363-7.
Collapse
Affiliation(s)
- Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yazhou Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
15
|
Chen QM. Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends Pharmacol Sci 2021; 42:729-744. [PMID: 34332753 DOI: 10.1016/j.tips.2021.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Myocardial ischemia or reperfusion increases the generation of reactive oxygen species (ROS) from damaged mitochondria, NADPH oxidases, xanthine oxidase, and inflammation. ROS can be removed by eight endogenous antioxidant and redox systems, many components of which are expressed under the influence of the activated Nrf2 transcription factor. Transcriptomic profiling, sequencing of Nrf2-bound DNA, and Nrf2 gene knockout studies have revealed the power of Nrf2 beyond the antioxidant and detoxification response, from tissue recovery, repair, and remodeling, mitochondrial turnover, and metabolic reprogramming to the suppression of proinflammatory cytokines. Multifaceted regulatory mechanisms for Nrf2 protein levels or activity have been mapped to its functional domains, Nrf2-ECH homology (Neh)1-7. Oxidative stress activates Nrf2 via nuclear translocation, de novo protein translation, and increased protein stability due to removal of the Kelch-like ECH-associated protein 1 (Keap1) checkpoint, or the inactivation of β-transducin repeat-containing protein (β-TrCP), or Hmg-CoA reductase degradation protein 1 (Hrd1). The promise of small-molecule Nrf2 inducers from natural products or derivatives is discussed here. Experimental evidence is presented to support Nrf2 as a lead target for drug development to further improve the treatment outcome for myocardial infarction (MI).
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
16
|
Gao L, Wang H, Tian C, Zucker IH. Skeletal Muscle Nrf2 Contributes to Exercise-Evoked Systemic Antioxidant Defense Via Extracellular Vesicular Communication. Exerc Sport Sci Rev 2021; 49:213-222. [PMID: 33927165 PMCID: PMC8195856 DOI: 10.1249/jes.0000000000000257] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review explores the hypothesis that the repetitive contraction-relaxation that occurs during chronic exercise activates skeletal myocyte nuclear factor erythroid-derived 2-like 2 (Nrf2) to upregulate antioxidant enzymes. These proteins are secreted into the circulation within extracellular vesicles and taken up by remote cells, thus providing remote organs with cytoprotection against subsequent oxidative stress.
Collapse
Affiliation(s)
- Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 69198
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 69198
| | - Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 69198
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 69198
| |
Collapse
|
17
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
18
|
Zhang XJ, Cui ZH, Zhao YX, He TT, Wang L, Liang XW. Ferulic Acid Ameliorates Isoproterenol-Induced Heart Failure by Decreasing Oxidative Stress and Inhibiting Cardiocyte Apoptosis via Activating Nrf2 Signaling Pathway in Rats. Biol Pharm Bull 2021; 44:396-403. [PMID: 33642547 DOI: 10.1248/bpb.b20-00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferulic acid (FA) has potential therapeutic effects in multiple diseases including cardiovascular diseases. However, the effect and molecular basis of FA in heart failure (HF) has not been thoroughly elucidated. Herein, we investigated the roles and mechanisms of FA in HF in isoproterenol (ISO)-induced HF rat model. Results found that FA ameliorated cardiac dysfunction, alleviated oxidative stress, reduced cell/myocardium injury-related enzyme plasma level, inhibited cardiocyte apoptosis in ISO-induced HF rat models. Moreover, FA reduced the co-localization of Keap1 and nuclear factor-E2-related factor 2 (Nrf2) in heart tissues of ISO-induced HF rats, and FA alleviated the inhibitory effects of ISO on expressions of p-Nrf2, heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). Additionally, Nrf2 signaling pathway inhibitor ML385 showed adverse effects. FA weakened the effects of ML385 in ISO-induced HF rat models. Collectively, FA ameliorated HF by decreasing oxidative stress and inhibiting cardiocyte apoptosis via activating Nrf2 pathway in ISO-induced HF rats. Our data elucidated the underling molecular mechanism and provided a novel insight into the cardioprotective function of FA, thus suggested the therapeutic potential of FA in HF treatment.
Collapse
Affiliation(s)
- Xi-Juan Zhang
- Department of Geriatrics, First Affiliated Hospital of Soochow University
| | - Zhong-Hua Cui
- Department of Geriatrics, Hulunbuir People's Hospital
| | - Yan-Xin Zhao
- Department of Geriatrics, Hulunbuir People's Hospital
| | - Ting-Ting He
- Department of Cardiology, Hulunbuir People's Hospital
| | - Ling Wang
- Department of General Medicine, First Affiliated Hospital of Soochow University
| | - Xiu-Wen Liang
- Department of Cardiology, Hulunbuir People's Hospital
| |
Collapse
|
19
|
Tan X, Jiao PL, Sun JC, Wang W, Ye P, Wang YK, Leng YQ, Wang WZ. β-Arrestin1 Reduces Oxidative Stress via Nrf2 Activation in the Rostral Ventrolateral Medulla in Hypertension. Front Neurosci 2021; 15:657825. [PMID: 33897365 PMCID: PMC8059792 DOI: 10.3389/fnins.2021.657825] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for blood pressure (BP) regulation, has been demonstrated to be responsible for the overactivity of the sympathetic nervous system in hypertension and heart failure. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidative stress. β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors (GPCRs), and its overexpression in the RVLM could reduce BP and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHR). The goal of this study was to investigate whether Nrf2-mediated antioxidative stress is involved in the antihypertensive effect of β-arrestin1 in the RVLM. It was found that the activation level of Nrf2 in the RVLM of SHR was significantly reduced, compared with normotensive Wistar-Kyoko (WKY) rats. Overexpression of β-arrestin1 in the RVLM significantly decreased ROS production and facilitated the Nrf2 activation in the RVLM of SHR, accompanied by upregulating the expression of HO-1 and NQO-1. However, Nrf2 knockdown attenuated the antioxidant effect of β-arrestin1 overexpression in the RVLM by downregulating HO-1 and NQO-1 expression levels. In conclusion, the current results suggested that the antihypertensive effect of β-arrestin1 overexpression in the RVLM is mediated by decreased ROS production, which is associated with Nrf2 activation.
Collapse
Affiliation(s)
- Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Pei-Lei Jiao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Orthopedics, The 962th Hospital of People’s Liberation Army, Harbin, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Wei-Zhong Wang,
| |
Collapse
|
20
|
Abstract
Heart failure is a worldwide pandemic influencing 26 million individuals worldwide and is expanding. Imbalanced redox homeostasis in cardiac cells alters the structure and function of the cells, which leads to contractile dysfunction, myocardial hypertrophy, and fibrosis in chronic heart failure. Various targets and agents acting on these such as siRNA, miRNA, interleukin-1, opioids, vasodilators, and SGLT2 inhibitors are being evaluated for heart failure, and nuclear factor erythroid 2-related factor 2 (NRF2) is one of them. NRF2 is a master transcription factor which is expressed in most of the tissues and exhibits a major role in amplification of the antioxidant pathways associated with the enzymes present in myocardium. Increased ROS generation and PI3K-Akt signaling can activate the receptor NRF2. Various in vitro and in vivo and few clinical studies suggested NRF2 may possess a potential for targeting oxidative stress-induced cardiovascular diseases including heart failures. All these studies collectively propose that upregulation of NRF2 will attenuate the increase in hemodynamic stress and provide beneficial role in cardiovascular diseases. The current review shall familiarize readers about the regulations and functions of NRF2. We have also discussed the current evidences suggesting beneficial role of NRF2 activators in heart failure. Graphical abstract.
Collapse
|
21
|
Shaw P, Sen A, Mondal P, Dey Bhowmik A, Rath J, Chattopadhyay A. Shinorine ameliorates chromium induced toxicity in zebrafish hepatocytes through the facultative activation of Nrf2-Keap1-ARE pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105622. [PMID: 32947073 DOI: 10.1016/j.aquatox.2020.105622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium, a heavy metal toxicant, abundantly found in the environment showed hepatotoxic potential in zebrafish liver and instigated the Nrf2-Keap1-ARE pathway as a cellular stress response as reported in our previous studies. In the present study we have evaluated the ameliorating effect of shinorine, a mycosporine like amino acid (MAAs) and a mammalian Keap1 antagonist against chromium induced stress in zebrafish hepatocytes. Shinorine was found to be effective in increasing the cell viability of chromium treated hepatocytes through curtailing the cellular ROS content. Trigonelline, an Nrf2 inhibitor was found to reduce the viability of hepatocyte cultures co-exposed to shinorine and chromium. In other words, trigonelline being an Nrf2 blocker neutralised the alleviating effect of shinorine. This indicated that shinorine mediated cyto-protection in Cr [VI]-intoxicated cells is Nrf2 dependent. Further, qRT-PCR analysis revealed comparatively higher expression of nfe2l2 and nqo1 in shinorine + chromium treated hepatocytes than cells exposed to chromium alone indicating a better functioning of Nrf2-Keap1-Nqo1 axis. To further confirm if shinorine can lead to disruption of Nrf2-Keap1 interaction in zebrafish hepatocytes and render cytoprotection to chromium exposure, our in silico analysis through molecular docking revealed that shinorine could bind to the active amino acid residues of the DGR domain, responsible for Nrf2-Keap1 interaction of all the three Keap1s evaluated. This is the first report about shinorine that ameliorates chromium induced toxicity through acting as an Nrf2-Keap1 interaction disruptor. We additionally carried out in-silico pharmacokinetic and ADMET studies to evaluate druglikeness of shinorine whose promising results indicated its potential to be developed as an ideal therapeutic candidate against toxicant induced pathological conditions.
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Animesh Sen
- Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | |
Collapse
|
22
|
Ma A, Gao L, Wafi AM, Yu L, Rudebush T, Zhou W, Zucker IH. Overexpression of Central ACE2 (Angiotensin-Converting Enzyme 2) Attenuates the Pressor Response to Chronic Central Infusion of Ang II (Angiotensin II): A Potential Role for Nrf2 (Nuclear Factor [Erythroid-Derived 2]-Like 2). Hypertension 2020; 76:1514-1525. [PMID: 32895018 DOI: 10.1161/hypertensionaha.120.15681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the mechanism by which ACE2 (angiotensin-converting enzyme 2) overexpression alters neurohumoral outflow and central oxidative stress. Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is a master antioxidant transcription factor that regulates cytoprotective and antioxidant genes. We hypothesized that upregulation of central ACE2 inhibits the pressor response to Ang II (angiotensin II) by reducing reactive oxygen species through a Nrf2/antioxidant enzyme-mediated mechanism in the rostral ventrolateral medulla. Synapsin human Angiotensin Converting Enzyme 2 positive (SynhACE2+/+) mice and their littermate controls synhACE2-/- were used to evaluate the consequence of intracerebroventricular infusion of Ang II. In control mice, Ang II infusion evoked a significant increase in blood pressure and norepinephrine excretion, along with polydipsia and polyuria. The pressor effect of central Ang II was completely blocked in synhACE2+/+ mice. Polydipsia, norepinephrine excretion, and markers of oxidative stress in response to central Ang II were also reduced in synhACE2+/+ mice. The MasR (Mas receptor) agonist Ang 1-7 and blocker A779 had no effects on blood pressure. synhACE2+/+ mice showed enhanced expression of Nrf2 in the rostral ventrolateral medulla which was blunted following Ang II infusion. Ang II evoked nuclear translocation of Nrf2 in cultured Neuro 2A (N2A) cells. In synhACE2-/- mice, the central Ang II pressor response was attenuated by simultaneous intracerebroventricular infusion of the Nrf2 activator sulforaphane; blood pressure was enhanced by knockdown of Nrf2 in the rostral ventrolateral medulla in Nrf2 floxed (Nrf2f/f) mice. These data suggest that the hypertensive effects of intracerebroventricular Ang II are attenuated by selective overexpression of brain synhACE2 and may be mediated by Nrf2-upregulated antioxidant enzymes in the rostral ventrolateral medulla.
Collapse
Affiliation(s)
- Anyun Ma
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Lie Gao
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Ahmed M Wafi
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Li Yu
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Tara Rudebush
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Wenxian Zhou
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate recent advances in understanding the pivotal roles of Cullin-3 (CUL3) in blood pressure regulation with a focus on its actions in the kidney and blood vessels. RECENT FINDINGS Cul3-based ubiquitin ligase regulates renal electrolyte transport, vascular tone, and redox homeostasis by facilitating the normal turnover of (1) with-no-lysine kinases in the distal nephron, (2) RhoA and phosphodiesterase 5 in the vascular smooth muscle, and (3) nuclear factor E2-related factor 2 in antioxidant responses. CUL3 mutations identified in familial hyperkalemic hypertension (FHHt) yield a mutant protein lacking exon 9 (CUL3∆9) which displays dual gain and loss of function. CUL3∆9 acts in a dominant manner to impair CUL3-mediated substrate ubiquitylation and degradation. The consequent accumulation of substrates and overactivation of downstream signaling cause FHHt through increased sodium reabsorption, enhanced vasoconstriction, and decreased vasodilation. CUL3 ubiquitin ligase maintains normal cardiovascular and renal physiology through posttranslational modification of key substrates which regulate blood pressure. Interference with CUL3 disturbs these key downstream pathways. Further understanding the spatial and temporal specificity of how CUL3 functions in these pathways is necessary to identify novel therapeutic targets for hypertension.
Collapse
|
24
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
25
|
Li R, Zhang P, Li C, Yang W, Yin Y, Tao K. Tert-butylhydroquinone mitigates Carbon Tetrachloride induced Hepatic Injury in mice. Int J Med Sci 2020; 17:2095-2103. [PMID: 32922170 PMCID: PMC7484658 DOI: 10.7150/ijms.45842] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ) is an antioxidant compound that exhibits cytoprotective effect in many tissues under pathological condition. However, its role in carbon tetrachloride (CCL4) induced liver injury is still unclear. Here we established a carbon tetrachloride induced hepatic injury model in mice to determine whether tBHQ can mitigate CCL4 induced liver damage. In our study, we found tBHQ exhibited protective effects in CCL4 treated mice model. TBHQ markedly improved hepatic function and decreased hepatic histopathological damage in vivo. In addition, tBHQ reduced levels of pro-inflammatory cytokines in mice model. Moreover, tBHQ mitigated apoptosis of hepatocytes, oxidative stress and lipid peroxidation in vivo and in vitro. We also found the possible mechanism of protective effects of tBHQ was associated with activation of Nrf2/ heme oxygenase-1 (HO-1) pathway. In conclusion, our study revealed tBHQ can be a potential therapeutic drug in treatment of acute hepatic injury.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
26
|
Song C, Heping H, Shen Y, Jin S, Li D, Zhang A, Ren X, Wang K, Zhang L, Wang J, Shi D. AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. CHEMOSPHERE 2020; 244:125495. [PMID: 31837563 DOI: 10.1016/j.chemosphere.2019.125495] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Dysregulated activation of inflammation plays an important role in the development and progression of neuronal damage, and limiting the production of reactive oxygen species (ROS) can suppress the inflammatory signals. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensing transcription factor that drives an adaptive cellular defense in response to oxidative stress. However, the implications of Nrf2 in sodium fluoride (NaF)-stimulated microglia and the underlying mechanisms remain obscure. In this study, we demonstrated that NaF activated the Nrf2 signaling and enhanced the downstream antioxidant protein levels, including heme oxygenase-1 and quinine oxidoreductase 1. NaF induced oxidative stress, as indicated by increased ROS level and malondialdehyde content, and reduced superoxide dismutase activity. Moreover, NaF promoted the nuclear translocation of NF-κB, thus increased the production of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. However, these effects were relieved by overexpression of Nrf2. Meanwhile, knockdown of Nrf2 by shRNA exacerbated NaF-induced oxidative stress and inflammation in BV-2 cells and primary cultured microglia. Mechanistically, NaF-induced Nrf2 activation is AMPK/p38 dependent, as deletion of AMPK using siRNA blocked the activating effect of NaF on p38 and Nrf2. Notably, treatment of N-Acety-l-Cysteine attenuated AMPK/p38-dependent Nrf2 activation in microglia exposed to NaF. In conclusion, these data demonstrated for the first time that Nrf2 activation exerts a neuroprotective effect on NaF-stimulated redox imbalance and inflammation that is dependent on the AMPK/p38 pathway.
Collapse
Affiliation(s)
- Chao Song
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Huangfu Heping
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Yongshu Shen
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Shuangxing Jin
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Deyin Li
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Aiguo Zhang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Xiaoli Ren
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Kunli Wang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Lei Zhang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China
| | - Jundong Wang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China; Shanxi Key Laboratory of Ecological Animal Sciences and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Dongmei Shi
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|
27
|
Balasubramanian P, Asirvatham-Jeyaraj N, Monteiro R, Sivasubramanian MK, Hall D, Subramanian M. Obesity-induced sympathoexcitation is associated with Nrf2 dysfunction in the rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2019; 318:R435-R444. [PMID: 31823672 DOI: 10.1152/ajpregu.00206.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increases in sympathetic nerve activity (SNA) have been implicated in obesity-induced risk for cardiovascular diseases, especially hypertension. Previous studies indicate that oxidative stress in the rostral ventrolateral medulla (RVLM), a key brain stem region that regulates sympathetic outflow to peripheral tissues, plays a pathogenic role in obesity-mediated sympathoexcitation. However, the molecular mechanisms underlying this phenomenon are not clear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates the expression of antioxidant and anti-inflammatory genes and confers cytoprotection against oxidative stress. The present study was designed to investigate whether Nrf2 dysfunction was associated with obesity-induced oxidative stress in the RVLM and sympathoexcitation. C57BL/6J mice were fed with chow or a high-fat diet (HFD) for 16 wk. Blood pressure parameters were assessed by radiotelemeters in conscious freely moving mice. SNA was measured by heart rate variability analysis and also through assessment of depressor response to ganglionic blockade. The RVLM was microdissected for gene expression and protein analysis (Western blot analysis and activity assay) related to Nrf2 signaling. Our results showed that HFD-induced obesity resulted in significant increases in SNA, although we only observed a mild increase in mean arterial pressure. Obesity-induced oxidative stress in the RVLM was associated with impaired Nrf2 signaling marked by decreased Nrf2 activity, downregulation of Nrf2 mRNA, its target genes [NAD(P)H quinone dehyrogenase 1 (Nqo1) and superoxide dismutase 2 (Sod2)], and inflammation. Our findings suggest that obesity results in Nrf2 dysfunction, which likely causes maladaptation to oxidative stress and inflammation in the RVLM. These mechanisms could potentially contribute to obesity-induced sympathoexcitation.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Reynolds Oklahoma Center on Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Delton Hall
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
28
|
Tian C, Gao L, Zhang A, Hackfort BT, Zucker IH. Therapeutic Effects of Nrf2 Activation by Bardoxolone Methyl in Chronic Heart Failure. J Pharmacol Exp Ther 2019; 371:642-651. [PMID: 31601682 DOI: 10.1124/jpet.119.261792] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic heart failure (CHF) in many tissues. Increasing evidence suggests that systemic activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling can protect against postinfarct cardiac remodeling by reducing oxidative stress. However, it remains to be elucidated if Nrf2 activation exerts therapeutic effects in the CHF state. Here, we investigated the beneficial hemodynamic effects of bardoxolone methyl (2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester, CDDO-Me), a pharmacological activator of Nrf2, in a rodent model of CHF. Based on echocardiographic analysis, rats at 12 weeks post-myocardial infarction (MI) were randomly split into four groups. CDDO-Me (5 mg/kg, i.p.) was administered daily for another 2 weeks in sham and CHF rats and compared with vehicle treatment. Echocardiographic and hemodynamic analysis suggest that short-term CDDO-Me administration increased stroke volume and cardiac output in CHF rats and decreased left ventricle end-diastolic pressure. Molecular studies revealed that CDDO-Me-induced cardiac functional improvement was attributed to an increase of both Nrf2 transcription and translation, and a decrease of oxidative stress in the noninfarcted areas of the heart. Furthermore, CDDO-Me reduced NF-κB binding and increased Nrf2 binding to the CREB-binding protein, which may contribute to the selective increase of Nrf2 downstream targets, including NADPH Oxidase Quinone 1, Heme Oxygenase 1, Catalase, and Glutamate-Cysteine Ligase Catalytic Subunit, and the attenuation of myocardial inflammation in CHF rats. Our findings suggest that Nrf2 activation may provide beneficial cardiac effects in MI-mediated CHF. SIGNIFICANCE STATEMENT: Chronic heart failure (CHF) is the leading cause of death among the aged worldwide. The imbalance between pro- and antioxidant pathways is a determinant in the pathogenesis of CHF. Systemic activation of Nrf2 and antioxidant protein signaling by bardoxolone methyl may have beneficial effects on cardiac function and result in improvements by enhancing antioxidant enzyme expression and attenuating myocardial inflammation.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andi Zhang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
29
|
Wafi AM, Yu L, Gao L, Zucker IH. Exercise training upregulates Nrf2 protein in the rostral ventrolateral medulla of mice with heart failure. J Appl Physiol (1985) 2019; 127:1349-1359. [PMID: 31556830 DOI: 10.1152/japplphysiol.00469.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic heart failure (CHF) is associated with global oxidative stress, which contributes to sympathoexcitation. Increased reactive oxygen species in the brain accumulate within neurons and lead to enhanced neuronal excitability. Exercise training (ExT) is associated with a reduction of oxidative stress by upregulation of antioxidant enzymes. The link between ExT and antioxidant enzyme expression in the brain of animals with CHF is not clear. We hypothesized that ExT enhances transcription and translation of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene, a master transcription factor that modulates antioxidant enzyme gene expression, in the rostral ventrolateral medulla (RVLM) of mice with CHF. Mice were divided into the following groups: Sham sedentary (Sham-Sed), Sham-ExT, CHF-Sed, and CHF-ExT. After 8 wk of ExT, we measured Nrf2 and NAD(P)H dehydrogenase [quinone] 1 (NQO-1) message and protein expression along with maximal exercise tolerance and urinary norepinephrine (NE) excretion. We found that Nrf2 and NQO-1 mRNA and protein expression in the RVLM were lower in CHF-Sed mice compared with Sham-Sed. ExT attenuated the CHF-induced reduction of Nrf2 and NQO-1 mRNA and protein expression in the RVLM. NE excretion was higher in CHF-Sed mice compared with Sham-Sed (666.8 ± 79.3 ng/24 h, n = 6 vs. 397.8 ± 43.7 ng/24 h, P = 0.04). CHF-ExT mice exhibited reduced urinary NE excretion compared with CHF-Sed (360.7 ± 41.7 ng, n = 4 vs. 666.8 ± 79.3 ng, n = 6; P = 0.03). We conclude that ExT-induced upregulation of Nrf2 in the RVLM contributes to the beneficial effects of ExT on sympathetic function in the heart failure state.NEW & NOTEWORTHY This study provide evidence for an important role for exercise training in the modulation of antioxidant enzyme production in the rostral ventrolateral medulla (RVLM) in the heart failure state. We show here a correlation between exercise training and the expression of the antioxidant transcription factor Nrf2 in the RVLM. Exercise training reduced sympathetic function (norepinephrine excretion) and upregulated both Nrf2 and the antioxidant enzyme NQO-1. We conclude that Nrf2 in the RVLM may be an important target for controlling sympathetic outflow in heart failure.
Collapse
Affiliation(s)
- Ahmed M Wafi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|